ISCTE 2 1UL
REPOSITORIO

INSTITUTO UNIVERSITARIO DE LISBOA

Repositério ISCTE-IUL

Deposited in Repositdrio ISCTE-IUL:
2023-09-22

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Alturas, B. (2023). Connection between UML use case diagrams and UML class diagrams: A matrix
proposal. International Journal of Computer Applications in Technology. 72 (3), 161-168

Further information on publisher's website:
10.1504/1JCAT.2023.133294

Publisher's copyright statement:

This is the peer reviewed version of the following article: Alturas, B. (2023). Connection between UML
use case diagrams and UML class diagrams: A matrix proposal. International Journal of Computer
Applications in Technology. 72 (3), 161-168, which has been published in final form at
https://dx.doi.org/10.1504/1JCAT.2023.133294. This article may be used for non-commercial
purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
¢ a link is made to the metadata record in the Repository
o the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Servicos de Informagdo e Documentagdo, Instituto Universitario de Lisboa (ISCTE-IUL)
Av. das Forgas Armadas, Edificio II, 1649-026 Lisboa Portugal
Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1504/IJCAT.2023.133294

Connection between UML use case diagrams and
UML class diagrams: A matrix proposal

Braulio Alturas

Instituto Universitario de Lisboa (ISCTE-IUL), ISTAR-Iscte (University Institute of
Lisbon), Av. For¢cas Armadas 1649-026 Lisboa, Portugal
Email: braulio.alturas@jiscte-iul.pt

Abstract: In recent years, the UML language has been one of the most used to conduct
information system analysis and design. Being an object-oriented technique, UML provides a
vast set of diagrams, in order to represent the various abstractions of the system, of which the
most used are the use-case diagram and the class diagram. Often, in the modelling of less
complex systems, only these two diagrams are used, where one represents the functionalities of
the system (use case diagram) and the other the static structure of the system (class diagram).
However, it is often difficult to make the connection between the two diagrams, and mainly, it is
difficult to verify when one matches the other. In order to solve this problem, a matrix is
proposed that links the two diagrams, using a case study to verify the utility of the matrix.

Keywords: UML; Use Case Diagram; Class Diagram; Modelling Technique; Matrix;
Information Systems; Object-Oriented; Analysis and Design.

Reference to this paper should be made as follows: Alturas, B. (2023) ‘Connection between
UML use case diagrams and UML class diagrams: A matrix proposal’, Int. J. of Computer
Applications in Technology.

Biographical notes: Braulio Alturas (PhD) is Associate Professor of Department of Information
Science and Technology of Instituto Universitario de Lisboa (ISCTE-IUL) (University Institute
of Lisbon), Lisbon, and researcher of the Information Systems Group of ISTAR (Information
Sciences, Technologies and Architecture Research Center). He holds a PhD in Management with
specialization in Marketing, a MSc in Management Information Systems, and a BSc in Business
Organization and Management, all from ISCTE-IUL. His scientific research interests and
publications are in acceptance and use of technology, digital marketing, social media, e-
commerce, information management, information systems, direct selling and consumer behavior.
ORCID: 0000-0003-0142-3737.

Introduction

The latest version of UML considers 14 different
diagrams in order to represent the various abstractions of a

Conceptual models, which are often graphically represented,
are used by Information Systems professionals to denote
both static and dynamic aspects of a particular domain.
They play an increasingly important role during all phases
of the information systems lifecycle (Fettke, 2009).

Model-based development, along with formal
verification process, assures the developed model satisfies
software requirements described in formal specifications
(Jnanamurthy et al,, 2021) and it becomes increasingly
important to develop various artefacts, and the model-based
artefacts co-evolution is another challenge when metamodel
evolves (Sabraoui et al., 2022).

