

INSTITUTO UNIVERSITÁRIO DE LISBOA

Equity Research of Hilton Worldwide Holdings Inc.			
José Pedro Rodrigues de Almeida			
Master of Science in Finance			
Supervisor: Professor António Sarmento Gomes Mota, Department of Finance ISCTE Business School			

BUSINESS SCHOOL

Department of Finance
Equity Research of Hilton Worldwide Holdings Inc.
José Pedro Rodrigues de Almeida
Master of Science in Finance
Supervisor: Professor António Sarmento Gomes Mota, Department of Finance ISCTE Business School

Agradecimentos

Este projeto de mestrado representa o culminar de um percurso académico pelo qual me orgulho bastante. Apesar de nem sempre terem sido tomadas as melhores decisões, tendo sido várias as vezes em que tropecei, sempre fui capaz de reerguer-me e de dar a volta por cima.

No entanto, sou da opinião que tudo aquilo que alcancei durante o meu percurso académico se deve não só ao meu esforço, como também ao facto de estar rodeado de seres humanos incríveis que me potenciam a cada momento, não tendo sido este projeto de mestrado uma exceção à regra.

Gostaria de começar por agradecer ao professor António Gomes Mota que mais do que me ter orientado durante a realização deste projeto de mestrado, apresentou-me o mundo das finanças empresariais e ensinou-me tudo aquilo que sei hoje, por tudo isso o meu eterno agradecimento.

Em seguida gostaria de agradecer aos meus pais, devo-lhes todo o meu sucesso, pois sem o seu grande esforço nada disto poderia se ter tornado real. Gostaria também de agradecer à minha irmã e aos meus amigos mais chegados, por terem-me dado toda a confiança necessária sempre que eu duvidei de mim. Por fim, mas não menos importante, gostaria de agradecer à minha namorada. Ela, mais do que ninguém, soube desde o princípio quais eram os meus objetivos e ajudou-me a alcançá-los.

Deixo ainda um especial agradecimento a todo o corpo docente do ISCTE-IUL. Sou grato pelo que vivi nesta casa e levo comigo tudo aquilo que aqui aprendi. Talvez não seja um adeus, mas sim um até já.

Resumo

Este projeto de mestrado consiste na avaliação da Hilton Worldwide Holdings e o seu principal

propósito é definir o preco-alvo das acões para o final do ano de 2020. Além disso, visa fornecer

aos investidores uma recomendação de investimento baseada na diferença entre o preço de

fecho verificado e o preco-alvo da ação obtido durante este exercício de avaliação.

Ao longo do último século, estando presente em todo o mundo, a Hilton tornou-se um nome

altamente reconhecido e respeitado na indústria da hospitalidade. Em 2020 a empresa enfrentou

um grande desafio, inicialmente devido à suspensão temporária da maioria dos negócios com

os vários confinamentos, e depois com a readaptação ao que o futuro implicará. Neste momento,

a Hilton está a cargo da dificil tarefa de se recuperar num mundo cheio de incertezas.

De forma a realizarmos este exercício de avaliação aplicámos um modelo da abordagem de

Fluxos de Caixa Descontados, o Free Cash Flow to the Firm, seguido de uma Avaliação

Relativa usando múltiplos. Para a obtenção do preço-alvo das ações foram assumidos diversos

pressupostos com base no desempenho recente da empresa e de projeções macroeconómicas.

Os resultados obtidos por ambos os modelos sugerem que as ações da Hilton, a 31 de

dezembro de 2020, estavam abaixo do seu valor justo e, portanto, emitimos uma recomendação

de COMPRA.

Palavras-chave: Hilton Worldwide Holdings; Indústria da Hospitalidade; Avaliação de

Empresas; Fluxos de Caixa Descontados; Múltiplos

Classificação JEL: G30 (Corporate Finance and Governance: General); G32 (Corporate

Finance and Governance: Value of Firms)

i

Abstract

This master's project addresses the valuation of Hilton Worldwide Holdings, and its primary

purpose is to set the target share price for the end of the year 2020. In addition, it aims to provide

investors with an investment recommendation based on the difference between the actual close

price and the target share price obtained during this valuation exercise.

Over the last century, with a worldwide presence, Hilton has become a highly recognized

and respected name in the hospitality industry. In 2020 the company faced a massive challenge,

initially due to the temporary suspension of most businesses with the several lockdowns, and

then with the readaptation to what the future will entail. At this moment, Hilton is in charge of

the difficult task of recovering in a world full of uncertainties.

To accomplish this valuation exercise we applied a model of the Discounted Cash Flow

approach, the Free Cash Flow to the Firm, followed by a Relative Valuation using multiples.

To obtain the target share price were assumed several assumptions based on the company's

recent performance and macroeconomic projections.

The outputs provided across both models suggest that Hilton's shares, as of 31 December

2020, were under their fair value and therefore, we issued a BUY recommendation.

Keywords: Hilton Worldwide Holdings; Hospitality Industry; Company Valuation;

Discounted Cash Flow; Multiples

JEL Classification: G30 (Corporate Finance and Governance: General); G32 (Corporate

Finance and Governance: Value of Firms)

ii

Research Snapshot

Company	Headquarters	Industry	Exchange	Ticker
Hilton Worldwide Holdings Inc.	Virginia (US)	Hospitality	NYSE	HLT

- In this master's project, we issue a **BUY** recommendation with a **target share price of \$124,64**, based on the DCF approach, which reflects an **upside potential of 12,03%**. The outcome of the Relative Valuation resulting from the average of the values obtained by P/E and EV/EBITDA multiples supports our conclusion.
- · The COVID-19 pandemic crisis significantly affected the company's financial performance. All indicators ultimately reported values well below those of the preceding years. Nevertheless, Hilton continued to outperform many of its rivals concerning industry-specific financial measures. In the Occupancy Rate (-46,76% 2020YoY), the ADR (-21,24% 2020YoY), and the RevPAR (-58,05% 2020YoY), the drops felt by Hilton are clear indicators of the impacts suffered by the company due to travel restrictions, the lockdowns, and other restrictive measures imposed by the governments, thus forcing the temporary shutdown of part of the hotels. Nevertheless, as stated above, despite these drops, the company continued to register higher values than its competitors. Therefore, the values recorded in 2020, despite being far lower than those previously registered, are also a clear sign regarding the competitiveness of the company that still positively stands out from the other companies.
- The hospitality industry is going through times of considerable instability and uncertainty, which enhances the risk of investing in companies like Hilton. However, despite all the assumptions made in this master's project, we conclude that our assessment of Hilton's fair value is not so far from the market's assessment. It is also relevant to mention that in this master's project, several projections were made regarding the company's future and that these projections are subject to various risks and uncertainties that could cause actual outcomes or results to differ materially from those obtained by us.

Hilton

Table 1: Valuation Summary. Author's Analysis.

Valuation Summary	
Close Price (31.12.2020)	\$ 111,26
Target Share Price (31.12.2020)	\$ 124,64
Upside Potential (%)	12,03%
Recommendation	BUY

Hilton Worldwide Holdings Inc. is a hospitality company. In 2020 the company accounted for 6 478 properties comprising 1 019 287 rooms in 119 countries. Being located worldwide, Hilton is committed to managing, franchising, owning, and leasing hotels and resorts. Moreover, the company is engaged in licensing its brands and intellectual property.

