ISCTE 2 1UL
REPOSITORIO

INSTITUTO UNIVERSITARIO DE LISBOA

Repositério ISCTE-IUL

Deposited in Repositdrio ISCTE-IUL:
2023-09-04

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Reis, J. (2023). Supporting creativity: With emergent shapes in shape grammars. In 2023 18th
Iberian Conference on Information Systems and Technologies (CISTI). Aveiro, Portugal: IEEE.

Further information on publisher's website:
10.23919/CISTI58278.2023.10211596

Publisher's copyright statement:

This is the peer reviewed version of the following article: Reis, J. (2023). Supporting creativity: With
emergent shapes in shape grammars. In 2023 18th Iberian Conference on Information Systems and
Technologies (CISTI). Aveiro, Portugal: IEEE., which has been published in final form at
https://dx.doi.org/10.23919/CISTI58278.2023.10211596. This article may be used for non-
commercial purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
¢ a link is made to the metadata record in the Repository
o the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Servicos de Informagdo e Documentagdo, Instituto Universitario de Lisboa (ISCTE-IUL)
Av. das Forgas Armadas, Edificio II, 1649-026 Lisboa Portugal
Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.23919/CISTI58278.2023.10211596

Supporting Creativity

with Emergent Shapes in Shape Grammars

Joaquim Reis
Instituto Universitario de Lisboa (ISCTE-IUL)
ISTAR-Iscte
Lisboa, Portugal
joaquim.reis@iscte-iul.pt

Abstract — This paper describes a computational infrastructure
used to support creative design in detecting emergent shapes in
the specific context of shape grammar implementation. Shape
grammars have been used to represent the knowledge behind the
creative work of architects, designers and artists. This kind of
grammars are inherently visual and they allow the
implementation of computational mechanisms to either
synthesize or analyze designs of visual languages, including the
detection of emergent sub-shapes languages. They have obvious
applications to design, including for marketing. The
infrastructure presented, together with the algorithm to which it
gives support, the latter proposed in another, twin, paper, is a
core component of a system, described in our past work, that
allows users to build their own shape grammars and experiment
with and use them.

Keywords - Shape Grammars; Artificial Intelligence in Design;
Creativity.

l. INTRODUCTION

Many human creative activities, visual or not, can involve
discovering emergent patterns and taking advantage of, and
using them, from the most noble scientific research and the
creative work of artists to the most commonplace day-to-day
activities, including entertainment. Emergency is important in
creativity, in discovering and creating new (and useful) ideas,
designs, realizations, artifacts. Take, for instance, an artist’s
creativity process. It’s not unusual to stop in the middle of
his/her creative work to look to, and assess, the work done so
far, and it happens to discover some emergent detail, or shape,
that didn’t seem to be (and that, in fact, it wasn’t explicitly
included) there before. And that detail comes to be inspiration
for the next step in the creative work.

A similar phenomenon happens in the context of shape
grammars. To apply shape grammar rules to a composition, or
design, there must be some mechanism, either human or
computational, that decides if a rule is applicable or not. For
that purpose, it must detect if the shape in the left side of the
rule, its antecedent, is contained in the composition. That can
happen, for the same rule, in zero or more ways. The human
brain and eye seem efficient in solving this emergent shape
detection feature, although prone to failures and mistakes too.
Nevertheless, the problem seems to be defying (and so, it is
interesting) from a computational perspective.

Shape grammars and its formalism were introduced by
George Stiny and James Gips in the 1970s. They can be used to

synthesize, as well as, to analyze, designs, or styles, of design
languages. Together with symbolic/text phrase grammars shape
grammars can be considered a member of the “family” of
grammars. Both can be considered production systems, where
replacement rules are used to recursively generate phrases of a
language. But the similarities end up there. Firstly, shape
grammars are inherently visual; secondly, they can
accommodate aspects of emergency, i.e., the possibility of
generating shapes not explicitly introduced by the application
of the rules, which, of course, will have to be detected further
in the rule application process. Maybe the differences are not
restricted to these two features, but these two are very
important in the field of arts, especially in design.

