
 

Repositório ISCTE-IUL
 
Deposited in Repositório ISCTE-IUL:
2023-06-30

 
Deposited version:
Accepted Version

 
Peer-review status of attached file:
Peer-reviewed

 
Citation for published item:
Farkhari, H., Viana, J., Campos, L. M., Sebastião, P. & Bernardo, L. (2022). New PCA-based category
encoder for efficient data processing in IoT devices. In Fonseca, N. L. S. da., Marca, J. R. B. da.,
Bregni, S., and Granville, L. Z. (Ed.), 2022 IEEE Globecom Workshops (GC Wkshps). (pp. 789-795).
Rio de Janeiro, Brazil: IEEE.

 
Further information on publisher's website:
10.1109/GCWkshps56602.2022.10008757

 
Publisher's copyright statement:
This is the peer reviewed version of the following article: Farkhari, H., Viana, J., Campos, L. M.,
Sebastião, P. & Bernardo, L. (2022). New PCA-based category encoder for efficient data processing in
IoT devices. In Fonseca, N. L. S. da., Marca, J. R. B. da., Bregni, S., and Granville, L. Z. (Ed.), 2022
IEEE Globecom Workshops (GC Wkshps). (pp. 789-795). Rio de Janeiro, Brazil: IEEE., which has
been published in final form at https://dx.doi.org/10.1109/GCWkshps56602.2022.10008757. This
article may be used for non-commercial purposes in accordance with the Publisher's Terms and
Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1109/GCWkshps56602.2022.10008757


New PCA-based Category Encoder for Efficient
Data Processing in IoT Devices

Hamed Farkhari∗†, Joseanne Viana †‡, Luis Miguel Campos ∗, Pedro Sebastião †‡,
Luis Bernardo §‡

∗PDMFC, Rua Fradesso da Silveira, n. 4, Piso 1B, 1300-609, Lisboa, Portugal
†ISCTE – Instituto Universitário de Lisboa, Av. das Forças Armadas, 1649-026 Lisbon, Portugal

‡IT – Instituto de Telecomunicações, Av. Rovisco Pais, 1, Torre Norte, Piso 10, 1049-001 Lisboa, Portugal
§FCT – Universidade Nova de Lisboa, Monte da Caparica, 2829-516 Caparica, Portugal;

Emails : Hamed Farkhari@iscte-iul.pt, joseanne cristina viana@iscte-iul.pt, luis.campos@pdmfc.com,
pedro.sebastiao@iscte-iul.pt, lflb@fct.unl.pt

Abstract—Increasing the cardinality of categorical variables
might decrease the overall performance of machine learning
(ML) algorithms. This paper presents a novel computational
preprocessing method to convert categorical to numerical vari-
ables ML algorithms. It uses a supervised binary classifier to
extract additional context-related features from the categorical
values. The method requires two hyperparameters: a threshold
related to the distribution of categories in the variables and
the PCA representativeness. This paper applies the proposed
approach to the well-known cybersecurity NSLKDD dataset
to select and convert three categorical features to numerical
features. After choosing the threshold parameter, we use con-
ditional probabilities to convert the three categorical variables
into six new numerical variables. Next, we feed these numerical
variables to the PCA algorithm and select the whole or partial
numbers of the Principal Components (PCs). Finally, by applying
binary classification with ten different classifiers, we measure the
performance of the new encoder and compare it with the other 17
well-known category encoders. The new technique achieves the
highest performance related to accuracy and Area Under the
Curve (AUC) on high cardinality categorical variables. Also,
we define the harmonic average metrics to find the best trade-off
between train and test performances and prevent underfitting and
overfitting. Ultimately, the number of newly created numerical
variables is minimal. This data reduction improves computational
processing time in Internet of things (IoT) devices connected to
future networks.

