ISCTE 2 1UL
REPOSITORIO

INSTITUTO UNIVERSITARIO DE LISBOA

Repositério ISCTE-IUL

Deposited in Repositdrio ISCTE-IUL:
2024-04-18

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Reis, J. (2023). What's in a shape: An algorithm for finding shapes in shapes. In 2023 18th Iberian
Conference on Information Systems and Technologies (CISTI). Aveiro, Portugal: IEEE.

Further information on publisher's website:
10.23919/CISTI58278.2023.10211829

Publisher's copyright statement:

This is the peer reviewed version of the following article: Reis, J. (2023). What's in a shape: An
algorithm for finding shapes in shapes. In 2023 18th Iberian Conference on Information Systems and
Technologies (CISTI). Aveiro, Portugal: IEEE., which has been published in final form at
https://dx.doi.org/10.23919/CISTI58278.2023.10211829. This article may be used for non-
commercial purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
¢ a link is made to the metadata record in the Repository
o the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Servicos de Informagdo e Documentagdo, Instituto Universitario de Lisboa (ISCTE-IUL)
Av. das Forgas Armadas, Edificio II, 1649-026 Lisboa Portugal
Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.23919/CISTI58278.2023.10211829

What’s in a Shape

An Algorithm for Finding Shapes in Shapes

Joaquim Reis
Instituto Universitario de Lisboa (ISCTE-IUL)
ISTAR-Iscte
Lisboa, Portugal
joaquim.reis@iscte-iul.pt

Abstract — This paper describes a simple two stage algorithm for
finding emergent sub-shapes in shapes, in the context of shape
grammar systems. Matching the shape in the left side of a rule of
a shape grammar with parts of a shape in a design in process to
decide if the rule is applicable, is its main purpose. Shape
grammars have been used to represent the knowledge behind the
creative work of architects, designers and artists and allow the
implementation of computational mechanisms to analyze and
synthesize designs of visual languages, with obvious applications
to design, including for marketing. Their computational
mechanisms can include the detection of emergent sub-shapes.
The algorithm we propose performs this task and is a core
component of a system, described in our past work, that allows
users to build their own shape grammars and use them.

Keywords - Shape Grammars; Artificial Intelligence; Design.

l. INTRODUCTION

The shape grammar formalism can be used to synthesize, as
well as, to analyze, designs of design languages. Shape
grammars are related to design and, as well as the
symbolic/text phrase grammars, they can be considered a
member of the “family” of grammars. Both can be considered
production systems, where replacement rules are used to
recursively generate phrases of a language. But the similarities
end up here. Firstly, shape grammars are inherently visual.
And, secondly, they accommodate aspects of emergency, i.e.,
the possibility of generating shapes not explicitly introduced by
the application of the rules. Maybe the differences are not
restricted to these two features, but these two are very
important in the field of arts, especially in design.

Not infrequently, an artist stops in the middle of a creative
work to look to, and appreciate, or assess, the work done so far,
and it happens to discover some emergent detail, or shape, that
wasn’t there before. And that particular detail comes to be
inspiration for him/her for the next step of the creative work.
Many other activities, visual or not, involve discovering
emergent patterns too, from the most noble scientific research
to the most commonplace activities, including entertainment
ones!. Emergency is important in creativity, in creating new
(and useful) ideas, designs, realizations, artifacts?.

L Yes, those! For instance, see the puzzles to discover “how many” triangles,
or squares, or whatever “are in the picture?”

2 Emergency is everywhere. It is present in the Nature too, so that’s probably
why it is the nature of Nature to be so creative!

This paper approaches the problem of discovering emergent
shapes within given shapes. The human brain and eye seem
efficient in solving it, although prone to failures and mistakes
too, but the problem seems to be defying from a computational
perspective. Extending the path other researchers followed, we
propose an approach to the problem in the form of an
algorithm, applicable in the context of shape grammars with
shapes composed of some basic geometric elements. The
internal computational infrastructure used by this algorithm is
described in another paper, twin to the present one [1].

In the following, we summarize: what shape grammars are
and a brief state of the art (section II); the short and relevant
history of the proposed approaches to the problem, including
why the problem is important for the application of rules
(section 11); our previous work in the area and our goals
(section 1V); then we expose the algorithm proposed, show
some data from examples using it and compare it with
alternatives from other researchers (section V). Finally, we
draw conclusions and show intended future work (section V1).

