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Abstract—

The ZF (Zero Forcing) algorithm is one of the best linear
receivers for DS-CDMA (Direct Sequence-Code Division
Multiple Access). However, for the case of MIMO/BLAST
(Multiple Input, Multiple Output / Bell Laboratories Layered
Space Time) with high loading, the perceived complexity of the
ZF receiver is taken as too big, and thus other types of receivers
are employed, yielding worse results. In this paper, we investigate
the complexity of the solution to the MIMO ZF receiver’s
equations using Block-Fourier algorithms, for both steady and
unsteady channel situations.

Keywords- Zero Forcing, MIMO,Block Fourier, unsteady channels.

l. INTRODUCTION

The ZF algorithm (explained in detail in [1]), or algorithms
based on them, are equalizers that are essential for
compensating the various error sources that are present in the
wireless communication link, such as ISI (Inter-Symbolic
Interference) and MAI (Multiple Access Interference), which
become more significant as the loading of the system is
increased, with special incidence on MIMO systems.

The Block-Fourier algorithms, presented in [2],[3] for the ZF
algorithm, are only suitable for constant channel conditions. In
this work new versions of these algorithms are derived, capable
of dealing with detection in unsteady channels with speeds up
to 100km/h. These new algorithms are based in the partitioned
block-Fourier algorithms of earlier works [2],[3], but extra
steps were added to take in consideration the channel change
from partition to partition. Inside each partition the channel is
considered constant (thus providing approximate, yet
reasonable results). The new algorithms, although more
computationally expensive than the ones presented in earlier
works, are not as expensive as the Gauss or Cholesky
algorithms (that provide exact results).

The paper is organized as follows. Section Il describes the
Block Fourier (BF) algorithm. Section Il introduces the Zero
Forcing (ZF) algorithm, alongside the notion of matrix
partitioning for solving the system equation. Simulation results
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are discussed in section 1V, and the conclusions are given on
Section V.

Il.  BLOCK FOURIER ALGORITHM

The BF algorithm can be easily applied for circulant matrices.
Since in our case, the matrices we deal with are block-
circulant, we will exploit this structure.

A. Diagonalizing Circulant Matrices
A circulant matrix is a square Toeplitz matrix with each
column being a rotated version of the column to the left of it:

Cy C, Cha C, (1)
C, C, Ch Cy

C =|c, c, c, C,
Cy Cha Cs Cy

The interesting property of circulant matrices is that its
eigenvectors matrix is equal to the orthonormal DFT matrix
F. of corresponding dimensionn. F’ can be written as:

F/ =-/n*F, 2
where F, is the non-orthonormal DFT matrix:
1 1 1 1 (3)
1 o o’ "
F,=|1 o? o @
1 o ;771 @ 2(‘n71) [U("fi)(nfl)

with @ = 127/"; j=/-1.
Using this property a circulant matrix C, can be decomposed
in:

C =F/'AF, = F'AF 4)
where A is a diagonal matrix that contains the eigenvalues of
C. The A matrix can be easily computed from:

A =diag(FC(;,2)) (5)
where giag(x) represents the diagonal matrix whose
diagonal elements are taken from the x vector. Substituting C
by (4) in the linear system:

Cx=b (6)
and solving for x results in:



x=F'A"'Fb @)
Equation (7) can be computed efficiently with three discrete
Fourier transforms and the inversion of the diagonal matrix A .
The complete solution would require 3n*> complex
multiplication/addition pairs for the three DFT matrix/vector
multiplications; n complex divisions to invert A; and n
complex multiplications to multiply A~ by Fb.
Using the Cooley & Tukey Fast Fourier Transform algorithm
the complex multiplication/addition operation pairs needed to
compute a size n DFT [2] is:
Ncee _ Nlog, n 8

FFT
2

This means that equation (7) can be computed spending

0”'Yn(slogzn+2j complex floating point operations
2

(considering each multiplication/addition pair as one
operation). The memory requirements to solve the system
using such algorithm are also very modest. It’s only necessary
to keep in memory two size n vectors: the b vector and the
first column of C. All operations can be made in-place as the
solution vector x replaces b. Further economy can be
achieved if C is sparse (band or block diagonal for example).