Index Terms—Categorical Encoders, Dimensionality Reduc-
tion, Internet of things, Feature Selection, Machine Learning,
NSLKDD, Principal Component Analyses

I. INTRODUCTION

Machine learning (ML) prediction problems require giving
the model relevant features to represent the problem accurately.
Consequently, data preparation and feature engineering are
critical activities for all machine learning algorithms [1]. In
Internet of Things (IoT) devices: processing capacity, energy
consumption, and resource availability all limit the execution
of deep learning algorithms. As the amount of accessible data
rises, the degree of diversity of the features increases and this
expansion impacts categorical variables. When the number of
features grow, the cardinality, which is the number of unique
values detected in each feature, increases [2]. The challenge

of appropriately and effectively encoding categorical features
influence the machine learning model’s performance. Handling
the conversion from categorical characteristics to numerical
features is a well-known issue in data science and machine
learning since many methods require numerical input [3].
This problem has several solutions. Specific categorical data
encoding schemes are more suitable than others depending on
the type of problems i.e. classification or regression. These
encoders are critical when processing large volumes of data,
especially in IoT devices, at the edge, and in cloud computing
because errors and outliers are more common when using
these devices to process data. Due to these errors and outliers,
reliable statistical estimations are challenging to compute.

One Hot Encoding is the most well-known encoding for
low-cardinality categorical features. This yields orthogonal and
equidistant vectors for each of the categories. Integers are
picked at random because they have no inherent order. An
alternate encoding method is Label/Ordinal Encoding, which
uses a single column of integers to represent multiple category
values. Both encoding techniques present high-dimensional
encoding limitations, but Label Ordinal Encoding forces the
categories into a particular order. This makes it more difficult
for the model to extract valuable information. Regarding the
assessment of ML algorithms’ success, researchers have used
a variety of methodologies such as Recall, Precision, F-Factor
area under the curve, true positive rate (TPR), true negative
rate (TNR) and accuracy [4]. In most cases, the focus is
on specific attributes that matter in the context for which
the measure was developed. For example, when Information
Retrieval (IR) algorithms are evaluated on Recall, Precision,
and F-Factor, erroneous predictions are often overlooked in
favor of the accurate ones.

We present a different approach to solving the categorical
encoders’ modelling problem using conditional probability in
supervised learning and Principal Component Analysis (PCA).
Further, we compare the performance of our method with
several available categorical encoders and classifiers using the
same dataset. Finally, we show that our method achieves the
best performance by adjusting only two parameters. Our algo-



rithm, which outperforms current machine learning algorithms
and reduces the dimensionality of the data, may be a viable
choice for IoT devices and cybersecurity algorithms embedded
in sensors, UAVs, and other devices. This paper is organized
as follows: First, we introduce our novel method to convert
categorical to numerical variables considering the probability
relationships between categories and target classes in super-
vised classification. Then, we add a description of the metrics
that select the best combinations between them and propose
a new metric based on the harmonic averages to highlight
the improvements in accuracy during training. After that, we
analyze the results from 17 different categorical to numerical
encoders using ten different classifiers. We compare the results
using the accuracy, the Area Under the Curve (AUC) and
the harmonic averages, highlighting the improvements in
accuracy during training.

A. Contributions and Motivation

Traditional categorical encoders do not provide the pa-
rameters to adjust them to the classifiers. Considering this
constraint, below is a summary of the main contributions of
this paper:

• A new method to encode categorical features using only
two hyperparameters: a combination of threshold and
PCA that adjusts to different classifiers for maximum
performance achievement.

• A supervised category encoder which is suitable for both
linear and nonlinear classification algorithms.

• A new metric for measuring training gains in accuracy
using Harmonic Averages calculations.

• A comparison between the proposed solution and the
available categorical encoders using accuracy, AUC and
the proposed metric based on harmonic averages.

In high cardinality categorical variables, our method achieves
the highest performance using the lowest possible dimension-
ality, specifically, when the categories exist in the test set
and not in the train set. Furthermore, it is possible to prevent
or decrease underfitting and overfitting. Also, we define new
metrics using a different set of hyperparameters which makes
adjustments in the classifiers during the preprocessing steps to
improve the performance of our encoder.

II. THE PROPOSED METHOD

The scheme offers a unique computational preprocessing
approach for converting categorical to numerical variables
for machine learning (ML) methods. Table I shows the
dataset with categorical variables named from V ariable1 to
V ariableN and each variable contains different numbers of
categories. It is required that the target variable defines a
binary classification, with two complementary classes.

