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Resumo 

 

Nos últimos anos, o número de dispositivos da Internet das Coisas cresceu rapidamente, 

em particular os dispositivos utilizados num contexto doméstico inteligente. O mercado da 

domótica tem sido prejudicado por um número interminável de protocolos, muitas vezes 

difíceis de integrar, principalmente quando novos dispositivos são anexados ao sistema.  

Também a integração de dispositivos móveis está incompleta, nomeadamente quando 

consideramos a integração e utilização de informação de sensores, em particular a câmara, que 

pode ser recolhida a partir do dispositivo.  

 

Para tornar esta integração mais eficaz, desenvolvemos uma solução onde é possível, 

através de um dispositivo móvel, adicionar e controlar novos dispositivos da Internet das 

Coisas. Esta solução, suportada pela plataforma OpenHAB opensource, fará uso da câmara do 

dispositivo móvel do utilizador como um input para identificar qual o objeto que o utilizador 

está a tentar controlar. Para isso, o trabalho desenvolvido faz uso de inteligência artificial, 

especificamente uma rede siamesa, que tem a vantagem de partilhar os mesmos pesos entre as 

duas torres, tornando-a uma rede neural, fácil de treinar e leve, adequada para a possibilidade 

de operar o modelo num dispositivo móvel. 

 

Este sistema obteve bons resultados ao tentar identificar objetos utilizando quer imagens 

já presentes quer novas imagens, para esses objetos. Foi também capaz de se adaptar 

corretamente a uma nova classe a ser adicionada ao conjunto de dados, sem necessidade de 

reciclar toda a rede. 

 

Assim, ficou provado que é possível melhorar a integração de dispositivos móveis na 

domótica, utilizando o sensor de câmara de forma inovadora. 

 

 

Palavras-chave: Internet das coisas, aprendizagem automática, reconhecimento de 

objetos, casa inteligente, Domótica 
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Abstract 

 

In recent years, the number of Internet of Things devices has grown rapidly, in particular 

devices used in a smart home context. The home automation market has been hampered by an 

endless number of protocols, often difficult to integrate, especially when new devices are 

attached to the system.  

Also, the integration of mobile devices is incomplete, namely when considering the 

integration and use of sensor information, in its camera, which can be collected from the device.  

 

To make this integration more effective, we developed a solution where it’s possible, 

through a mobile device, to add and control new Internet of Things devices. This solution, 

supported by the OpenHAB open-source platform, will use the camera of the user's mobile 

device as an input to identify which object the user is trying to control. For this, the work 

developed uses artificial intelligence, specifically a Siamese network, which has the advantage 

of sharing the same weights between the two towers, making it a neural network, easy to train 

and lightweight, suitable for the possibility of operating the model on a mobile device. 

 

This system obtained good results when trying to identify objects using either already 

present images or new images, for those objects. It was also able to correctly adapt to a new 

class being added to the dataset, without the need to retrain the whole network. 

 

Thus, it was proved that it is possible to improve the integration of mobile devices in home 

automation, innovatively using the camera sensor. 

 

 

 

Keywords: Internet of things, machine learning, object recognition, smart home, Home automation  
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CHAPTER 1 

1. Introduction 

1.1. Motivation and Framework  

 

In the last few years, there has been great technological development focusing on the 

Internet of Things (IoT). IoT devices have the potential to alter and change the way we can 

interact with the world around us. One of the environments in which IoT devices can make a 

difference is in our houses. The promise of a smart home has been around for nearly 30 years, 

however with the advancements that have been made recently it is becoming a reality. A smart 

home consists of a home environment in which appliances and devices can communicate with 

each other and can be controlled either over each other, over a single dashboard that can control 

all of them, or over a smartphone over the internet. 

 

However, for a long time, the market has been saturated with countless protocols and 

platforms that can integrate these new devices. This market saturation creates the opportunity 

for platforms that can support multiple devices and protocols to appear and offer solutions that 

can be very useful for an end-user that wants to implement these devices at its home. Platforms 

like OpenHAB or OpenRemote, offer that market gap by using open standards which make 

them able to integrate a great number of devices without lacking benefits for the user. However, 

the configuration portion of these platforms can be time-consuming and not intuitive for an 

average user. In addition to the configuration portion, everyday usage can also be confusing. 

The combination of both these factors ends up limiting the number of users that are willing to 

learn and understand these platforms.  

 

One area that platforms such as these are lacking, is in the usage of the user’s mobile 

device. With the help of the sensors present in the personal mobile device, it is possible to 

facilitate the configuration process making it easier and more intuitive. One of the biggest 

sensors that can help make this possible is the camera, which can be used in combination with 

Object Recognition software to possibly integrate with automation platforms.  
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1.2. Research Questions 

 

• Should the implemented system use a pre-trained model, or should be built a new 

one for this implementation? 

• Is the implemented system capable of accurately telling which object is the user 

trying to control and in a rapid manner that won’t affect the user experience? 

• Is the implemented system capable of adapting to new classes without training the 

neural network? 

 

1.3. Objectives 

 

  The objective of this dissertation is to improve the integration of the usage of mobile 

devices in current home automation platforms. To achieve this objective the mobile device will 

be considered as a sensor, especially its camera, to perform image-based object recognition 

tasks in a user-friendly way. 

 

1.4. Research Method 

 

Throughout this project the research method that will be used, the Design Science Research 

methodology consists of five phases, which can be seen in Figure 1. 

