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Resumo

Nos ultimos anos, o nimero de dispositivos da Internet das Coisas cresceu rapidamente,
em particular os dispositivos utilizados num contexto doméstico inteligente. O mercado da
domotica tem sido prejudicado por um nimero interminavel de protocolos, muitas vezes
dificeis de integrar, principalmente quando novos dispositivos sao anexados ao sistema.

Também a integracdo de dispositivos mdveis estd incompleta, nomeadamente quando
consideramos a integracao e utilizagdo de informagdo de sensores, em particular a camara, que

pode ser recolhida a partir do dispositivo.

Para tornar esta integragdo mais eficaz, desenvolvemos uma solu¢do onde ¢ possivel,
através de um dispositivo moével, adicionar e controlar novos dispositivos da Internet das
Coisas. Esta solugdo, suportada pela plataforma OpenHAB opensource, fara uso da cdmara do
dispositivo mével do utilizador como um input para identificar qual o objeto que o utilizador
estd a tentar controlar. Para isso, o trabalho desenvolvido faz uso de inteligéncia artificial,
especificamente uma rede siamesa, que tem a vantagem de partilhar os mesmos pesos entre as
duas torres, tornando-a uma rede neural, facil de treinar e leve, adequada para a possibilidade

de operar o modelo num dispositivo moével.

Este sistema obteve bons resultados ao tentar identificar objetos utilizando quer imagens
ja presentes quer novas imagens, para esses objetos. Foi também capaz de se adaptar
corretamente a uma nova classe a ser adicionada ao conjunto de dados, sem necessidade de

reciclar toda a rede.

Assim, ficou provado que ¢ possivel melhorar a integracdo de dispositivos méveis na

domodtica, utilizando o sensor de camara de forma inovadora.

Palavras-chave: Internet das coisas, aprendizagem automatica, reconhecimento de

objetos, casa inteligente, Domética
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Abstract

In recent years, the number of Internet of Things devices has grown rapidly, in particular
devices used in a smart home context. The home automation market has been hampered by an
endless number of protocols, often difficult to integrate, especially when new devices are
attached to the system.

Also, the integration of mobile devices is incomplete, namely when considering the

integration and use of sensor information, in its camera, which can be collected from the device.

To make this integration more effective, we developed a solution where it’s possible,
through a mobile device, to add and control new Internet of Things devices. This solution,
supported by the OpenHAB open-source platform, will use the camera of the user's mobile
device as an input to identify which object the user is trying to control. For this, the work
developed uses artificial intelligence, specifically a Siamese network, which has the advantage
of sharing the same weights between the two towers, making it a neural network, easy to train

and lightweight, suitable for the possibility of operating the model on a mobile device.
This system obtained good results when trying to identify objects using either already
present images or new images, for those objects. It was also able to correctly adapt to a new

class being added to the dataset, without the need to retrain the whole network.

Thus, it was proved that it is possible to improve the integration of mobile devices in home

automation, innovatively using the camera sensor.

Keywords: Internet of things, machine learning, object recognition, smart home, Home automation
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CHAPTER 1
1. Introduction

1.1.Motivation and Framework

In the last few years, there has been great technological development focusing on the
Internet of Things (IoT). IoT devices have the potential to alter and change the way we can
interact with the world around us. One of the environments in which IoT devices can make a
difference is in our houses. The promise of a smart home has been around for nearly 30 years,
however with the advancements that have been made recently it is becoming a reality. A smart
home consists of a home environment in which appliances and devices can communicate with
each other and can be controlled either over each other, over a single dashboard that can control

all of them, or over a smartphone over the internet.

However, for a long time, the market has been saturated with countless protocols and
platforms that can integrate these new devices. This market saturation creates the opportunity
for platforms that can support multiple devices and protocols to appear and offer solutions that
can be very useful for an end-user that wants to implement these devices at its home. Platforms
like OpenHAB or OpenRemote, offer that market gap by using open standards which make
them able to integrate a great number of devices without lacking benefits for the user. However,
the configuration portion of these platforms can be time-consuming and not intuitive for an
average user. In addition to the configuration portion, everyday usage can also be confusing.
The combination of both these factors ends up limiting the number of users that are willing to

learn and understand these platforms.

One area that platforms such as these are lacking, is in the usage of the user’s mobile
device. With the help of the sensors present in the personal mobile device, it is possible to
facilitate the configuration process making it easier and more intuitive. One of the biggest
sensors that can help make this possible is the camera, which can be used in combination with

Object Recognition software to possibly integrate with automation platforms.



1.2.Research Questions

e Should the implemented system use a pre-trained model, or should be built a new
one for this implementation?

e [s the implemented system capable of accurately telling which object is the user
trying to control and in a rapid manner that won’t affect the user experience?

e [s the implemented system capable of adapting to new classes without training the

neural network?

1.3.0Dbjectives

The objective of this dissertation is to improve the integration of the usage of mobile
devices in current home automation platforms. To achieve this objective the mobile device will
be considered as a sensor, especially its camera, to perform image-based object recognition

tasks in a user-friendly way.

1.4.Research Method

Throughout this project the research method that will be used, the Design Science Research

methodology consists of five phases, which can be seen in Figure 1.