Using the variables and the target in Table I, we define the
conditional probabilities for each unique category using binary
classification. The calculation for each category is based on the
numbers of its occurrences for each class C1 and C2 per its
total occurrences as (1) and (2) illustrates :

V ariable1 · · · V ariableN Target
Category1,1 · · · CategoryN,1

Class C1 or C2

(Binary
Classification)

Category1,2 · · · CategoryN,2

...
. . .

...
Category1,j · · · CategoryN,j

...
...

...

TABLE I: Categorical variables with different categories in
binary classification.

P1i,j = P (Target = C1|V ariablei = Categoryi,j), (1)

P2i,j = P (Target = C2|V ariablei = Categoryi,j). (2)

Before applying the threshold parameter, for each unique
Categoryi,j the following condition holds:

P1i,j + P2i,j = 1, (3)

where i, j are defined as ∀i, j|i ∈ {1, 2, . . . , N}, j ∈
{1, 2, . . . ,Mi}, N is the number of total categorical variables,
and Mi is the number of unique categories for variable i.
N and Mi are fixed for each variable. Thus, each category
V ariablei will produce two new numerical variables with
three states.

V ariablei
New New Conditions
V ar1i V ar2i

Categoryi,j 1 0
If P1i,j > P2i,j ,

AND P2i,j > threshold.

Categoryi,j 0 1
If P1i,j < P2i,j ,

AND P1i,j > threshold.

Categoryi,j 0 0 If P1i,j < threshold,
OR P2i,j < threshold .

TABLE II: Converting each categorical variable to two
numerical variables with conditions for each category.

In Table II, V ariablei, NewV ar1i and NewV ar2i refers
to categorical V ariablei, and the first and second newly
created numerical variables for V ariablei, respectively. New
numerical variables will be created based on the probability
conditions in (1), (2), and the threshold value. Each categori-
cal value of a database element is converted to the NewV ar1i
and NewV ar2i values, where the elements’ Category is used
to select the value of j in Table II.

A. Threshold
The threshold defines the first hyperparameter, which

specifies a minimum occurrence probability for a cate-
gory considered in the binary classification. Probabilities
P1i,j and P2i,j are calculated using (1) and (2) based
on the classification of C1 and C2 of the database sam-
ples. Our method creates two new numerical variables for
each categorical variable using the equations specified in
Table II. Categories with rare elements from one class
(with a probability below the threshold) are mapped into
(NewV ar1, NewV ar2) = (0, 0). Otherwise, the variables
contain the majority class, C1, (NewV ar1, NewV ar2) =
(1, 0), or C2, (NewV ar1, NewV ar2) = (0, 1).



B. Principal Component Analysis

The second hyperparameter is the number of Principal
Components (PCs) available after the PCA processing. The
main objective of PCA in our methodology is to remove the
correlation between the 2N new numerical features in Table
II, where N defines the number of categorical variables. The
number of PCs, denoted as K, can vary from 1 to 2N . K
can be the minimum number of PCs necessary to capture all
data variances, which might be below 2N if some numerical
variables contain only one unique value for all categories (i.e.,
only ones or zeroes) or can be written as combinations of other
numerical variables. By choosing a lower K, the cumulative
data variance will be less than one. We describe the variety of
the first and second hyperparameters in the grid search section.

C. Scaling

Usually, scaling is applied before PCA to prevent the feature
dominance effect where some features overshadow others
because they have different scales. In our method, there is
no need for scaling because the new numerical features are
normalized between zero and one. However, after the PCA
process, the standardization scale using mean and standard
deviation is applied for faster convergence in some classifiers,
such as Support Vector Machines (SVMs).

D. Dataset

We choose the NSLKDD dataset [5] to test different
encoding methods and classifiers because it is common in
cybersecurity research (for instance, for network intrusion
detection). The NSLKDD is divided into four different par-
titions: KDDTrain+, KDDTrain+ 20Percent, KDDTest+, and
KDDTest-21. All partitions are available for downloading from
[5]. We use the KDDTrain+ exclusively for training, and
the KDDTest+ as a complete test dataset for test purposes
which includes all the test instances. A quick analysis of
the NSLKDD shows that the KDDTrain+, KDDTest+, KD-
DTrain+ 20Percent, and KDDTest-21 contain 125973, 22544,
25192, and 11850 samples, respectively. There are only three
categorical variables in the dataset namely: protocol type,
service, and flag. We convert the categorical variables to nu-
merical using different encoders to compare the performance
of each method in binary classification.