This paper approaches the problem of discovering emergent
sub-shapes in given shapes, specifically in what respects to the
computational structures necessary to support a particular
detection algorithm. Extending the path other researchers
followed, we have proposed an approach through an algorithm,
described in a twin paper [1], the operation of which needs
specific data structures, described here, in the present paper.
This approach is applicable in the context of shape grammars
with shapes composed of some basic geometric elements.

In the following, we summarize: a brief state of the art and
what shape grammars are (section I1); then, an introduction to
the sub-shape detection problem, illustrating its importance for
rule application and including the short relevant history of the
approaches proposed (section I11), follows; our previous work
in the area and our goals are described in (section 1V). Then,
we expose the structures necessary to give support to the
algorithm mentioned above and compare our approach with
alternatives from other researchers (section V). Finally, we
draw conclusions and show intended future work (section V1).

Il. SHAPE GRAMMARS? WHAT IS THAT?

A seminal paper by Stiny and Gips [2] introduced shape
grammars and its formalism. The related research area can be
described as being about representing and applying knowledge
of languages of design, basically through the use of concepts
from formal grammars and rule-based/production systems [3]
[4]. In very brief words, the research has been focused in
conceptual and theoretical aspects, as the ones exposed in [4],
in analysis, i.e., the development of specific shape grammars of
languages of design extracted from corpuses of designs in
architecture, product design or painting, see [4] [5] [6], for
instance, and in synthesis, i.e., building specific shape

grammars to define original languages of designs, as in [7] [8]
[9] [10]. More research include the development of algorithms
and data structures for shape manipulation and rule matching
and application processes, which are very interesting for us in
the present paper, as in [11] [12] [13] [14] [15] [16] [17] [18]
[19], where some of this papers focus also on appropriate

interfaces and generic and reusable shape grammar interpreters,
including for didactical purposes.

VANCYAVAN

A DN BN AN AN\
1 2 3 4 5 \/
ANYANRON S
AVANEVANRVANS
1 2 \/ 3 \/ 6 \/ 7
Figure 1- Two grammars with example derivations, exhibiting shape
emergence. In the first, the (only) rule is applied to an emergent triangle in
step 4 and then in step 5, too. In the second grammar, emergence also occurs,
resulting in the shape shown in step 7, after the application of rule 2.

A shape grammar is composed of (1) a set of basic shapes,
the shape alphabet, (2) a set of rules, and (3) a special shape,
the initial shape, used to trigger rule application. The
mechanics of rule application and shape generation is as
follows. In a rule, A—B, the left side, or antecedent, A, and the
right side, or consequent, B, are shapes. A rule, when applied,
substitutes the shape on the right side for the shape on the left
side, in the original shape in the design, or composition, as
described further. Applicable rules may recursively be applied
to a shape, until there are no more rules to apply, or some
termination condition holds. A shape computation, or shape
derivation, is a sequence of shapes in which each shape, except
for the initial shape, is generated from the previous by the
application of a rule of the shape grammar. A rule A—B is
applicable to the shape in a composition, C, if there is a
similarity geometric transformation (a translation, a rotation, an
uniform scaling or a combination of these) Tr, which, when
applied to shape A makes A equal to a part of C, i.e., a
geometric transformation Tr such that Tr(A) < C, where <
denotes a sub-shape relation. Application of the rule results in
a new shape, C’, that is computed subtracting from C the result
of applying the transformation Tr to A, and then adding to C
the result of applying Tr to B, i.e., the resultant design will be
C’ =(C-Tr(A)) + Tr(B), where + and — denote the shape sum
and shape difference (or subtraction) operations, further

described. It’s easily seen that < is important for the sub-shape
problem.