 

 

Figure 1: Research method flow 

1st phase: Definition of objectives – At this stage, technologies and mechanisms are studied 

to help determine which platforms and methods offer the best features. This will guide the investigation 

and should be fulfilled. 

 

 2nd phase: System prototype development – In this phase, the different components of this 

project are developed to fulfill the objectives, such as: 
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• System architecture 

• Implementation of the image recognition algorithm  

• Creating a demonstrator of the system 

• Development of the module for the platform 

 

3rd phase: System prototype implementation – The components mentioned in the 2nd phase 

should be implemented together to implement a system prototype 

 

4th phase: System prototype tests – The system is subject to tests to perform the necessary 

changes for achieving the final prototype 

 

5th phase: Evaluation – The final prototype is evaluated to ensure it is the best solution 

 

The 2nd, 3rd, and 4th phases are cyclical which means that, at the end of the 5th phase, if the 

prototype is not in accordance with the objectives defined in the first phase, the problem needs 

to be analysed and improvements need to be performed. Therefore, a return to the previous 

phases is required for overcoming the obstacles between what was initially defined and the 

final prototype. The project is finished when the final prototype is in accordance with the 

defined objectives. 

 

1.5.  Dissertation Structure 

 

After the objectives, methodology and motivation for this dissertation have been defined, 

the presented structure for this dissertation is as follows: 

In Chapter 2, it is conducted a literature review of the state-of-the-art, regarding the 

platforms that exist in the market for the management of IoT Devices in a home context, a 

literature review is also conducted for the methods of object recognition. 

In Chapter 3, it is presented the design and development process that is not only expected 

to identify smart objects, but also control them, providing a high-level system description of 

the system and its development steps. For this purpose, it was developed a Siamese neural 

network in order to handle the identification of the smart objects. 

In Chapter 4, the tests that were performed on this system in order to validate its operation 

are presented and the results of said tests are discussed. In this chapter it will also be discussed 
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how the system is able to identify correctly the objects that were present on the dataset, most 

importantly for new images that were presented to the network.  

Finally in Chapter 5, this dissertation’s final chapter, a conclusion for the implemented 

system is presented. In this chapter it is also presented a discussion regarding some of the future 

work that could be carried out in order to ensure the results of this research are improved. In 

this chapter it is also discussed how the purposed system was able to match the constraints that 

were presented during the previous chapters.   
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CHAPTER 2 

2. Related Work 

 

Mobile devices in the context of Home Automation and Object Recognition are topics being 

explored with great depth. However, a combination of both topics isn’t that common. 

Furthermore, it is even less common that Home Automation takes advantage of all the sensors 

contained in mobile devices, such as its camera, and in particular Computer Vision-based 

solutions for Object Recognition. Nevertheless, there is a great number of publications and 

work related to implementing Object Recognition in the mobile environment.  

 

To understand the aim of this work and all its components, it is first needed to understand 

prior work that has been developed in each of these research fields and how it will be used in 

the work developed for this dissertation.  As already explained in Chapter 1, there is a great 

number of protocols and platforms for IoT, such is the case with Home Automation. This 

chapter will summarize and compare major relevant platforms that exist today for Home 

Automation and the selection of one of them for the present work will be justified. After this, 

this chapter will also explore how object recognition works and all the methods that it can use, 

and how it can be used on a mobile device. 

 

2.1.  IoT Devices and Home Automation Platforms  

 

2.1.1. Platforms  

Just like was mentioned before, the number of platforms that offer home automation 

management is growing, however, there are a few platforms that stand out from the rest due to 

either the fact that they are open source or not, the language in which it has been developed, 

the mobile platforms in which it can run and, maybe not less important, how easy it is to set up 

the platform or configure integration and automation of IoT devices. A detailed approach on 

each platform will be presented after a simple table, that can be seen in Table 1, showing a 

comparison between each platform based on these topics:  

• Open-Source 

• The language that has been developed on  

• The difficulty of installation of new devices and the platform itself 

• The number of supported devices  



 

 7 

• Mobile App 

• The devices in which it can be run 

• The number of worldwide users  

• If it allows automation rules 

 

With these topics the platforms that will be in the study will be: 

• Home Assistant1 

• OpenRemote2 

• Domoticz3 

• OpenHAB4 

Table 1: Comparison of different platforms (Adapted from[1]) 

 

 
1 https://www.home-assistant.io/ 
2 https://openremote.io/ 
3 https://domoticz.com/ 
4 https://www.openhab.org/ 

Topic 
Platform 

Home Assistant OpenRemote Domoticz OpenHAB 

Open-Source Yes Yes Yes Yes 

Developed 

Language 
Python Java C/C++ Java 

Installation Easy Medium Medium Easy 

Number of 

supported devices 
Large Large Limited Large 

Mobile App 
Yes 

(iOS only) 
Yes Yes Yes 

Systems it can run 

on 

macOS, Windows, 

Linux, 

Raspberry Pi 

 

Linux, 

Windows, 

Mac OS X 

 

macOS, 

Windows, Linux, 

Raspberry Pi 

macOS, Windows, 

Linux, 

Raspberry Pi 

Number of 

Worldwide users 
Large Medium Large Large 

Automation Rules Yes Yes Yes Yes 
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2.1.2. Home Assistant 

 

 Home Assistant is an open-source home automation software that was designed to be 

the central home automation control system. Both of its components, the core itself and its 

extensions, are written in Python focusing on main control and the privacy of its users, data is 

stored locally instead of stored in a server. 