Il. THE SHAPE GRAMMAR FORMALISM

Shape grammars were introduced by George Stiny and
James Gips in the 1970s, and the focus of the related research
is in representing and applying knowledge about languages of
design basically through the use of concepts from formal
grammars and rule-based/production systems [2] [3]. A shape
grammar is composed of (1) a set of basic shapes, the shape
alphabet, (2) a set of rules, and (3) a special shape, the initial
shape, used to trigger rule application.

The mechanics of rule application and shape generation is
as follows. In a rule, A—B, the left side, or antecedent, A, and
the right side, or consequent, B, are shapes. A rule, when
applied, substitutes the shape on the right side for the shape on
the left side, in the original shape, or design, or composition, as
described further. Applicable rules may recursively be applied
to a shape, until there are no more rules to apply, or some
termination condition holds. A shape computation, or shape
derivation, is a sequence of shapes in which each shape, except
for the initial shape, is generated from the previous by the
application of a rule of the shape grammar. A rule A—>B is
applicable to a shape, C, if there is a similarity geometric
transformation (a translation, a rotation, an uniform scaling or a
combination of these) T, which, when applied to shape A
makes A equal to a part of C, i.e., a geometric transformation T

such that T(A) < C, where < denotes a sub-shape relation?.
Application of the rule results in a new shape, C’, that is
computed subtracting from C the result of applying the
transformation T to A, and then adding to C the result of
applying T to B, i.e., the resultant design will be C’ = (C —
T(A)) + T(B), where + and — denote the shape sum and shape
difference (or subtraction) operations. It can easily be seen that
<is a cornerstone for our sub-shape problem.

In very brief words, the research area of shape grammars
has been focused in conceptual and theoretical aspects, as the
ones exposed in [3], in analysis, i.e., the development of
specific shape grammars of languages of design extracted from
corpuses of designs in architecture, product design or painting,
see [4] [5] [6], for instance, and in synthesis, i.e., building
specific shape grammars to define original languages of
designs, as in [7] [8] [9]. More research include the
development of algorithms for shape manipulation and rule
matching and application processes, which are very interesting
for us in the present paper, as in [10] [11] [12] [13] [14] [15]
[16] [17] [18], where some of this papers focus also on
appropriate interfaces and generic and reusable shape grammar
interpreters, including for didactical purposes.

ERgl= i

1 2
Figure 2- A shape grammar rule and results of 2 steps of a derivation.

I1l. AN INTERESTING PROBLEM AND THE PAST RESEARCH

A classic example of emergence in shape grammars is
shown in Figure 2. The rule says: if a square is found in the
composition, add an equal square with its top and left sides
intersecting the right and bottom sides of the one in the
composition by its middle points. The shape after step 1 has
two squares explicitly introduced, one is the initial shape, the
other is the result of the first step. But there is also a third
emergent square, which was detected and was the focus of
application of the rule in step 2.

No object-oriented method?*, nor any classical CAD tool®,
just by themselves, can help to computationally implement
such a detection mechanism. As found by Stiny and other
researchers following the same research path, see [2] [3] [10]
[11] [12] [13], the correct approach to this kind of problem lies
on using operations (+, — and <) on, and representations of,
shapes according to a special kind of algebras called algebras
of maximal shapes. Then, the computational mechanism used
to match the left side of a rule with the composition can be
made to detect embedded emergent shapes.

3 Erom now on, we will treat < as an operation, more specifically, a predicate
that tests if the first operand is in the sub-shape relation with the second.

4 1f two objects are programmatically created, it’s two objects, and no more.

5 As said in [13], Computer-aided Design, or CAD, systems are often no more
than systems that serve as repositories for already designed information.
Classical CAD systems are helpful, but don’t have the ability to accommodate
the notion of change and rely only on a set of predefined shape static primitive
elements, limited to no more than the combination decisions of the designer.

The +, - and < operations are part of algebras usually
classified as Ujj algebras, as its basic elements are points, lines,
planes and solids that are defined in dimensionsi =0, 1, 2 or 3
and combined and manipulated in dimension j > i, see [3]. For i
> 0 these basic elements have finite non zero content (either
length, area or volume) and boundaries that are shapes in the
algebra Ui.1j. A maximal shape is a shape that is composed by
a finite set of basic elements, which are maximal in
combination, each one being independent of the others (i.e.,
with no overlap among them). This means that, except for
points, any maximal element of a maximal shape is the
representation of an infinite number of (non-maximal)
elements, of the same dimension, contained in it. For instance,
a maximal line represents an infinite number of line segments
limited by any pair of non-coincident points on the maximal
line.