System prototype
implementation

Evaluation

Definition of System prototype System prototype
objectives development tests

1st 2nd 3rd 4th 5th
phase phase phase phase phase

Figure 1: Research method flow
1% phase: Definition of objectives — At this stage, technologies and mechanisms are studied
to help determine which platforms and methods offer the best features. This will guide the investigation

and should be fulfilled.

2" phase: System prototype development — In this phase, the different components of this

project are developed to fulfill the objectives, such as:



e System architecture
e Implementation of the image recognition algorithm
e Creating a demonstrator of the system

e Development of the module for the platform

3" phase: System prototype implementation — The components mentioned in the 2™ phase

should be implemented together to implement a system prototype

4™ phase: System prototype tests — The system is subject to tests to perform the necessary

changes for achieving the final prototype
5' phase: Evaluation — The final prototype is evaluated to ensure it is the best solution

The 2", 3™ and 4™ phases are cyclical which means that, at the end of the 5" phase, if the
prototype is not in accordance with the objectives defined in the first phase, the problem needs
to be analysed and improvements need to be performed. Therefore, a return to the previous
phases is required for overcoming the obstacles between what was initially defined and the
final prototype. The project is finished when the final prototype is in accordance with the

defined objectives.

1.5. Dissertation Structure

After the objectives, methodology and motivation for this dissertation have been defined,
the presented structure for this dissertation is as follows:

In Chapter 2, it i1s conducted a literature review of the state-of-the-art, regarding the
platforms that exist in the market for the management of IoT Devices in a home context, a
literature review is also conducted for the methods of object recognition.

In Chapter 3, it is presented the design and development process that is not only expected
to identify smart objects, but also control them, providing a high-level system description of
the system and its development steps. For this purpose, it was developed a Siamese neural
network in order to handle the identification of the smart objects.

In Chapter 4, the tests that were performed on this system in order to validate its operation

are presented and the results of said tests are discussed. In this chapter it will also be discussed



how the system is able to identify correctly the objects that were present on the dataset, most
importantly for new images that were presented to the network.

Finally in Chapter 5, this dissertation’s final chapter, a conclusion for the implemented
system is presented. In this chapter it is also presented a discussion regarding some of the future
work that could be carried out in order to ensure the results of this research are improved. In
this chapter it is also discussed how the purposed system was able to match the constraints that

were presented during the previous chapters.






CHAPTER 2
2. Related Work

Mobile devices in the context of Home Automation and Object Recognition are topics being
explored with great depth. However, a combination of both topics isn’t that common.
Furthermore, it is even less common that Home Automation takes advantage of all the sensors
contained in mobile devices, such as its camera, and in particular Computer Vision-based
solutions for Object Recognition. Nevertheless, there is a great number of publications and

work related to implementing Object Recognition in the mobile environment.

To understand the aim of this work and all its components, it is first needed to understand
prior work that has been developed in each of these research fields and how it will be used in
the work developed for this dissertation. As already explained in Chapter 1, there is a great
number of protocols and platforms for IoT, such is the case with Home Automation. This
chapter will summarize and compare major relevant platforms that exist today for Home
Automation and the selection of one of them for the present work will be justified. After this,
this chapter will also explore how object recognition works and all the methods that it can use,

and how it can be used on a mobile device.

2.1. IoT Devices and Home Automation Platforms

2.1.1. Platforms

Just like was mentioned before, the number of platforms that offer home automation
management is growing, however, there are a few platforms that stand out from the rest due to
either the fact that they are open source or not, the language in which it has been developed,
the mobile platforms in which it can run and, maybe not less important, how easy it is to set up
the platform or configure integration and automation of IoT devices. A detailed approach on
each platform will be presented after a simple table, that can be seen in Table 1, showing a
comparison between each platform based on these topics:

e Open-Source

e The language that has been developed on

e The difficulty of installation of new devices and the platform itself

e The number of supported devices



e Mobile App

e The devices in which it can be run

e The number of worldwide users

e [Ifit allows automation rules

With these topics the platforms that will be in the study will be:

e Home Assistant!

e OpenRemote?

e Domoticz’

e OpenHAB*
Table 1: Comparison of different platforms (Adapted from[1])
Platform
Topic
Home Assistant OpenRemote Domoticz OpenHAB
Open-Source Yes Yes Yes Yes
Developed
Python Java C/C++ Java
Language
Installation Easy Medium Medium Easy
Number of o
) Large Large Limited Large
supported devices
. Yes
Mobile App . Yes Yes Yes
(i0S only)
. macOS, Windows, Linux, macOS, macOS, Windows,
Systems it can run ] ) ) ) ]
Linux, Windows, Windows, Linux, Linux,
on
Raspberry Pi Mac OS X Raspberry Pi Raspberry Pi
Number of )
. Large Medium Large Large
Worldwide users
Automation Rules Yes Yes Yes Yes

Uhttps://www.home-assistant.io/

2 https://openremote.io/
3 https://domoticz.com/

4 https://www.openhab.org/




2.1.2. Home Assistant

Home Assistant is an open-source home automation software that was designed to be
the central home automation control system. Both of its components, the core itself and its
extensions, are written in Python focusing on main control and the privacy of its users, data is
stored locally instead of stored in a server.

In November 2020 it supported over 1700 plug-ins or addons for different IoT
technologies, systems, and services.