Since its creation in the late twentieth century, the UML
language has been used by many academics and
practitioners to build conceptual models. Object-oriented
(O0) modelling techniques are nowadays fundamental for
the analysis and design of information systems. Of the
various OO techniques, the unified modelling language
(UML) has emerged as the dominant modelling approach
and has become an essential part of the toolset of any IS
professional (Shen et al., 2018).

system; however, the use case diagram and the class
diagram are still the most used by academics and
practitioners. These are also the diagrams most taught in
universities, in systems modelling courses, and students
often learn to build both diagrams without understanding the
connection between them. This connection is not always
easy to understand, and above all it is not easy to verify if
the two diagrams are in agreement with each other. The lack
of integration between use cases and class models raises
questions about the value of use cases in an object-oriented
modelling approach (Dobing and Parsons, 2000).

In order to solve this problem, this article presents a
matrix, inspired by the CRUD matrix, that links the two
diagrams. The proposal is to build the matrix after making
the two diagrams, to check if in any of the diagrams there
are missing components or too many components, allowing
their subsequent correction.

2 Theoretical Background
2.1 The UML language

The UML - Unified Modelling Language is a language that
uses standard notation to specify, build, visualize and
document object-oriented information systems (Nunes &
O’Neill, 2004).

The usage of some modelling techniques has increased
over the course of the last years, which applies to the use of
UML (Fettke, 2009). UML is a visual language equipped
with a rich set of diagrams. Each kind of UML diagram
provides a different perspective of the system to be
developed (Almendros-Jiménez & Iribarne, 2009).

The creation of UML was originally motivated by the
desire to standardize the disparate notational systems and
approaches to software design. Efforts to create UML began
in October 1994, when the company Rational promoted the
meeting between the North Americans Rumbaugh and
Booch, with the aim of unifying the method of modelling by
Booch and OMT (Object Modelling Technique) created by
Rumbaugh. The Object Management Group (OMG) first
standardized the Unified Modelling Language in 1997. The
software industry quickly accepted it as the standard
modelling language for specifying software and system
architectures. Although UML is primarily intended for
general purpose modelling, it is receiving extensive use in
various specialized areas, such as business process
modelling and real-time systems modelling (Bjérkander &
Kobryn, 2003).

UML offers a powerful set of notations and diagrams
that allow the capture of both static and dynamic aspects of
processes and can increase their understandability
(Bendraou et al., 2010).

In most projects, UML models are the first artifacts to
systematically represent a software architecture. They’re
subsequently modified and refined in the development
process. Their importance has increased with the advent of
model-driven architecture methodology (Lange &
Chaudron, 2006). Actually, the Unified Modelling
Language (UML) provides a graphical representation of a
software system, which can be used for both forward
engineering and reverse engineering (Wong & Sun, 2006).
A 2019 study, of more than 5,400 entries dealing with the
execution of the UML model, concluded that there is
growing scientific interest in the execution of the UML
model (Ciccozzi et al., 2019).

It has been observed that graphical representation of
model is easily accessible and understandable to the user.
The primary gap between the developer and the user has
been easily filled by the graphical description. In UML, Use
Case diagram defines the behaviour of a system. Classes
diagrams are used to capture the information about the
system to be developed (Singh et al., 2016).

2.2 Use case diagram

A use case represents system functionality, and is the UML
technique for capturing a system's requirements. Each use
case provides one or more scenarios that indicate how the
system must interact with end users, or with other systems,
to achieve a specific business objective. Use cases typically
avoid technical jargon, preferring instead the language of
the end user or a domain expert. Use cases are often co-
authored between analysts and users (Alturas, 2022). And
so, a use case is a piece of the system’s functionality,
describing the possible interactions between the system and
a user entity external to it called “actor”, for the purpose of
achieving a goal of that actor (Shoval et al., 2006).