In Figure 1 we show two shape grammars and derivation
examples, in both cases exhibiting emergent shape detection.
As can be seen, the computational mechanism that decides if a

L We will treat < as an operation, more specifically, a predicate that tests if
the first operand is in the sub-shape relation with the second.

rule is applicable and, in that case, to perform its application, if
it is chosen to be applied, must detect if Tr(A) < C and to
determine the set of possible transformations Tr, too. The
mechanism must deal with cases of Tr(A) being an emergent
sub-shape, which seems a feature difficult to be implemented.

I1l. AN INTERESTING PROBLEM AND THE PAST RESEARCH

To illustrate the problem of emergent sub-shape detection,
we now turn to a toy example of composing a simple design
with an alphabet of simple predefined shape elements.

o

b) Included s and then ra.

0

a) Empty composition and alphabet.

filis

e A\

c) Included rbl and rb2. d) Included t1 and t2.

Figure 2- Example of composition stages a), b), ¢) and d). Before stage d) the
alphabet was expanded with T.

ol b

In Figure 2-a) we show a starting point for a composition,
together with an alphabet of predefined shapes containing a
square, S, and two different rectangles, Ra and Rb. In Figure 2-
b) we included in the composition s, an instance of S, and then
ra, an instance of Ra, respectively scaled by a 2 and a 1 scale
factor?. In Figure 2-c) we further included rbl and rb2, two
instances of Rb scaled by a 4/5 scale factor?. In Figure 2-d) we
further expanded the alphabet with an equilateral triangle, Tr,
and then included in the composition t1 and t2, two instances
of Tr, both rotated by 30° and scaled by a 4/3 scale factor (apart
from appropriate translations). In stage ¢) we see that an
emergent shape appeared resulting from the interference of rbl
and rb2 and still another from rb2 and s (a rectangle and a
square, similar to Rb and S, respectively). Also, in stage d), we
also find two emergent triangles, one resulting from the
interference of t1 and t2 and another from t2 and s.

When looking for similarity transformations Tr such that
Tr(A) < C to verify if a rule A—B is applicable and in what
ways, we could easily devise a mechanism that looks only for
predefined shapes like the ones in our alphabet. And it would
be easy to determine the appropriate scale factors (through
distances between shape elements as well as their proportions),
angles of rotation and amounts of translation for the Tr’s. But,
as we keep the demand of detecting also emergent sub-shapes,
the mechanism fails as soon as the shapes being included in the
composition begin to intersect. Also, the complexity of the

2 Apart, of course, a rotation of 0° and some appropriate translation.

problem increases when more complex shapes must be looked
for, see examples in Figure 3.

A possible way to surpass this difficulty is considering the

COMposition

shapes to belooked for

1 2 g1

g2

b2

ol

a3

o] 10

Figure 3- Example of more complex shapes to be looked for: g1, g2 and g3
are all sub-shapes of the shape in the composition.

predefined shapes as composed by line segments limited by its
extreme points and, whenever intersections happen, restructure
the presently stored composition representation in a way to
consider every and each original line segment intersected as
composed by smaller segments limited by original extreme
and/or intersection points. But, as the number of lines increase
in the composition, the computational complexity of the
process can grow exponentially. See [18] for a review of this
and other possible alternatives.

In fact, no object-oriented method?®, nor any classical CAD
tool 4, just by themselves, can help to computationally
implement the generic sub-shape detection mechanism we are
talking about. As found by Stiny and other researchers
following a common research path, see [3] [4] [11] [12] [13]
[14], the correct approach to this kind of problem lies on using
operations (+, — and <) on, and representations of, shapes
according to a special kind of algebras called algebras of
maximal shapes. Then, the computational mechanism used to
match the left side of a rule with the composition can be made
to detect embedded emergent shapes and, at the same time, to
mitigate the complexity issue.