O -~ A
a* - - o - = -
- + -~ P -~ 0
- - e -~
- = - Lo = * et
-~ + -~ - — -~ o~
- -~ - -~ * -
et = - - = -~ L
Prcal Y - #,-f . -
UM subtraction subsha fe

Figure 1- Some examples of maximal shape sum and subtraction and the
sub-shape relation in a Uy, algebra. The dashed line is a component line in a
shape to sum to, subtract from, or test for sub-shape relation with, other lines
component of another, target, shape.

Figure 1 shows examples of operations in a U;> maximal
algebra (1 dimension max for shape elements in a
2-dimensional space), with lines only, in these example cases.
Only cases with colinear lines are shown because it is the only
situation in which operations can interfere with and modify the
components and so be relevant for illustration®.

The problem of sub-shape detection is, in the general case,
a computationally hard one, see [18], and is equivalent in
hardness to the subgraph isomorphism problem. In the compact
summary research following, all papers address the problem
we are interested in, of the recognition of emergent shapes.
Papers [10] and [11] paved a research path to the appropriate
computational representation of shapes in 2 dimensions and
how shape operations should work on them. In [12], more
precise definitions suggest computational representations for
maximal shapes, including for more than 2 dimensions. In [13]
the “formula” C’ = (C — T(A)) + T(B) is analyzed, as well as
the recognition of emergent shapes and the cases that occur in
the determination of T. The following research papers we refer
seem to assume and use always maximal representations. In
[14], the first implementation of a shape grammar system able
to detect emergent shapes, for rectangular shapes, is proposed.
In [16] an algorithm is proposed for detecting emergent shapes
which considers each, and every, intersection (concrete or

 Note as there can be some surprising cases. For instance, in the bottom
example for the — operation, it happens that subtracting a line from another
present in the target shape leaves the shape with more lines than before. And
the first case for + sums a line but leaves the shape with less lines than before.

virtual/projected) between pairs of lines in the shape. In [17] an
approach is proposed that uses graphs, more specifically, graph
grammars, to represent shapes and shape grammars, relegating
the problem to another of graph representation and
manipulation. The computational complexity of the algorithms
involved in different kinds of shape grammars, including in sub
shape detection is analyzed in [18].

IV. THE GSG SYSTEM AND PAST WORK

Our relevant past work includes GeoWin, a multi-agent
system to build creative drawing compositions, where each
agent has its own shape grammar defining its composition style
and participates in a composition process [19]. The
participation occurs with different coordination strategies,
ranging from a totally cooperative and orderly way to an
extreme competitive/antagonistic/egocentric way in a purely
emergent manner. This system was supported by a primitive
shape grammar interpreter built on top of an ad hoc, logic-like,
forward-chaining rule language to express simple computations
with shape grammar rules with predefined shapes and a small
set of logic and arithmetic operators. This is still unfinished
work as, in the meantime, more work needed to be done in
refining the idea of a universal shape grammar interpreter in
the realization of its fundamental mechanics of rule application
including with less restricted kinds of shapes.

pragrammatic
shape & rule
Inputioutpubiedticn
505 Inlerpreter

e
shape & rule
Inpatsutputieditisn

23 Inerpreter wisual

=ymbolic ! api

interface

shapes & SG rules
shape coeradans (Z-—.}
maximal shape reductian
SHapE FanRTerTIal

spatsl relaiians

Figure 3- The GSG computational architecture.

In the path to improve in the direction mentioned above, we
then embarked on a ‘fundamental’ approach on a project to
build a prototype of a computational system centered around a
“Generic Shape Grammar” interpreter, the GSG project, see the
main initial work in [20] [21] [22]. This interpreter intends to
be a core tool, a kind of an expert system shell, for shape
grammar systems tasks for the use of students, artists, designers
and architects, specifically allowing the definition of, and
experimentation with, shape grammars, and is internally
supported by an appropriate computational representation for
shapes, shape rules and shape operations using the algebras of
maximal shapes. This is ongoing work.