In 2020 on Github’s state of the octoverse, Home Assistant was named the second
Python package with the most contributors, which means that the community for this platform

is very extensive.[1]

2.1.3. OpenRemote

OpenRemote is an open-source [oT solution that is available for smart buildings and smart
cities. It integrates a lot of different protocols and solutions while offering visualization tools
that can be used on a tablet or a smartphone.[2]

Just to give an example, OpenRemote is currently the solution that the city of Arnhem in
the Netherlands has selected to develop an energy management system. The system can
forecast the power generation, consumption, and carbon cost of a solar and wind park for the

next 24 hours allowing the city to make a detailed analysis of its solar park.[3]

2.1.4. Domoticz

Domoticz is a free and open-source home automation system that allows a user to
monitor various IoT devices such as lights, switches, etc. It has been developed using C/C++
with an HTMLS frontend that allows the system to adapt to either desktop or mobile devices.
It allows for push notifications and the system can auto-learn switches/sensors. It was designed
with a simplistic approach in mind. However, its community is small compared with other

platforms, especially when compared with OpenHAB or Home Assistant.[4]



2.1.5. OpenHab

OpenHab is an open-source platform developed in Java, it is part of the Eclipse
Foundation, and it supports integration for over 2000 devices and hundreds of technologies. It
allows the integration and configuration of devices into a single solution either through text
files or a Web Interface, which allows users to customize a multitude of automation scenarios.
All the actions, like controlling light switches, controlling temperatures, etc. are triggered by
rules, voice commands, or controls, and are done also either through text files or with the help
of a Web Interface. It has a simple installation and it can be installed on almost any hardware
that can run Java Virtual Machines (JVM).[5]

Since OpenHab is one of the most well-known and established solutions on the market it
has a large community of worldwide users, it offers the possibility to work with either an
Android or IOs application, and the fact that it is developed in java and previous experience

with this platform, make it the best solution to use in this implementation.

2.2.0bject Recognition
This topic is very relevant nowadays and with that in mind, there have been a lot of
scientific contributions each discussing the way Object Recognition can be implemented. With
that in mind and to synthesize all the information given in those scientific contributions, there

have been a lot of literature review papers with that goal. [6][7][8]

2.2.1. Traditional Object Recognition

In [6], the authors of the paper focus primarily on object detection and tracking,
however, some of the methods that they discuss in the paper can still be applied and used in
object recognition, the authors present a table comparing the various methods which are

presented in Table 2.



Table 2: Comparison of object detection methods [7]

Method Pros Cons

o A very widely used method that is

simple to implement

e Highly inaccurate
e Objects are allowed to become a part

) ) e Cannot deal with quick changes.
of the background without destroying

o e Initializing the Gaussians is important.
) the existing background.

1. Background Subtraction ) e Not a good subtraction when shadows,
o It learns itself and does not need to be

Method or any other obstacles, are there.
reprogrammed.
) ) e Gives false positives
e Can be implemented in any
L e It does not survive with a multimodal
application.
. background.
e Provide fast recovery.
o Low memory requirement.
2. Real Time Background e The accuracy of this method is higher
) ) e The algorithm based on this method is
Subtraction and Shadow than the frame difference )
) ) quite complex
Detection Technique Theory o It detects shadows as well

e Only occurs when there’s a one-to-one
match
o Slow process for recognizing new
variations of a pattern.

o The best method for a specific ¢ No scanning process is done on the

3. Template Matching )
environment percentage so there is no guaranteed
accuracy
o It only works if the object is always in
the video, otherwise, it will create a

false detects

o A different value is absolute so the

o Simple and straightforward value may have a different meaning
4. Image Differencing

e Easy to interpret the result ¢ Require atmospheric calibration

o Requires selection of thresholds

e More striking technique
e Often used as a replacement for local

features
o Simple pattern-matching approach
5. Shape Based e Does not work well in dynamic situations
e Having unable to moderate accuracy

e Unable to determine internal movements

well

e Computational Time is low

o It can produce complete object-

6. Optical Flow moving information e Require a large amount of calculation

o Contain enough accuracy

o Perform well for static background

) ) e [t must require a background without
7. Frame Differencing e High accuracy

. moving objects
e Easiest method

10



Method Pros Cons

e  Method having Computational

time low to moderate

. ¢ Does not require predefined pattern e  Struggles to identify a non-
8. Motion-based

motion detection moving human

e Provides improved quality with the . . .
9. Texture based » . e  High computational time
expense of additional time

A few of these methods, despite having a video-based approach in mind, can still be
applied in an image-based or object recognition system, specifically, the Template Matching
method that can be applied to an image which consists of matching each frame with a specific
template of an object, even though it’s one of the most accurate methods, it works best in a

specific environment. In Figure 2 a flow chart of how this method works is presented [9]:

k4

Training set | Generate average image for each class Perform clusting operation

Y Y

Average images of classes Average images of clusters

F Y

Y

New (test) image ®| Compare (match) with coloured NCC n_{avg} closest classes

h 4

Closest clusters

Y

Compare {match) with greyscale NCC

k

Object Name

v

Best Match

Figure 2: Flowchart of how Template Matching works [9]

From this simplified flow chart, we can understand a simplified version of the Template
Matching method: the new image first gets compared with average images for each class, and
then it gets compared with clustered images of other classes. In [10] it is presented a snippet of
code on how to implement this method using OpenCV, an open-source library that contains an

extensive number of computer vision algorithms [11].
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2.2.2. Object Recognition with Deep Learning

Applying Deep Learning to object detection methods can help traditional object

detection methods, by proving better results than the traditional object detection methods

2.2.2.1. Region-Based Convolutional Networks

The Region-Based Convolutional Networks (R-CNN) belong to one of the most used
families of deep learning-based object recognition methods. Figure 3 presents a flowchart of

how R-CNN can be applied to an image.

