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Abstract — This paper describes a computational infrastructure 

used to support creative design in detecting emergent shapes in 

the specific context of shape grammar implementation. Shape 

grammars have been used to represent the knowledge behind the 

creative work of architects, designers and artists. This kind of 

grammars are inherently visual and they allow the 

implementation of computational mechanisms to either 

synthesize or analyze designs of visual languages, including the 

detection of emergent sub-shapes languages. They have obvious 

applications to design, including for marketing. The 

infrastructure presented, together with the algorithm to which it 

gives support, the latter proposed in another, twin, paper, is a 

core component of a system, described in our past work, that 

allows users to build their own shape grammars and experiment 

with and use them. 

Keywords - Shape Grammars; Artificial Intelligence in Design; 

Creativity. 

I. INTRODUCTION 

Many human creative activities, visual or not, can involve 
discovering emergent patterns and taking advantage of, and 
using them, from the most noble scientific research and the 
creative work of artists to the most commonplace day-to-day 
activities, including entertainment. Emergency is important in 
creativity, in discovering and creating new (and useful) ideas, 
designs, realizations, artifacts. Take, for instance, an artist’s 
creativity process. It’s not unusual to stop in the middle of 
his/her creative work to look to, and assess, the work done so 
far, and it happens to discover some emergent detail, or shape, 
that didn’t seem to be (and that, in fact, it wasn’t explicitly 
included) there before. And that detail comes to be inspiration 
for the next step in the creative work. 

A similar phenomenon happens in the context of shape 
grammars. To apply shape grammar rules to a composition, or 
design, there must be some mechanism, either human or 
computational, that decides if a rule is applicable or not. For 
that purpose, it must detect if the shape in the left side of the 
rule, its antecedent, is contained in the composition. That can 
happen, for the same rule, in zero or more ways. The human 
brain and eye seem efficient in solving this emergent shape 
detection feature, although prone to failures and mistakes too. 
Nevertheless, the problem seems to be defying (and so, it is 
interesting) from a computational perspective. 

Shape grammars and its formalism were introduced by 
George Stiny and James Gips in the 1970s. They can be used to 

synthesize, as well as, to analyze, designs, or styles, of design 
languages. Together with symbolic/text phrase grammars shape 
grammars can be considered a member of the “family” of 
grammars. Both can be considered production systems, where 
replacement rules are used to recursively generate phrases of a 
language. But the similarities end up there. Firstly, shape 
grammars are inherently visual; secondly, they can 
accommodate aspects of emergency, i.e., the possibility of 
generating shapes not explicitly introduced by the application 
of the rules, which, of course, will have to be detected further 
in the rule application process. Maybe the differences are not 
restricted to these two features, but these two are very 
important in the field of arts, especially in design. 

This paper approaches the problem of discovering emergent 
sub-shapes in given shapes, specifically in what respects to the 
computational structures necessary to support a particular 
detection algorithm. Extending the path other researchers 
followed, we have proposed an approach through an algorithm, 
described in a twin paper [1], the operation of which needs 
specific data structures, described here, in the present paper. 
This approach is applicable in the context of shape grammars 
with shapes composed of some basic geometric elements. 

In the following, we summarize: a brief state of the art and 
what shape grammars are (section II); then, an introduction to 
the sub-shape detection problem, illustrating its importance for 
rule application and including the short relevant history of the 
approaches proposed (section III), follows; our previous work 
in the area and our goals are described in (section IV). Then, 
we expose the structures necessary to give support to the 
algorithm mentioned above and compare our approach with 
alternatives from other researchers (section V). Finally, we 
draw conclusions and show intended future work (section VI). 

II. SHAPE GRAMMARS? WHAT IS THAT? 

A seminal paper by Stiny and Gips [2] introduced shape 
grammars and its formalism. The related research area can be 
described as being about representing and applying knowledge 
of languages of design, basically through the use of concepts 
from formal grammars and rule-based/production systems [3] 
[4]. In very brief words, the research has been focused in 
conceptual and theoretical aspects, as the ones exposed in [4], 
in analysis, i.e., the development of specific shape grammars of 
languages of design extracted from corpuses of designs in 
architecture, product design or painting, see [4] [5] [6], for 
instance, and in synthesis, i.e., building specific shape 



grammars to define original languages of designs, as in [7] [8] 
[9] [10]. More research include the development of algorithms 
and data structures for shape manipulation and rule matching 
and application processes, which are very interesting for us in 
the present paper, as in [11] [12] [13] [14] [15] [16] [17] [18] 
[19], where some of this papers focus also on appropriate 
interfaces and generic and reusable shape grammar interpreters, 
including for didactical purposes. 