In general, requirements expressed in natural language
are the first step in the software development process and
are documented in the form of use cases (Zaman et al.,
2020). The use-case diagrams are built when collecting and
specifying requirements and represent the functional
requirements, which, when implemented, will be the
functionalities of the system, that is, they show what the
system does and not how it does it. Bennet, McRobb, and
Farmer (2010) identified three categories of requirements
(Bennett et al., 2010):

* Functional requirements - Describe what the system
should do, that is, the description of the processing, inputs,
and outputs, in the interaction with people and other
systems;

» Nonfunctional requirements - Describe the quality with
which the system must provide functional requirements, that
is, performance measures, response times, data volume,
security considerations;

 Usability requirements - These are the guarantee of a
good connection between the system and the users, as well
as the tasks they perform with the support of the system.

The use case notation comprises actors, use cases and
associations. An actor reflects a role that is played by a
human (or non-human) with respect to a system. Actors
execute use cases. The link between actors and use cases is
shown by an association, which indicates that there is
communication between the actor and the use case, such as
the sending and receiving of messages (Vidgen, 2003).

A use case diagram is used to provide a visual summary
of the use cases, actors, and their relationships. Since use
case modelling is performed early in the software
development cycle, any defects in a use case model will
propagate to subsequent development phases and artifacts
(Khan & El-attar, 2016).

2.3 Class diagram

Class diagrams are the oldest part of UML (Rumbaugh,
2006). Class diagrams are concise, easy to understand, and
work well in practice (Alturas, 2022).

The class diagram represents not only the different
classes, but also the relationships that exist between them,
through simple graphical notation, in an object-oriented
approach. The simplicity of UML diagrams is a

fundamental aspect in systems modeling because ‘the
essential task of the software development process is to
offer the user the illusion of simplicity, protecting him from
the frequent complexity of the system’ (Booch et al., 2005).

The UML class diagram is essentially designed to
represent the structural component of a system, namely the
information structure that supports it. This structure is
usually static for a considerable period of time (Ramos,
2007).

In a study published in 2011 it was found that the class
diagram was the most used of all UML diagrams. In this
study, the class diagram was considered most useful with
the use case diagram least useful (Dobing & Parsons, 2011).
In 2019, another study proposes to use the UML use case
diagram to model business requirement level, and UML
class diagram for software system level (Habba et al., 2019).

Classes represent things; relationships represent the
connections between things. UML caters for three types of
relationship: association, generalization, and aggregation.
An association is a structural relationship between things
showing that one can navigate from the instances of one
class to the instances of another (and possibly vice versa)
(Vidgen, 2003).

3 Matrix proposal

UML is not a formal model, and hence ambiguities may
arise in design specifications between models that represent
overlapping but different aspects of the same system.
Ensuring traceability of requirements in different phases of
its life cycle and verifying consistency among different
models representing these phases are of utmost importance
(Chanda et al., 2009).

The structural model of a problem domain may be
specified by the conceptual class model with abstractions
(classes) from that problem domain and relationships
between them (most notably, associations and
generalizations). On the other hand, the behavioural aspect
of the problem is specified by use cases (Milicev, 2002).

One question that can be asked is what is the best order
to create the diagrams, that is, the main analysis tasks in a
use case-driven approach: creating a class diagram to model
the problem domain, and creating use cases to describe the
functional requirements of the system. An experiment
published in 2006 reveal that starting the analysis by
creating a class diagram leads to a better class diagram
(Shoval et al., 2006). But another study suggests that, when
teaching UML, it may be good to start off with teaching the
use case diagram, as it is probably easier for students to
comprehend than the class diagram (Siau & Lee, 2004).

A research published in 2004, centres on investigating
the roles of use case diagrams and class diagrams in
requirements analysis. The findings of this research have
some implications for practitioners. The results of the study
show that use-case diagrams were interpreted more
completely than class diagrams. This seems to imply that
use case diagrams are easier to interpret than class diagrams,

thus enabling the subjects to attain a more complete
understanding of the model (Siau & Lee, 2004).

VanderMeer and Dutta (2009) assert that UML is
complex and difficult to learn. They evaluated the UML
sequence diagram, which may be viewed as a bridge
between a use case and its class diagram (VanderMeer &
Dutta, 2009).