E. Categorical Encoders Dimensionality

One the the main challenges related to high cardinality cat-
egorical variables is their high dimensionality after converting
them to numerical features. The One Hot Encoding method
presents such constraints. In our proposed method, the number
of dimensions of new numerical features varies from a range
of one to six. The protocol type and flag variables in both
KDDTrain+ and KDDTest+ sets contain the same cardinality.
However, the cardinality of the service variable is greater and
different between the train and test sets which may lead to
a low performance of the available encoder. Table III shows
the differences of dimensionality for newly created numerical
features for each of the encoding schemes. The categorical

encoders used are from the category encoders library version
2.2.2. According to Table III, other encoder schemes create at
least three dimensions for the new numerical features. In our
system, it is possible to reduce them to one.

Encoding Scheme (abbreviation) Dim.
(Proposed) 1-5
Backward Difference Encoder (Backward Difference) [6] 81
BaseN Encoder (BaseN) [7] 13
Binary Encoder (Binary) [8] 13
Cat Boost Encoder (Cat Boost) [9] 3
Count Encoder (Count) [10] 3
Generalized Linear Mixed Model Encoder (GLMM) [11] 3
Hashing Encoder (Hash) [12] 8
Helmert Encoder (Helmert) [6] 81
James-Stein Encoder (James-Stein) [13] 3
Leave One Out Encoder (LOOE) [14] 3
M-estimate Encoder (MEestimate) [15] 3
One Hot Encoder (One Hot) [6] 84
Ordinal Encoder (Ordinal) [6] 3
Polynomial Encoder (Polynomial) [6] 81
Sum Encoder (Sum) [6] 81
Target Encoder (Target) [15] 3
Weight of Evidence Encoder (WOE) [16] 3

TABLE III: Comparing dimensionality of new numerical
features created by each Encoding scheme.

F. Classifiers

We use ten classifiers with different configurations in Python
v3.6.9 and Sci-kit learn library v0.23.2 to compare the re-
sults. Table IV presents the classifiers with hyperparame-
ters. For replication purposes, the seed value of randomness
(random state) in all classifiers is zero.

Classifiers hyperparameters
Logistic Re-
gression (LR)

solver = ’saga’, penalty = ’l2’, c = 1.0

Multilayer
Perceptron
(MLP)

solver = ’adam’, alpha = 0.0001,
hidden layer sizes = 100, activation =
relu, learning rate init = 0.001(’constant’),
batch size=200

SVM 1 kernel = rbf, gamma = ’auto’, c=1.0
SVM 2 kernel = poly, gamma=’auto’, c=1.0, degree=5
SVM 3 kernel = linear, c=1.0
Decision
Tree(DT)

max depth=5, split quality measure = ‘gini’, max
features considered for each best split = min(8,
number of new numerical features)

Ada Boost
Classifier
(ADA 1)

base estimator=DecisionTreeClassifier
(max depth=1), n estimators=50

Ada Boost
Classifier
(ADA 2)

base estimator=DecisionTreeClassifier
(max depth=5), n estimators=10

Random For-
est (Forest)

max depth =5, no. of estimators = 10, split quality
measure = ‘gini’, max features considered for each
best split = min (5, number of new numerical
features)

Gaussian
Naive Bays
(GNB)

default sci-kit learn parameters

TABLE IV: 10 Classifiers with hyperparameters used for
classification.