Table 2: Company Data. Bloomberg and Author's Analysis

Company Data	2020	2021 (F)
Market Cap (\$ Mn)	\$ 30 885	
Number of Shares Outstanding	277 590 904	
Dividends Paid (\$)	\$ 0,15	
Dividend Yield (%)	-	
Revenues (\$ Mn)	\$ 4 307	\$6116

Table 3: Financial Indicators. Bloomberg and Author's Analysis

Financial Indicators	2020
Profitability	
EBITDA Margin (%)	0,98%
Net Profit Margin (%)	-16,60%
Operating Margin (%)	-9,71%
ROE (%)	-
ROA (%)	-4,51%
ROIC (%)	-3,25%
Solvency	
Debt-to-Equity	-
Debt-to-Capital	1.15x
Debt-to-Assets	0.69x
Interest Coverage Ratio	-0.97x
Liquidity	
Current Ratio	1.73x
Quick Ratio	1.64x
Cash Ratio	1.32x

Index

Resumo	i
Abstract	ii
Research Snapshot	iii
Index	iv
Table Index	vii
Figure Index	viii
Annex Index	ix
Glossary	x
Introduction	1
1. Literature Review	2
1.1. DCF Valuation	3
1.1.1. Enterprise Valuation Models	4
1.1.1.1 Free Cash Flow to the Firm	4
1.1.1.1. Corporate Tax Rate	7
1.1.1.2. Weighted Average Cost of Capital	8
1.1.1.2.1. Cost of Equity	9
1.1.1.2.1.1. Risk-free rate	10
1.1.1.2.1.2. Beta	11
1.1.1.2.1.3. Market Risk Premium	12
1.1.1.2.1.4. Country Risk Premium	13
1.1.1.1.2.2. Cost of Debt	13
1.1.1.3. Terminal Value	14
1.1.1.2. Adjusted Present Value	15
1.1.1.3. Excess Return Models	18
1.1.1.3.1. Economic Value Added	18
1.1.2. Equity Valuation Models	20

1.1.2.1. Dividend Discount Model	20
1.1.2.2. Free Cash Flow to Equity	22
1.2. Relative Valuation	24
1.2.1. Multiples.	25
1.2.2. Peer Group	26
2. Company and Industry Overview	27
2.1. Hilton Worldwide Holdings	27
2.1.1. History and General Description	27
2.1.2. Brand Portfolio and Business Model	28
2.1.3. Share performance, Shareholder Structure, and Dividend Policy	30
2.1.4. Environmental, Social, and Corporate Governance	33
2.1.4.1. Environmental Impact	34
2.1.4.2. Social Impact	35
2.1.4.3. Corporate Governance	35
2.1.5. Financial Analysis	36
2.1.5.1. Profitability	36
2.1.5.2. Liquidity	38
2.1.5.3. Solvency	39
2.2. Hospitality Industry	41
2.2.1. Macroeconomic Environment	41
2.2.2. Competition	44
2.2.2.1. Key Performance Indicators	44
2.2.2.2. SWOT Analysis	46
3. Valuation	47
3.1. Assumptions	47
3.1.1. Revenues	47
3.1.2 EBIT	48

3.1.3. Depreciation and Amortization	49
3.1.4. Capital Expenditures	50
3.1.5. Non-Cash Working Capital	50
3.1.6. Corporate Tax Rate	51
3.1.7. Terminal Growth Rate	51
3.2. DCF Valuation	52
3.2.1. Free Cash Flow to the Firm	52
3.2.2. Weighted Average Cost of Capital	53
3.2.2.1. Cost of Equity	53
3.2.2.2. Cost of Debt	54
3.2.2.3. Summary	54
3.2.3. Terminal Value	55
3.2.4. FCFF – Target Share Price	55
3.2.1.1. Sensitivity Analysis	56
3.3. Relative Valuation	57
3.3.1. Multiples – Target Share Price	58
3.4. Valuation Results	60
4. Conclusion.	61
5. References	62
5.1. Academic Material and Books	62
5.2. Reports	65
5.3. Internet References	66
5.3.1. Others	67
6 Annexes	68

Table Index

Table 1: Valuation Summary	ii
Table 2: Company Data	ii
Table 3: Financial Indicators	ii
Table 4: Multiples by Categories	25
Table 5: KPIs comparison between Hilton and its competitors	46
Table 6: Hilton's SWOT Analysis	46
Table 7: Revenue growth projections	48
Table 8: EBIT projections	49
Table 9: Depreciation and Amortization projections	49
Table 10: CAPEX projections	50
Table 11: Non-Cash WC projections	50
Table 12: Corporate Tax Rate projections	51
Table 13: TGR estimation	52
Table 14: FCFF projections	52
Table 15: WACC estimation summary	54
Table 16: FCFF model results	56
Table 17: Sensitivity Analysis \$	56
Table 18: Sensitivity Analysis %	56
Table 19: P/E (NTM) target share price	59
Table 20: EV/EBITDA (NTM) target share price	59

Figure Index

Figure 1: Close price against the target share price obtained	iii
Figure 2: Hilton's brands portfolio	28
Figure 3: Rooms by Category	29
Figure 4: Rooms by Segment	30
Figure 5: Hilton share price trend and trade volume between 2018-2020	31
Figure 6: Hilton share performance against S&P 500 between 2018-2020	31
Figure 7: Hilton's shareholder structure	32
Figure 8: Dividends paid and Dividend Yield %	33
Figure 9: Carbon reduction %	35
Figure 10: Landfilled waste reduction %	35
Figure 11: Revenues source and Revenue Growth %	37
Figure 12: Total Revenues, EBITDA, and EBITDA Margin	37
Figure 13: Total Revenues, Net Income, and Net Profit Margin	37
Figure 14: Total Revenues, Operating Income, and Operating Margin	38
Figure 15: Hilton's return ratios	38
Figure 16: Hilton's liquidity ratios	39
Figure 17: Interest Expense, EBIT, and Interest Coverage Ratio	41
Figure 18: Hilton's debt ratios	41
Figure 19: Economic impact timeline	42
Figure 20: Domestic against International Spending	42
Figure 21: T&T GDP contribution by Region	43
Figure 22: Hilton's KPIs	45
Figure 23: Final valuation	60

Annex Index

Annex A – Income Statement (GAAP)	68
Annex B – Balance Sheet (Standardized)	69
Annex C – Cash Flow Statement (Standardized)	70
Annex D – Revenues Sources	71
Annex E – Profitability Ratios (PART I)	71
Annex F – Profitability Ratios (PART II)	71
Annex G – Liquidity Ratios	72
Annex H – Solvency Ratios	72
Annex I – TGR projections	73
Annex J – CRP estimation (PART I)	73
Annex K – CRP estimation (PART II)	74
Annex L – Interest Coverage Ratio estimation	74
Annex M – Synthetic Rating	74
Annex N – Adjustments	74
Annex O – EPS projections	75
Annex P – EBITDA projections	75

Glossary

ADR – Average Daily Rate

APT - Arbitrage Pricing Theory

APV - Adjusted Present Value

ASC – Accounting Standard Codification

CAPEX - Capital Expenditures

CAPM - Capital Asset Pricing Model

CEO - Chief Executive Officer

CRP – Country Risk Premium

D – Market Value of Debt

DCF - Discounted Cash Flow

DDM - Dividend Discount Model

DJSI - Dow Jones Sustainability Indices

E – Market Value of Equity

EBIT – Earnings Before Interests and Taxes

EBITDA - Earnings Before Interests, Taxes, Depreciations, and Amortizations

EBT - Earnings Before Taxes

EPS – Earnings Per Share

EQV – Equity Value

ERMs – Excess Return Models

ESG - Environmental, Social, and Governance

EV - Enterprise Value

EVA - Economic Value Added

FCFE - Free Cash Flow to Equity

FCFF – Free Cash Flow to the Firm

FRED - Federal Reserve Economic Data

GAAP - Generally Accepted Accounting Principles

GDP - Gross Domestic Product

GICS - Global Industry Classification Standard

HGV – Hilton Grand Vacations

IC - Invested Capital

IMF - International Monetary Fund

IPO - Initial Public Offering

KPIs - Key Performance Indicators

LTM – Trailing Last Twelve Months

MRP - Market Risk Premium

MSc – Master of Science

MVA – Market Value Added

N.D. – No Date

NOA - Non-Operating Assets

NOPAT - Net Operating Profit After Taxes

NOPLAT - Net Operating Profit Less Adjusted Taxes

NTM – Next Twelve Months

NYSE - New York Stock Exchange

PHR - Park Hotels & Resorts

PP&E - Property, Plant, and Equipment

RevPAR – Revenue Per Available Room

ROA - Return on Assets

ROE - Return on Equity

ROIC - Return on Invested Capital

S&P 500 - Standard & Poor's 500

SDGs - Sustainable Development Goals

SIC - Standard Industrial Classification

T&T - Travel & Tourism

TCJA - Tax Cuts and Jobs Act

TV - Terminal Value

U.S. – United States

USD – United States Dollar

WACC - Weighted Average Cost of Capital

WC - Working Capital

WTTC - World Travel & Tourism Council

YoY – Year over Year

Introduction

The main goal of this master's project is to provide investors with a recommendation regarding the share price of Hilton Worldwide Holdings. To achieve this objective, we will determine the fair value of Hilton's shares as of 31 December 2020, and we will issue a target share price based on the outputs of the employed corporate valuation models.