But there may be other solutions to make the link
between the two diagrams so that users can better
understand the link. The modeling languages and techniques
must adapt to the needs of their users as spoken human
languages change in response to the needs of their speakers
(Erickson, 2008).

The two diagrams described previously (use-case
diagram and class diagram) must be logically related
(Surmsuk & Thanawastien, 2008; Whitten & Bentley,
2005). Although there are other diagrams that can represent
the relationship between the two, one of the simplest ways
to relate them, and to evaluate their coherence, is through a
simple matrix: the use cases / classes matrix.

The use cases in the use case diagram represent system
functionality. In order for these functionalities to perform
the service for which they were created, they must have
access to data, that is, in the object classes of the class
diagram. This data can be consulted or modified by use
cases.

The matrix is built by placing the functionalities (use
cases) in line and the classes in columns. Sometimes, for
simplicity, classes are numbered (and the same can be done
in the class diagram itself). Then, in the boxes where a
feature crosses with a class, it can be marked “C” if the
functionality Consult class data or “M” if the functionality
Modify (insert, update or delete) the class data. The
proposed matrix is shown in Figure 1.

Figure 1 Use Cases/Classes Matrix

CLASSES 1 2 3 4 § 6 1 8 9 10 11

USE CASES
A

-— MY W

In line, all the main functionalities of the system must be
placed, and in column all the classes, including the
associative classes, are placed. Then it is marked with C
when a functionality queries the data of objects of a certain
class, and / or with M when a functionality modifies the data
of objects of a certain class. After the matrix is completed, it
is checked if there are any columns or rows without a C or

12

an M, and if this occurs, it means that at least one of the
diagrams is not completely correct.

This matrix was inspired by the CRUD matrix. A CRUD
matrix is a table in which rows indicate attributes of the
entities of a relation, and columns indicate different
locations of the applications (Surmsuk & Thanawastien,
2008; Whitten & Bentley, 2005).

The CRUD matrix is constructed in such a way that the
functionalities are listed in one of its axes and the entities in
the other. The intersecting cells denote the type of existing
interaction, that is: they show which entity will be affected
by the execution of a certain functionality and it explains the
CRUD properties for that intersection: Create (inclusion),
Read (query), Update (change) and Delete (exclusion).

4 Case study
4.1 Description of the case study

In order to test the matrix, a case study of a small company
that sells home appliance parts was used. The company
needed to develop a small information system for order
management. Interviews were conducted with the CEO, the
warehouse manager and the purchasing manager, who
would be the main users of the system to be created. From
the interviews, the requirements were collected and
specified, resulting in the following text.

The company has suppliers that supply several parts,
and each part can be supplied by several suppliers. Suppliers
(providers) are assigned a code that uniquely identifies
them. The same procedure is used for the parts.

Suppliers are further characterized by name, address,
and telephone number. Parts are characterized by
designation and colour. The quantity in stock of each piece
is also known. There are two types of parts: the plastic parts
in relation to which the material of which they are made is
kept, and the metallic parts on which the respective measure
is kept. Supplies are made at a given price and on a given
date.

Each supplier fulfils several part orders. The orders are
sequentially numbered, and each order has a variable
number of positions (order lines), each of which concerns a
part to be ordered. Each part can only be in one position of
each order. The positions are numbered from one onwards,
within each order.

The order has a date and status (made, confirmed,
received, checked or completed) and is addressed to a single
supplier. Positions include the position number, the unit
price, and the quantity ordered, as shown in Figure 2.

The Warehouse Manager is responsible for registering
all parts in the system. He should also check the stock
periodically, and in the event of a zero stock check, the
system automatically sends a message to the Purchasing
Manager to place an order.

The purchasing manager is responsible for registering
suppliers in the system and also for placing orders, and for
that purpose, they must validate their access to the system.
Both the Purchasing Manager and the Warehouse Manager
can consult the orders registered in the system, which can be
done by date or by supplier.