The +, - and < operations are part of algebras usually
classified as Ujj algebras, as its basic elements are points, lines,
planes and solids that are defined in dimensionsi =0, 1, 2 or 3
and combined and manipulated in dimension j > i, see [4]. For i
> 0 these basic elements have finite non zero content (either
length, area or volume) and boundaries that are shapes in the
algebra Ui.1j. A maximal shape is a shape that is composed by
a finite set of basic elements, which are maximal in
combination, each one being independent of the others (i.e.,
with no overlap among them). This means that, except for
points, any maximal element of a maximal shape is the
representation of an infinite number of (non-maximal)

3 If two objects are programmatically created, it’s two objects, and no more.
4 As said in [13], Computer-aided Design, or CAD, systems are often no more
than systems that serve as repositories for already designed information.
Classical CAD systems are helpful, but don’t have the ability to accommodate
the notion of change and rely only on a set of predefined shape static primitive
elements, limited to no more than the combination decisions of the designer.

elements, of the same dimension, contained in it. For instance,
a maximal line represents an infinite number of line segments
limited by any pair of non-coincident points on the line. Figure
4 shows examples of operations in a Uiz maximal algebra (1
dimension max for shape elements in a 2-dimensional space),
with lines only, in these example cases. Only cases with
colinear lines are shown because it is the only situation in
which operations can interfere with and modify the
components and so be relevant for illustration®.

In the compact summary research following, all papers
address the problem we are interested in, of the recognition of
emergent shapes. Papers [11] and [12] paved a research path to
the appropriate computational representation of shapes in 2
dimensions and how shape operations should work on them. In
[13], more precise definitions suggest computational
representations for maximal shapes, including for more than 2
dimensions. In [14] the “formula” C* = (C — Tr(A)) + Tr(B) is
analyzed, as well as the recognition of emergent shapes and the
cases that occur in the determination of Tr. In [15], the first
implementation of a shape grammar system able to detect
emergent shapes for rectangular shapes, is proposed. In [17] an
algorithm is proposed for detecting emergent shapes which

= ~ A - -~
= -~ = -
Fal - P - Pl
-~ ~ -~ -~ -
- = - - = #
- + -~ - - - -~
-~ - -~ -~ * -~
- = - . - = -
£ + ""--l -~ {# - -
suim subtraction subshape

Figure 4- Some examples of maximal shape sum and subtraction and the
sub-shape relation in a U;, algebra. The dashed line is a component line in a
shape to sum to, subtract from, or test for sub-shape relation with, other lines
which are components of another, target, shape.

considers each, and every, intersection (concrete or
virtual/projected) between pairs of lines in the shape. In [18] an
approach is proposed that uses graphs, more specifically, graph
grammars, to represent shapes and shape grammars, relegating
the problem to another of graph representation and
manipulation. The problem of sub-shape detection is a
computationally hard one and is equivalent in hardness to the
subgraph isomorphism problem, see [19], where the
computational complexity of algorithms used in different kinds
of shape grammars, including in sub-shape detection, is
analyzed.

IV. PAST WORK AND THE GSG SYSTEM

Our relevant past work includes GeoWin, a multi-agent
system to build creative drawing compositions, where each
agent has its own shape grammar defining its composition style
and participates in a composition process [20]. This
participation occurs with different coordination strategies,

5 Note as there can be some surprising cases. For instance, in the bottom
example for the — operation, it happens that subtracting a line from another in
the target shape leaves the shape with more lines than before; also, in the first
case for + a line is summed leaving the shape with less lines than before.

ranging from a totally cooperative and orderly way to an
extreme competitive/antagonistic/egocentric way in a purely
emergent manner. This system was supported by a primitive
shape grammar interpreter built on top of an ad hoc, logic-like,
forward-chaining rule language to express simple computations
with shape grammar rules with predefined shapes and a small
set of logic and arithmetic operators. This is still unfinished
work as, in the meantime, more work needed to be done in
refining the idea of a universal shape grammar interpreter in
the realization of its fundamental mechanics of rule application
including with less restricted kinds of shapes.

In the path to improve in the direction mentioned above, we
then embarked on an approach to build a prototype of a
computational system centered around a “Generic Shape
Grammar” interpreter, the GSG project, see the main initial
work in [21] [22] [23]. This interpreter intends to be a core
tool, a kind of an expert system shell, for shape grammar
systems tasks for the use of students, artists, designers and
architects, specifically allowing the definition of, and
experimenting with, shape grammars, and is internally
supported by an appropriate computational representation for
shapes, shape rules and shape operations using the algebras of
maximal shapes. This is ongoing work.