 In November 2020 it supported over 1700 plug-ins or addons for different IoT 

technologies, systems, and services.  

 In 2020 on Github’s state of the octoverse, Home Assistant was named the second 

Python package with the most contributors, which means that the community for this platform 

is very extensive.[1] 

 

2.1.3. OpenRemote 

  

OpenRemote is an open-source IoT solution that is available for smart buildings and smart 

cities. It integrates a lot of different protocols and solutions while offering visualization tools 

that can be used on a tablet or a smartphone.[2] 

Just to give an example, OpenRemote is currently the solution that the city of Arnhem in 

the Netherlands has selected to develop an energy management system. The system can 

forecast the power generation, consumption, and carbon cost of a solar and wind park for the 

next 24 hours allowing the city to make a detailed analysis of its solar park.[3] 

 

2.1.4. Domoticz 

 

 Domoticz is a free and open-source home automation system that allows a user to 

monitor various IoT devices such as lights, switches, etc. It has been developed using C/C++ 

with an HTML5 frontend that allows the system to adapt to either desktop or mobile devices. 

It allows for push notifications and the system can auto-learn switches/sensors. It was designed 

with a simplistic approach in mind. However, its community is small compared with other 

platforms, especially when compared with OpenHAB or Home Assistant.[4] 
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2.1.5. OpenHab  

 

  OpenHab is an open-source platform developed in Java, it is part of the Eclipse 

Foundation, and it supports integration for over 2000 devices and hundreds of technologies. It 

allows the integration and configuration of devices into a single solution either through text 

files or a Web Interface, which allows users to customize a multitude of automation scenarios. 

All the actions, like controlling light switches, controlling temperatures, etc. are triggered by 

rules, voice commands, or controls, and are done also either through text files or with the help 

of a Web Interface. It has a simple installation and it can be installed on almost any hardware 

that can run Java Virtual Machines (JVM).[5] 

Since OpenHab is one of the most well-known and established solutions on the market it 

has a large community of worldwide users, it offers the possibility to work with either an 

Android or IOs application, and the fact that it is developed in java and previous experience 

with this platform, make it the best solution to use in this implementation.  

 

2.2. Object Recognition  

 This topic is very relevant nowadays and with that in mind, there have been a lot of 

scientific contributions each discussing the way Object Recognition can be implemented. With 

that in mind and to synthesize all the information given in those scientific contributions, there 

have been a lot of literature review papers with that goal. [6][7][8]  

  

2.2.1. Traditional Object Recognition 

 

 In [6], the authors of the paper focus primarily on object detection and tracking, 

however, some of the methods that they discuss in the paper can still be applied and used in 

object recognition, the authors present a table comparing the various methods which are 

presented in Table 2. 
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Table 2: Comparison of object detection methods [7] 

Method Pros Cons 

1. Background Subtraction 

Method 

• A very widely used method that is 

simple to implement 

• Objects are allowed to become a part 

of the background without destroying 

the existing background. 

• It learns itself and does not need to be 

reprogrammed. 

• Can be implemented in any 

application. 

• Provide fast recovery. 

• Low memory requirement. 

• Highly inaccurate 

• Cannot deal with quick changes. 

• Initializing the Gaussians is important. 

• Not a good subtraction when shadows, 

or any other obstacles, are there. 

• Gives false positives 

• It does not survive with a multimodal 

background. 

2. Real Time Background 

Subtraction and Shadow 

Detection Technique Theory 

• The accuracy of this method is higher 

than the frame difference  

• It detects shadows as well 

• The algorithm based on this method is 

quite complex 

3. Template Matching  
• The best method for a specific 

environment 

• Only occurs when there’s a one-to-one 

match  

• Slow process for recognizing new 

variations of a pattern. 

• No scanning process is done on the 

percentage so there is no guaranteed 

accuracy 

• It only works if the object is always in 

the video, otherwise, it will create a 

false detects 

4. Image Differencing  
• Simple and straightforward 

• Easy to interpret the result 

• A different value is absolute so the 

value may have a different meaning 

• Require atmospheric calibration 

• Requires selection of thresholds 

5. Shape Based 
• Simple pattern-matching approach 

• Having unable to moderate accuracy 

• More striking technique 

• Often used as a replacement for local 

features 

• Does not work well in dynamic situations 

• Unable to determine internal movements 

well 

• Computational Time is low 

6. Optical Flow 

• It can produce complete object-

moving information 

• Contain enough accuracy 

• Require a large amount of calculation 

7. Frame Differencing  

• Perform well for static background 

• High accuracy 

• Easiest method 

• It must require a background without 

moving objects 
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Method Pros Cons 

• Method having Computational 

time low to moderate 

8. Motion-based 
• Does not require predefined pattern 

motion detection 

• Struggles to identify a non-

moving human 

9. Texture based 
• Provides improved quality with the 

expense of additional time 
• High computational time 

 

 A few of these methods, despite having a video-based approach in mind, can still be 

applied in an image-based or object recognition system, specifically, the Template Matching 

method that can be applied to an image which consists of matching each frame with a specific 

template of an object, even though it’s one of the most accurate methods, it works best in a 

specific environment. In Figure 2 a flow chart of how this method works is presented [9]: 

 

Figure 2: Flowchart of how Template Matching works [9] 

 

From this simplified flow chart, we can understand a simplified version of the Template 

Matching method: the new image first gets compared with average images for each class, and 

then it gets compared with clustered images of other classes. In [10] it is presented a snippet of 

code on how to implement this method using OpenCV, an open-source library that contains an 

extensive number of computer vision algorithms [11]. 
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2.2.2. Object Recognition with Deep Learning   

 

 Applying Deep Learning to object detection methods can help traditional object 

detection methods, by proving better results than the traditional object detection methods  

 

2.2.2.1. Region-Based Convolutional Networks 

 

The Region-Based Convolutional Networks (R-CNN) belong to one of the most used 

families of deep learning-based object recognition methods. Figure 3 presents a flowchart of 

how R-CNN can be applied to an image.  