G. Metrics

Metrics such as accuracy can simply be measured in multi-
class problems. However, other metrics such as precision, re-
call, FPR, F1-Score, and the sum of the Area Under the Curve
(AUC) of the Receiver Operating Characteristic (ROC) cannot
be easily calculated [17]. Thus, in practice, accuracy may be
enough to check performance in multi-class problems. It is
essential to choose the proper metrics to compare the results
between the available encoders and the proposed system. We
use binary classification and divide the target labels associated
with attacks and regular Internet traffic (normal labels). The
proportions of attack and normal labels in the train set is
46.54% and 53.46%. In the test set, the ratios are 56.92% and
43.08%, respectively. The percentages of labels in two of the
classes show that the number of instances in the train and test
sets are balanced. On one hand, balanced classification usually
uses accuracy and AUC. On the other hand, unbalanced
classification uses precision, F1-score, and other metrics.

H. New Metrics

Commonly, the attacks and normal data in the train and
test datasets are not equal. For example, the NSLKDD test
set contains only 15% of the total data. The unbalanced
test data has an impact on the evaluation of the algorithm’s
learning capabilities. Even if the test set exhibits an excellent
performance, it does not guarantee that the same performance
will occur in the training data set and vice versa. We should
therefore consider a trade-off between the performances of
train and test sets. The effect of changing the amount of data
available for the test by 1% is less noticeable that in the
train. If the accuracy of the algorithm changes 1% in the
test, it affects only 15% of total data, for our data set is 22544
samples. Nevertheless, a 1% change in the training data affects
the other 85% of data containing 125973 samples. For the first
time, we want to define new metrics to consider both train and
test performances because extensive changes may occur in the
train when we ignore minimal changes in test performance. In
cybersecurity, these changes mean our systems can detect more
attacks, and protection increases. We define new metrics and
compare our system’s performance using both the previous
and the new metrics in light of the above explanation. The
new metrics are the distance to the ideal point as the error
to calculate mean squares errors (MSE) and the harmonic
average of the same metrics in the train and test sets. Using
only one of these three metrics is adequate for sorting encoder
performance and fine-tuning hyperparameters in our proposed
encoder. In addition, using these metrics avoids overfitting or
underfitting problems, which the following sections discuss.
Equations 4, 5, and 6 use the new metrics to estimate perfor-
mance:

• Mean Square Errors (MSE) to the ideal point for
accuracy:

MSE = 0.5[(100− a)2 + (100− b)2]; (4)

• Mean Square Errors (MSE) to the ideal point for AUC:

MSE = 0.5[(1− c)2 + (1− d)2]; (5)

• Harmonic average of the same metrics (accuracy or
AUC) in train and test:

Harmonic avg =
(2.e.f)

(e+ f)
; (6)

where in (4), a and b are percentage accuracies in train and
test data. In (5), c and d are AUCs, for the same data. The
harmonic averages in (6) defines e and f using accuracy
or AUCs in the data, respectively. The harmonic average is
defined to calculate the average between train and test sets
for the same metrics. We apply our method to the NSLKDD
dataset containing three categorical variables. We use one
unique threshold for all of them due to the similar distribution
of the classes in the category of the three categorical variables.
All threshold values are represented as percentages.

III. EXPERIMENTAL RESULTS

We apply our method to the NSLKDD dataset containing
three categorical variables. We use one unique threshold for
all of them due to the similar distribution of the classes in
the category of the three categorical variables. All threshold
values are represented as percentages.

A. Categorical Encoders Comparison

We measure the performance of a combination of 17 dif-
ferent encoders, plus ours from Table III, with the ten clas-
sifiers from Table IV, to compare our new proposed encoder
algorithm with the other existing encoders. Table V identifies
the 18 Encoders by their abbreviations and summarizes their
performance results. Each column in the table V associates the
encoding scheme with the best suitable classifier according to
the train or test for accuracy or AUC. In the fourth column,
we use the maximum harmonic averages of train and test
accuracies to compare the results and sort the encoders from
best to worst performance. For example, the test accuracy
for the Polynomial encoder is 88.9549%, which is the highest
accuracy that this encoder achieves using the GNB classifier.
All the encoders are tested with all classifiers and table V
presents the classifier with the highest performance. In our
method, the hyperparameters Thre(1.87) and PCs(3) represents
a threshold of 1.87 % and the top three principal components,
respectively. Our algorithm achieves the highest test accuracy
of 89.638041 % by feeding only the first principal component
to the SVM2 classifier from Table IV, and with the two
different thresholds of 3.64 % and 5.45 %. This accuracy is
the highest out of all combinations of categorical encoders and
classifiers and puts our encoder in the first place. Our method
is placed second after Polynomial Contrast coding by choosing
the Harmonic average of accuracies as a sorting metric, as is
shown in Table V.