B. Application to Block-Circulant Matrices

A block-circulant matrix can be visualized as a circulant
matrix where each element is a matrix instead of a scalar
value. Consider a block-circulant matrix Ciro) composed by

NxN blocks of size pxQ. If C(PQ)G(CN'J*NQ is block-

circulant it must satisfy:
Cerariii = Crarig ©)

With ; _ (i4+p -1)modnpP)+1 - This means that each
j=(j+Q -1)ymodNQ)+1

element of Ciro) is repeated P rows below and Q columns to

the right of it. Indices that exceed the NP lines or NQ columns
wrap around to the first lines and first columns, respectively.
From now on we will consider only square block matrices
with NxN blocks, so the N index will be omitted for
simplicity. The block dimensions of the matrix will be
represented in subscript between curve brackets, and in the
case of square blocks matrices, only a dimension represented.
To deal with block circulant matrices we need to introduce the
block-Fourier transformation. The block-Fourier matrix is
defined as:

F,, =F, ®I, (10)

where F, is a non-orthonormal DFT matrix of dimension N
as defined in (2); 1, is the K size identity matrix; and ®

denotes the Kronecker product.
Similar to the last sub-section, a block-circulant matrix can
also be decomposed using block-Fourier transforms:

Cir) =Fpy Ay Fo) (11)
where A |s a block-diagonal matrix computed from:
A(PQ)=dlag(PQ)(F(Q)C(PQ)("l'Q)) (12)

where diagp, (x) represents the block-diagonal matrix whose

block-elements are the PxQ sized blocks of x. Similarly to

the circulant systems, a block-circulant system can also be
efficiently solved using the block-Fourier decomposition. The
block-circulant system:

Cpx=b (13)
with Cp € CNP NP x e CV: p e CMP. It can be solved with:

x= F‘lA(Fl,)F b (14)

If the blocks are not square the Moore-Penrose pseudoinverse

concept can be used. Consider a block-circulant matrix

Cpg € C""N, with PxQ sized blocks.

Cipgx=b, (15)
PQ) CNPxNQ’ XGCNQ bE(CNP Q< P.

The system (15) can be solved using the Moore-Penrose
pseudo-inverse of the complex matrix Ciroy

H 1
X:(C(PQ)C(PQ)) Cip)P (16)
H
it CeCr0) i invertible.

Th|s solution is the least squares solution (ZF) to the system
(15), as previously shown. Applying the block-Fourier
decomposition of (11) to (16) results:

[(F(P)A(PQ)F(Q)) F(P)A(F’Q)F(Q):l

(F(P)A (PQ)F(Q) )H b

an

with A€ defined as in (12).
Equation (17) can be simplified, considering that Fil = Fh

X= F(Q)[AE’Q)A(PQ)] ApoFeb (18)

This solution can be computed with only three block-Fourier

transforms, the inversion of A'—ILQ)A(PQ) and the multiplication

of two block diagonal matrices by a column vector. The
multiplication

[AfoAeg | * Ao *(Fop) (19)
must be performed from right to left to minimize the number

of operations required, since a matrix-vector multiplication is
faster than a matrix-matrix one. Regarding that:

[ *) Po)] e ChOMR (20)
Aoy € CVUNT F beCM?
the multiplication (19) requires (NP + NQ)NQ pairs of
complex multiplications/additions. From the definition of
block-Fourier transform in (10) it can be shown that given
Y =Fyx (21)

with x,y e cM™ CNNK e have:

*®) €
y(l:K:(N—l)K+|):FNx(i:K:(N—l)K+i) (22)
with 1<i< K, where F represents a non-orthonormal DFT

matrix of dimension N as defined in (3).