A shape grammar is composed of (1) a set of basic shapes, 
the shape alphabet, (2) a set of rules, and (3) a special shape, 
the initial shape, used to trigger rule application. The 
mechanics of rule application and shape generation is as 

follows. In a rule, A→B, the left side, or antecedent, A, and the 

right side, or consequent, B, are shapes. A rule, when applied, 
substitutes the shape on the right side for the shape on the left 
side, in the original shape in the design, or composition, as 
described further. Applicable rules may recursively be applied 
to a shape, until there are no more rules to apply, or some 
termination condition holds. A shape computation, or shape 
derivation, is a sequence of shapes in which each shape, except 
for the initial shape, is generated from the previous by the 

application of a rule of the shape grammar. A rule A→B is 

applicable to the shape in a composition, C, if there is a 
similarity geometric transformation (a translation, a rotation, an 
uniform scaling or a combination of these) Tr, which, when 
applied to shape A makes A equal to a part of C, i.e., a 
geometric transformation Tr such that Tr(A) ≤ C, where ≤ 
denotes a sub-shape relation1. Application of the rule results in 
a new shape, C’, that is computed subtracting from C the result 
of applying the transformation Tr to A, and then adding to C 
the result of applying Tr to B, i.e., the resultant design will be 
C’ = (C – Tr(A)) + Tr(B), where + and – denote the shape sum 
and shape difference (or subtraction) operations, further 
described. It’s easily seen that ≤ is important for the sub-shape 
problem. 

In Figure 1 we show two shape grammars and derivation 
examples, in both cases exhibiting emergent shape detection. 
As can be seen, the computational mechanism that decides if a 

 
1 We will treat ≤ as an operation, more specifically, a predicate that tests if 

the first operand is in the sub-shape relation with the second. 

rule is applicable and, in that case, to perform its application, if 
it is chosen to be applied, must detect if Tr(A) ≤ C and to 
determine the set of possible transformations Tr, too. The 
mechanism must deal with cases of Tr(A) being an emergent 
sub-shape, which seems a feature difficult to be implemented. 

III. AN INTERESTING PROBLEM AND THE PAST RESEARCH 

To illustrate the problem of emergent sub-shape detection, 
we now turn to a toy example of composing a simple design 
with an alphabet of simple predefined shape elements. 

In Figure 2-a) we show a starting point for a composition, 
together with an alphabet of predefined shapes containing a 
square, S, and two different rectangles, Ra and Rb. In Figure 2-
b) we included in the composition s, an instance of S, and then 
ra, an instance of Ra, respectively scaled by a 2 and a 1 scale 
factor2. In Figure 2-c) we further included rb1 and rb2, two 
instances of Rb scaled by a 4/5 scale factor2. In Figure 2-d) we 
further expanded the alphabet with an equilateral triangle, Tr, 
and then included in the composition t1 and t2, two instances 
of Tr, both rotated by 30º and scaled by a 4/3 scale factor (apart 
from appropriate translations). In stage c) we see that an 
emergent shape appeared resulting from the interference of rb1 
and rb2 and still another from rb2 and s (a rectangle and a 
square, similar to Rb and S, respectively). Also, in stage d), we 
also find two emergent triangles, one resulting from the 
interference of t1 and t2 and another from t2 and s. 

When looking for similarity transformations Tr such that 

Tr(A) ≤ C to verify if a rule A→B is applicable and in what 

ways, we could easily devise a mechanism that looks only for 
predefined shapes like the ones in our alphabet. And it would 
be easy to determine the appropriate scale factors (through 
distances between shape elements as well as their proportions), 
angles of rotation and amounts of translation for the Tr’s. But, 
as we keep the demand of detecting also emergent sub-shapes, 
the mechanism fails as soon as the shapes being included in the 
composition begin to intersect. Also, the complexity of the 

 
2 Apart, of course, a rotation of 0º and some appropriate translation. 

 
Figure 1- Two grammars with example derivations, exhibiting shape 

emergence. In the first, the (only) rule is applied to an emergent triangle in 
step 4 and then in step 5, too. In the second grammar, emergence also occurs, 

resulting in the shape shown in step 7, after the application of rule 2. 