Hilton's remarkable history begins in 1919, with Conrad Hilton purchasing his first hotel. Afterwards, Hilton led the industry with its innovation and provision of good quality of services. The company, which has always stood out for its forward-thinking, has been for several decades one of the leaders in the hospitality industry. Therefore, this master's project is an opportunity to study and analyse a century-old company that is a reference for the entire hospitality industry, while consolidating the knowledge acquired in the MSc in Finance at ISCTE-IUL.

The year 2020 was a real challenge to overcome for most companies. With the closure of the borders and several lockdowns, companies such as Hilton were the primary victims of mobility restrictions imposed on tourists. In this way, especially considering the recent events, the decision to analyse Hilton for the year 2020 was primarily motivated by the desire of learning more about how companies dealt with such an adverse environment.

This master's project begins with a literature review, in which several corporate valuation models are discussed. Then, the second part presents an analysis of Hilton, including the most remarkable historical events, the business model in place, and the recent financial performance. In addition, it includes the macroeconomic analysis of the industry in which Hilton operates. Finally, this master's project ends with Hilton's valuation. At this point, all the assumptions considered for the valuation exercise were established, along with the estimation process and the presentation of the results generated by the Discounted Cash Flow Valuation approach and the Relative Valuation approach. It is important to note that additionally, it was conducted a sensitivity analysis to the valuation outputs.

1. Literature Review

As stated by Damodaran (2012), valuing a company allows us to define its true value. In line with this, it is crucial not to confuse the value of a company with its price (Fernández, 2007a). The great advantage of valuation is that it gives access to the company's value instead of the price, allowing investors and analysts to make intelligent decisions that lead to a more efficient market (Welch, 2009). So, we can consider valuation as the process of translating values into valuable information.

However, if price and value do not always represent the same, it is necessary to know how to distinguish them. Fernández (2007a) defines price as the quantity agreed between the seller and the buyer in the sale of companies. On the other hand, Biasio et al. (2011) describe value as a reflection of the company's utility for the appraiser. In this way, since the usefulness and preferences of human beings are not easily measurable, there is a degree of subjectivity in determining the company's true value.

Furthermore, there is still no such thing as a perfect standard process, i.e., a model that analysts can base themselves on that is entirely correct for any situation. Instead, what happens is that there are recommended models for each company, for example, according to its capital structure or life cycle (Talmor and Vasvari, 2011). Damodaran (2006) states that even though analysts use a broad spectrum of models with different assumptions, some of these models share common characteristics. Therefore, it becomes possible to group some of these models according to their approaches. As stated by Damodaran (2006), there are four distinct approaches: the Discounted Cash Flow Valuation, the Relative Valuation, the Contingent Claim Valuation, and the Asset-Based Valuation. However, there is no consensus on the existing approaches, and not all authors consider the existence of four of them. Even those who do, such as Fernández (2007a), separate the models differently. Even for Damodaran (2006), this is a debatable subject since he ends up considering a fourth approach that, in his opinion, is perfectly acceptable if not considered. Nevertheless, he ends up taking it into consideration due to its particularities.

The following sections will present only the Discounted Cash Flow Valuation approach and the Relative Valuation approach, with greater attention to the Free Cash Flow to the Firm model and the Multiples model, as they will be the ones to be used in the valuation of Hilton Worldwide Holdings. Whenever necessary, in both models, we will take a step forward and

analyse the fundamental adjustments to obtain the Equity Value and, consequently, the company's target share price.

1.1. DCF Valuation

The contribution of the Discounted Cash Flow (DCF) approach to valuation is unquestionable. According to Damodaran (2012), those unable to understand the fundamentals of this valuation approach will never be able to explore and use other forms of valuation since it serves as the basis for the construction of the others. In essence, this approach considers the value of the company to be equal to the discounted expected cash flows that its business will generate in the future at a discount rate that reflects its riskiness (Luehrman, 1997b). In other words, it considers the value of a company right now as the present value of the future cash flows at a specific discount rate. In this way, this valuation approach is subject to the assumptions considered by the analyst, which will eventually influence and bias the result.

According to Damodaran (2012), we can split the DCF Valuation approach into two categories: the Enterprise Valuation models and the Equity Valuation models.

The Enterprise Valuation models, also known as the Firm Valuation models, are widely recommended because they value the company as a whole, i.e., they consider the value of the entire company structure. As stated by Damodaran (2012), these models consider the cash flows held by all the interested parties in the company, including not only the equity holders but the entirety of claim holders in the company, such as bondholders and preferred stockholders. Damodaran (2012) identifies three different models in this category: the Free Cash Flow to the Firm (FCFF), the Adjusted Present Value (APV), and the Excess Return Models (ERMs), with its main variant, called the Economic Value Added (EVA). On the other hand, the Equity Valuation models only value the company equity stake. These models focus their attention only on the value to the equity holders. Damodaran (2012) states that there may be considered two different models in this category: the Dividend Discount Model (DDM) and the Free Cash Flow to Equity (FCFE).

These two categories are used for different purposes once they generate different values. The Enterprise Valuation models are used to obtain the Enterprise Value, while the Equity Valuation models are used to yield the Equity Value directly. However, it is relevant to mention that the Enterprise Value can be used to calculate the Equity Value, or the opposite.

1.1.1. Enterprise Valuation Models

1.1.1.1. Free Cash Flow to the Firm

Regarding DCF models, according to Luehrman (1997b), the most used is the Free Cash Flow to the Firm (FCFF) discounted at the Weighted Average Cost of Capital (WACC). The FCFF refers to an operating cash flow after accounting for depreciation and amortization expenses, taxes, working capital, and all the fixed asset investments. In other words, the FCFF represents the available cash flow for all capital providers, either bondholders or shareholders (Mota, 2020).

According to Damodaran (2006), the most applied formula to compute the FCFF is the following:

$$FCFF = EBIT \times (1 - t) + D&A - CAPEX - \Delta WC \tag{1}$$

Where,

EBIT = Earnings Before Interest and Taxes

t = Corporate Tax Rate

EBIT x (1 - t) + D&A = Operating Cash Flow

D&A = Depreciation and Amortization

CAPEX = Capital Expenditures

 Δ WC = Change in Working Capital

Regarding this formula, it is necessary to clarify some details. Firstly, it is relevant to mention that Depreciation and Amortization represent non-cash expenses. Even though they decrease the accounting income, they do not reduce the cash flows since there is no cash changing hands. So, they must be added back to calculate the free cash flow.

Conversely, we must consider the Capital Expenditures (CAPEX) and the change in Working Capital (Δ WC). The CAPEX refers to the long-term investments in fixed assets used in the business's operations. In this way, it represents an expense and decreases the FCFF. Since it does not appear in the Income Statement, we must consider it net of fixed asset disposals in the formula. The change in WC also represents a cash flow and negatively impacts the FCFF. Unlike the WC, which is a mere measure of liquidity representing the net amount of capital used in the company's daily operations, the change in WC indicates when money is being used

or released from the WC. For instance, if the difference between the WC of the current year and the previous year is positive, this implies that the company has more money tied up in operations, representing an outflow. On the other hand, whenever there is a decrease in WC, it means that less money has been used, representing an inflow. In this way, we conclude that it must be represented with a negative sign in the formula because it generates the opposite effect of its variation in the FCFF.

There are two additional aspects to consider in order to obtain the Enterprise Value (EV). Firstly, the reason for using the WACC as the discount rate in the FCFF. Bernström (2014) justifies the choice by stating that since the goal is to obtain the EV, defined as the firm value to all holders of capital, it is reasonable to use a discount rate that considers the entire capital structure of the firm. So, the WACC is the most recommended discount rate since it represents the firm average cost of capital from all sources, including both debt and equity.

The other point refers to the perpetual existence of the firm. Given the complexity of making forecasts, Damodaran (2012) argues that the time horizon should be divided into two periods to facilitate the process. Accordingly, we should consider a first period that should not exceed five years that corresponds to the company's path to reach a constant growth in perpetuity, and then consider the perpetuity period in which we should compute the Terminal Value (TV) to project the cash flows (Barroso et al., 2015).