The main components of the GSG system are a two-part
interface and two core sub-systems, a rule-based component
centered around rules, sub-shape detection and rule application,
and a third component centered on computational geometry
methods. The visual interface is a part of the interface layer of
the system, together with the symbolic/API (programmatic)
interface and was appropriately described with examples in
[24]. A third kind of interface, the textual/file interface is also
available. As described in [24], a notable point in GSG is that
all shape grammar objects, i.e., shapes, rules, and grammars,
that come to existence in the system environment may have an
independent (interface) representation in three possible
formats: the symbolic (through programmatic objects), the
visual (through graphical windows) and the textual (with an
appropriate text/file external representation) format.

Sideway to the GSG system, work on the application of
shape grammars to architectural project is shown in [25] [26]
and work about the usability of interfaces of implemented
shape grammar systems of different authors is shown in [27]
[28]. In the latter, we have devised a set of requirements (see a
summary of these in [24]) that can be used to either evaluate
interfaces of existing shape grammar systems, or as a set of
good rules to follow in the implementation of new ones for
specific users (either students/beginners in the field of shape
grammars, or architects, or designers, or artist specialists, or
even users with additional programming expertise).

V. SUPPORTING STRUCTURES FOR FINDING SUB-SHAPES

We now turn to the computational structures which are the
subject of the present paper and that give the necessary support
to the sub-shape detection algorithm we have implemented.
See [1], a twin paper to this, where we point that the task of the
algorithm is to detect if a given shape, typically one in the left
side of a rule, matches, i.e., is contained, after any similarity
transformation to be determined, in another, target, shape,
typically a shape of a composition, or design. The algorithm

must identify all the sub-shapes in the target shape that match
with the given shape, if there is any, and the corresponding
similarity transformation Tr associated to each matching case.

Besides the adoption of an U, algebra of maximal shapes
restricted to lines (points are excluded®), and although internal
representations we adopted follow closely the proposals in [11]
and [12], additional option decisions were made, both in
assumptions for the algorithm and in the data structures used to
support the algorithm, that are described in the following. First,
the limitations of the algorithm, as detailed in [1]. In sub-shape
detection and rule application, the similarity transformation Tr
is the only kind of transformation applied to shapes’.
Additionally, component lines must bear, in the shape they
belong to, at least two intersections, concrete or
virtual/projected. In the following, we describe the structures in
our terminology and then illustrate their role in the sub-shape
detection algorithm in GSG.

In GSG, a shape is a collection of maximal lines®. These are
defined by its limiting points (a point is represented by its pair
(x,y) of coordinates) and its slope and they are kept in a
collection, sorted by the slope and coordinates of the limit
points. Because similarity is what we are dealing with,
intersection angles and length proportions are very important
for the algorithm to operate, as their magnitudes are maintained
through similarity transformations. So, at the time a shape is
being constructed, besides the data structures for representation
of its maximal lines, certain additional internal/backstage data
structures are incrementally created which are the appropriate
representation infrastructure to support the algorithm, not only
in sub-shape detection, but also further, in rule application.
These structures represent the straight-lines of support of (i.e.,
containing) the lines of the shape and straight-line
intersections, which are pairs of straight-lines with an
intersection point. There will be more than one intersection if
more than two straight lines happen to intersect at the same
point. In a shape, as well as lines, these two additional
structures are maintained in specific sorted collections for fast
access. Additionally, a volatile kind of structure we name as
intersection pairs is also needed and used. So, summing up, the
important structures for shape representation and operation of
the sub-shape detection algorithm are:

— Lines — they are maximal lines, defined by its limit points and can
be either created or destroyed when new lines are summed to, or
subtracted from, a shape. Other relevant attributes are the slope (an
angle in the interval [-89°, 90°]) and an intersect parameter (either
x-intersect for vertical lines, or y-intersect for others).