4.2 UML case study modelling

From the requirements specification, the system was
modelled using UML. First, from the necessary
functionalities, the use case diagram was drawn (see Figure
3) and then, from the necessary data, the class diagram was
drawn (see Figure 4). For the construction of both diagrams,
MS Visio was used.

Figure 3 Use Cases Diagram

Order Management System

See part stock
if stock = 0
2\
Request order

Warehouse Manager

Suppliers register
«uses»
Place order D

Purchasing Manager

See orders by date
<]
2\

See orders by’
supplier

As can be seen in Figure 3, the use case diagram
represents two actors: the warechouse manager and the
purchasing manager, and seven main use cases, one of
which has two particularizations. The class diagram
represents four main classes (one with two
particularizations) and an associative class (see Figure 4).

Figure 2 Order Form
Order Date: Supplier:
No.
Position | Part Designation | Quantity Unit Total
no. code price

Figure 6 Redesigned Class Diagram

Figure 4 Class Diagram
PLASTIC PART
1 1. -
PLASTIC PART SUPPLIER PART material
SUPPLIER 1. ! PART “material -code T -part code
< . par oode -name | -designation
-code i -address -color
-name ; -designation -phone SUPPLIES _stock METALIC PART
-address SUPPLIES -color price
-phone _ -stock METALIC PART _date -measure
-price
-date -measure 1 1
) 4 acdept descfibed
acdept descyibed
* 0.1
0.1
ORDER POSITION
ORDER POSITION -order number -position number
-order number -position number -date -qulantify
_date _quantity -state 1 + |-unit price USER
-state 1 * -unit price
laced 1 -user name
P -password

Once the two diagrams were built, the matrix was made,
placing the use cases in line and the classes in a column
(including associative classes), as shown in Figure 5.

Obviously, it was also necessary to redesign the matrix,
including the USER class (see Figure 7).

Figure S Case Study Use Cases/Classes Matrix . . .
g Y Figure 7 Redesigned Use Cases/Classes Matrix
|72} w2 -
S g |w |© |2 e |a =
o (- = 1< I 2 SISl B2 5
co|© = - = = 2 8 |5 |4
EE 1§ |8 = o e S - 1~ e o
S |5 z 8 5 =5 |7 |2 8 |F
Classes Classes |[® |»n z
Use Cases Use Cases
Parts register M Parts register M
See orders C |[C See orders C |C
See part stock C See part stock C
Request order C Request order C
Suppliers register M |M Suppliers register M |M
Place order c |c |c IM |M Place order CcC |C |[C |[M |M
Check access Check access C

As can be verified in Figure 5, the line regarding the use
case "Check access" is not written, neither a C nor an M.
This means one of two things: or the use case "Check
access" is not necessary and must be removed from the use
case diagram and also from the Matrix; or the use case
"Check access" is necessary and it will be necessary to add a
class representing objects whose data are necessary for this
use case in the class diagram.

Likewise, if a column for a class did not have any C or
M, it could mean one of two things: either the class is not
needed for any functionality in the system and must
therefore be removed from the class diagram; or it will be
necessary to add to the diagram of use cases a use case that
uses the data of the objects of that class.

In this case, after consulting the company's managers
again, it was concluded that it was necessary to validate
access to the system to place orders, and thus it was
necessary to store information about the users of the system,
so the class diagram was redesigned, according to Figure 6.

Now it can be said with certainty that the two diagrams
are in agreement with each other. Of course, this does not
mean that they represent exactly the reality that was
intended to model. As is known, the task of system
modelling is iterative and during the analysis and design of
the system it may always be necessary to add other use
cases or other classes.

5 Evaluation

To evaluate the utility of the matrix, the case study was
presented to a sample of 40 students, from a post-graduate
program, who had attended a systems modeling course with
UML. A questionnaire was built to find out if the students
had understood the diagrams of use cases and classes, and if
the matrix had helped them to understand the connection
between the diagrams. 35 wvalid responses to the
questionnaire were obtained.