The GSG system computational architecture is depicted in
Figure 3. The main components are a two-part interface, and
two core sub-systems, a rule-based component, the rbs,
centered around rules, sub-shape detection and rule application,
and a computational geometry related one, the geom, centered
in computational geometry methods. The visual interface is a
part of the interface layer of the system, together with the
symbolic/API (programmatic) interface and was appropriately

described with examples in [23]. A third kind of interface, the
textual/file interface, not shown, is also available. As described
in [23], a notable point in GSG is that all shape grammar
objects, i.e., shapes, rules, and grammars, that come to
existence in the system environment may have an independent
(interface) representation in three possible formats: the
symbolic (through programmatic objects), the visual (through
graphical windows) and the textual (with an appropriate
text/file external representation) format.

Sideway to the GSG system, work on the application of
shape grammars to architectural project is shown in [24] [25]
and work about the usability of interfaces of implemented
shape grammar systems of different authors is shown in [26]
[27]. In the latter, we have devised a set of requirements (see a
summary of these in [23]) that can be used either to evaluate
interfaces of existing shape grammar systems, or as a set of
good rules to follow in the implementation of new ones for
specific users (either students/beginners in the field of shape
grammars, or architects, or designers, or artist specialists, or
even users with additional programming expertise). Also, in
another, twin, paper, the internal computational infrastructure
needed by the algorithm presented here is described [1].

V. FINDING SHAPES IN SHAPES: AN ALGORITHM

We now turn to the algorithm that is the subject of the
present paper. We recall that the task of the algorithm to detect
if a given shape, typically one in the left side of a rule,
matches, or is contained, according to each and any similarity
transformation to be determined, in another, target, shape,
typically a shape of a composition, or design, be it the initial
shape or a shape produced in the middle of a derivation process
by the rules of a given shape grammar. The algorithm must
identify all the sub-shapes in the target shape that match with
the given shape, if there is any, and the corresponding
similarity transformation associated to each matching case.

First, the limitations of the algorithm. In sub-shape
detection and rule application, the similarity transformation T
is the only kind of transformation applied to shapes’. Also,
although a Ui, algebra of maximal shapes is used, lines are the
only type of shape component considered (points are not
considered®). Additionally, component lines must bear, in the
shape they belong to, at least two intersections, concrete or
virtual/projected. Now, we present some definitions with
illustrations to help clarify the structures used by the algorithm
and the language used in its explanation. Respecting to internal
representations used by the algorithm our options follow
closely the proposals in [10] and [11]. As an illustration
example, we show a shape, with seven lines, labelled line 1 to
7, in Figure 4-3).

In GSG, a shape is a collection of maximal lines®. These are
defined by its limiting points (a point is represented by its pair
(x,y) of coordinates) and its slope and they are kept in a
collection, sorted by its slope and coordinates of the limit
points. As the algorithm deals with similarity, intersection

7 This excludes the so-called parametric shape grammars (see [2]).

8 Allowing points would, in fact, render the problem tackled simpler.

® There can be points too but, as said earlier, these are not considered here, as
the algorithm works only with lines, at least for now.

angles and length proportions are very important, as their
magnitudes are maintained through similarity transformations.
So, at the time a shape is constructed, besides the data
structures for representation of its maximal lines, certain
additional data structures, described with more detail in [1], are
internally created which are the appropriate representation
infrastructure to support the algorithm, not only in sub-shape
detection, but also further, in rule application. For a short
illustration of the importance of the structures in the operation
of the algorithm we depict them in Figure 4-b) for the shape in

i2: (40°,60°,(-41,

o\ -
i3: (90°,-60°,(-24,81) <

1000

b) the associated structures
Figure 4- A shape and its associated internal structures in GSG.

a) a shape

Figure 4-a).

The structures are the straight-lines of support of (i.e.,
containing) the lines of the shape and the straight-line
intersections. The first are labelled rl, to r5 (there are five
straight-lines) together with a descriptor indicating the slope
and y-intercept of each one (for vertical lines, the x-intercept is
used, instead). Intersections are pairs of straight-lines with an
intersection point®. In the figure, intersections are labelled il
to i9 (there are nine intersections) together with a descriptor
indicating the primary angle of intersection, the slope of the
straight-line with the smallest slope in the intersection and the
pair (x,y) of the intersection point. Straight-lines and
intersections are kept in specific sorted collections in the shape.