— Straight-lines — they represent infinite lines, with slope and intersect,
they support, or “contain”, lines with equal slope and intersect and
are created as soon as a line appears with non-preexistent slope and
intersect and destroyed when operations with lines result in empty
(i.e., with no lines) straight-lines.

— Intersections — composed of a pair of non-parallel straight-lines and
its intersection point, they are created when the creation of a new
straight-line generates new intersections and destroyed when an

6 Allowing points would, in fact, render the problem tackled simpler, by
providing possible anchor locations for easier Tr parameter determination.

7 This excludes the so-called parametric shape grammars (see [3]).

8 There can be points too, but as said earlier, these are not considered here, as
the algorithm works only with lines, at least for now.

intersecting straight-line is destroyed. They have, as attributes, the
intersection angle (an angle in the interval [1°, 179°], the slope of the
lower slope straight-line and the intersection point.

— Intersection pairs — pairs of intersections (i1, i2) sharing a common
main straight-line. These are created on the fly and just temporarily
stored as needed by the algorithm. While, for a shape to be looked
for they are made strictly from consecutive intersections, for a target
shape they are made from any pair of intersections, on the main
straight-line. Relevant attributes are the two intersection angles of
the pair, the slope of the main straight-line and the length of the pair,
i.e., the Euclidean distance between the intersection points.

composition compasition

1
|
|
1
L
vy

/
SN
PABESAR I
L v

T .

I
|
|
I
|
|
T
T
I
|
t
I
|

o

0 10 0
a) backstage structures b) focus on t1 and t2

Figure 5- Composition example final state. All shape elements are maximal

lines, represented with a full line style. Dashed line is used for straight-lines.

The implemented maximal algebra operations +, — and < in
the computational geometry GSG component make them
possible to operate between lines and shapes and also between
straight-lines, intersections and between mixed type operands.
Also implemented were operations returning the result of
applying any similarity transformations to any of the items
described above, including intersection pairs. Additionally,
operations to determine the possible similarity transformations
necessary to match (two) intersections or to match (two)
intersection pairs were also implemented based on the
following. Two intersections match if one has an angle of
intersection, or its supplementary, that is equal to the angle of
intersection, or its supplementary, of the other, apart some
angle of rotation. This one can be used as a hint for the angle of
rotation of the similarity transformation. A pair of intersections
will match with another pair if each angle in the first is equal to
another, different, angle in the other pair, apart from some
angle of rotation of one of the pairs. In this case, the ratio of the
Euclidean distances between the intersections of each pair can
be used as a hint for the scale factor of the transformation.

We now turn to a previous example to illustrate the role of
these structures by considering the final composition state in
Figure 2-d), seen also in Figure 3 and assuming the backstage
representation scenario of GSG. This means that all shape
elements are maximal lines and all the additional
representational, backstage, permanent structures described
above are established. These would look as represented in
Figure 5-a). For further illustration, we now focus only on the
triangles t1 and t2 (included in the last stage) as shown in
Figure 5-b), as part of our target shape. Assume further that we
have the triangle T of the alphabet as the shape to look for in a
location as shown in Figure 6-a).

In a first stage, the sub-shape detection algorithm tries to
match each consecutive intersection pair in the shape looked
for with any intersection pair in the target shape obtaining, in
the case of success, a non-empty set of similarity
transformations. In case of success, on a second stage, using
each of the transformations found it will test for containment of
each line in the shape looked for in the target shape. Then, it
will return the set of transformations associated to the cases of
positive containment, if there are any.