 

rule 1 rule 2

6 71 2

...
3

...

rule

1 2 3 4 5

...

 
a) Empty composition and alphabet. b) Included s and then ra. 

  
c) Included rb1 and rb2.  d) Included t1 and t2. 

Figure 2- Example of composition stages a), b), c) and d). Before stage d) the 

alphabet was expanded with T. 

 

 



problem increases when more complex shapes must be looked 
for, see examples in Figure 3. 

A possible way to surpass this difficulty is considering the 

predefined shapes as composed by line segments limited by its 
extreme points and, whenever intersections happen, restructure 
the presently stored composition representation in a way to 
consider every and each original line segment intersected as 
composed by smaller segments limited by original extreme 
and/or intersection points. But, as the number of lines increase 
in the composition, the computational complexity of the 
process can grow exponentially. See [18] for a review of this 
and other possible alternatives. 

In fact, no object-oriented method3, nor any classical CAD 
tool 4 , just by themselves, can help to computationally 
implement the generic sub-shape detection mechanism we are 
talking about. As found by Stiny and other researchers 
following a common research path, see [3] [4] [11] [12] [13] 
[14], the correct approach to this kind of problem lies on using 
operations (+, – and ≤) on, and representations of, shapes 
according to a special kind of algebras called algebras of 
maximal shapes. Then, the computational mechanism used to 
match the left side of a rule with the composition can be made 
to detect embedded emergent shapes and, at the same time, to 
mitigate the complexity issue. 

The +,–and ≤  operations are part of algebras usually 

classified as Uij algebras, as its basic elements are points, lines, 
planes and solids that are defined in dimensions i = 0, 1, 2 or 3 
and combined and manipulated in dimension j ≥ i, see [4]. For i 
> 0 these basic elements have finite non zero content (either 
length, area or volume) and boundaries that are shapes in the 
algebra Ui-1,j. A maximal shape is a shape that is composed by 
a finite set of basic elements, which are maximal in 
combination, each one being independent of the others (i.e., 
with no overlap among them). This means that, except for 
points, any maximal element of a maximal shape is the 
representation of an infinite number of (non-maximal) 

 
3 If two objects are programmatically created, it’s two objects, and no more. 
4 As said in [13], Computer-aided Design, or CAD, systems are often no more 

than systems that serve as repositories for already designed information. 

Classical CAD systems are helpful, but don’t have the ability to accommodate 

the notion of change and rely only on a set of predefined shape static primitive 

elements, limited to no more than the combination decisions of the designer. 

elements, of the same dimension, contained in it. For instance, 
a maximal line represents an infinite number of line segments 
limited by any pair of non-coincident points on the line. Figure 
4 shows examples of operations in a U12 maximal algebra (1 
dimension max for shape elements in a 2-dimensional space), 
with lines only, in these example cases. Only cases with 
colinear lines are shown because it is the only situation in 
which operations can interfere with and modify the 
components and so be relevant for illustration5. 

In the compact summary research following, all papers 
address the problem we are interested in, of the recognition of 
emergent shapes. Papers [11] and [12] paved a research path to 
the appropriate computational representation of shapes in 2 
dimensions and how shape operations should work on them. In 
[13], more precise definitions suggest computational 
representations for maximal shapes, including for more than 2 
dimensions. In [14] the “formula” C’ = (C – Tr(A)) + Tr(B) is 
analyzed, as well as the recognition of emergent shapes and the 
cases that occur in the determination of Tr. In [15], the first 
implementation of a shape grammar system able to detect 
emergent shapes for rectangular shapes, is proposed. In [17] an 
algorithm is proposed for detecting emergent shapes which 

considers each, and every, intersection (concrete or 
virtual/projected) between pairs of lines in the shape. In [18] an 
approach is proposed that uses graphs, more specifically, graph 
grammars, to represent shapes and shape grammars, relegating 
the problem to another of graph representation and 
manipulation. The problem of sub-shape detection is a 
computationally hard one and is equivalent in hardness to the 
subgraph isomorphism problem, see [19], where the 
computational complexity of algorithms used in different kinds 
of shape grammars, including in sub-shape detection, is 
analyzed. 