R-CNN: Reglon-based Convolutional Network
= ﬂlaeroplane’ no. |

1 warped region

> person'..’ yes. |
'\
F Qltvmomtor no I
1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

Figure 3: Flowchart of how R-CNN works

The system takes an image, then takes around 2000 region proposals, computes features

for each proposal and after that, it classifies each region [12].

2.2.3. MobileNets

This method was developed contradicting the trend that was happening in this subject,
which was of creating deeper and more complicated networks, which not always meant that
the performance and accuracy would be better. This method uses an efficient network
architecture and two hyper-parameters to build small and low-latency models that can be

implemented in mobile devices [13]. An example of this can be seen in Figure 4.
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Figure 4: Object detection using MobileNet

2.2.4. Applying Object Recognition on Mobile Devices using TensorFlow

Using an Object Recognition System on a mobile device is a relatively small concept,
however, there is still a small percentage of literature explaining how it can be applied to a
mobile application making use of TensorFlow [14], which is an open-source library developed
by Google for machine learning, its focus on training deep neural networks. Next is presented

a figure that will display the architecture of a Mobile App using the TensorFlow API [15]:

¥

' App Code
§ {Actreity, fragimend i

. Pre-trained .
model

Wessana Cathedral
085

Figure 5: Object Recognition with TensorFlow

The Mobile Application will send an image to the TensorFlow API, which can
categorize the data into 1000 classes, those classes are linked with the name of the detected
object, returning its name and a score that represents the accuracy of the recognition. To
implement the API into Android the API uses Android Camera2, a package that supports Java

Native Interface to interact with the TensorFlow engine.
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CHAPTER 3

3. Design and Development

This chapter presents the design and development process for creating a solution that is
expected to identify and control smart objects. To achieve the goal of this implementation this
solution was split into the two parts depicted on the diagram shown in Figure 6: Smart System
and loT Devices Hub. The first part, the Smart System, addresses how it is possible to identify
a certain object in a room using an image acquired by the mobile device camera sensor as input.
The second part, the IoT Devices Hub, addresses how it is possible to control the identified

object in a Home Automation platform.

i
. ‘\ ) 1\ .
i 3?\{} A O

Smart Systemliot Devices Hub

Figure 6: Diagram of the final architecture of the proposed system

Regarding the first part, the system must be capable of receiving an image sent from the
user’s mobile device, saving it in its memory, and then using the image as input for the smart
system. This system will then return the class to which a major object in the image belongs, as
illustrated in the interaction illustrated in Figure 7.

The second part of this system, detailed in Figure 8, must be capable of receiving the class
of the object that the user wants to control and a command, example ON or OFF, to be sent to
the IoT device. The IoT Devices Hub will be responsible for understanding which objects to

control and to send the command to it.
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Figure 7: Diagram of the communication between Figure 8: Diagram of the communication between the

the user's mobile device and the local system local system and the IoT devices

3.1.High-Level System Description
For this system, when the user intends to add another object that he wishes to control he
must add several images to the dataset also with the name of the class that he wants to add, this

will be done through an App that was developed for this implementation in order to aid the end

user. The interaction with the user can be seen in Figure 9.

i 0 e==00 g ™ i De=00 g ™ e =90 g ™

Add new Object

;
l
l

MNew Object —

o
]
h 4

-
Picture

Local System
Label

ol

N N e

Figure 9: Diagram of how the developed App will interact with the System

When the user wants to control an object, a new one, or an existing one, the user needs to
take a picture of the object that he is trying to control. Afterward, there are two possible routes
for this architecture:

1. One possibility for this architecture is to run the smart System inside the developed

App. With this approach, the system would be faster, without the need to communicate
with external devices, but the smart system would need to be adapted in order to be

able to run it on a device that is powerful but with limited capacities, such as a

smartphone. This architecture can be viewed in Figure 10.
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Figure 10: Possible Architecture for the system, where the Smart System runs on the mobile device

2. The alternative to the first architecture was to run the smart system inside a server and
then communicate the results to the user’s smartphone. For this architecture, the smart
system would not have to be adapted and so it would preserve the execution time of
the system. However, with this approach, it is necessary to maintain communication
with external devices for a period of time, which would not only add to the latency of
the communications but also present several points of failure that may disrupt the
capabilities of the integration such as one point of communication fails the entire
system will fail, for example, if the communication between the user’s mobile device
and the local system is broken, the system cannot proceed. A diagram for this type of

architecture can be seen in Figure 11.
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Figure 11: Another possible architecture for the system, where the Smart System is running on a Local System

3.2.Development

This section will focus on the development® of the system presented in the former section.
To achieve this purpose, the used dataset will first be presented. After this, the type of Siamese
network that was designed and implemented will be presented, and then explained how they
were constructed and the limitations that are imposed by using the type of architecture that was
chosen. At last, this section will also present the training parameters that were applied to this

model in order to train it to be able to achieve the desired purpose.