Suppose that we have a target shape, similar to the one in
Figure 4-a), but translated and/or rotated and/or scaled,
possibly containing more than one similar instance of it, and
with more lines, and we want to determine if the shape in
Figure 4-a) is a sub-shape of that target shape. How do we find
if the first is contained in the second and what is the associated
transformation, i.e., the angle of rotation, scale factor and
(AX,Ay) translation? We have developed a two-stage approach
where the first stage tests for similarity of the infrastructural
elements, intersections of the straight-lines and then, only in
the positive case, a second stage tests for containment of lines
of the shape to match in the target shape. What we propose is
first to try to match pairs of straight-line intersections, one pair
in the shape to match and another in the target shape, instead of
trying to match pairs of lines, as its done in [16], which would
potentially increase the number of steps of the algorithm

1% There will be more than one intersection when more than two straight-lines
intersect at the same point.

i711002,20°(173

uselessly *. We consider this an advantage, as there will
potentially be less intersections of straight-lines to consider
than intersections (concrete or virtual/projected) for lines, at
least in complex shapes®?, so the approach makes sense in
terms of reduction of the number of steps of the algorithm.
Moreover, our algorithm uses structures related directly with
the shape elements (lines, in our case) and not any kind of
additional intermediate data structure, like graphs, as used in
[17] which (besides some advantage is terms of abstraction and
some flexibility) can bring the disadvantage of precluding an
easy use of domain heuristics in the search of possible
sub-shapes!®.

As an example, in Figure 5-a), we show an intersection pair
that is part of the shape in Figure 4-a) (with intersections il and
i5) and another of a target shape, in Figure 5-b) (with
intersections j1 and j5). An additional advantage of the
algorithm is that of obtaining hints on the possible angles of
rotation for T. Two intersections match if one has an angle of

-

~ - o
i5: (500,-20‘?,(0,9@7&150
P -

-

i1 (500,—200,(—53759:‘-33~
e

~ \.\
- \
50°
~
~
_ ~
-

j: (500,300./(-10,/5))1
a) Shape to match b) Target shape

Figure 5- Intersection pairs.

intersection, or its supplementary, that is equal to the angle of
intersection, or its supplementary, of the other, apart an angle
of rotation. This last angle is a hint. Still another advantage is
having hints on the possible scale factors for T. A pair of
intersections will match with another pair if each angle in the
first is equal to another, different, in the other pair, apart from
some angle of rotation of one pair. A pair of intersections has a
shared segment of a shared straight-line, which has a length
and, by matching two intersection pairs of different shapes, the
ratio between the two lengths is a hint for a scale factor. For the
translation, we can obtain a hint if, in the first place, we assume
(Ax,Ay) displacements in a way to make an intersection point
of one intersection pair coincident with an intersection point of
the other intersection pair and, only after, determine the
appropriate angle and scale factor hints. In the case shown in
Figure 5, a match will be found with a translation from point (-
60,65) to point (-10,5), followed by a rotation with a 50° angle,

1 As correctly mentioned by [18] (section 6.1).

12 |f there are many colinear lines in a shape, considering intersections of lines
(concrete or virtual/projected) leads to consider more times intersections than
with straight-lines, although the total number of intersections in the shape is
the same.

13 1f you use graphs to represent shapes the heuristics more easily usable are
those of the graph domain, but not of the shape grammar domain.

and a scaling with a 101/67 factor, both centered in point (-
10,5). In this case both intersection pairs are symmetrical (each
have both their intersection angles equal, of 50°), so, there is a
second match with a translation from point (-60,65) to point
(8,104), followed by a rotation with a 230° (i.e., 180+50) angle,
and a scaling with the same scale factor.

Algorithm structural-match(Input: subShape, targetShape)
Locals: tR1 = {}, tR2 = {3}, tRstagel = {}
For each is in intersections(subShape)
For each it in intersections(targetShape)
For each ips in intersection-pairs(straight-line1(is))
For each ipt in intersection-pairs(straight-line1(it))
tR1 = t-union(match-ip(ips, ipt), tR1)
For each ipt in intersection-pairs(straight-line2(it))
tR1 = t-union(match-ip(ips, ipt), tR1)
For each ips in intersection-pairs(straight-line2(is))
For each ipt in intersection-pairs(straight-line1(it))
tR2 = t-union(match-ip(ips, ipt), tR2)
For each ipt in intersection-pairs(straight-line2(it))
tR2 = t-union(match-ip(ips, ipt), tR2)
tRstagel = t-intersection(tR1, tR2)
Return tRstagel

Algorithm sub-shape?(Input: subShape, targetShape, tRstage1)
Locals: tRstage2 = {}
For each tin tRstagel

I t(subShape) < targetShape Then tRstage2 = t-union(t, tRstage2)
Return tRstage2

Figure 6- The structural-match and sub-shape? algorithms (match-ip tests if
there is any matches between two intersection pairs returning, in that case, a
set of transformations for T; t-union and t-intersection return the union and
the intersection of two sets of transformations; straight-linel and
straight-line2 return each of the straight-lines of a given intersection).