IV. PAST WORK AND THE GSG SYSTEM   

Our relevant past work includes GeoWin, a multi-agent 
system to build creative drawing compositions, where each 
agent has its own shape grammar defining its composition style 
and participates in a composition process [20]. This 
participation occurs with different coordination strategies, 

 
5 Note as there can be some surprising cases. For instance, in the bottom 

example for the – operation, it happens that subtracting a line from another in 

the target shape leaves the shape with more lines than before; also, in the first 

case for + a line is summed leaving the shape with less lines than before. 

 
Figure 4- Some examples of maximal shape sum and subtraction and the 
sub-shape relation in a U12 algebra. The dashed line is a component line in a 

shape to sum to, subtract from, or test for sub-shape relation with, other lines 

which are components of another, target, shape. 

 
Figure 3- Example of more complex shapes to be looked for: g1, g2 and g3 

are all sub-shapes of the shape in the composition. 



ranging from a totally cooperative and orderly way to an 
extreme competitive/antagonistic/egocentric way in a purely 
emergent manner. This system was supported by a primitive 
shape grammar interpreter built on top of an ad hoc, logic-like, 
forward-chaining rule language to express simple computations 
with shape grammar rules with predefined shapes and a small 
set of logic and arithmetic operators. This is still unfinished 
work as, in the meantime, more work needed to be done in 
refining the idea of a universal shape grammar interpreter in 
the realization of its fundamental mechanics of rule application 
including with less restricted kinds of shapes. 

In the path to improve in the direction mentioned above, we 
then embarked on an approach to build a prototype of a 
computational system centered around a “Generic Shape 
Grammar” interpreter, the GSG project, see the main initial 
work in [21] [22] [23]. This interpreter intends to be a core 
tool, a kind of an expert system shell, for shape grammar 
systems tasks for the use of students, artists, designers and 
architects, specifically allowing the definition of, and 
experimenting with, shape grammars, and is internally 
supported by an appropriate computational representation for 
shapes, shape rules and shape operations using the algebras of 
maximal shapes. This is ongoing work. 

The main components of the GSG system are a two-part 
interface and two core sub-systems, a rule-based component 
centered around rules, sub-shape detection and rule application, 
and a third component centered on computational geometry 
methods. The visual interface is a part of the interface layer of 
the system, together with the symbolic/API (programmatic) 
interface and was appropriately described with examples in 
[24]. A third kind of interface, the textual/file interface is also 
available. As described in [24], a notable point in GSG is that 
all shape grammar objects, i.e., shapes, rules, and grammars, 
that come to existence in the system environment may have an 
independent (interface) representation in three possible 
formats: the symbolic (through programmatic objects), the 
visual (through graphical windows) and the textual (with an 
appropriate text/file external representation) format. 

Sideway to the GSG system, work on the application of 
shape grammars to architectural project is shown in [25] [26] 
and work about the usability of interfaces of implemented 
shape grammar systems of different authors is shown in [27] 
[28]. In the latter, we have devised a set of requirements (see a 
summary of these in [24]) that can be used to either evaluate 
interfaces of existing shape grammar systems, or as a set of 
good rules to follow in the implementation of new ones for 
specific users (either students/beginners in the field of shape 
grammars, or architects, or designers, or artist specialists, or 
even users with additional programming expertise). 

V. SUPPORTING STRUCTURES FOR FINDING SUB-SHAPES 

We now turn to the computational structures which are the 
subject of the present paper and that give the necessary support 
to the sub-shape detection algorithm we have implemented. 
See [1], a twin paper to this, where we point that the task of the 
algorithm is to detect if a given shape, typically one in the left 
side of a rule, matches, i.e., is contained, after any similarity 
transformation to be determined, in another, target, shape, 
typically a shape of a composition, or design. The algorithm 

must identify all the sub-shapes in the target shape that match 
with the given shape, if there is any, and the corresponding 
similarity transformation Tr associated to each matching case. 