This simply means that each block-Fourier transform of block-
size K can be decomposed in K Fourier transforms of size
N . Furthermore, each Fourier transform can be executed
independently of each other and thus advantage of parallel
hardware implementations can be taken. Taking this into
consideration, recalling equation (8) and considering that are
needed two block-Fourier transforms of block-size Q and one

of block-size P to compute (18), the number of operations
required for that three Fourier transforms is:

N3Cb®lo®ck eer = (2Q + P)w (23)



Due to finite precision round errors, the R matrices may not

be Hermitian positive definite even if c Cero is Hermitian

(PQ)
positive definite. This can be corrected 3|mply by removing
the imaginary part of the diagonal elements and zeroing all
other elements that have complex modulus below some
threshold value, before applying the Cholesky factorization.
This new simplified versions require the same number of
floating point operations as derived before because null
elements operations were not considered from the beginning.

Ill.  ZF DETECTOR
The solution of the Zero-Forcing detector is

d=(T"T) T"e (24)
This is the shortest length least squares solution of:
e =Td (25)

where T is not square, in general. Figure 1 (left) represents
the structure of T .

‘NP
Hin-1)P+H

n

Figure 1 — Block Structure of the T matrix (Ieft) Extended T
matrix, constant channel (right)

T is a block matrix with v blocks disposed along its
diagonal.
All N blocks are equal in a constant channel condition. Even
if the channel varies slowly it can be a reasonably
approximation to consider all v block equal as we will
investigate later. In a constant channel condition, it’s easy to
extend matrix T to become block-circulant, simply by adding
extra block-columns to it, as shown in Figure 1 (right). The
elements below the last v block wrap around to the top of the
columns. The number of extra columns needed to make T
block-circulant is:

E=N-n=[H/P]-1 (26)
The resulting matrix is block-circulant with N x N blocks of

P xQ size. This new matrix will be represented as T, Tipoy- NOW

equation (24) can be transformed in:

d- - (Too T, PQ)) Trg®' @
Tipgy € C N d*eCW;eeCV
and solved with the Fourier method, as done for equation (15)
in last section. The ¢’ vector can be obtained from e by
padding at its end with (N —n+1)P - H zeros, and d can be
extracted from the first nQ elements of d-.
There are two approximations in the transformation of T in
T all v _blocks were made equal and extra columns/lines

were added to the matrix. If all blocks were made equal to the
first block, the approximation would be increasingly worse
(directly correlated to the speed) towards the last block.

A better approximation would be expected if a middle block
was used. Let us use the middle block of T if n is even or the
left-middle block if n is odd:

V)

Using this method, better approximations in a wider central
range can be attained, as shown in
Figure 2.

(28)

et
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100 Km/h
10 Km/h
1 Km/h

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Symbol Index

Figure 2 — Constant channel approximation relative error
(PedestrianA, minimum load, 4x4 antennas) — Middle block.

Nevertheless, the approximation is very poor for the firsts and
lasts elements of the d vector. The last pictures make obvious
that the methods presented in [2],[3], although valid for a
constant channel condition, are not very useful if the channel
changes, even if low speeds are considered.

We will first concentrate on constant channel conditions. First
we will determine the error level introduced by the addition of
extra columns/lines to the T matrix that transform it in the

block-circulant matrix Tipoy+ 89 explained before and the error

of the block-Fourier algorithm.

A. Constant Channel Conditions

Table 1 show the error level introduced in the determination of
vector d by each phase of the detection process in 10 constant
channel situations. Each value is the maximum complex
modulus of the relative difference between the estimated d
and real d obtained in 100 runs with distinct random d
vectors. The “Estimation” column indicates the maximum
error of the estimation if equation (24) is solved directly. The
“Circulant” column shows the maximum error introduced by

the extension of the T matrix to become To) relative to the

estimated solution. The “Fourierl” and “Fourier2” columns
show the maximum error introduced by the use of the Fourier
algorithms 1 and 2 compared with the circulant system
solution.