Nonetheless, even considering a two-stage period, there is no reason to split this model into two different models to compute the EV. Instead, it is possible to use a general version of this model (Damodaran, 2012):

Enterprise Value =
$$\sum_{t=1}^{t=n} \frac{FCFF_t}{(1 + WACC)^t} + \frac{TV_n}{(1 + WACC)^n}$$
 (2)

With,

$$TV_n = \frac{FCFF_{n+1}}{WACC - g_T}$$

Where,

 $FCFF_t = Free Cash Flow to the Firm in year t$

 $FCFF_{n+1} = FCFF_n \times (1 + g_T) = Free Cash Flow to the Firm at the end of the cruise year$

 TV_n = Terminal Value at the end of the explicit forecast period

WACC = Weighted Average Cost of Capital

 g_T = Terminal Growth Rate

The EV is the present value of all future cash flows generated by the company over an infinite time horizon, considering the company's ongoing existence forever. To derive the Equity Value (EQV) from the EV is essential to recognize that this model focuses exclusively on assets related to the generation of operating cash flows for the company. Since to estimate the company's target share price we need to obtain the EQV of the company, i.e., the value of the company attributable to equity investors, we will have to consider assets that, despite not being required in the usual business operations, can generate value. These assets are called Non-Operating Assets (NOA) and represent, for instance, excess cash and marketable securities, real estate property not used in the operational activity, or non-controlling equity stakes. These assets can be distributed to shareholders directly or sold, increasing the value allocated to the company's shareholders without affecting expected future operating cash flows. Thus, they represent added value to the company's EQV and must be considered in the calculation (Goedhart et al., 2010).

In addition, the Non-Equity Claims must also be considered. Since we are now looking for the value attributable to the shareholders and not to all capital holders, we must subtract them. The Non-Equity Claims often refers to legal claims, other creditors, preferred stocks, contingent liabilities, financial debt, operating leases, minority interest, or provisions (Mota, 2020).

A relevant remark regarding these two items is that we should consider the market values instead of the book values. Nevertheless, since it is not easy to obtain such values, analysts often consider the book value as a proxy for the market value.

Now that we have enough tools to estimate the EQV, we can compute it as follows:

Equity Value = Enterprise Value +
$$NOA - Non$$
-Equity Claims (3)

Where,

NOA = Non-Operating Assets

The final step in the valuation exercise is to calculate the value per share that, according to Henry et al. (2010), is obtained by dividing the EQV by the number of shares outstanding, as follows:

$$Value \ per \ share = \frac{Equity \ Value}{Number \ of \ Shares \ Outstanding} \tag{4}$$

In the following pages, we will go to analyse in detail the corporate tax rate, the specific computation of the WACC, and the TV, giving the notorious importance of all of them in the FCFF model.

1.1.1.1. Corporate Tax Rate

The choice of the corporate tax rate is a crucial decision in the valuation exercise, and there are two main ways to obtain it. On the one hand, we can consider the effective tax rate in the Financial Statement as our corporate tax rate. On the other hand, we can consider the marginal tax rate for the country where the company operates.

According to Damodaran (2012), if the purpose is to make projections is far safer to use the marginal tax rate. For Fernández (2004), the most reasonable option is using the effective tax rate as the corporate tax rate. It is possible to obtain the effective tax rate from the Financial Statement by dividing the taxes paid by the pre-tax income, i.e., the Earnings Before Taxes (EBT). However, Damodaran (2012) counters that choosing the effective tax rate is only valid if we consider some adjustments. In this way, even though it is acceptable to use the effective tax rate to arrive at the after-tax operating income in the early years, the tax rate used should converge to the marginal tax rate in the subsequent years. Thus, at least the tax rate used in perpetuity to calculate the TV must be the marginal tax rate (Damodaran, 2006).

When a company has multinational operations is difficult to calculate the marginal tax rate. It happens because different countries have different rates to tax their income. According to Damodaran (2006), we can proceed in several ways to overcome this situation. We can estimate the marginal tax rate by using a weighted average of the marginal tax rates with the weights based upon the company's revenue from the countries where it operates. Another possibility is applying a different marginal tax rate to each revenue stream according to its origin. However, the most used alternative is considering only the marginal tax rate of the country in which the company is incorporated. This last alternative assumes that the revenue generated in other countries will have to be repatriated, at some point, to the home country.

1.1.1.1.2. Weighted Average Cost of Capital

According to Damodaran (2005), the WACC is the discount rate used in the valuation of the entire business since it reflects the cost of raising debt and equity to finance the company proportionately weighted according to their use. Therefore, the WACC expresses the return that both bondholders and shareholders demand to provide the company with capital.

The general formula can be presented as follows (Fernández, 2007b):

$$WACC = r_E \times \frac{E}{D+E} + r_D \times \frac{D}{D+E} \times (1-t)$$
 (5)

Where,

 $r_E = Cost of Equity$

 $r_D = Cost of Debt$

E = Market Value of Equity

D = Market Value of Debt

t = Corporate Tax Rate

However, the WACC is also criticized for only being effective for a restricted group of companies. According to Ezzel and Miles (1980), the WACC is only suitable for companies with simple capital structures. Another aspect that generates disagreement is considering market values instead of book values when calculating the weights for equity and debt in the WACC computation. Damodaran (2012) argues that since the cost of capital measures the cost of issuing securities to finance projects and such securities are issued at the market value, we must consider the market value of equity and debt. The market value of equity (E) is computed as follows:

$$E = Company's current stock price \times Number of Shares Outstanding$$
 (6)

Regarding the market value of debt (D), considering that debt is generally reported at the book value in the Financial Statements, this one is more complex to obtain. Since a significant part or even all the debt in most companies is not represented by tradable instruments, it becomes difficult for analysts to estimate its market value. Therefore, according to Mota (2020), the book value of debt is often considered a proxy of the market value since these two values tend to be very close in the majority of the cases. However, an alternative approach is considering all the debt in the Balance Sheet as a single coupon bond. Such a bond would have

a defined coupon equal to the interest expense on the total debt, with the book value being the face value of the bond and the weighted maturity of the debt corresponding to the bond maturity. So, discounting it back to the pre-tax cost of debt yields an approximate market value for the debt, as follows (Damodaran, 2006):

$$D = IE \times \left(\frac{1 - \frac{1}{(1 + r_D)^M}}{r_D}\right) + \frac{D_{BVM}}{(1 + r_D)^M}$$
 (7)

Where,

IE = Interest Expenses

 $r_D = Cost of Debt$

M = Weighted Average Maturity of long-term Debt

 $D_{BVM} = Book Value of Debt at maturity$

To conclude the WACC estimation, we need to calculate the cost of equity (r_E) and the cost of debt (r_D) .

1.1.1.1.2.1. Cost of Equity

One of the main inputs necessary to calculate the WACC is the cost of equity, which represents the return that investors require to compensate them for the risk of investing their capital. However, its estimation is challenging as, unlike the interest rate on debt, the cost of equity is implicit and cannot be directly observed.

The most adopted solution to overcome this difficult task is to estimate the cost of equity by applying the Capital Asset Pricing Model (CAPM), as Damodaran (2012) refers. The CAPM defines the risk of a stock in terms of its sensitivity to the stock market. Alternatively, models such as the Arbitrage Pricing Theory (APT) and the Fama-French three-factor model can be applied. These models are considered multivariate extensions of the CAPM, which are not centred only on a single explanatory factor (Grabowski and Pratt, 2010).

The CAPM was developed by Sharpe (1964) and Lintner (1965), and it was constructed based on the model of portfolio choice of Markowitz (1959). Kaplan and Peterson (1998) state that the CAPM defines a linear relationship between the firm's cost of equity (expected return) and the slope coefficient (beta) in a regression of the firm's equity returns on a market index. According to Damodaran (2012), to apply the CAPM we must assume no transaction costs, no

taxes, no asymmetry of information (free access to all available information), and that the market is efficient. Within these assumptions, we can compute the CAPM as follows:

$$r_E = r_f + \beta_L \times \left(E(R_M) - r_f \right) = r_f + \beta_L \times MRP \tag{8}$$

Where,

 $r_f = Risk-free Rate$

 β_L = Levered Beta

 $E(R_M)$ = Expected Return of the Market Portfolio

 $MRP = E(R_M) - r_f = Market Risk Premium$

1.1.1.1.2.1.1. Risk-free rate

An investment in a risk-free portfolio is one in which the investor knows that the expected return matches the actual return. According to Damodaran (2008a), the risk-free rate theoretically represents an investment with no risk. Such an investment must meet two requirements: there can be no default risk nor uncertainty about reinvestment rates. The first requirement implies that only the rate of securities issued by entities with no default risk can be considered to calculate the correct risk-free rate. Generally, this implies the use of securities issued by the governments. However, not all governments are default-free, and the presence of government or sovereign default risk can make it very difficult to estimate risk-free rates in some currencies. The second requirement implies that the risk-free security's maturity should, ideally, correspond to the investment horizon or the maturity of all discounted cash flows.