Besides the adoption of an U12 algebra of maximal shapes 
restricted to lines (points are excluded6), and although internal 
representations we adopted follow closely the proposals in [11] 
and [12], additional option decisions were made, both in 
assumptions for the algorithm and in the data structures used to 
support the algorithm, that are described in the following. First, 
the limitations of the algorithm, as detailed in [1]. In sub-shape 
detection and rule application, the similarity transformation Tr 
is the only kind of transformation applied to shapes 7 . 
Additionally, component lines must bear, in the shape they 
belong to, at least two intersections, concrete or 
virtual/projected. In the following, we describe the structures in 
our terminology and then illustrate their role in the sub-shape 
detection algorithm in GSG.  

In GSG, a shape is a collection of maximal lines8. These are 
defined by its limiting points (a point is represented by its pair 
(x,y) of coordinates) and its slope and they are kept in a 
collection, sorted by the slope and coordinates of the limit 
points. Because similarity is what we are dealing with, 
intersection angles and length proportions are very important 
for the algorithm to operate, as their magnitudes are maintained 
through similarity transformations. So, at the time a shape is 
being constructed, besides the data structures for representation 
of its maximal lines, certain additional internal/backstage data 
structures are incrementally created which are the appropriate 
representation infrastructure to support the algorithm, not only 
in sub-shape detection, but also further, in rule application. 
These structures represent the straight-lines of support of (i.e., 
containing) the lines of the shape and straight-line 
intersections, which are pairs of straight-lines with an 
intersection point. There will be more than one intersection if 
more than two straight lines happen to intersect at the same 
point. In a shape, as well as lines, these two additional 
structures are maintained in specific sorted collections for fast 
access. Additionally, a volatile kind of structure we name as 
intersection pairs is also needed and used. So, summing up, the 
important structures for shape representation and operation of 
the sub-shape detection algorithm are: 

− Lines – they are maximal lines, defined by its limit points and can 
be either created or destroyed when new lines are summed to, or 
subtracted from, a shape. Other relevant attributes are the slope (an 
angle in the interval [-89º, 90º]) and an intersect parameter (either 
x-intersect for vertical lines, or y-intersect for others). 

− Straight-lines – they represent infinite lines, with slope and intersect, 
they support, or “contain”, lines with equal slope and intersect and 
are created as soon as a line appears with non-preexistent slope and 
intersect and destroyed when operations with lines result in empty 
(i.e., with no lines) straight-lines. 

− Intersections – composed of a pair of non-parallel straight-lines and 
its intersection point, they are created when the creation of a new 
straight-line generates new intersections and destroyed when an 

 
6  Allowing points would, in fact, render the problem tackled simpler, by 

providing possible anchor locations for easier Tr parameter determination. 
7 This excludes the so-called parametric shape grammars (see [3]). 
8 There can be points too, but as said earlier, these are not considered here, as 

the algorithm works only with lines, at least for now. 



intersecting straight-line is destroyed. They have, as attributes, the 
intersection angle (an angle in the interval [1º, 179º], the slope of the 
lower slope straight-line and the intersection point. 

− Intersection pairs – pairs of intersections (i1, i2) sharing a common 
main straight-line. These are created on the fly and just temporarily 
stored as needed by the algorithm. While, for a shape to be looked 
for they are made strictly from consecutive intersections, for a target 
shape they are made from any pair of intersections, on the main 
straight-line. Relevant attributes are the two intersection angles of 
the pair, the slope of the main straight-line and the length of the pair, 
i.e., the Euclidean distance between the intersection points. 

The implemented maximal algebra operations +, – and ≤ in 
the computational geometry GSG component make them 
possible to operate between lines and shapes and also between 
straight-lines, intersections and between mixed type operands. 
Also implemented were operations returning the result of 
applying any similarity transformations to any of the items 
described above, including intersection pairs. Additionally, 
operations to determine the possible similarity transformations 
necessary to match (two) intersections or to match (two) 
intersection pairs were also implemented based on the 
following. Two intersections match if one has an angle of 
intersection, or its supplementary, that is equal to the angle of 
intersection, or its supplementary, of the other, apart some 
angle of rotation. This one can be used as a hint for the angle of 
rotation of the similarity transformation. A pair of intersections 
will match with another pair if each angle in the first is equal to 
another, different, angle in the other pair, apart from some 
angle of rotation of one of the pairs. In this case, the ratio of the 
Euclidean distances between the intersections of each pair can 
be used as a hint for the scale factor of the transformation. 