3.2.1. Collecting and Preparing the Dataset

In every approach using a Machine Learning model, it is necessary to build a dataset from
which the model will optimize its parameters from the training process. The machine learning
model for this implementation will need to determine which class of images is the most similar
to the image provided as input for the network. Since the model is classifying the input image
based on similarity, a Siamese network approach was followed. In this type of network, the
inputs are a pair of images and the output is a similarity measurement between those images.
For the training process, the number of images in the dataset does not need to be large, since

with a small number of images it is possible to generate a large number of image pairs by

5 https://github.com/cdsjg-iscteiul/Tese Flutter
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combining them. For instance, with eighteen images it is possible to form 153 different pairs
of images (without repetitions).

To start the process of creating the dataset it was decided on the appropriate approach to
create it, considering the machine learning model is expected to determine which class is the
most similar image to the input, the dataset must contain in each class a type of object that can
be used.

Considering the proposed utility of the model and the structure discussed above, the dataset
was built according to the illustrated in Figure 12. Even though the Siamese neural networks
do not require a lot of images for training when compared with direct image classification
approaches, the images acquired for each object should cover a wide number of viewpoint
angles, especially when the images do not have a lot of differences between them. The dataset

was therefore built with that in mind, making each class have almost a 360° view of each object.
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P M6-20220223-WA0007 copying
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IKEA_Table_Lamp_3 : IMG_20220325_172013.jpg

B M6_20220325_172024.jpg

IKEA_Table_Lamp_2 .
m IMG_20220325_172025.jpg

Figure 12: Representation of the dataset used

3.2.2. Network Design

Before we can discuss the architecture that was chosen for this network, it is necessary to
consider the requirements that this system must meet, which are:
e The system should not be trained every time a new device is added.
e As mentioned in section 3.1 this system can have two possible architectures, one of
which requires the neural network to run on a mobile device. As such, the neural
network should be lightweight and capable of running on a mobile device or a device

with little processing power.
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e The network has to be modular, introducing modularity in the network could
significantly improve the time required to make a classification, which would

significantly improve the end-user experience.

Considering all the requirements presented, the neural network architecture that best fits
this system is that of a Siamese network. The defining characteristic of a Siamese network is
the fact that it counts 2 inputs that converge into only one output, as shown in Figure 13, this
output is used to make a comparison between the two inputs resulting in a value that can tell

us if the two images are of the same or from the same object.

Input 1

Batch
Lambda Normalization

Tower 1

o

Tower 2

Figure 13: Diagram of the architecture of the final Siamese network

This system created the network that is shown in Figure 13. Within this network, there are
two equal towers, that correspond to convolutional neural networks (CNN) without their top
classification layers. Two different CNN architectures have been experimented.

One architecture uses a pre-trained MobileNet model, represented in Figure 14, whose
network weights were already trained using a very large image dataset — using the pre-trained
model, each tower is already trained, and therefore the overall model takes less time to be
trained.

Pre-Trained Model

Dense Flatten Dense

20 20 20

160X 160X 3 1280

Figure 14: Diagram of the architecture for the towers that are part of the Siamese network, using the pre-trained

network
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The second architecture that was built from scratch, represented in Figure 15, where each
network weight can be customized to the task at hand — it could potentially achieve better
results at the expense of more processing power and a larger training time. These questions

will be approached and answered further in the dissertation.
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Figure 15: Diagram of a tower that will be used on the final architecture of the system using the network built

for this purpose

This module consists of a lambda layer, a batch normalization layer, and a Dense layer.
The lambda layer is responsible for using the features of each image and performing the
calculation of the Euclidean distance that provides the degree of similarity between the two
images. It outputs a value between 0 and 1 depending on the degree of similarity of images: 0
is for images that are rather different, and therefore belong to different classes; while 1 is for
images that are very similar, and therefore should belong to the same class. An example of this

classification can be observed in Figure 16.

Label: 1.0 Label: 0.0 Label: 1.0

Figure 16: Example of how the labels are associated with different pairs of images, 1 for images with the same

class and 0 for different

Besides the tower, the Siamese network architecture also includes a module containing the
layers that receive the tower's output which can be interpreted as image features. As stated

before, it is required that the system is sufficiently light to run on a system with little
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computational power. In order to save computational power, this module has the ability to
receive the features from the towers’ module of the network as well as receive them from a file
that contains the information stored for the image features. An example of this architecture can

also be viewed in Figure 17.

Batch
Lambda Normalization

20
Dense
[ s { ,-
1
20
1 1

Figure 17: Diagram of the proposed architecture for the network responsible for outputting the similarity

between two images

3.2.3. Network Training Process

This section presents how the Siamese network was trained. Due to the particularity of this
system, this network must be trained following the network diagrams that were presented in
the previous section. The system must be trained following a set number of parameters

summarized in Table 3

Table 3: Summary of the training parameters for this system

Number of classes for training 24
Number of images for each class 13
Number of pairs 312 samples to form pairs, forming 48516 pairs
Training and validation split 0.7
Loss Function contrastive loss
Batch size 32
Epochs 100
Activation Function Sigmoid

Some parameters are specific to this type of network, here detailed:

e The number of classes for training — this parameter specifies how many different classes
will be used for training. Each class represents an object that can be identified when the

system is completed. All training trials use 24 classes.
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The number of images for each class — represents how many pictures for each object
are present in the dataset. In this case, each object has 13 associated images. Remember
that this type of architecture does not require a large number of samples for each class,
which justifies this small number of images per class.