According to Borgersen and Kivedal (2018), one should consider a long-term government bond as the risk-free rate since it is the best proxy for risk-free investments. Theoretically, it should be a perpetual bond as companies will also be considered to have an infinite life. Despite that, Damodaran (2008a) recommends using a 10-year government bond since it is necessary to obtain other inputs and may be easier to find those inputs with a 10-year government bond than with a longest-term one.

Another point that Damodaran (2012) highlights is that the risk-free rate is determined by the currency in which the firm's cash flows are projected, not by the cash flows' origin. For instance, in the valuation of a worldwide company with expected cash flows projected in United States Dollar (USD), since it is the currency that prevails, the risk-free rate should be the 10-year United States (U.S.) government bond.

1.1.1.1.2.1.2. Beta

Generally, it is considered that a portfolio is exposed to systematic and unsystematic risks. The first one, also known as specific risk, corresponds to the company's risk component and may be mitigated by diversification. However, the second one, also known as market risk or non-diversifiable risk, represents the inherent risk of the market (Mullins, 1982). According to Damodaran (2011), this risk is measured by beta (β) , which establishes a relation between the risk of an asset and the market risk, and can be calculated as follows:

$$\beta = \frac{Cov_{R_x, R_m}}{\sigma_{R_m}^2} \tag{9}$$

Where,

 $Cov_{Rx,Rm}$ = Covariance between the Asset x Return and the Market Portfolio Return σ_{Rm}^2 = Variance of the Market Portfolio Return

Even though there are several approaches to obtaining the beta, Damodaran (2012) argues that the regression approach is probably the one that analysts generally prefer. By applying this approach, betas can be computed directly for listed companies through the public data from the price of their shares and a representative index of the whole market.

When we want to value a company that is not listed, the beta should be estimated from the unlevered beta of the industry, obtained from the weighted average of the levered betas from comparable listed companies, followed by an adjustment that allows the beta to reflect the company's leverage (Damodaran, 1999). This adjustment, commonly called the "Hamada" adjustment, implies that the beta of debt is equal to zero, i.e., the debt has no market risk and allows us to compute the levered beta (β_L) of the firm as follows:

$$\beta_L = \beta_U^A (1 + (1 - t) \left(\frac{D}{E}\right)) \tag{10}$$

With,

$$\beta_U^A = \frac{\beta_L^A}{1 + (1 - t^A) \left(\frac{D}{E}\right)^A}$$

Where,

 β_U^A = Weighted Average of the Unlevered Beta across the Industry

 β_L^A = Weighted Average of the Levered Beta across the Industry

t = Corporate Tax Rate

t^A = Weighted Average of the Corporate Tax Rate across the Industry

 $\frac{D}{E}$ = Debt-to-Equity Ratio

 $(\frac{D}{F})^A$ = Weighted Average of the Debt-to-Equity Ratio across the Industry

If we are not comfortable considering that debt has no market risk, we can use the debtadjusted approach instead of the conventional approach. This approach allows us to calculate the levered beta as follows:

$$\beta_L = \beta_U^A + (\beta_U^A - \beta_D)(1 - t)\left(\frac{D}{E}\right) \tag{11}$$

With,

$$\beta_D = \frac{r_D - r_f}{MRP}$$

$$\beta_U^A = \frac{\beta_L^A + \beta_D^A (1 - t^A) \left(\frac{D}{E}\right)^A}{1 + (1 - t^A) \left(\frac{D}{E}\right)^A}$$

$$\beta_D^A = \frac{r_D^A - r_f^A}{MRP}$$

Where,

 β_D = Beta of Debt

 β_D^A = Weighted Average of the Beta of Debt across the Industry

MRP = Market Risk Premium

MRP^A = Weighted Average Market Risk Premium across the Industry

 r_D^A = Weighted Average Cost of Debt across the Industry

 r_f^A = Weighted Average Risk-free Rate across the Industry

1.1.1.2.1.3. Market Risk Premium

The Market Risk Premium (MRP) represents the risk premium demanded by the investors due to investing in the market portfolio. As formula (8) demonstrates, the MRP corresponds to the difference between the Expected Return of the Market Portfolio $(E(R_M))$ and the risk-free rate (r_f) .

In fact, the most common way of estimating the MRP is by accessing the historical market returns and subtracting the returns of some risk-free security (Damodaran, 2008b). However, there are several other approaches, such as elaborating surveys aimed at the primary users of this information that are directly involved in the risk premiums estimation (Barroso et al., 2015).

1.1.1.1.2.1.4. Country Risk Premium

In addition to the three components presented above, it is also usual to consider the Country Risk Premium (CRP) when estimating the cost of equity. The CRP represents the additional premium required to compensate investors for the risk of investing in riskier markets. Usually, when the investment is made in companies incorporated in AAA countries that operate only in their countries, such CRP should not be considered. However, for companies from countries like Portugal, where the country's risk of default is higher compared to AAA countries, we should consider the CRP. The simplest way to obtain the CRP is to consider it as the difference between the rates of government bonds of the company's home country and of a country with a credit risk AAA. Alternatively, Damodaran (2020) argues that the most effective way is considering the company's home country default spread as the CRP.

1.1.1.1.2.2. Cost of Debt

After analysing the cost of equity, we now turn to another key input for the WACC estimation, the cost of debt. This component corresponds to the cost of borrowing funds incurred by the company to finance its operations and it reflects the minimum required yield by lenders to compensate them for any loss of capital when lending to a borrower. However, since interest expenses are usually tax-deductible, we often consider the after-tax cost of debt instead of the pre-tax cost of debt to gauge its impact more accurately. This tax shield phenomenon represents the tax savings of a company due to the fact that interests can be considered as a business expense.

According to Damodaran (2012), the after-tax cost of debt is obtained as follows:

$$r_{D \ after-tax} = r_{D \ pre-tax} \times (1-t) \tag{12}$$

Where,

 r_D after-tax = After-tax Cost of Debt

r_D pre-tax = Pre-tax Cost of Debt
t = Corporate Tax Rate

As we can see, the after-tax cost of debt depends on the corporate tax rate, already explained, and the pre-tax cost of debt. Regarding this last component, according to Damodaran (2008a), the pre-tax cost of debt is computed by adding a default spread to the risk-free rate using the following formula:

$$r_{D pre-tax} = r_f + Default Spread$$
 (13)

From the analysis of these two formulas, it remains only to understand how we can obtain the default spread. For companies with a rating notation, we can get the default component through the current company's credit rating and associated default spread (Damodaran, 2012). For companies without a rating notation, the recommendation to obtain the default spread is to estimate a synthetic rating. In this way, we should play the role of a rating agency and assign a rating to a firm based on its financial ratios. Another alternative is considering the most recent borrowings made by a firm to make an assessment of the default spreads charged to the firm (by comparing it with the risk-free rate) and use these spreads to estimate the cost of debt (Damodaran, 2006).

1.1.1.3. Terminal Value

Every time we perform a valuation exercise, we spend most of the time analysing the explicit forecast period, which represents a short period compared to the number of years considered after the terminal year. According to Schill (2013), the TV represents the present value of all future cash flows of the firm beyond the terminal year. Thus, Holt et al. (1999) warn about the importance of the TV, as it influences the valuation of a company more than any other component.

Damodaran (2012) presents three alternatives to compute the TV: the Multiples approach, the Liquidation Value approach, and the Gordon Stable-Growth Model approach. The latter is undoubtedly the most widely used approach, and its general formula is as follows:

$$TV = \frac{Cash Flow_{n+1}}{r - g_T} = \frac{Cash Flow_n \times (1 + g_T)}{r - g_T}$$
 (14)

Where,

Cash Flow_{n+1} = Cash Flow_n x $(1 + g_T)$ = Cash Flow at the end of the cruise year

r = Discount Rate

 g_T = Terminal Growth Rate

To obtain an accurate TV, we should consider a level of CAPEX similar to the annual Depreciation and Amortization times one plus the terminal growth rate (g_T) in the cash flow projection for the cruise year. A business with a level of CAPEX lesser than the Depreciation and Amortization in a couple of years is not a problem. However, the problem arises when this happens for many years, representing that the business is slowly liquidating itself. Therefore, from an investment perspective, we could not ensure that the company would sustain its growth perpetually.