This, of course in only a small step, as the algorithm must
try to match all the intersection pairs of the given shape with
those of the target shape and see for which hints for the
parameters for T
consistency is maintained
throughout all the
process. One subtlety is
worth to mention here. In
order to find all possible
matches, i.e., all possible
sub-shapes in the target
shape, the concept of
intersection pair has to
be refined in a way as to
consider, in the case of
the target shape,
intersection pairs with
any pair of intersection
points in each same
straight line, but, in the
case of the given shape,
the shape to match, the
concept must be restricted only to intersection pairs with
adjacent intersection points in the same straight line. This is
because any two points of intersection in the same straight line
in the target shape can give a hint to a scale factor. In the case
of the example in Figure 5, this would involve going on trying
to match intersection pair in a) also with other possible
additional intersection pairs in b) composed of intersection j1

j4: (90°,0°,(10,150)) |js: (90°,0°,(45,150))
j12: (90°0°,(80,150))

i2: (90°,0°,(10,110))
i4: (90°,0°,(60,110))|

i3: (90°,0°,(10,80)) i7: (90°,0°,(45,80))
j11: (90°,0°,(80,80))

2: (90°,0°,(10.45)) j6: (90°,0°,(45,45))
j10: (90°,0°,(80,45)

i1: (90°,0°,(10.10))
i3: (90°,0°,(60,10))

i1: (90°0°(10,10)) j5: (90°,0°,(45.10))
j9: (90°,0°,(80,10))

a) Shape to match b) target shape
Figure 9- First test example.

and other intersections beyond and up the j5 intersection on the
common straight line There are some other additional subtleties
involved in the algorithm but, for the sake of simplicity and use
of space, we will stick to the essentials and mention only this
one.

The algorithm structural-match of the first stage for sub-shape
detection is the first shown in Figure 6. With the results of this
algorithm (the set tRstagel) we then can apply sub-shape?, the
second stage algorithm, the second shown in Figure 6. The
containment operation < is according to [10] [11].

We will now present some example test cases of
application of the process of these two algorithms. The first test
case involves rectangular figures and is illustrated in Figure 9.
The results, in Figure 7-a)'4, show us ten possible matches,
eight with the smaller four rectangles, with scale factor 7/10,
and two with the bigger rectangle in the target shape, with scale

v/ v/

120

Aeze \ 630

7T (637.0°(20.10)

X /i oo /

A \

a) Shape to match b)‘target shape
Figure 8- Second test example.

factor 7/5%°.

The second test case involves some oblique figures, with
odd/infrequent angles (63° and 5496, with a shape to match
having no concrete intersections and with multiple intersection
sharing the same intersection points. This is depicted in Figure

((SEQUENCE :SEQUENCE ((TRANSLATION :DX 20 :DY 70)
(SCALE :FACTOR 7/10 :X 8@ :Y 80)))
(SEQUENCE :SEQUENCE ((TRANSLATION :DX -15 :DY 70)
(SCALE :FACTOR 7/18 :X 45 :V 80)))
(SEQUENCE :SEQUENCE ((TRANSLATION :DX 20 :DY 70)
(ROTATION :ANGLE 90 :X 80 :Y 80)
(SCALE :FACTOR 7/18 :X 80 :Y 88)))
(SEQUENCE :SEQUENCE ((TRANSLATION :DX 20 :DY 35)
(ROTATION :ANGLE 98 :X 8@ :Y 45)
(SCALE :FACTOR 7/18 :X 88 :Y 45)))
(SEQUENCE :SEQUENCE ((TRANSLATION :DX -15 :DY 148)
(ROTATION :ANGLE 180 :X 45 :Y 150)
(SCALE :FACTOR 7/18 :X 45 :Y 150)))
(SEQUENCE :SEQUENCE ((TRANSLATION :DX -58 :DY 148)
(ROTATION :ANGLE 180 :X 10 :Y 150)
(SCALE :FACTOR 7/10 :X 1@ :Y 158)))
(SEQUENCE :SEQUENCE ((TRANSLATION :DX -58 :DY 35)
(ROTATION :ANGLE 270 :X 18 :Y 45)