To additionally illustrate in detail how the data structures
used help to make the match, let us focus on a detail of part of
the process of the algorithm, specifically on trying to match the
base of triangle T with the 30° slope base of triangle t1.
Matching will be tried between (i1, i2) and (j1, j2) failing (the
two angles of each of the intersections don’t match with the
same rotation angle), between (i1, i2) and (j1, j3) with success
for one of the (two) possible rotation angles, 30°, and a 4/3
scale factor (from the ratio of 20/15) and finally, between (i1,
i2) and (j2, j3) with success for one of the (two) possible
rotation angles, 30° and a 2/3 scale factor (from the ratio of
10/15). This will, of course, be a part of the whole process of
the algorithm, as it will find, in the first stage, all the similarity

|
I
\
/// \\
. '
- B N
- ///’\
> A
/ & > -
NV
- 10
R

~_ !
~

N

3 (60°-30, (23,35))

J2: (602,30, (13,30))

A
<

-
I

/’:/ j

0 10 0 10
a) looking for T in t1 b) detail of part of the process

Figure 6- Matching of intersection pair (i1, i2) of triangle T will be tried with
intersection pairs (j1, j2), (j1, j3) and (j2, j3) of triangle t1.

7 1j1: (60°,30°,(5,25))
I

= :‘

/1 (60°,0°(10,10))

+i2: (80° -60° (25.10))

transforms that allow to consistently transform all intersections
of the shape looked for in different intersections present in the
target shape. The second stage boils down to testing for line
containment and discard the negative cases, as we said before.

Using and matching intersection pairs turns out to be a
potentially more efficient way in terms of space/memory, at
least for more complex shapes (e.g., with more lines per
straight-line) as it considers each intersection only once,
instead of doing it repeatedly at the level of each intersecting
line pair as done in [17]. Moreover, it can possibly be more
efficient in terms of time/speed, as we use structures related
directly with shape elements (lines, in the case) and not any
kind of additional intermediate data structure, like graphs, as
used in [18] which (besides some advantage is terms of

abstraction and flexibility) can bring the disadvantage of
precluding an easy use of domain heuristics in the search of
possible sub-shapes. Note that these domain heuristics would
be very welcome, as the problem is computationally hard [19].
Finally, the method used directly produces hints for rotation
angles and scale factors for the searched similarity
transformations.

VI. CONCLUSIONS AND FUTURE WORK

After a brief state of the art and showing our goals and the
context, namely shape grammars and the GSG system, we have
presented an infrastructure to support an algorithm to detect
sub-shapes for use in that context. Some advantages of this
algorithm were exposed in face of other alternative algorithms.
In terms of programming, all GSG components are built in
Common Lisp/Common Lisp Object System, using the
LispWorks® IDE system.

Future work will refine the infrastructure and the algorithm,
improve and finish the GSG system and, using the components
and the experience gained with the development of GSG, our
aim is also to develop a multi-agent creative system in line with
the ideas of the (primitive) GeoWin system of our past work.

ACKNOWLEDGMENT
This work was undertaken at ISTAR-Information Sciences
and Technologies and Architecture Research Center from
ISCTE-Instituto Universitario de Lisboa (University Institute
of Lisbon), Portugal, and it was partially funded by the
Portuguese Foundation for Science and Technology (Project
"FCT UIDB/04466/2020").

REFERENCES

[1] 7J. Reis, “What’s in a Shape, An Algorithm for Finding Shapes
in Shapes,” WAIM 2023 Workshop in the CISTI 2023
conference, Aveiro, Portugal, 2023.

[2] G. Stiny, J. Gips, “Shape Grammars and the Generative
Specification of Painting and Sculpture,” Information
Processing, 71, 1460-1465, 1972.

[3] G. Stiny, “Introduction to Shape and Shape Grammars,”
Environment and Planning B, 7(3), 343-351, 1980.

[4] G. Stiny, Shape: Talking about Seeing and Doing, Cambridge,
Massachusetts, USA: MIT Press, 2006.

[5] G. Stiny, W. J. Mitchell, “The Palladian Grammar,”
Environment and Planning B, 5, 5-18, 1978.

[6] G. Koning, J. Eisenberg, “The Language of the Prairie: Frank
Lloyd Wright’s Prairie Houses,” Environment and Planning B,
8, 295-323, 1981.