Another aspect worth explaining is the aforementioned terminal growth rate. This growth rate represents the constant rate at which the expected free cash flows of the company are assumed to grow indefinitely, i.e., beyond the explicit forecast period. According to Damodaran (2012), the terminal growth rate cannot be greater than the economy's overall growth rate since no firm can grow forever at a rate higher than the growth rate of the economy in which it operates. Goedhart et al. (2010) go even further, considering that the best estimate is probably the expected growth rate of long-term consumption for industrial products, plus the inflation. In this way, since the Gross Domestic Product (GDP) is the best indicator of a nation's economic performance and considers several factors, such as consumption, the best proxy for the terminal growth rate is the expected real GDP growth rate plus the expected inflation.

1.1.1.2. Adjusted Present Value

According to Luehrman (1997a), the Adjusted Present Value (APV) model emerges as a viable alternative to the traditional DCF models and, despite not being widely used in practice, it results in more accurate valuations. The main criticism of the FCFF model is that it presents numerous shortcomings for companies with non-constant capital structures, for instance, the inaccuracy that the model generates by capturing the tax effects of having debt in the discount rate. In this context, Damodaran (2005) justifies that the APV is more accurate with non-constant capital structures since it separates all value components and analyses each one independently.

First introduced by Myers (1974), the APV defines the value of a levered firm as the value of an identical but unlevered, plus the value of any side effects due to leverage. These side effects often include the tax shield of debt and the expected bankruptcy costs. If, on the one hand, debt can have some positive effects as the tax shields, on the other hand, a higher level of debt will increase the default risk and, consequently, the expected bankruptcy costs. According to Damodaran (2012), the APV general formula is as follows:

$$Enterprise\ Value = Firm\ Value_{Unlevered} + PV_{tax\ shields} - PV_{E(BC)}$$
 (15)

Where,

PV_{tax shields} = Present Value of the Tax Shields

 $PV_{E(BC)}$ = Present Value of the Expected Bankruptcy Costs

Therefore, this model introduced three components: the Unlevered Firm Value, the Present Value of the Tax Shields, and the Present Value of the Expected Bankruptcy costs.

The APV starts with the computation of the Unlevered Firm Value, which represents the company's value as if it had no debt. It is obtained by forecasting the FCFF and discounting it at the unlevered cost of equity with the following formula:

Unlevered Firm Value =
$$\sum_{t=1}^{t=n} \frac{FCFF_t}{(1+r_E^U)^t} + \frac{TV_n}{(1+r_E^U)^n}$$
 (16)

With,

$$TV_n = \frac{FCFF_{n+1}}{r_F^U - g_T}$$

Where,

 $FCFF_t = Free Cash Flow to the Firm in year t$

 $FCFF_{n+1} = FCFF_n \times (1 + g_T) = Free Cash Flow to the Firm at the end of the cruise year$

TV_n = Terminal Value at the end of the explicit forecast period

 g_T = Terminal Growth Rate

$$r_E^U = r_f + \beta_U \times (E(R_M) - r_f)$$
 = Unlevered Cost of Equity

The second step in this model is to compute the Present Value of the Tax Shields. As stated by Fernández (2011), this component defines the increase in the company's value when

considering more debt because of the tax benefits resulting from the payment of interests. Such happens since interest expenses are, as already mentioned, tax-deductible. Luehrman (1997a) argues that the tax shield must be discounted at the cost of debt because it has the same risk and uncertainty as debt, so the general formula is as follows:

$$PV_{tax \, shields} = \sum_{t=1}^{t=n} \frac{(IE \times t)_t}{(1+r_D)^t} + \frac{TV_n}{(1+r_D)^n}$$
 (17)

With,

$$TV_n = \frac{(IE \times t)_{n+1}}{r_D - g_T}$$

Where,

IE = Interest Expenses

(IE x t)_{n+1} = (IE x t)_n x (1 + g_T) = (IE x t) at the end of the cruise year

t = Corporate Tax Rate

TV_n= Terminal Value at the end of the explicit forecast period

 $r_D = Cost of Debt$

 g_T = Terminal Growth Rate

Finally, we must compute the Present Value of the Expected Bankruptcy Costs. This last component reflects the effect of debt on the company's risk of default. According to Damodaran (2012), the Present Value of the Expected Bankruptcy Costs can be computed by the following formula:

$$PV_{E(BC)} = \pi_a \times PV_{Bankruptcy\ Costs} \tag{18}$$

Where,

 π_a = Probability of Bankruptcy

PV_{Bankruptcy Costs} = Present Value of the Bankruptcy Costs

However, this is not an easy task as neither the probability of bankruptcy nor the bankruptcy costs can be directly estimated. To solve the first problem, Damodaran (2005) suggests using the company's bond rating at each debt level or statistical methods based on the firm's observable characteristics to estimate the probability of bankruptcy. In the case of the bankruptcy costs, the situation is even more complicated since there are direct and indirect

bankruptcy costs. The direct ones are associated with legal expenses and liquidation process costs resulting from selling the assets at a discount price. The indirect costs estimate is not straightforward since these costs represent lost sales, lost profits, and possibly the inability of the firm to obtain credit or issue securities except under especially terms. Even though the direct costs are easier to estimate, the situation gets harder for the indirect costs. Altman (1984) estimates that the direct costs range from 4,30% to 6,20% of the firm's market value, while the indirect costs represent about 17,30%.

1.1.1.3. Excess Return Models

1.1.1.3.1. Economic Value Added

Even though there are numerous versions, the Economic Value Added (EVA) model emerges as the most used version of the Excess Return Models. In general, the EVA model allows estimating the EV as follows (Custódio and Mota, 2015):

$$Enterprise\ Value = Invested\ Capital + Market\ Value\ Added$$
 (19)

Therefore, two concepts to estimate the EV were introduced: the Invested Capital and the Market Value Added. The Invested Capital (IC) can be seen from the asset perspective, as the investment needed for the company to conduct its business, or from the resource perspective, as the resources employed by the company to finance its business (Mota, 2020). These two perspectives can both be formulated as follows:

$$IC_{AV} = Operating Assets_{Non Current} + WC$$
 (20)

Or

$$IC_{RV} = E_{RV} + D_{RV} - NOA (21)$$

Where,

 IC_{AV} = Invested Capital from Asset Perspective

 IC_{RV} = Invested Capital from Resource Perspective

WC = Working Capital

 E_{BV} = Book Value of Equity

 D_{BV} = Book Value of Debt

NOA = Non-Operating Assets

Once obtained the IC, the next step is to compute the Market Value Added (MVA). According to Dierks and Patel (1997), the MVA indicates the company's ability to increase the shareholders' value over time. According to Custódio and Mota (2015), the MVA can be estimated as follows:

$$MVA = \sum_{t=1}^{t=n} \frac{EVA_t}{(1 + WACC)^t} + \frac{TV_n}{(1 + WACC)^n}$$
 (22)

With,

$$TV_n = \frac{EVA_{n+1}}{WACC - a_T}$$

Where,

TV_n= Terminal Value at the end of the explicit forecast period

 $EVA_t = Economic Value Added in year t$

 $EVA_{n+1} = EVA_n \times (1 + g_T) = Economic Value Added at the end of the cruise year$

WACC = Weighted Average Cost of Capital

 g_T = Terminal Growth Rate

As we can see, it is at this moment that we incorporate the value of EVA. According to Damodaran (2005), the EVA measures the surplus value created by an investment. In this way, EVA determines whether a company is creating or destroying value by subtracting a finance charge from the Net Operating Profit Less Adjusted Taxes (NOPLAT), as follows (Reddy et al., 2011):

$$EVA = NOPLAT - (WACC \times IC)$$
 (23)

Where,

 $NOPLAT = EBIT \times (1 - t) = Net Operating Profit Less Adjusted Taxes$

WACC = Weighted Average Cost of Capital

 $IC = IC_{AV} = IC_{RV} = Invested Capital$

1.1.2. Equity Valuation Models

1.1.2.1. Dividend Discount Model

According to Damodaran (2006), the Dividend Discount Model (DDM) represents the oldest DCF model, which considers the value per share as the present value of the perpetual stream of future dividends per share discounted at the cost of equity. Contrary to what was assumed previously, this model considers that the only cash flow that shareholders will receive is from the dividends (Fernández, 2004).