Figs 1 and 2 compare the accuracies and AUCs of the 18
encoders with ten different classifiers with respect to the train
versus test data. In fig 1, the point at [100, 100] represents



Encoding
Scheme

Classifiers with Max.
Train accuracy (%)

Classifiers with
Max. Test
accuracy (%)

Classifiers
with Max.
harmonic avg.
of accuracies (%)

Classifiers with Max.
Train AUC

Classifiers with
Max. Test AUC

Polynomial ADA2, 96.3167 GNB, 88.9549 GNB, 91.0538 ADA2, 0.9629 GNB, 0.888
Proposed All except GNB,

Thre(11.9), PCs(1-5),
95.380756

SVM2, Thre(3.64,
5.45), PCs(1),
89.638041

SVM3, Thre(1.87),
PCs(3), 90.6161

All except GNB,
Thre(11.9), PCs(1-5),
0.953976

SVM2, Thre(3.64,
5.45), PCs(1),
0.893252

Ordinal ADA2, 96.3151 LR, 83.388 LR, 87.42 ADA2, 0.9629 LR, 0.8514
One Hot SVM1, 96.3127 DT, 83.7252 ADA2, 87.1133 SVM1, 0.9628 DT, 0.8274
Sum MLP, 96.3143 ADA2, 79.5245 ADA2, 87.1133 MLP, 0.9628 Forest, 0.814
Target ADA2, 96.3167 ADA2, 79.5067 ADA2, 87.1081 ADA2, 0.9629 ADA2, 0.808
Backward Differ-
ence

ADA2, 96.315 Forest, 80.6112 ADA2, 87.1075 ADA2, 0.9629 Forest, 0.8165

Helmert ADA2, 96.3127 Forest, 81.2145 ADA2, 87.1038 ADA2, 0.9628 Forest, 0.822
Base-N SVM2, 96.3127 GNB, 83.6542 ADA2, 87.1035 SVM2, 0.9628 GNB, 0.8534
Binary SVM2, 96.3127 GNB, 83.6541 ADA2, 87.1035 SVM2, 0.9628 GNB, 0.8534
James-Stein ADA2, 96.3167 ADA2, 79.4979 ADA2, 87.1028 ADA2, 0.9629 ADA2, 0.808
Cat Boost ADA2, 96.3159 ADA2, 79.4979 ADA2, 87.1025 ADA2, 0.9629 ADA2, 0.808
GLMM ADA2, 96.3167 ADA2, 79.4934 ADA2, 87.1001 ADA2, 0.9629 GNB, 0.8148
LOOE ADA2, 96.3167 ADA2, 79.4934 ADA2, 87.1001 ADA2, 0.9629 ADA2, 0.8079
WOE ADA2, 96.3151 ADA2, 79.4934 ADA2, 87.0995 ADA2, 0.9629 ADA2, 0.8079
Count ADA2, 96.3143 ADA2, 79.4535 ADA2, 87.0752 ADA2, 0.9628 ADA2, 0.8074
MEstimate ADA2, 96.3159 ADA2, 79.112 ADA2, 86.8703 ADA2, 0.9629 ADA2, 0.8046
Hash MLP, 91.9959 GNB, 77.8921 GNB, 83.4566 MLP, 0.917 GNB, 0.792

TABLE V: 18 different encoders with the best classifier for each one, compared and sorted based on max harmonic average
of accuracies. The amount of thresholds for our proposed method are in percentage.

Fig. 1: Scatter of train vs test sets accuracies achieved by
combination of 18 category encoders.

the maximum train and test accuracy which is the ideal point
of all encoders. After analyzing the available encoders, we
discover that the polynomial achieves the greatest train and
test accuracies with the ADA2(96.31%) and GNB(88.95%)
classifiers. Our method achieves the highest test accuracy
(89.64%) with the SVM2 classifier in comparison with the
polynomial (88.95%).