 

The system takes an image, then takes around 2000 region proposals, computes features 

for each proposal and after that, it classifies each region [12]. 

 

2.2.3. MobileNets 

 

 This method was developed contradicting the trend that was happening in this subject, 

which was of creating deeper and more complicated networks, which not always meant that 

the performance and accuracy would be better. This method uses an efficient network 

architecture and two hyper-parameters to build small and low-latency models that can be 

implemented in mobile devices [13]. An example of this can be seen in Figure 4. 

Figure 3: Flowchart of how R-CNN works 
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Figure 4: Object detection using MobileNet 

 

2.2.4. Applying Object Recognition on Mobile Devices using TensorFlow 

 

 Using an Object Recognition System on a mobile device is a relatively small concept, 

however, there is still a small percentage of literature explaining how it can be applied to a 

mobile application making use of TensorFlow [14], which is an open-source library developed 

by Google for machine learning, its focus on training deep neural networks. Next is presented 

a figure that will display the architecture of a Mobile App using the TensorFlow API [15]:  

 

 The Mobile Application will send an image to the TensorFlow API, which can 

categorize the data into 1000 classes, those classes are linked with the name of the detected 

object, returning its name and a score that represents the accuracy of the recognition. To 

implement the API into Android the API uses Android Camera2, a package that supports Java 

Native Interface to interact with the TensorFlow engine. 

Figure 5: Object Recognition with TensorFlow 



 

 14 

CHAPTER 3 

3. Design and Development 

 

This chapter presents the design and development process for creating a solution that is 

expected to identify and control smart objects. To achieve the goal of this implementation this 

solution was split into the two parts depicted on the diagram shown in Figure 6:  Smart System 

and IoT Devices Hub. The first part, the Smart System, addresses how it is possible to identify 

a certain object in a room using an image acquired by the mobile device camera sensor as input. 

The second part, the IoT Devices Hub, addresses how it is possible to control the identified 

object in a Home Automation platform.  

 

 

Figure 6: Diagram of the final architecture of the proposed system 

 

Regarding the first part, the system must be capable of receiving an image sent from the 

user’s mobile device, saving it in its memory, and then using the image as input for the smart 

system. This system will then return the class to which a major object in the image belongs, as 

illustrated in the interaction illustrated in Figure 7. 

The second part of this system, detailed in Figure 8, must be capable of receiving the class 

of the object that the user wants to control and a command, example ON or OFF, to be sent to 

the IoT device. The IoT Devices Hub will be responsible for understanding which objects to 

control and to send the command to it. 
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Figure 7: Diagram of the communication between 

the user's mobile device and the local system 

 

Figure 8: Diagram of the communication between the 

local system and the IoT devices 

 

3.1. High-Level System Description 

For this system, when the user intends to add another object that he wishes to control he 

must add several images to the dataset also with the name of the class that he wants to add, this 

will be done through an App that was developed for this implementation in order to aid the end 

user. The interaction with the user can be seen in Figure 9. 

 

 

Figure 9: Diagram of how the developed App will interact with the System 

 

When the user wants to control an object, a new one, or an existing one, the user needs to 

take a picture of the object that he is trying to control. Afterward, there are two possible routes 

for this architecture: 

1. One possibility for this architecture is to run the smart System inside the developed 

App. With this approach, the system would be faster, without the need to communicate 

with external devices, but the smart system would need to be adapted in order to be 

able to run it on a device that is powerful but with limited capacities, such as a 

smartphone. This architecture can be viewed in Figure 10. 
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Figure 10: Possible Architecture for the system, where the Smart System runs on the mobile device 

 

2. The alternative to the first architecture was to run the smart system inside a server and 

then communicate the results to the user’s smartphone. For this architecture, the smart 

system would not have to be adapted and so it would preserve the execution time of 

the system. However, with this approach, it is necessary to maintain communication 

with external devices for a period of time, which would not only add to the latency of 

the communications but also present several points of failure that may disrupt the 

capabilities of the integration such as one point of communication fails the entire 

system will fail, for example, if the communication between the user’s mobile device 

and the local system is broken, the system cannot proceed. A diagram for this type of 

architecture can be seen in Figure 11. 
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Figure 11: Another possible architecture for the system, where the Smart System is running on a Local System 

 

3.2. Development 

 

This section will focus on the development5 of the system presented in the former section. 

To achieve this purpose, the used dataset will first be presented. After this, the type of Siamese 

network that was designed and implemented will be presented, and then explained how they 

were constructed and the limitations that are imposed by using the type of architecture that was 

chosen. At last, this section will also present the training parameters that were applied to this 

model in order to train it to be able to achieve the desired purpose. 

 

3.2.1. Collecting and Preparing the Dataset 

 

In every approach using a Machine Learning model, it is necessary to build a dataset from 

which the model will optimize its parameters from the training process. The machine learning 

model for this implementation will need to determine which class of images is the most similar 

to the image provided as input for the network. Since the model is classifying the input image 

based on similarity, a Siamese network approach was followed. In this type of network, the 

inputs are a pair of images and the output is a similarity measurement between those images. 