The number of pairs — this parameter depends directly on the previous parameter, since
this architecture takes a pair of images as input, it is possible to multiply the number of
samples greatly from the number of inputs of samples in each class. For example with
13 samples in each class that was presented previously, means that we have 312 unique
samples to form pairs with.

Training and validation split — this parameter specifies the split between how many
samples are provided for training and validation, for this system the split was set at a
proportion of 70:30, this means that 70% of samples were used for training and 30%
for validation. In absolute numbers, there are 218 samples to form training pairs and 94
samples to form validation pairs

Loss Function — this is a function that will compare the target and predicted output of a
network. This function measures how well the network performs with the training data.
The goal of the training process this function is to minimize this function. The loss
function that was used was the contrastive loss function, which is commonly used for

training Siamese networks. It calculates the distance between the two images, using the

exp <sim(z¢-, z,))

T

following formula [16]:

{)11 = —log

Sy cironn, o0 Gz, 20/ D
Z1#,3;

where Z is the set of representations in the projection space, z; is the representation of
the other view of the sample, T denotes a temperature parameter.

Batch size — the value of this parameter specifies the number of samples that the
network uses for the training on each optimization step. The batch size was set to 32,
meaning that the system will train with 32 pairs of images at each step, this value was
achieved comparing the performance of the network with different values, arriving in
the final value of 32.

Epochs — how many times the network uses all training samples to produce an

optimization process iteration. The higher this value the more time the network will

spend during the training process and a better overall result for the training is produced.
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However, after a certain number of training epochs, it is possible to observe that the
network does not improve the results on the validation set, meaning that further training
may lead to overfitting, the final value of 100 was achieved measuring the performance
during various number of epochs, and noting that after that value the system would not
benefit from additional epochs.

e Activation Function — this function defines the output of that node given an input or set
of outputs. The chosen activation function was the sigmoid since the output of this
function is between 0 and 1 which is adequate for representing the similarity of the two
images provided as input. An equation and plot for the sigmoid activation can be

observed in eq. (2) and Figure 18:

f&) = (2)

14+ e™*

Figure 18: Graph for the sigmoid activation function

In Figure 19, it’s possible to see the results from the training that was done using the
parameters that were mentioned in the table before, in the architecture using the model build
for this system, while the results using the pre-trained model can be seen in Figure 20.
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Figure 19: Confusion Matrix for all the sets of training using the model built for this system
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Figure 20: Confusion Matrix for all the sets of training using the pre-trained model

These Confusion Matrixes represent how the system performed for all the sets in the training, the
training set, the validation set, and finally the test set. These results will now need to be used to perform

tests and see how the network after being trained will perform when faced with the problem where this

system is expected to act.
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CHAPTER 4
4. Tests and Results

This chapter presents the tests performed on this system to validate its operation and shows
and discusses the results of those tests. Throughout this dissertation, especially in Chapter 3,
several requirements that the system must satisfy were presented. A summarized list of those

requirements can be seen in the following list:

e The network must be able to detect with high accuracy if an image given as input
is a part of a class that was trained with and when presented with new images,
different from the ones that were trained with, it must be able to depict which class
is a part of.

e The network must be lightweight, as talked before this network must be able to run
in an environment that has low processing capabilities, which means that in an
environment with a great capability of processing it should be accessed how much
time it takes to train the network.

e The network must be able to adapt to new classes, when adding a new class it must
be able to distinguish the new class from every other single class that was already
present in the dataset, this action will be triggered by the user when adding a new

class.

4.1. High Accuracy Detection

Regarding the first requirement that was presented, and with every network of this kind we
must first validate the networks training and the values of its accuracy and the loss, this step is
important in every machine learning model because this will determine how well the network
has trained and how well the network will be able to achieve the desired result.

As discussed in the previous chapter there are two possible architecture models that we can
follow for this network, the first one is the architecture that was made from scratch, the results
for this architecture’s accuracy and be viewed in Figure 21, and the results for its loss in Figure
22, on the other hand, the results for the architecture where we used the pre-trained network

can be viewed in Figure 24 for its accuracy and Figure 25 for its loss. For these results a good
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target to aim for is a very high value of accuracy and a very low value of loss, this means that
our network can be able to make a great number of predictions with very small errors.

As we can see in both Figure 21 and Figure 22, the results are very good since the model
has high accuracy and low loss, meaning that the model is able to perform predictions with a
very low level of errors. An example of those predictions can be observed in Figure 23, where
it is possible to see the true and predicted values of those images’ pairs, 1 if they are from the

same class (i.e., same object) and 0 if they are not.
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Figure 21: Results for the models’ accuracy with the model that was made for this system
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Figure 22: Results for the models' loss with the model that was made for this system
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True: 1.0 | Pred: 0.95047

True: 0.0 | Pred: 0.03167

True: 1.0 | Pred: 0.95003

Figure 23: Prediction values for the inputs with the model that was made for this system

Regarding the other architecture where we employ the use of a pre-trained model, the
results for its accuracy and its loss can be viewed in Figure 24 and Figure 25, respectively also
the same example of predictions can be viewed in Figure 26. It is possible to conclude that as
the same as the previous architecture the results are very good meaning that both architectures
are viable to implement on this system.
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Figure 24: Results for the models’ accuracy using the pre-trained model
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Figure 25: Results for the models’ loss using the pre-trained model
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True: 1.0 | Pred: 0.94988 True: 0.0 | Pred: 0.03812 True: 1.0 | Pred: 0.95541

Figure 26: Prediction values for the inputs with the pre-trained model

For both models, we can compare the training results in Table 4. Even though both
architectures have similar results, the architecture with the pre-trained model has a slightly
better one, consequently, we will consider from this point forward using the pre-trained model

in the system.