First presented by Williams (1938), the general formula of the DDM is as follows:

Value per share =
$$\sum_{t=1}^{t=n} \frac{D_t}{(1+r_E)^t} + \frac{TV_n}{(1+r_E)^n}$$
 (24)

With,

$$TV_n = \frac{D_{n+1}}{r_E - g_T}$$

Where,

TV_n = Terminal Value at the end of the explicit forecast period

 D_t = Expected Dividends per share in the holding period t

 $D_{n+1} = D_n \times (1 + g_T) = Expected Dividends per share at the end of the cruise year$

 $r_E = Cost of Equity$

 g_T = Terminal Growth Rate

Regarding the evolution pattern of the dividends, several versions were developed based on different insights about future growth. The first and simpler version of the DDM is the Gordon Growth Model, presented by Gordon and Shapiro (1956) and Gordon (1962). Henry et al. (2010) state that this version represents a Single-stage Growth Model since all future periods are gathered into one single stage, meaning that dividends grow forever at a constant rate. Its formula is as follows:

Value per share =
$$\frac{D_0 \times (1+g)}{r_F - g}$$
 (25)

Where,

 D_0 = Current Dividends per share

 $r_E = Cost of Equity$

g = Dividends Perpetual Growth Rate

As stated by Henry et al. (2010), to overcome the assumption of a company growing at the same rate forever, Multi-stage Growth Models were developed. These models are more realistic since they consider different growth rates throughout the company's life. The most popular Multi-stage Growth Models are the H-Model and the Three-stage Growth Model.

The H-model, first presented by Fuller and Hsia (1984), is a Two-stage Growth Model based on the assumption that the initial growth phase linearly declines until it reaches a stable growth rate in a steady state. Unlike the classical Two-stage model, this model states that the growth rate's transition to the mature phase happens smoothly during the first stage. It also assumes that the dividend payout and the cost of equity are constant over time and can be estimated as follows:

Value per share =
$$\frac{D_0 \times (1 + g_L)}{(r_E - g_L)} + \frac{D_0 \times H \times (g_S - g_L)}{(r_E - g_L)}$$
(26)

Where,

 D_0 = Current Dividends per share

 $r_E = Cost of Equity$

g_S = Initial short-term Dividend Growth Rate (in the first period)

g_L = Normal long-term Dividend Growth Rate after year 2H (in the last period)

H = Half-life in years of the Extraordinary High-growth phase

Regarding the Three-stage Growth Model, there are two popular sub-versions that differ in how they interpret the second stage. In these models, the company is assumed to have three distinct stages of growth. The first stage represents the stage with the highest growth rate, while the third stage represents the stage with the lowest. However, in both the first and third stages, growth rates are assumed to be constant. In this way, several sub-versions emerge with the intent to produce more accurate results by considering different premises on how the transition from the first to the third stage occurs. In the first sub-version, it is assumed that the company has a second stage with a steady growth rate, similar to the other two stages. Thus, the constant growth rate must be lower than the one presented in the first stage. Conversely, it must be

higher than the one presented in the third stage. Such happens since it is considered that the company's life cycle moves towards the maturity stage, which represents the stage with the lowest growth rate. In the second sub-version, it is assumed that the second stage considers a marginal decrease in the growth rate until the company reaches the final stage instead of a constant growth rate. Compared to the first sub-version, this one became more used since it demonstrates great potential to provide more accurate results. This last sub-version treats the second and third stages as an H-Model, and it can be computed as follows (Henry et al., 2010):

Value per share =
$$\sum_{t=1}^{t=n} \frac{D_0 \times (1+g_s)^t}{(1+r_E)^t} + \frac{TV_n}{(1+r_E)^n}$$
(27)

With,

$$TV_n = \frac{D_0 \times (1 + g_L)}{(r_E - g_L)} + \frac{D_0 \times H \times (g_S - g_L)}{(r_E - g_L)}$$

Where,

 D_0 = Current Dividends per share

 $r_E = Cost of Equity$

TV_n= Terminal Value at the end of the explicit forecast period

gs = Initial short-term Dividend Growth Rate (in the first period)

g_L = Normal long-term Dividend Growth Rate after year 2H (in the last period)

H = Half-life in years of the Extraordinary High-growth phase

Whatever the versions of the model adopted, since the DDM is an Equity Value model, the ultimate goal is to compute the EQV. Therefore, it is just necessary to multiply the value per share estimated from any version of the DDM by the number of shares outstanding, as follows:

Equity Value = Value per share
$$\times$$
 Number of Shares Outstanding (28)

1.1.2.2. Free Cash Flow to Equity

An alternative to the DDM is the Free Cash Flow to Equity (FCFE) model, which also values just the equity stake in the business. According to Damodaran (2006), the FCFE model tries to grab what is missing in the DDM by discounting potential dividends rather than actual dividends.

Unlike the FCFF, the FCFE represents the amount available to distribute among just the shareholders, i.e., the amount that can be used to pay out dividends or stock buybacks. The general formula is as follows:

$$FCFE = Net\ Income + D&A - CAPEX - \Delta WC + \Delta Debt$$
 (29)

Where,

D&A = Depreciation and Amortization

CAPEX = Capital Expenditures

 Δ WC = Change in Working Capital

 Δ Debt = New Debt Issues – Principal Repayments

The FCFE calculation starts with net income, an accounting measure of shareholder income that already accounts for interest expense and tax savings from any outstanding debt (Damodaran, 2006). Then, like the FCFF calculation, we must add back the Depreciation and Amortization and subtract the CAPEX and the change in WC. Next, we must consider the effect of changes in debt levels since the cash flow available to shareholders is affected when debt is paid off or raised.

Once the FCFE is estimated, the next step is to discount it at the rate of return required by the firm's equity investors., i.e., the cost of equity (Damodaran, 2012). Then, similar to the FCFF model, it is reasonable to consider the NOA. However, once considered, we will have to proceed with the removal from the net income's computation of any revenue or cost associated with those NOA (Mota, 2020). In this way, we can estimate the EQV as follows:

Equity Value =
$$\sum_{t=1}^{t=n} \frac{FCFE_t}{(1+r_E)^t} + \frac{TV_n}{(1+r_E)^n} + NOA$$
 (30)

Where,

FCFE_t= Free Cash Flow to Equity in year t

TV_n= Terminal Value at the end of the explicit forecast period

 $FCFE_{n+1} = FCFE_n \times (1 + g_T) = Free Cash Flow to Equity at the end of the cruise year$

 $r_E = Cost of Equity$

NOA = Non-Operating Assets

 g_T = Terminal Growth Rate

1.2. Relative Valuation

As stated previously, the DCF Valuation approach has become quite popular. However, the complexity of its use enhances the use of alternative approaches. In this chapter, we will look at the Relative Valuation approach, also known as the Multiples model.

According to Damodaran (2012), the goal of the DCF Valuation approach is to determine the asset's value based on its cash flow, growth, and risk profile. In Relative Valuation, the goal is to value assets based on the value that the market is willing to pay for similar assets, using financial ratios called multiples (Krishnamurti and Vishwanath, 2009).

Despite the clear advantages of this approach, namely its simplicity, it also suffers from how easy is to manipulate its outcome. Subjectivity begins at the very moment of the peer's group definition, i.e., the moment of setting a comparable group of firms that present similar financial features and are submitted to the same macroeconomic events as the company in analysis (Foushee et al., 2012). So, there is no well-defined rule on which companies can or cannot be considered comparable, always remaining for the analyst the task of trying to define a set of criteria to identify the peer group. Then, it must be decided which multiples to consider in the valuation. These multiples refer to a class of different financial ratios used to value a stock. So, there is again a range of opportunities for possible manipulation and bias of the result. As Damodaran (2012) states, it is not uncommon to see analysts adopting a cynical view, selecting a multiple that reflects their purposes, i.e., that best fits their story. However, the most usual procedure is selecting multiples typically considered for specific sectors. In addition, it is also important to mention that there is the possibility of estimating multiples based on the company's historical performance or from a looking-forward perspective. In other words, the analyst must choose whether to use multiples based on the company's past performance or based on projections for the company's future performance. However, regarding this aspect Damodaran (2012) has no doubts that multiples based on a forward-looking basis provide better information about the current market valuation of a stock or business. Even so, since it is not easy to make (or have available) such projections, it is recommended to use the most recent historical data available. Besides all these aspects, the Relative Valuation approach still depends on which rules the analyst considers to be the fairest in identifying outliers. Thus, despite being a valid approach, Relative Valuation tends to be used as a complementary valuation approach due to the lack of transparency and objectivity regarding the underlying assumptions, making it particularly vulnerable to errors or manipulation (Fernández, 2001).