Using the harmonic average of accuracies, our method
achieves 89.11% during the test phase, which is still the
highest test accuracy, but lower than the previous test results
of 89.64% accuracy. However, the amount of train accuracy

Fig. 2: Scatter of train vs test sets AUC achieved by
combination of 18 category encoders.

increases from 89.5% to 92.18% and we lose 0.53 % in the
test. The difference between the prior test accuracy and the
harmonic average of accuracies is +2.68 % in the train set and
only -0.53% in the test set. The loss between the accuracy
and the harmonic average metrics for the test set is so minimal
and there are significant benefits in the training set which
implies that the harmonic average of accuracies is a better
metric choice. Fig 2 describes the results based on the AUC
metric for the same encoders and classifiers. The ideal point is
[1.0, 1.0] for the AUCs train and test sets. We show that the
polynomial and our encoder performances present nearly the
same results using the new and previous metrics considering
the approximation of two floating points for the test set. The



Fig. 3: Scatter of train vs test sets accuracies, grid search of
two hyperparameters: Threshold and number of principal
components followed by 10 different classifiers.

performance for both of them is 0.89 in the test. The difference
is in the train in which the polynomial reaches 0.93 while our
method achieves 0.92.

B. Grid Search

As previous sections describe, our new proposed category
encoder contains two hyperparameters: the threshold and the
number of principal components of the PCA. We conduct
the grid search for all of the possible combinations of these
two parameters to find the best values for each one. For the
threshold, we check different values from 0.01% to 50%. Rare
categories appear in either less than 1% or less than 5% of
all instances. In our results rare categories occur a little more
than five percent. We achieve the best test accuracy of 89.64%
by choosing 5.45% or 3.64% as the threshold. We check all
numbers in the threshold range together with different PC
numbers that varies from 1 to 6 as the second hyperparameter.

Figs. 3 and 4 depict the scatter results of accuracies and
AUCs for the train versus test sets. Table V shows more
information about thresholds, PCs, and classifiers for gaining
maximum values for different metrics.

C. Dimensionality

Excluding our encoder, Table III shows the dimensionality
output of different category encoders which varies from 3 to
84. We sort the results of each one using different classifiers
from Table V. The results based on maximum test accuracy
shows that the available encoders with higher dimensionality
output have more chances for higher accuracy results. Our
method with only one output dimensionality using an SVM
classifier defeats all of the other encoders. Prior researchers
usually consider the number of PCs that capture 95% or 97%
of the variance in the train set for dimensionality reduction
problems which means they consider the variance dependency

Fig. 4: Scatter of train vs test sets AUC, grid search of two
hyperparameters: Threshold and number of principal
components followed by 10 different classifiers.

on of the PCs they define. Our results reveal that the number
of PCs directly affects the output performance independently
of the variance they capture and they should be considered a
hyperparameter.

IV. CONCLUSION

This paper proposed a new method for converting categor-
ical to numerical features, which can be adapted by choosing
the correct threshold and number of Principal Components for
different classifiers. Furthermore, it produced low dimensional
outputs from high cardinality categorical variables. We used
accuracy and AUC metrics to compare performances be-
tween our method and 17 available encoders. Additionally, we
defined new metrics to estimate the trade-off between train and
test set performances. Our results overcame the best encoder
available for the accuracy test and our method achieved
the same result for the AUC test with two floating points
approximations. Data preparation and feature engineering are
critical steps in every machine learning algorithm. Our encoder
can contribute to achieving better performances. Our method
involves data compression while translating categorical infor-
mation, which could be useful in hybrid telecommunication
networks such as 5G. Due to the power and resource con-
straints of IoT devices, our high-performance method may
be an attractive solution for particular implementations. We
can conclude that the new metrics provide a better trade-off
between train and test performances with these results.

ACKNOWLEDGMENT

This research received funding from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Sklodowska-Curie Project Number 813391”



REFERENCES

[1] A.Géron. Hands-on machine learning with Scikit-Learn, Keras and
TensorFlow: concepts, tools, and techniques to build intelligent sys-
tems. 2019, p. 851. ISBN: 9781492032649. URL: https://www.oreilly.
com/library/view/hands-on-machine-learning/9781492032632/.