For the training process, the number of images in the dataset does not need to be large, since 

with a small number of images it is possible to generate a large number of image pairs by 

 
5 https://github.com/cdsjg-iscteiul/Tese_Flutter 
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combining them. For instance, with eighteen images it is possible to form 153 different pairs 

of images (without repetitions). 

To start the process of creating the dataset it was decided on the appropriate approach to 

create it, considering the machine learning model is expected to determine which class is the 

most similar image to the input, the dataset must contain in each class a type of object that can 

be used. 

Considering the proposed utility of the model and the structure discussed above, the dataset 

was built according to the illustrated in Figure 12. Even though the Siamese neural networks 

do not require a lot of images for training when compared with direct image classification 

approaches, the images acquired for each object should cover a wide number of viewpoint 

angles, especially when the images do not have a lot of differences between them.  The dataset 

was therefore built with that in mind, making each class have almost a 360º view of each object.  

 

 

Figure 12: Representation of the dataset used 

 

3.2.2. Network Design 

 

Before we can discuss the architecture that was chosen for this network, it is necessary to 

consider the requirements that this system must meet, which are:  

• The system should not be trained every time a new device is added. 

• As mentioned in section 3.1 this system can have two possible architectures, one of 

which requires the neural network to run on a mobile device. As such, the neural 

network should be lightweight and capable of running on a mobile device or a device 

with little processing power.  
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• The network has to be modular, introducing modularity in the network could 

significantly improve the time required to make a classification, which would 

significantly improve the end-user experience. 

 

Considering all the requirements presented, the neural network architecture that best fits 

this system is that of a Siamese network. The defining characteristic of a Siamese network is 

the fact that it counts 2 inputs that converge into only one output, as shown in Figure 13, this 

output is used to make a comparison between the two inputs resulting in a value that can tell 

us if the two images are of the same or from the same object. 

 

Figure 13: Diagram of the architecture of the final Siamese network 

 

This system created the network that is shown in Figure 13. Within this network, there are 

two equal towers, that correspond to convolutional neural networks (CNN) without their top 

classification layers. Two different CNN architectures have been experimented. 

One architecture uses a pre-trained MobileNet model, represented in Figure 14, whose 

network weights were already trained using a very large image dataset – using the pre-trained 

model, each tower is already trained, and therefore the overall model takes less time to be 

trained. 

 

Figure 14: Diagram of the architecture for the towers that are part of the Siamese network, using the pre-trained 

network 



 

 20 

The second architecture that was built from scratch, represented in Figure 15, where each 

network weight can be customized to the task at hand – it could potentially achieve better 

results at the expense of more processing power and a larger training time. These questions 

will be approached and answered further in the dissertation.   

 

 

Figure 15: Diagram of a tower that will be used on the final architecture of the system using the network built 

for this purpose 

 

This module consists of a lambda layer, a batch normalization layer, and a Dense layer. 

The lambda layer is responsible for using the features of each image and performing the 

calculation of the Euclidean distance that provides the degree of similarity between the two 

images. It outputs a value between 0 and 1 depending on the degree of similarity of images: 0 

is for images that are rather different, and therefore belong to different classes;  while 1 is for 

images that are very similar, and therefore should belong to the same class. An example of this 

classification can be observed in Figure 16. 

 

 

Figure 16: Example of how the labels are associated with different pairs of images, 1 for images with the same 

class and 0 for different 

 

Besides the tower, the Siamese network architecture also includes a module containing the 

layers that receive the tower's output which can be interpreted as image features. As stated 

before, it is required that the system is sufficiently light to run on a system with little 
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computational power. In order to save computational power, this module has the ability to 

receive the features from the towers’ module of the network as well as receive them from a file 

that contains the information stored for the image features. An example of this architecture can 

also be viewed in Figure 17. 

 

Figure 17: Diagram of the proposed architecture for the network responsible for outputting the similarity 

between two images 

 

3.2.3. Network Training Process 

 

This section presents how the Siamese network was trained. Due to the particularity of this 

system, this network must be trained following the network diagrams that were presented in 

the previous section. The system must be trained following a set number of parameters 

summarized in Table 3 

 

Table 3: Summary of the training parameters for this system 

 

Some parameters are specific to this type of network, here detailed: 

• The number of classes for training – this parameter specifies how many different classes 

will be used for training. Each class represents an object that can be identified when the 

system is completed. All training trials use 24 classes. 

Number of classes for training 24 

Number of images for each class 13 

Number of pairs 312 samples to form pairs, forming 48516 pairs 

Training and validation split 0.7 

Loss Function contrastive loss 

Batch size 32 

Epochs 100 

Activation Function Sigmoid 
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• The number of images for each class – represents how many pictures for each object 

are present in the dataset. In this case, each object has 13 associated images. Remember 

that this type of architecture does not require a large number of samples for each class, 

which justifies this small number of images per class.  

• The number of pairs – this parameter depends directly on the previous parameter, since 

this architecture takes a pair of images as input, it is possible to multiply the number of 

samples greatly from the number of inputs of samples in each class. For example with 

13 samples in each class that was presented previously, means that we have 312 unique 

samples to form pairs with. 