Table 4: Training results for each architecture

Model Built for the
System Pre-Trained Model

Training Loss 0.0017 0.0010
Training Accuracy 1.000 1.000
Validation Loss 0.0586 0.0313
Validation Accuracy 0.9309 0.963
Test Loss 0.0512 0.0437

Test Accuracy 0.9391 0.953

4.2. System Performance

After being able to process the images proved as inputs and being able to extract their
features and determining if they are similar, it is required for the system to be able to determine
in which class a certain image given by the user belongs, for this and using the limitations for
this system, for this and to improve the processing time and to attend to the limitations, all the
features of the images dataset are pre-loaded using a pickle (.pkl) file and every time the user
adds new images they will be added to this file. For making the processing of the dataset easier
on the system in which it will run, the structure of this file is [Path, Class, Name, Features].
For example, for a file that has path “\Database\Data Test 2\Bedroom Lamp\6” in the dataset,
the system will determine the parameters and create a line in the pickle file with the structure

[“\Database\Data_Test 2\Bedroom_ Lamp\6”, Bedroom Lamp, 6, Image’s Features].
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For the system to determine to which class the image submitted by the user belongs, the
submitted image is first passed through a network tower to extract its features. These features
will then be compared with every reference image features present in the dataset (using the
pickle file mentioned above). After that it is possible to determine to which class the image
belongs to with multiple ways. Two ways were implemented in the context of this work. The
simplest way was to check which reference image has higher similarity score when compared
with the image submitted by the user. The predicted class for the user’s image will be the class
of the most similar reference image. Another way to determine the class of the image submitted
by the user is using the k-most similar images. In this case a parameter k is provided and the
system determines the k most similar images and their classes. The class that occurs most
frequently in this k-sized set is the class predicted for the users’ submitted image. If in case of
ties, the predicted class will be the one showing the pair with highest similarity value.

For the method that uses the most similar classes, i.e., K Similar, the confusion matrix, that
resulted from using this method to predict the class to which all the images in the dataset belong

to using the value of k as 7 can be observed in Figure 27.
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Figure 27: Confusion matrix using the K Similar Method
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The confusion matrix shows that most of the performed predictions were correct. However,
there were a few inaccurate predictions, especially for the class IKEA Bathroom Lamp 2,
where the system could only correctly identify 8 out of 13 samples, predicting it 4 times as the
class IKEA Bathroom Lamp. A reason for this could be due a high similarity between the
photos acquired for these objects. One possible solution for this is to acquire additional photos
of different angles or using different lighting conditions.

For the method that considers the class of the image with the highest similarity value when
compared with the image submitted by the user, i.e., Highest Similarity method, the confusion
matrix produced is depicted in Figure 28. From the matrix, a different conclusion from the
previous method can be drawn. Using the Highest Similarity method, the network can correctly
predict all samples. Considering these results and comparing them with the previous method,
it is possible to conclude that this method performs better for classifying the dataset images

based on similarity measurements.
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Figure 28: Confusion matrix using the method based on the Highest Similarity method
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For this system to work properly and to provide a good user experience for end users, the
system must also be able to handle all communication and all processing in a fast manner.
Since the time it takes to communicate with the local system is something that is only possible
to minimize to a certain extent, we must ensure that the time for processing the image is as low
as possible. One hypothesis that was already addressed in Chapter 3 was the possibility of
splitting the neural network into two modules, one that would extract the features of each input
and another that would take the extracted features and measure the distance between the two
features that were extracted on the first module.

In Table 5 it is possible to analyse the measured time for each step of the process that was
described before, from extracting the features of one image to running the entire system using
the pre-trained model that was used during the system’s development. These time
measurements were performed using a computer equipped with a RTX 2060 GPU, a Ryzen 5

3600X 6-Core CPU and 32 GB of RAM under the Windows 10 operating system.

Table 5: Different times the system takes for different scenarios using the pre-trained model

Run 1 Run 2 Run 3

Run 4 Run 5 Avg. Std D
© © © un 4 (s) un 5 (s) vg. (s) td Dv

Run the whole system with 2
0.372 0.366 0.373 0.357 0.372 0.368 0.00603
images as input

Extract Features of a Single
) 0.199 0.203 0.198 0.190 0.193 0.197 0.00459
Picture

Save features of the entire
39.158 39.207 39.616 38.860 39.745 39.317 0.322
dataset on a file

Import the file with the features
0.037 0.038 0.043 0.037 0.037 0.038 0.00233
of the entire dataset