Since a SF=16 is considered, the minimum load situation
corresponds to O interferers while the maximum load situation
correspond to 15 interferes (with each user having only 1
physical channel). As can be seen the errors are very low for
all the tested matrices and are only slightly above the floating
point precision used. Furthermore the T matrix extension is
not the main error cause.

It can be seen that the error level is constant along the entire
symbol vector and no beginning neither end high error levels
appear, since no multipath interference from adjacent blocks is
being considered. Excluding the midamble from the detection
and splitting the process in two independent detections, each
one involving only data symbols, some errors can be
introduced in the beginning of the second data chunk. This can



be corrected by including some symbols of the mid-amble in
the second detection process.

Table 1 — Maximum absolute error introduced by each phase
of the Zero-Forcing detector

Antennas Load Estimation| Circulant | Fourier! Faurier2
< 2120 hlin 4 E-16 5 E-16 2 E15 3 E15
& Max 9 E-14 1E-13 1,E13 1.E-13
= hin 5E-15 5 E-15 1,614 1,E-14
% MIMO 22 Mlax 4 E-14 5 E-14 5E14 4 E-14
o [ MINO 4xd hlin 4 E-14 2 E-14 7 E-14 5 E-14
o 2120 hlin 7 E-16 5 E-16 3 E15 3 E15
K] hlax 1.E-14 3 E-14 3,E14 3,E-14
2 hlin 2E-14 7 E-158 3 E14 2 E-14
£ |MIMO 2l gy TETZ | 2E72 | 2E12 | 2E12
= MDD 25 Tudlity 5 E-14 3 E-14 5,E-14 7 E-14

Table 2 — Number of operations required by the Block-Fourier

algorithm
Step Rep. N. of Operations
Ts P QNlog, W
2
e P Nlog, &V
2
Z. o Po?
R, b 2% 307+ 20
&
& » =5
& E o o+ opP?
ES =] Nlog, M
2
Tmm%’[@w@‘ YOF (D OP+F) @]

B. Partitioning

The algorithms proposed in last sub-section reveal already
many parallel paths that could be exploited for parallel
processing in adequate hardware. Nevertheless the algorithm
remains globally sequential since it only determines the
estimated d=~ vector at the end.

Figure 3 illustrates an approach to split the extended Zero-
Forcing equation (27) in smaller systems. Figure 3 represents

S, :T(SQ)T(PQ) and the estimated vector d*. The idea is to
split the So matrix in smaller ones. This can be an reasonable
approximation because the S, has the greater values

concentrated around the diagonal, and decreasing modulus as
we get far away from the diagonal. This means that each
element of vector d~ depends mainly of the same index value
of vector T(';Q)e' and it depends less and less of the values of it

as we get farther from that same index value.
Since each partition just approximates well the middle values,

the d~ values of the beginning and end of each partition must
be discarded. In the simulations it will be discarded the first

|~ and last | elements of each d~ partition.

Note that since the block-Fourier algorithm will be applied at
each partition, and because each partition has to be
approximated as a block-circulant matrix, high error will
appear also in the first elements of the first partition and in the
last elements of the last partition. This would not happen if
each partition would be solved with an exact method like
Gauss or Cholesky. This is the reason why those elements are
also discarded in Figure 3.

C N -L‘;I

{2)

' 'F'igure 3 — Partitioning block-Fourier élgorithm

The overlapping length must be carefully selected accordingly
the precision required. The bigger the overlapping the better
the approximation but more expensive will be the

computation. In the derivation of the algorithms a prelap |~
and postlap 1™ were defined in a similar way as done in [3]

but we shall always use |~ =17, since there is no advantage
of defining dissimilar overlapping lengths. The partition
length can be selected according the number of intended
partitions and the overlapping selected, and this is usually
determined by the hardware structure.

C. Unsteady Channel Conditions

The block-Fourier algorithm presented so far works well just
under constant channel conditions or with very slow changing
speeds. Even at 1 Km/h significant errors arise. The standard
block-Fourier algorithm cannot be adapted for unsteady-
channel conditions because it just works for block-circulant
matrices, but the partitioned version can be easily adapted just
by using in each partition a different block of the original T
matrix. If we use the middle block in each partition of the
original T matrix to construct each extended

approximateT(PQ), the block-Fourier algorithm can be used

for each partition as done in the last sub-section, and d~
obtained from the middle elements of each partition
computation.