• Training and validation split – this parameter specifies the split between how many 

samples are provided for training and validation, for this system the split was set at a 

proportion of 70:30, this means that 70% of samples were used for training and 30% 

for validation. In absolute numbers, there are 218 samples to form training pairs and 94 

samples to form validation pairs 

• Loss Function – this is a function that will compare the target and predicted output of a 

network. This function measures how well the network performs with the training data. 

The goal of the training process this function is to minimize this function. The loss 

function that was used was the contrastive loss function, which is commonly used for 

training Siamese networks. It calculates the distance between the two images, using the 

following formula [16]: 

ℓ𝑖.𝑗 =  − log exp (𝑠𝑖𝑚(𝓏𝒾, 𝓏𝒿)𝜏 )∑ exp (𝑠𝑖𝑚(𝓏𝑖, 𝓏𝑘)/𝒯)𝓏𝑘 𝜖{𝑧𝑃∪𝑧𝑞},𝑧𝑘≠,𝓏𝒿
           (1) 

where Z is the set of representations in the projection space, 𝓏𝒿 is the representation of 

the other view of the sample, τ denotes a temperature parameter. 

• Batch size – the value of this parameter specifies the number of samples that the 

network uses for the training on each optimization step. The batch size was set to 32, 

meaning that the system will train with 32 pairs of images at each step, this value was 

achieved comparing the performance of the network with different values, arriving in 

the final value of 32. 

• Epochs – how many times the network uses all training samples to produce an 

optimization process iteration. The higher this value the more time the network will 

spend during the training process and a better overall result for the training is produced. 



 

 23 

However, after a certain number of training epochs, it is possible to observe that the 

network does not improve the results on the validation set, meaning that further training 

may lead to overfitting, the final value of 100 was achieved measuring the performance 

during various number of epochs, and noting that after that value the system would not 

benefit from additional epochs. 

• Activation Function – this function defines the output of that node given an input or set 

of outputs. The chosen activation function was the sigmoid since the output of this 

function is between 0 and 1 which is adequate for representing the similarity of the two 

images provided as input. An equation and plot for the sigmoid activation can be 

observed in eq. (2) and Figure 18: 

                                     𝑓(𝑥) =  11 +  ℯ−𝑥                         (2)   
 

 

Figure 18: Graph for the sigmoid activation function 

 

In Figure 19, it’s possible to see the results from the training that was done using the 

parameters that were mentioned in the table before, in the architecture using the model build 

for this system, while the results using the pre-trained model can be seen in  Figure 20.  

 

Figure 19: Confusion Matrix for all the sets of training using the model built for this system 
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Figure 20: Confusion Matrix for all the sets of training using the pre-trained model 

 

These Confusion Matrixes represent how the system performed for all the sets in the training, the 

training set, the validation set, and finally the test set. These results will now need to be used to perform 

tests and see how the network after being trained will perform when faced with the problem where this 

system is expected to act. 
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CHAPTER 4 

4. Tests and Results 

 

This chapter presents the tests performed on this system to validate its operation and shows 

and discusses the results of those tests. Throughout this dissertation, especially in Chapter 3, 

several requirements that the system must satisfy were presented. A summarized list of those 

requirements can be seen in the following list: 

 

• The network must be able to detect with high accuracy if an image given as input 

is a part of a class that was trained with and when presented with new images, 

different from the ones that were trained with, it must be able to depict which class 

is a part of. 

• The network must be lightweight, as talked before this network must be able to run 

in an environment that has low processing capabilities, which means that in an 

environment with a great capability of processing it should be accessed how much 

time it takes to train the network. 

• The network must be able to adapt to new classes, when adding a new class it must 

be able to distinguish the new class from every other single class that was already 

present in the dataset, this action will be triggered by the user when adding a new 

class. 

 

4.1.  High Accuracy Detection 

 

Regarding the first requirement that was presented, and with every network of this kind we 

must first validate the networks training and the values of its accuracy and the loss, this step is 

important in every machine learning model because this will determine how well the network 

has trained and how well the network will be able to achieve the desired result. 

As discussed in the previous chapter there are two possible architecture models that we can 

follow for this network, the first one is the architecture that was made from scratch, the results 

for this architecture’s accuracy and be viewed in Figure 21, and the results for its loss in Figure 

22, on the other hand, the results for the architecture where we used the pre-trained network 

can be viewed in Figure 24 for its accuracy and Figure 25 for its loss. For these results a good 
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target to aim for is a very high value of accuracy and a very low value of loss, this means that 

our network can be able to make a great number of predictions with very small errors. 

As we can see in both Figure 21 and Figure 22, the results are very good since the model 

has high accuracy and low loss, meaning that the model is able to perform predictions with a 

very low level of errors. An example of those predictions can be observed in Figure 23, where 

it is possible to see the true and predicted values of those images’ pairs, 1 if they are from the 

same class (i.e., same object) and 0 if they are not.  

 

Figure 21: Results for the models’ accuracy with the model that was made for this system 

 

Figure 22: Results for the models' loss with the model that was made for this system 
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Figure 23: Prediction values for the inputs with the model that was made for this system 

 

Regarding the other architecture where we employ the use of a pre-trained model, the 

results for its accuracy and its loss can be viewed in  Figure 24 and Figure 25, respectively also 

the same example of predictions can be viewed in Figure 26. It is possible to conclude that as 

the same as the previous architecture the results are very good meaning that both architectures 

are viable to implement on this system.  