Import the Dataset’s Features
file, read it, compare them with
0.924 0.898 0.953 0.891 0.901 0.913 0.0227
an image and returning the class

of the most similar image

Import the Dataset’s Features
file, read it and compare them
with an image and returning the 0.931 0.892 0.885 0.908 0.902 0.904 0.0158
class of the K most similar

images
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As previously presented in Chapter 3, there were two possible architectures for this system.
One of those would consider that the neural network would be contained inside the mobile
device and, as such, it would only be necessary to communicate with the external IoT Devices
Hub sending the class of object that has been identified and that the user wishes to control. For
this, we would have to use TensorFlow, in order to make it possible for the neural network to
run inside a mobile app. However, in this implementation, it was not possible to make use of
TensorFlow inside an Android application, and, for that reason, the architecture that was
implemented for this dissertation only considers the second variant. In this variant, it is
necessary to consider multiple communications externally, the MQTT communications that
will be needed to connect the user’s mobile device to the system where the processing will
occur. This means that it will be necessary to consider the added time for these
communications. However, since it is expected that the mobile device will be in the same
network as the local system where the image processing will occur, the additional time required
for those communications is expected to be small, without noticeable impact in the usability of
the application. A diagram of the communications needed for this implementation can be
observed in Figure 29. Since OpenHAB is compatible with various types of protocols, the
communication between the Hub and the final object may vary depending on the type of

protocol the final object uses.

Command

E 1 MQTT !
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:‘?.';_ Command x L

L - > =

. A

lot Devices Hub

Figure 29: Diagram of the communications needed for this system

4.3. Network Adaptability

As discussed previously in this chapter, one of the requirements for this network is the
ability to adapt to new classes without having to re-train the entire network. The test described
in this section will allow to validate that requirement in an end-user scenario. Adding new

elements to the dataset is very easy needing only to re-train the network from time to time and
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not every time a new class is added. One way that we can test this scenario if to add an entire
new class to the dataset and after running the same scenario tests, that were made on the

previous sections.

4.3.1. Adding the New Class
As discussed, in order to validate this network as a solution for this implementation, we
need to see how the network will perform when adding a new class without training for it. With
that purpose in mind we first need to add the images from the class that we wish to add to the
dataset, for that the user can directly access the dataset and add the new class as folder using
the same structure as discussed before, in this example, the class added will be the class
“Kitchen_Lamp”, which for test purposes is very different from the objects in the other classes,

a example of this class can be seen in Figure 30.

Kitchen_Lamp

n IMG_20220725_082038.jpg

IMG_20220725_082036.jpg

. Kitchen_Lamp ! IMG_20220725_082031.jpg

IMG_20220725_082030.jpg
IMG_20220725_082028.jpg

n IMG_20220725_082027.jpg

Figure 30: View of the new class added

4.3.2. Measuring the results of the New Class

After adding the new class to the dataset, it is necessary to validate if the network can adapt
to this new class, for that it is necessary not only that the system is able to identify an image
submitted as belonging to this class, but also that when the user is trying to identify another
image from another class the system does not mistake that image as belonging to this class. To
validate the addition of a new class we should consider how the prediction of the class will
behave when added a new class, making the validation test of this new class the Confusion
Matrix. Since we already got to the conclusion that the best method of deducing the class of a
submitted image is using the Image Similarity, only that method will be used to validate the

new class The new result of the confusion matrix with the new class, can be seen in Figure 31.
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Figure 31: Confusion Matrix using the Image Similarity method after adding the new class
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CHAPTER 5

5. Conclusion

In this dissertation, we aimed to present an alternative to the current systems of control of
Internet of Things devices applied in a housing context, better known as home automation.
Regarding the first question, whether the system should use a pre-trained network or one that
was built on purpose to be applied in this implementation, after setting the training parameters
in section 3.2.3 and getting its results, it was possible to understand that despite having very
similar results the pre-trained network has slightly better results, making so that this should be
architecture used throughout the rest of the dissertation .

In the second question we are exposed to the need for the system to be able to understand
which class is part of a possible photo that is sent from the user, in order to make a correct
assessment of this capability we firstly need to create functions that can help the system make
those prediction, with that we were faced with two possibilities: one was to use a method based
on the image’s similarity between every single other image on the dataset and where the class
attributed to the one submitted by the user was the class that had the image with the highest
similarity with it, or to use a method that also is based on the images similarity, but instead of
taking into account only one image of the dataset we use the K most similar images, after
detailing the images that have the highest similarity with the submitted image we check the to
which classes they belong and the class that has the most images in the most similar is the class
of the submitted image, to examine the results of these two methods, confusion matrixes were
built in section 4.2, where it’s possible to access the performance of the system when trying to
predict the class, where we can see that the method that has the best performance is the one
based only on a single image similarity.

The third and final question is in relation to the system’s ability to adapt to new classes
being added to the dataset without the need to retrain the entire network, when the end user
wants to expand these systems features and add a new object that is able to be recognized by
the system, it needs to add the new object to the dataset after that the system should perform
the same as before but containing the new class, as we can see in section 4.3, the confusion
matrix shows that the system was able to adapt to the new class that was added.

Having responded to all the research questions that were established on the first phases of

this dissertation, we can confirm that the system that was designed for this can be useful on
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today society as a new alternative to manage and control new loT devices in a home automation
environment.

Some work could be done in the future in order either to validate even further this solution
or either to improve upon it, some of those could be:

e Be able to implement the architecture where the neural network would be running
on the user’s mobile device, either to see if it’s possible for this implementation to
run on such devices or to improve and retrieve limitations.

e Another improvement that could be made upon this implementation is the
possibility of integrating this solution using another platform to control the IoT
devices, another platform (Home Assistant) has been growing in great numbers in
the recent years, having this solution adapted to be able to run on it could improve
its longevity.

e Make a survey with end users where it is possible to understand if the platform that

was developed is an improvement on the existing solutions.
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