We now turn to a previous example to illustrate the role of 
these structures by considering the final composition state in 
Figure 2-d), seen also in Figure 3 and assuming the backstage 
representation scenario of GSG. This means that all shape 
elements are maximal lines and all the additional 
representational, backstage, permanent structures described 
above are established. These would look as represented in 
Figure 5-a). For further illustration, we now focus only on the 
triangles t1 and t2 (included in the last stage) as shown in 
Figure 5-b), as part of our target shape. Assume further that we 
have the triangle T of the alphabet as the shape to look for in a 
location as shown in Figure 6-a). 

In a first stage, the sub-shape detection algorithm tries to 
match each consecutive intersection pair in the shape looked 
for with any intersection pair in the target shape obtaining, in 
the case of success, a non-empty set of similarity 
transformations. In case of success, on a second stage, using 
each of the transformations found it will test for containment of 
each line in the shape looked for in the target shape. Then, it 
will return the set of transformations associated to the cases of 
positive containment, if there are any. 

To additionally illustrate in detail how the data structures 
used help to make the match, let us focus on a detail of part of 
the process of the algorithm, specifically on trying to match the 
base of triangle T with the 30º slope base of triangle t1. 
Matching will be tried between (i1, i2) and (j1, j2) failing (the 
two angles of each of the intersections don’t match with the 
same rotation angle), between (i1, i2) and (j1, j3) with success 
for one of the (two) possible rotation angles, 30º, and a 4/3 
scale factor (from the ratio of 20/15) and finally, between (i1, 
i2) and (j2, j3) with success for one of the (two) possible 
rotation angles, 30º, and a 2/3 scale factor (from the ratio of 
10/15). This will, of course, be a part of the whole process of 
the algorithm, as it will find, in the first stage, all the similarity 

transforms that allow to consistently transform all intersections 
of the shape looked for in different intersections present in the 
target shape. The second stage boils down to testing for line 
containment and discard the negative cases, as we said before. 

Using and matching intersection pairs turns out to be a 
potentially more efficient way in terms of space/memory, at 
least for more complex shapes (e.g., with more lines per 
straight-line) as it considers each intersection only once, 
instead of doing it repeatedly at the level of each intersecting 
line pair as done in [17]. Moreover, it can possibly be more 
efficient in terms of time/speed, as we use structures related 
directly with shape elements (lines, in the case) and not any 
kind of additional intermediate data structure, like graphs, as 
used in [18] which (besides some advantage is terms of 

  
 a) backstage structures b) focus on t1 and t2 

Figure 5- Composition example final state. All shape elements are maximal 

lines, represented with a full line style. Dashed line is used for straight-lines. 

 

   
     a) looking for T in t1         b) detail of part of the process 

Figure 6- Matching of intersection pair (i1, i2) of triangle T will be tried with 

intersection pairs (j1, j2), (j1, j3) and (j2, j3) of triangle t1. 

 



abstraction and flexibility) can bring the disadvantage of 
precluding an easy use of domain heuristics in the search of 
possible sub-shapes. Note that these domain heuristics would 
be very welcome, as the problem is computationally hard [19]. 
Finally, the method used directly produces hints for rotation 
angles and scale factors for the searched similarity 
transformations. 

VI. CONCLUSIONS AND FUTURE WORK 

After a brief state of the art and showing our goals and the 
context, namely shape grammars and the GSG system, we have 
presented an infrastructure to support an algorithm to detect 
sub-shapes for use in that context. Some advantages of this 
algorithm were exposed in face of other alternative algorithms. 
In terms of programming, all GSG components are built in 
Common Lisp/Common Lisp Object System, using the 
LispWorks® IDE system. 

Future work will refine the infrastructure and the algorithm, 
improve and finish the GSG system and, using the components 
and the experience gained with the development of GSG, our 
aim is also to develop a multi-agent creative system in line with 
the ideas of the (primitive) GeoWin system of our past work. 
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