[7]1 J.P.Duarte, “Towards the Mass Customization of Housing: The
Grammar of Siza's Houses at Malagueira,” Environment and
Planning B, 32, 347-380, 2005.

[8] G. Stiny, “Kindergarten Grammars: Designing with Froebel’s
Building Gifts,” Environment and Planning B, 7, 409-462,
1980.

[9]1 J. Heisserman, “Generative Geometric Design,” , IEEE
Computer Graphics and Applications, 14, 37-45, 1994.

[10] M. Agarwal, J. Cagan, “A Blend of Different Tastes: The
Language of Coffeemakers,” Environment and Planning B, 25,
205-226, 1998.

[11] R. Krishnamurti, “The Arithmetic of Shapes,” Environment and
Planning B, 7, 463-484, 1980.

[12] R. Krishnamurti, “The Construction of Shapes,” Environment
and Planning B, 8, 5-40, 1981.

[13] R. Krishnamurti, “The Maximal Representation of a Shape,”
Environment and Planning B, 19, 267-288, 1992.

[14] R. Krishnamurti, “Spatial Change: Continuity, Reversibility,
and Emergent Shapes,” Environment and Planning B, 24, 359-
384, 1997.

[15] M. Tapia, “A Visual Implementation of a Shape Grammar
System,” Environment and planning B, 26, 59-73., 1999.

[16] S. C. Chase, “A model for User Interaction in Grammar-Based
Design Systems,” Automation in Construction, 11, 161-172,
2002.

[17] T. Trescak, M. Esteva, I. Rodriguez, “A shape grammar
interpreter for rectilinear forms,” Computer-Aided Design, vol.
44 (7), pp. 657-670, 2012.

[18] T. Grasl, A. Economou, “From Topologies to Shapes:
Parametric Shape Grammars Implemented by Graphs,”
Environment and Planning B, 40, 5,, pp. 905-922, 2013.

[19] T. Wortmann, R. Stouffs, “Algorithmic complexity of shape
grammar implementation,” Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, 32, 138-146,
2018.

[20] J. Reis, “Agents with Style — Multi-Agent Visual Composition
with Shape Grammars,” em Proceedings of the Third Joint
Workshop on Computational Creativity, Aug. 2006, Riva del
Garda, Italy, 2006.

[21] J. Reis, “GSG, A Tool for Knowledge-Based Visual Creativity,”
em CISTI 2013, Proceedings of the 8th CISTI, Vol. I, pp. 358-
363., Lisboa, Portugal, 2013.

[22] J. Reis, “A Shell Tool for Visual Creativity Support,” em
ISDOC 2013, Proceedings of the International Conference on
Information Systems and Design of Communication, pp. 56-63.,
Lisboa, Portugal, 2013.

[23] J. Reis, “Crossing Lines in GSG,” em ISDOC 2014,
Proceedings of the International Conference on Information
Systems and Design of Communication, pp. 105-112., Lisboa,
Portugal, 2014.

[24] J. Reis, “Shapes: Seeing and Doing with Shape Grammars,” em
CISTI2022, 17th Iberian Conference on Information Systems
and Technologies, Madrid, Spain, 2022.

[25] J. Tching, A. Paio, J. Reis, “A Shape Grammar for Self-Built
Housing,” em Proceedings of the SIGraDi 2012, pp. 486-490.,
Fortaleza, Brasil, 2012.

[26] J. Tching, J. Reis, A. Paio, “Shape Grammars for Creative
Decisions in the Architectural Project,” em CISTI 2013,
Proceedings, Vol. I, pp. 389-394., Lishoa, Portugal, 2013.

[27] J. Tching, J. Reis, A. Paio, “A Cognitive Walkthrough towards
an Interface Model for Shape Grammar Implementations,”
Computer Science and Information Technology, vol. 4(3), pp.
92-119, 2016.

[28] J. Tching, J. Reis, A. Paio, “IM-sgi — an Interface Model for
Shape Grammar Implementations,” AIEDAM, 33, Issue 1,
February 2019, 24-39, 2019 .