The overlapping length must be selected accordingly the
precision required as for the constant channel. The bigger the
overlapping the better the approximation but more expensive
will be the computation.

The partition length now must be also selected according the
precision required: bigger partitions will approximate quickly
changing channels worst, but smaller partitions will require
too much computational power. Partition and overlapping
length can also be determined by the hardware structure
available, if some kind of parallel processing is available in an
already developed hardware platform. Also, very small
partitions or very long overlapping can become incompatible
making the required error level just not attainable for high
speed channels.

IV. SIMULATION RESULTS

The Monte Carlo was employed; 100 random data vectors
were created and used with each of the T matrices to create the
correspondent e vectors from ¢ =Td = Then all the



algorithms were applied in turn to estimate d from each e
vector. Finally the estimated and original d vectors were
compared and the wrong bits count up.

This procedure was repeated for different velocities (0,1,10
and 100 km/h) and antennas configuration (SISO and MIMO
2x2).

Table 3 present the BER results for 1 and 2 antennas. The
“Est” algorithm represents the “exact” solution of the ZF
equation, i.e. its solution with an algorithm that does not
include extra approximations further from the numeric floating
point precision of the simulator. As expected the “Est”
algorithm always estimated the correct data vector, since no
noise was considered in the simulation.

The “Fourier” algorithm corresponds to the unpartitioned
Fourier algorithm described earlier. The “Fourier_m” uses the
middle block of the T matrix while “Fourier” uses the first
block. As expected, the use of the middle block gives the best
results, except for low speeds, were the both are equivalent.
“FourierP_c” refers to the partitioned Fourier algorithm for
constant channels while “FourierP_v” is the correspondent
unsteady channel version. As expected “FourierP_v” gives
always better results, except for very low speeds, were
“FourierP_c” can give equivalent results with less floating
point operations. The numbers after “FourierP_c” or
“FourierP_v” indicate the number of blocks used in each
partition and the pre-lap and post-lap blocks number. For
example “FourierP_v_008_002_002” means an 8 blocks
partition with 2 blocks pre-lap and 2 blocks post-lap
algorithm.

From Table 3, it can be concluded that is advantageous to
reduce the size of partitions, especially for high speeds (as
expected, since in each partition the channel is approximated
as constant). It’s also easy to see that, for a particular partition
size, better results are attained as larger laps are used.

For low speeds the size of the partitions does not have a so
high influence in the correctness of the estimation, but greater
lap sizes are also advantageous as noticed for high speeds. The
conjunction of these two factors makes hard to find the best
algorithm for high speeds, since small partitions can not have
large overlaps. In a similar way, for low speeds, large overlaps
imply very large partition and a compromise as to be made in
each situation. Nevertheless, it’s clear that for high speeds the
most important factor is the size of the partitions, while for
low speeds the overlap size is the key factor.

V. CONCLUSIONS

The Block-Fourier algorithms presented in [2],[3] for the zero-
forcing algorithm under constant channel conditions where
also tested under unsteady channel situations, having revealed
useless in conditions of medium or high speeds. New versions
of those algorithms, capable of dealing with detection in
unsteady channels with speeds until 100km/h were derived
and tested.

These new algorithms where based in the partitioned block-
Fourier algorithms of [2],[3], but extra steps were added to
take in consideration the channel change from partition to
partition. Inside each partition the channel is considered
constant. The new algorithms, although more computationally
expensive than the original block-Fourier ones, are not so

expensive as the Gauss or Cholesky ones (even if optimized
versions were considered).

The best algorithm must be selected according the channel
conditions: for almost constant channels constant block-
Fourier algorithms could be used with good results, while for
high speeds the new block-Fourier algorithms proposed must
be used, preferably with small sized partitions.