To evaluate UML knowledge, respondents were asked
to rate a set of nine items on a 5-point Likert scale from 1
(strongly disagree) to 5 (strongly agree). These items were
considered by the teachers of information systems, as being
the most adequate. Respondents were also asked to provide
answers on some demographic characteristics, namely
gender and age. The results show that 54% of the
respondents were women and 46% men, the average age
being 33 years.

Regarding the nine items (which are now our nine
ordinal variables) it was found that all of them have an
average higher than 4 (on a scale of 1 to 5), with the highest
average relative to the questions "What I learned from UML
is useful "and" What I learned from UML helped me to

better understand the analysis and design of information
systems " with 4.77 (Table 1).

Finally, to check which items are most correlated with
item 9 (the matrix allowed me to better understand the
relationship between the use case diagram and the class
diagram), a Pearson correlation was run (Table 2). The
results show significant correlations with all items, except
item 5 (I am able to draw a use case diagram correctly), and,
on the other hand, item 4 (I understand what a use case
diagram is) was the one that presented stronger correlation.
That is, for the respondents it is more important to
understand what a use case diagram is, than to know how to
draw it correctly.

Table 1 Descriptive Statistics
Std.

N Mean Deviation
1. What I learned from UML is useful

35 4,77 0,426
2. What I learned from UML helped me to better understand the
analysis and design of information systems 35 4,71 0,426
3. I understand most UML diagrams

35 4,43 0,502
4. I understand what a use-case diagram is

35 4,60 0,497
5.1 am able to draw a use case diagram correctly

35 4,20 0,759
6. I understand well what a class diagram is

35 4,63 0,547
7.1 am able to draw a class diagram correctly

35 4,34 0,684
8. I understand the relationship between the use-case diagram and
the class diagram 35 4,31 0,758
9. The matrix allowed me to better understand the relationship
between the use-case diagram and the class diagram 35 4,23 0,731
Valid N (listwise)

35

Table 2

Correlations between variables

1. 2. 3. 4. 5. 6. 7. 8. 9.

1. What I learned from | Pearson Correlation 1
UML is useful Sig. (2-tailed)

N 35
2. What I learned from | Pearson Correlation ,838™ 1
UML helped me to Sig. (2-tailed) 0,000
better understand the

. . N 35 35

analysis and design of
information systems
3. I understand most Pearson Correlation 334" 0,196 1
UML diagrams Sig. (2-tailed) 0,050 | 0,258

N 35 35 35
4.1 understand what a | Pearson Correlation ,389" 0,250 ,589™ 1
use-case diagram is Sig. (2-tailed) 0,021 0,147 0,000

N 35 35 35 35
5.1am able to draw a Pearson Correlation 0,145 0,055 ,386" ,530 1
use cast‘l* diagram Sig. (2-tailed) 0,404 0,756 0,022 0,001
correctly N 35 35 35 35 35
6. I understand well Pearson Correlation 0,256 0,130 597 ,736™ ,397° 1
what a class diagram is | g0 (2_tajled) 0,138 0457 0,000 0000 0,018

N 35 35 35 35 35 35
7.1am able to draw a Pearson Correlation 0,176 0,075 ,588™ ,589™ ,A87 , 744 1
class diagram correctly | g0 (3_ajled) 0312 0,668 0,000 0,000 0,003 0,000

N 35 35 35 35 35 35 35
8. I understand the Pearson Correlation 0,229 0,229 0,177 4217 ,654™ 432" ,410° 1
relat“’nsgfp betwee“dthe Sig. (2-tailed) 0,186 0,186| 0310 0012 0,000 0010 0,014
nise-case ¢ agram an N 35 35 35 35 35 35 35 35
the class diagram
9. The matrix allowed Pearson Correlation ,456™ ,456™ ,446™ ,664™ 0,233 ,586™ AT ,503™ 1
g‘le to l"‘;“” l‘:_“dl‘)*rf‘a“d Sig. (2-tailed) 0,006 | 0,006 0,007 0000 0,178 0,000 0,010 0,002