 
Figure 24: Results for the models’ accuracy using the pre-trained model 

 
Figure 25: Results for the models’ loss using the pre-trained model 
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Figure 26: Prediction values for the inputs with the pre-trained model 

 

For both models, we can compare the training results in Table 4. Even though both 

architectures have similar results, the architecture with the pre-trained model has a slightly 

better one, consequently, we will consider from this point forward using the pre-trained model 

in the system. 

Table 4: Training results for each architecture 

 
Model Built for the 

System 
Pre-Trained Model 

Training Loss 0.0017 0.0010 

Training Accuracy 1.000 1.000 

Validation Loss 0.0586 0.0313 

Validation Accuracy 0.9309 0.963 

Test Loss 0.0512 0.0437 

Test Accuracy 0.9391 0.953 

 

 

4.2.  System Performance 

 

After being able to process the images proved as inputs and being able to extract their 

features and determining if they are similar, it is required for the system to be able to determine 

in which class a certain image given by the user belongs, for this and using the limitations for 

this system, for this and to improve the processing time and to attend to the limitations, all the 

features of the images dataset are pre-loaded using a pickle (.pkl) file and every time the user 

adds new images they will be added to this file. For making the processing of the dataset easier 

on the system in which it will run, the structure of this file is [Path, Class, Name, Features]. 

For example, for a file that has path “\Database\Data_Test_2\Bedroom_Lamp\6” in the dataset, 

the system will determine the parameters and create a line in the pickle file with the structure 

[“\Database\Data_Test_2\Bedroom_Lamp\6”, Bedroom_Lamp, 6, Image’s Features].  
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For the system to determine to which class the image submitted by the user belongs, the 

submitted image is first passed through a network tower to extract its features. These features 

will then be compared with every reference image features present in the dataset (using the 

pickle file mentioned above). After that it is possible to determine to which class the image 

belongs to with multiple ways. Two ways were implemented in the context of this work. The 

simplest way was to check which reference image has higher similarity score when compared 

with the image submitted by the user.  The predicted class for the user’s image will be the class 

of the most similar reference image. Another way to determine the class of the image submitted 

by the user is using the k-most similar images. In this case a parameter k is provided and the 

system determines the k most similar images and their classes. The class that occurs most 

frequently in this k-sized set is the class predicted for the users’ submitted image. If in case of 

ties, the predicted class will be the one showing the pair with highest similarity value. 

For the method that uses the most similar classes, i.e., K Similar, the confusion matrix, that 

resulted from using this method to predict the class to which all the images in the dataset belong 

to using the value of k as 7 can be observed in Figure 27.  

  

Figure 27: Confusion matrix using the K Similar Method 
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The confusion matrix shows that most of the performed predictions were correct. However, 

there were a few inaccurate predictions, especially for the class IKEA_Bathroom_Lamp_2, 

where the system could only correctly identify 8 out of 13 samples, predicting it 4 times as the 

class IKEA_Bathroom_Lamp. A reason for this could be due a high similarity between the 

photos acquired for these objects. One possible solution for this is to acquire additional photos 

of different angles or using different lighting conditions. 

For the method that considers the class of the image with the highest similarity value when 

compared with the image submitted by the user, i.e., Highest Similarity method, the confusion 

matrix produced is depicted in Figure 28. From the matrix, a different conclusion from the 

previous method can be drawn. Using the Highest Similarity method, the network can correctly 

predict all samples. Considering these results and comparing them with the previous method, 

it is possible to conclude that this method performs better for classifying the dataset images 

based on similarity measurements. 

 

Figure 28: Confusion matrix using the method based on the Highest Similarity method 
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For this system to work properly and to provide a good user experience for end users, the 

system must also be able to handle all communication and all processing in a fast manner. 

Since the time it takes to communicate with the local system is something that is only possible 

to minimize to a certain extent, we must ensure that the time for processing the image is as low 

as possible. One hypothesis that was already addressed in Chapter 3 was the possibility of 

splitting the neural network into two modules, one that would extract the features of each input 

and another that would take the extracted features and measure the distance between the two 

features that were extracted on the first module. 

In Table 5 it is possible to analyse the measured time for each step of the process that was 

described before, from extracting the features of one image to running the entire system using 

the pre-trained model that was used during the system’s development. These time 

measurements were performed using a computer equipped with a RTX 2060 GPU, a Ryzen 5 

3600X 6-Core CPU and 32 GB of RAM under the Windows 10 operating system.  

 

Table 5: Different times the system takes for different scenarios using the pre-trained model 

 
Run 1 

(s) 

Run 2 

(s) 

Run 3 

(s) 
Run 4 (s) Run 5 (s) Avg. (s) Std Dv 

Run the whole system with 2 

images as input 
0.372 0.366 0.373 0.357 0.372 0.368 0.00603 

 Extract Features of a Single 

Picture 
0.199 0.203 0.198 0.190 0.193 0.197 0.00459 

Save features of the entire 

dataset on a file 
39.158 39.207 39.616 38.860 39.745 39.317 0.322 

Import the file with the features 

of the entire dataset 
0.037 0.038 0.043 0.037 0.037 0.038 0.00233 

Import the Dataset’s Features 

file, read it, compare them with 

an image and returning the class 

of the most similar image 

0.924 0.898 0.953 0.891 0.901 0.913 0.0227 

Import the Dataset’s Features 

file, read it and compare them 

with an image and returning the 

class of the K most similar 

images 

0.931 0.892 0.885 0.908 0.902 0.904 0.0158 
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As previously presented in Chapter 3, there were two possible architectures for this system. 