[((TRANSLATION :DX -31 :DY @)
(TRANSLATION :DX 31 :DY @)
(SEQUENCE :SEQUENCE ((TRANSLATION :DX 61 :DY -68)
(SCALE :FACTOR 1/2 :X 132 :Y 70)))
(SEQUENCE :SEQUENCE ((TRANSLATION :DX 31 :DY)
(SCALE :FACTOR 1/2 :X 102 :Y 130)))
(SEQUENCE :SEQUENCE ((TRANSLATION :DX @ :DY -60)
(SCALE :FACTOR 1/2 :X 71 :Y 78)))
(SEQUENCE :SEQUENCE ((TRANSLATION :DX -31 :DY @)
(SCALE :FACTOR 1/2 :X 41 :Y 130)))
(SEQUENCE :SEQUENCE ((TRANSLATION :DX 31 :DY -120)
(ROTATION :ANGLE 180 :X 102 :Y 10)
(SCALE :FACTOR 1/2 :X 162 :Y 10)))
(SEQUENCE :SEQUENCE ((TRANSLATION :DX @ :DY -60)
(ROTATION :ANGLE 180 :X 71 :Y 70)
(SCALE :FACTOR 1/2 :X 71 :Y 78))))
(8 items, computation time: ©0:00:02).

(SCALE :FACTOR 7/10 :X 10 :Y 45)))
(SEQUENCE :SEQUENCE ((TRANSLATION :DX -5 :DY @)

(ROTATION :ANGLE 270 :X 10 :Y 18)

(SCALE :FACTOR 7/10 :X 10 :Y 10)))
(SEQUENCE :SEQUENCE ((TRANSLATION :DX 20 :DY 8)

(SCALE :FACTOR 7/5 :X 80 :Y 18)))
(SEQUENCE :SEQUENCE ((TRANSLATION :DX -5 :DY 148)

(ROTATION :ANGLE 180 :X 10 :Y 150)

(SCALE :FACTOR 7/5 :X 10 :Y 150))))

(10 items, computation time: 00:00:02).

a) First test example b) Second test example
Figure 7- Results for test examples.

14 For economy of space, sub-shapes associated to each transformation are not
shown in the results, although also returned by the algorithm.

15 Note that each of the rectangles in the target shape will have two matches,
one for 0° and another for 180° rotation.

16 Supposedly, an infrequent case in the literature, by the way, which seems
to, not infrequently, resort to rectangular, 90° degree angles, shapes.

8. The results, in Figure 7-b), show us eight possible matches,
six with the smaller triangles (four with 0° and two with 180° of
rotation), with scale factor 1/2, and two with the two big
triangles of the target shape, with 0° of rotation angle and scale
factor 1.

VI. CONCLUSIONS AND FUTURE WORK

After a brief state of the art and showing our goals and
context, namely shape grammars and the GSG system, we have
presented a two-stage algorithm to detect sub-shapes for use in
that context. Some advantages of this algorithm were exposed
in face of two other alternative algorithms presented in [16],
namely a potential reduction in the number of useless steps,
and in [17] namely the use of data structures directly related to
shape elements which are expected to allow easier use of
domain heuristics. Note that, although time/efficiency issues
aren’t manifest in our, actually toy, examples (2 seconds
computation time for both, as seen in Figure 7), these domain
heuristics would be very welcome, as the problem is
computationally hard [18] in general. In terms of programming,
all GSG components are built in Common Lisp/Common Lisp
Object System, using the LispWorks® IDE system.

Future work will refine the stages of the algorithm, improve
and finish the GSG system and, using the components and the
experience gained with the development of GSG, our aim is to
develop a multi-agent creative system in line with the ideas of
the (primitive) GeoWin system of our past work.

ACKNOWLEDGMENT

This work was undertaken at ISTAR-Information Sciences
and Technologies and Architecture Research Center from
ISCTE-Instituto Universitario de Lisboa (University Institute
of Lisbon), Portugal, and it was partially funded by the
Portuguese Foundation for Science and Technology (Project
"FCT UIDB/04466/2020").

REFERENCES

[1] J. Reis, “Supporting Creativity with Emergent Shapes in Shape
Grammars”, WAIM 2023 Workshop in the CISTI 2023
Conference, Aveiro, Portugal, 2023.