¢ refationsup between | g 35 35 35 35 35 35 35 35 35
the use-case diagram
and the class diagram
*%, Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).
system modelling course with UML. Most of the

6 Conclusion

Although analysts are known to use similar matrices, no
scientific publications have been found that formalize a
matrix with these characteristics. In this study, a matrix was
used to check whether a use-case diagram matches the class
diagram in a given case. The matrix allows one to check
what may be missing in the diagrams, allowing them to be
easily corrected. The case study provide empirical evidence
of the difficulties to connect the two diagrams and how this
difficulty can be overcome. Are presented concrete
recommendations to address the learning challenges.
Therefore, valuable information and recommendations on
teaching UML were provided.

The case study demonstrated the utility of the matrix,
allowing us to verify what may be missing (and which
should be added) or what is not necessary (and should be
removed) from the diagrams under study. It was found that
in the columns of the matrix, it is not enough to represent
the classes, but also the associative classes and the many to
many associations, must be placed.

In addition, the case study was presented to a sample of
students from a post-graduate program who had attended a

respondents said they strongly agree with the statement ‘The
matrix allowed me to better understand the relationship
between the use case diagram and the class diagram’, which
validates the utility of the matrix for this sample of
respondents.

This study had limitations, the fact that it was based
only on a single case study and was validated by a sample of
only 35 students. In future studies, more cases should be
analyzed and validated with more representative samples,
not only from students, but also from professionals.

References

Almendros-Jiménez, J.M. and Iribarne, L. (2009) ‘UML
modeling of user and database interaction’, Computer
Journal, Vol. 52, No. 3, pp. 348-367.

Alturas, B. (2022) Introdugdo Aos Sistemas de Informagdo
Organizacionais — 2° Edicdo [Introduction to
Organizational Information Systems — 2nd Edition],
Edigoes Silabo, Lisboa.

Bendraou, R., Jézéquel, J.M., Gervais, M.P. and Blanc, X.
(2010) ‘A comparison of six UML-based languages for
software process modeling’, I[EEE Transactions on
Software Engineering, Vol. 36, No. 5, pp. 662—675.

Bennett, S., McRobb, S. and Farmer, R. (2010) Object-
Oriented Systems Analysis and Design Using UML,
4th ed., McGraw-Hill Education.

Bjorkander, M. and Kobryn, C. (2003) ‘Architecting systems
with UML 2.0°, IEEE Software, Vol. 20, No. 4, pp.
57-61.

Booch, G., Rumbaugh, J. and Jacobson, L. (2005) The
Unified Modeling Language User Guide, 2nd edition,
Addison-Wesley Professional.

Chanda, J., Kanjilal, A., Sengupta, S. and Bhattacharya, S.
(2009) ‘Traceability of requirements and consistency
verification of UML UseCase, activity and class
diagram: A formal approach’, Proceedings of
International Conference on Methods and Models in
Computer Science, ICM2CS09, available
at:https://doi.org/10.1109/icm2cs.2009.5397941.

Ciccozzi, F., Malavolta, I. and Selic, B. (2019) ‘Execution of
UML models: a systematic review of research and
practice’, Sofiware & Systems Modeling, Vol. 18, pp.
2313-2360.

Dobing, B. and Parsons, J. (2000) ‘Understanding the Role
of Use Cases in UML’, Journal of Database
Management, Vol. 11, No. 4, pp. 28-36.

Dobing, B. and Parsons, J. (2011) ‘Dimensions of UML
Diagram Use’, Journal of Database Management, Vol.
19, No. 1, pp. 1-18.

Erickson, J. (2008) A Decade and More of UML: An
Overview of UML Semantic and Structural Issues and
UML Field Use.