Table 3 — ZF simulations results for 1 and 2 antennas (BER)

Irterferers 0 0

Channel model environment Pedestrian A Pedestrian A

Antennas 1 2

Murmber of Bits (Mbits) 1024 2048

Welocity (Km/h) 1 0100 1 10 100
Est 0 0 0 0 0
Fourier ERE4 98E3 27EA O0E 45E3
Fourier m 17E-4 7EE4 BEE2 O0E 62E4
FourierP_c_128 000000 128 O 18E4 TEE4 SEEZ O0E BAES
FourierP_c_128 002 002 128 2 1764 TEE4 BEEZ O0E B2E4
FourierP_c_128 004 004 128 4 1764 TEE4 BEEZ O0E B2E4
FourierP_c_128 008008 128 8 1764 TEE4 BEEZ O0E B2E4
FourierP_c_128 016016 128 16 1764 TEE4 BEEZ O0E B2E4
FourierP ¢ 128 032 032 128 32 1764 7EE4 BEEZ 00E B2E4

FourierP_c_064 000000 B4
FourierP_c_064 002 002 B4
FourierP_c_064 004 004 B4
FounerP?_c_064 005008 64
FourierP ¢ 064 016 016 B4 1
FounerP_c 032 000 000 32
FounerP_c_032 002 002 32
FounerP?_c_032 004 004 32
FourierP £ 032 005 005 32
Founer?_c 016 000 000 16

0 1964 77E4 85E2
2
4
8
]
0
2
4
8
0
Fourier?_c 016 002 002 16 2
4
0
2
0
1
0
2
4
]
B

17E4 7hE4 85E2
17E4 7hE4 85E2
17E4 7HE4 85E2
17E4 75E4 95E2
21E4 BJE4 95E2
17E-4 7hE4 95E2
17E-4 7hE4 95E2
17E-4 7hE4 95E2
24E4 BAEL 95E2
18E-4 75E4 85E2
17E-4 75E4 85E2
31E4 95E4 95E2
20E-4 7AE4 95E2
A4 12B3 95E2
JBE4 7OE4 95E2
7REA 18E4 B2E3
BAE-A 17E4 BOE3
89E5 18E4 B1E3
80E5 2264 48E3
31E56 15E4 28E3
19B6 7284 93E4
2284 GAES 9BEA
30ES 40E6H B3E4
8BS 32E4 T7EA
55E46 G4ES S4E4
19E6 58E4 12E4
22845 GRES 17E4
1566 3284 12E4
00EH 23E46 BBES
19E6 24E4 BOES
23B5 38E4 14E4
00EH 14E46 B1ES
00EH# 11EH 22E5
2286 1pE4 7RES
00EH# 23E6 13E5
23E6 GAEE 91ES
00EH D0EH 21E5

FourierP? ¢ 016 004 004 1B
FourierP_c_008_000_000 8
Fourier?_c_008 002 002 8
FourierP_c_004_000_000 4
Fourier?_c 004 001 001 4
FounerP v 128 000 000 1
FourierP v 128 002 002 1
FourierP v 128 004 004 1
FourierP v 125 005 008 128

1

1

FourierP_v_126_016_016
FourierP v 126032 032
FourierP_v_084_000_000 B4 0
FourierP v 084 002_002 B4 2
FourierP_v_084_004_004 64 4
FourierP_v_084_008_003 64 8
FourierP v 064 016 016 64 16
FourierP_v_032_000_000 20
FourierP v 032_002_002 322
FourierP_v_032_004_004 24
g
0
2
4
0
2
0
1

FourierP v 032_008_005 32
FourierP_v_016_000_000 16
FourierP_v_016_002_002 16
FourierP v 016_004_004 16
FourierP v 008 000_000
FourierP v 00 002_002
FourierP v 004 000 000
FourierP v 004 001 001

coloojlooo|looocolocoocooloooc oo o|loo|loojlocoojooco oo oo ol oo ool o ol
m
"
m
=
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