[2] G. Stiny, “Introduction to Shape and Shape Grammars,”
Environment and Planning B, 7(3), 343-351, 1980.

[3] G. Stiny, Shape: Talking about Seeing and Doing, Cambridge,
Massachusetts, USA: MIT Press, 2006.

[4] G. Stiny, W. J. Mitchell, “The Palladian Grammar,”
Environment and Planning B, 5, 5-18, 1978.

[5] G. Koning, J. Eisenberg, “The Language of the Prairie: Frank
Lloyd Wright’s Prairie Houses,” Environment and Planning B,
8, 295-323, 1981.

[6] J. P. Duarte, “Towards the Mass Customization of Housing: The
Grammar of Siza's Houses at Malagueira,” Environment and
Planning B, 32, 347-380, 2005.

[7]1 G. Stiny, “Kindergarten Grammars: Designing with Froebel’s
Building Gifts,” Environment and Planning B, 7, 409-462, 1980.

[8] J. Heisserman, “Generative Geometric Design,” IEEE Computer
Graphics and Applications, 14, 37-45, 1994.

[9] M. Agarwal, J. Cagan, “A Blend of Different Tastes: The
Language of Coffeemakers,” Environment and Planning B, 25,
205-226, 1998.

[10] R. Krishnamurti, “The Arithmetic of Shapes,” Environment and
Planning B, 7, 463-484, 1980.

[11] R. Krishnamurti, “The Construction of Shapes,” Environment
and Planning B, 8, 5-40, 1981.

[12] R. Krishnamurti, “The Maximal Representation of a Shape,”
Environment and Planning B, pp. 19, 267-288, 1992.

[13] R. Krishnamurti, “Spatial Change: Continuity, Reversibility, and
Emergent Shapes,” Environment and Planning B, 24, 359-384,
1997.

[14] M. Tapia, “A Visual Implementation of a Shape Grammar
System,” Environment and planning B, 26, 59-73, 1999.

[15] S. C. Chase, “A model for User Interaction in Grammar-Based
Design Systems”, Automation in Construction, 11, 161-172,
2002.

[16] T. Trescak, M. Esteva, I. Rodriguez, “A shape grammar
interpreter for rectilinear forms,” Computer-Aided Design, vol.
44 (7), pp. 657-670, 2012.

[17] T. Grasl, A. Economou, “From Topologies to Shapes:
Parametric Shape Grammars Implemented by Graphs,”
Environment and Planning B, 40, 5, pp. 905-922, 2013.

[18] T. Wortmann, R. Stouffs, “Algorithmic complexity of shape
grammar implementation,” AIEDAM, 32, 138-146, 2018.

[19] J. Reis, “Agents with Style — Multi-Agent Visual Composition
with Shape Grammars,” em Proceedings of the Third Joint
Workshop on Computational Creativity, Aug. 2006, Riva del
Garda, Italy, 2006.

[20] J. Reis, “GSG, A Tool for Knowledge-Based Visual Creativity,”
em CISTI 2013 Proceedings, Vol. I, pp. 358-363., Lisboa,
Portugal, 2013.

[21] J. Reis, “A Shell Tool for Visual Creativity Support,” em
ISDOC 2013 Proceedings, pp. 56-63., Lisboa, Portugal, 2013.

[22] J. Reis, “Crossing Lines in GSG,” em ISDOC 2014, pp. 105-
112., Lishoa, Portugal, 2014.

[23] J. Reis, “Shapes: Seeing and Doing with Shape Grammars,” em
CISTI2022, Madrid, Spain, 2022.

[24] J. Tching, A. Paio, J. Reis, “A Shape Grammar for Self-Built
Housing,” em Proceedings of the SIGraDi 2012, pp. 486-490.,
Fortaleza, Brasil, 2012.

[25] J. Tching, J. Reis, A. Paio, “Shape Grammars for Creative
Decisions in the Architectural Project”, CISTI 2013, Vol. I, pp.
389-394., Lisboa, Portugal, 2013.

[26] J. Tching, J. Reis, A. Paio, “A Cognitive Walkthrough towards
an Interface Model for Shape Grammar Implementations,”
Computer Science and Information Technology, vol. 4(3), pp.
92-119, 2016.

[27] J. Tching, J. Reis, A. Paio, “IM-sgi — an Interface Model for
Shape Grammar Implementations,” AIEDAM, 33, Issue 1,
February 2019, 24-39, 2019 .