Fettke, P. (2009) ‘How conceptual modeling is used’,
Communications of the Association for Information
Systems, Vol. 25, No. 1, pp. 571-592.

Habba, M., Fredj, M. and Benabdellah Chaouni, S. (2019)
‘Alignment between Business Requirement, Business
Process, and Software System: A Systematic Literature
Review’, Journal of Engineering (United Kingdom),
Hindawi, Vol. 2019, pp. 1-19.

Jnanamurthy, H.K., Henskens, F., Paul, D. and Wallis, M.
(2021) ‘Formal specification at model-level of model-
driven engineering using modelling techniques’,
International Journal of Computer Applications in
Technology, Vol. 67 No. 4, pp. 340-350.

Khan, Y.A. and El-attar, M. (2016) ‘Using model
transformation to refactor use case models based on
antipatterns’, Information Systems Frontiers, Vol. 18,
No. 1, pp. 171-204.

Lange, C.F.J. and Chaudron, M.R.V. (2006) ‘UML Software
Architecture and Design Description’, IEEE Software,
Vol. 23, No. 2, pp. 40-46.

Milicev, D. (2002) ‘Automatic Model Transformations
Using Extended UML Object Diagrams in Modeling
Environments’, IEEE Transactions on Software
Engineering, Vol. 28, No. 4, pp. 413-431.

Nunes, M. and O’Neill, H. (2004) Fundamental de UML
[UML Fundamental], 3rd ed., FCA — Editora de
Informatica, Lisboa, Portugal.

Ramos, P.N. (2007) Desenhar Bases de Dados Com UML
[Design Databases with UML], 2nd ed., Silabo,
Lisboa, Portugal.

Rumbaugh, J. (2006) ‘ER Is UML’, Journal of Information
Systems Education, Vol. 17, No. 1, pp. 21-25.

Sabraoui, A., Abouzahra, A. and Afdel, K. (2022)
‘Metamodel extension approach applied to the model-
driven development of mobile applications’,
International Journal of Computer Applications in
Technology, Vol. 68 No. 2, pp. 114-131.

Shoval, P., Yampolsky, A. and Last, M. (2006) ‘Class
diagrams and use cases - Experimental examination of
the preferred order of modeling’, CEUR Workshop
Proceedings, Vol. 364, pp. 91-102.

Siau, K. and Lee, L. (2004) ‘Are use case and class diagrams
complementary in requirements analysis? An
experimental study on use case and class diagrams in
UML’, Requirements Engineering, Vol. 9, No. 4, pp.
229-237.

Singh, M., Sharma, A.K. and Saxena, R. (2016) ‘Formal
Transformation of UML Diagram: Use Case, Class,
Sequence Diagram with Z notation for Representing
the Static and Dynamiv Perspectives of System’,
Advances in Intelligent Systems and Computing, Vol.
409, pp. 25-38.

Surmsuk, P. and Thanawastien, S. (2008) ‘The Integrated
Strategic Information System Planning Methodology’,
pp. 467-467.

VanderMeer, D. and Dutta, K. (2009) ‘Applying Learner-
Centered Design Principles to UML Sequence
Diagrams’, Journal of Database Management, Vol.
20, No. 1, pp. 25-47.

Vidgen, R. (2003) ‘Requirements Analysis and UML: Use
Cases and Class Diagrams’, Computing & Control
Engineering, No. April, pp. 12-17.

Whitten, J. and Bentley, L. (2005) Systems Analysis and
Design Methods, 7th ed., McGraw-Hill.

Wong, K. and Sun, D. (2006) ‘On evaluating the layout of
UML diagrams for program comprehension’, Software
Quality Journal, Vol. 14, No. 3, pp. 233-259.

Zaman, Q. uz, Nadeem, A. and Sindhu, M.A. (2020)
’Formalizing the use case model: A model-based
approach’, PLoS ONE, Vol. 15, No. 4, pp. 1-30.