[2] Austin Slakey, Daniel Salas, and Yoni Schamroth. “Encoding Cate-
gorical Variables with Conjugate Bayesian Models for WeWork Lead
Scoring Engine”. In: (Apr. 2019). arXiv: 1904 . 13001. URL: https :
//arxiv.org/abs/1904.13001v1.

[3] Gerhard Tutz. Regression for Categorical Data. Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge University Press,
2011. DOI: 10.1017/CBO9780511842061.

[4] Tara Salman et al. “Safety Score as an Evaluation Metric for Machine
Learning Models of Security Applications”. In: IEEE Networking
Letters 2.4 (2020), pp. 207–211. DOI: 10.1109/LNET.2020.3016583.

[5] University of North Brunswick. NSL-KDD Dataset. 2016. URL: https:
//www.unb.ca/cic/datasets/nsl.html (visited on 09/02/2021).

[6] UCLA. “R Library : Contrast Coding Systems for categorical vari-
ables”. In: UCLA: Statistical Consulting Group. (2014), pp. 1–8. URL:
https://stats.idre.ucla.edu/r/library/r- library-contrast-coding-systems-
for-categorical-variables.

[7] Will McGinnis. BaseN Encoding and Grid Search in category encoders
- Will’s Noise. 2016. URL: http : / / www . willmcginnis . com / 2016 /
12 / 18 / basen - encoding - grid - search - category encoders/ (visited on
09/02/2021).

[8] Will McGinnis. Beyond One-Hot: an exploration of categorical vari-
ables - Will’s Noise. 2015. URL: http://www.willmcginnis.com/2015/
11 / 29 / beyond - one - hot - an - exploration - of - categorical - variables/
(visited on 09/02/2021).

[9] Catboost. Transforming categorical features to numerical features -
CatBoost. Documentation. 2021. URL: https : / / catboost . ai / docs /
concepts / algorithm- main - stages cat - to - numberic .html#algorithm-
main-stages cat-to-numberic.

[10] Nishant Singh. Overview of Encoding Methodologies. 2018. URL:
https : / / www . datacamp . com / community / tutorials / encoding -
methodologies (visited on 09/02/2021).

[11] Walter W. Stroup. Generalized Linear Mixed Models Modern
Concepts, Methods and Applications. CRC Press, 2012. ISBN:
9781439815120.

[12] Lucas Bernardi. Don’t be tricked by the Hashing Trick. 2018. URL:
https : / / booking . ai / dont - be - tricked - by - the - hashing - trick -
192a6aae3087.

[13] Carl N Morris. “Parametric Empirical Bayes Inference: Theory and
Applications”. In: Journal of the American Statistical Association
78.381 (June 1983), pp. 47–55. ISSN: 01621459. DOI: 10 . 2307 /
2287098. URL: http://www.jstor.org/stable/2287098.

[14] John T Hancock and Taghi M Khoshgoftaar. “Survey on categorical
data for neural networks”. In: Journal of Big Data 7.1 (2020), p. 28.
ISSN: 2196-1115. DOI: 10.1186/s40537- 020- 00305- w. URL: https:
//doi.org/10.1186/s40537-020-00305-w.

[15] Daniele Micci-Barreca. “A Preprocessing Scheme for High-Cardinality
Categorical Attributes in Classification and Prediction Problems”. In:
SIGKDD Explor. Newsl. 3.1 (July 2001), pp. 27–32. ISSN: 1931-0145.
DOI: 10.1145/507533.507538. URL: https://doi.org/10.1145/507533.
507538.

[16] Guoping Zeng. “A Necessary Condition for a Good Binning Algorithm
in Credit Scoring”. In: Applied Mathematical Sciences Vol. 8 (July
2014), pp. 3229–3242. DOI: 10.12988/ams.2014.44300.

[17] Daniel S. Berman et al. “A Survey of Deep Learning Methods for
Cyber Security”. In: Information 10.4 (2019). ISSN: 2078-2489. DOI:
10.3390/info10040122. URL: https://www.mdpi.com/2078-2489/10/4/
122.