One of those would consider that the neural network would be contained inside the mobile 

device and, as such, it would only be necessary to communicate with the external IoT Devices 

Hub sending the class of object that has been identified and that the user wishes to control. For 

this, we would have to use TensorFlow, in order to make it possible for the neural network to 

run inside a mobile app. However, in this implementation, it was not possible to make use of 

TensorFlow inside an Android application, and, for that reason, the architecture that was 

implemented for this dissertation only considers the second variant.  In this variant, it is 

necessary to consider multiple communications externally, the MQTT communications that 

will be needed to connect the user’s mobile device to the system where the processing will 

occur. This means that it will be necessary to consider the added time for these 

communications. However, since it is expected that the mobile device will be in the same 

network as the local system where the image processing will occur, the additional time required 

for those communications is expected to be small, without noticeable impact in the usability of 

the application. A diagram of the communications needed for this implementation can be 

observed in Figure 29. Since OpenHAB is compatible with various types of protocols, the 

communication between the Hub and the final object may vary depending on the type of 

protocol the final object uses. 

 

Figure 29:  Diagram of the communications needed for this system 

 

4.3.  Network Adaptability  

 

As discussed previously in this chapter, one of the requirements for this network is the 

ability to adapt to new classes without having to re-train the entire network. The test described 

in this section will allow to validate that requirement in an end-user scenario. Adding new 

elements to the dataset is very easy needing only to re-train the network from time to time and 
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not every time a new class is added. One way that we can test this scenario if to add an entire 

new class to the dataset and after running the same scenario tests, that were made on the 

previous sections. 

 

4.3.1. Adding the New Class 

As discussed, in order to validate this network as a solution for this implementation, we 

need to see how the network will perform when adding a new class without training for it. With 

that purpose in mind we first need to add the images from the class that we wish to add to the 

dataset, for that the user can directly access the dataset and add the new class as folder using 

the same structure as discussed before, in this example, the class added will be the class 

“Kitchen_Lamp”, which for test purposes is very different from the objects in the other classes, 

a example of this class can be seen in Figure 30. 

 

 

Figure 30: View of the new class added  

 

4.3.2. Measuring the results of the New Class 

 

After adding the new class to the dataset, it is necessary to validate if the network can adapt 

to this new class, for that it is necessary not only that the system is able to identify an image 

submitted as belonging to this class, but also that when the user is trying to identify another 

image from another class the system does not mistake that image as belonging to this class. To 

validate the addition of a new class we should consider how the prediction of the class will 

behave when added a new class, making the validation test of this new class the Confusion 

Matrix. Since we already got to the conclusion that the best method of deducing the class of a 

submitted image is using the Image Similarity, only that method will be used to validate the 

new class The new result of the confusion matrix with the new class, can be seen in Figure 31. 



 

 34 

 

 

Figure 31: Confusion Matrix using the Image Similarity method after adding the new class 
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CHAPTER 5 

5. Conclusion  

 

In this dissertation, we aimed to present an alternative to the current systems of control of 

Internet of Things devices applied in a housing context, better known as home automation. 

Regarding the first question, whether the system should use a pre-trained network or one that 

was built on purpose to be applied in this implementation, after setting the training parameters 

in section 3.2.3 and getting its results, it was possible to understand that despite having very 

similar results the pre-trained network has slightly better results, making so that this should be 

architecture used throughout the rest of the dissertation .  

In the second question we are exposed to the need for the system to be able to understand 

which class is part of a possible photo that is sent from the user, in order to make a correct 

assessment of this capability we firstly need to create functions that can help the system make 

those prediction, with that we were faced with two possibilities: one was to use a method based 

on the image’s similarity between every single other image on the dataset and where the class 

attributed to the one submitted by the user was the class that had the image with the highest 

similarity with it, or to use a method that also is based on the images similarity, but instead of 

taking into account only one image of the dataset we use the K most similar images, after 

detailing the images that have the highest similarity with the submitted image we check the to 

which classes they belong and the class that has the most images in the most similar is the class 

of the submitted image, to examine the results of these two methods, confusion matrixes were 

built in section 4.2, where it’s possible to access the performance of the system when trying to 

predict the class, where we can see that the method that has the best performance is the one 

based only on a single image similarity. 

The third and final question is in relation to the system’s ability to adapt to new classes 

being added to the dataset without the need to retrain the entire network, when the end user 

wants to expand these systems features and add a new object that is able to be recognized by 

the system, it needs to add the new object to the dataset after that the system should perform 

the same as before but containing the new class, as we can see in section 4.3, the confusion 

matrix shows that the system was able to adapt to the new class that was added. 

Having responded to all the research questions that were established on the first phases of 

this dissertation, we can confirm that the system that was designed for this can be useful on 
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today society as a new alternative to manage and control new IoT devices in a home automation 

environment. 

Some work could be done in the future in order either to validate even further this solution 

or either to improve upon it, some of those could be: 

• Be able to implement the architecture where the neural network would be running 

on the user’s mobile device, either to see if it’s possible for this implementation to 

run on such devices or to improve and retrieve limitations. 

• Another improvement that could be made upon this implementation is the 

possibility of integrating this solution using another platform to control the IoT 

devices, another platform (Home Assistant) has been growing in great numbers in 

the recent years, having this solution adapted to be able to run on it could improve 

its longevity.  

• Make a survey with end users where it is possible to understand if the platform that 

was developed is an improvement on the existing solutions. 
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