Once all these steps are completed, the next ones are to compute the average of the adjusted individual multiples of the companies that were selected for the peer group and subsequently multiply it by the denominator of the corresponding multiple of the firm in analysis to obtain the EQV. Depending on the multiple chosen, and because we need to obtain the EQV to estimate the company's target share price, it may be necessary to make adjustments whenever the EQV is not directly obtained.

Next, in addition to the most used multiples, the necessary adjustments for the multiples applied in this master's project are presented, as well as a more detailed analysis of the outlier identification process since it represents a critical step in the valuation exercise.

1.2.1. Multiples

In the table below, we present the most used multiples according to the categories defined by Fernández (2001): the Equity Value Multiples, the Enterprise Value Multiples, and the Growth-referenced Multiples. Although all the categories gather multiples with a lot of practical utility, we will focus only on the first two categories. The last one is left out since it gathers multiples intended mainly for growth industries such as health, technology, and telecommunications.

Table 4: Multiples by Categories. Fernández (2001).

	Price to Earnings Ratio	P/E
Equity Value Multiples	Price to Sales	P/S
	Price to Book Value	P/BV
	Enterprise Value to EBITDA	EV/EBITDA
Enterprise Value Multiples	Enterprise Value to Sales	EV/Sales
	Enterprise Value to Free Cash Flow	EV/FCFF
Growth-referenced Multiples	Price to Earnings Growth	PEG
Growth-referenced Multiples	Enterprise Value to EBITDA Growth	EV/EG

In terms of our valuation exercise, we decided to select the P/E multiple from the Equity Value Multiples category and the EV/EBITDA multiple from the Enterprise Value Multiples category. Later in Chapter 3, we will address in more detail the reasons that motivated our choice. Right now, it is only relevant to understand what each one represents.

According to Damodaran (2006), the P/E multiple works as a proxy for several crucial characteristics of the companies. In this way, the P/E may be helpful to attest to the associated risk of stock growth for companies with similar market exposure and projected growth rates. However, this multiple is the target of criticism, namely its vulnerability to changes in capital structures, being susceptible to manipulation by managers that pursue advantage (Goedhart et

al., 2010). Even so, according to Damodaran (2012), it represents and will continue to represent one of the most widely used multiples as it can be easily obtained, as demonstrated in the formula below:

$$P/E = \frac{Market\ Capitalization}{Total\ Net\ Income} = \frac{Market\ value\ per\ share}{Earnings\ per\ share} \tag{31}$$

Regarding the EV/EBITDA multiple, this is seen as the best alternative to the P/E multiple as it is neutral to the company capital structure, allowing comparisons between companies with different degrees of financial leverage without obtaining biased results. In this way, it enables us to derive the value of the entire company in analysis by resorting to a variable that represents the baseline profitability of the company and concerns to all claimants, as follows:

$$EV/EBITDA = \frac{Enterprise\ Value}{EBITDA} \tag{32}$$

As explained previously, since our objective is to obtain the company's target share price, we must still consider adjustments whenever a multiple does not provide us with the EQV. While the Equity Value Multiples do not require further adjustments, the Enterprise Value Multiples do because when we multiply the adjusted average by the denominator referent to the considered multiple, the result obtained is the EV, not the EQV. Consequently, we will have to replicate for multiples like the EV/EBITDA the same adjustments considered for the FCFF model to obtain the EQV and then the value per share.

1.2.2. Peer Group

Even with every precaution to homogenize the peer group, anomalous values are likely to be identified during the Relative Valuation process. For this reason, as Barroso et al. (2015) point out, guidelines for identifying and, as a result, deleting outliers must be defined. Since these guidelines will impact the results, to avoid additional manipulation from the analyst, they must be defined a priori.

In an attempt to standardize the process of defining such guidelines, Barroso et al. (2015) suggest considering an observation that deviates from the mean or median by \pm one standard deviation as an outlier. Once found the outliers, an acceptable procedure is to remove them and recalculate the mean or median of the multiple without them. A radical alternative is to remove not only the outliers but the company that recorded such outliers too, and even the multiple itself if it records several outliers (Barroso et al., 2015).

2. Company and Industry Overview

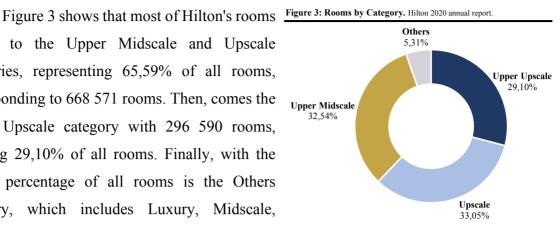
2.1. Hilton Worldwide Holdings

2.1.1. History and General Description

Hilton was born in 1919 when Conrad Hilton bought his first hotel named The Mobley in Cisco, Texas. In 1925, a few years after entering the hotel business, Conrad built the first hotel to carry Hilton's name, the Dallas Hilton. From that moment on, a process of expansion has begun. In 1943, Hilton became the first coast-to-coast chain of hotels in the U.S. due to the purchase of the emblematic Roosevelt and Plaza hotels in New York. In 1946, Hilton Hotels Corporation is created, becoming the first hotel company post-World War II to sell a stock on the New York Stock Exchange (NYSE).

Between the 50s and the 60s, Hilton expanded so much its portfolio that it suffered a spinoff. In this way, Hilton International was born to manage international hotels, whilst the mission of the Hilton Hotels Corporation was to manage only properties on American soil. In 1967, Hilton International was sold to Trans World Airlines, which pursued synergies between the hotel market and air transport.

In 1979, Conrad Hilton dies, which motivated a process of restructuring and modernization in the company. A few years after entering the domestic gaming business, the company creates a website and implements the Hilton Honors, the guests' loyalty program. In 1992, the joint venture between Hilton Hotels Corporation and Grand Vacations set Hilton's entry into the vacation ownership market by the name of Hilton Grand Vacations. A few years after that, Hilton spin-off gaming operations into a separate publicly held company called Park Place Entertainment (later Caesars Entertainment). In 2006, Hilton Hotels Corporation reacquires its sister Hilton International, gathering both companies for the first time in 40 years, which resulted in a considerable expansion of Hilton's portfolio of brands.


In 2007, after the merger agreement with affiliates of The Blackstone Group, the Hilton Hotels Corporation privatization process got completed. Two years later, Hilton Worldwide Holdings was born, and Christopher J. Nassetta became president and Chief Executive Officer (CEO) of the company. In 2013, after Blackstone refinanced about \$13 000 Mn of the hotel chain's debt, Hilton returned to the NYSE (Oran, 2013). In 2017, the spin-offs of Park Hotels & Resorts (PHR) and Hilton Grand Vacations (HGV) got completed after Hilton announced its intention to spin-off its timeshare and real estate businesses.

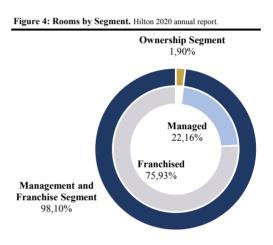
As of 31 December 2020, Hilton has its headquarters in Tysons Corner, Virginia and is listed on the NYSE under the ticket HLT, having a market cap of \$30 885 Mn with 277 590 904 shares outstanding. The company accounts for 6 478 properties comprising 1 019 287 rooms in 119 countries and territories. Additionally, the company has 2 570 hotels in its development pipeline, representing over 397 000 rooms under construction or approved for development throughout 116 countries and territories. Despite its strong presence worldwide, Hilton's performance in 2020 suffered a severe impact as COVID-19 forced a reduction in travel, resulting in the complete and partial suspensions of hotel operations in many of the areas where Hilton hotels are situated.

2.1.2. Brand Portfolio and Business Model

With over 100 years of service, Hilton is one of the largest hospitality companies in the world. As of 31 December 2020, the portfolio of Hilton consists of 18 brands, distributed into six chain scales: Luxury, Upper Upscale, Upscale, Upper Midscale, Midscale, and Timeshare. All these brands are grouped according to the STR chain scale, except the last one, which represents the license agreement with HGV. Hilton continues earning a fee from a long-term license agreement with HGV, which allows the access to Hilton's commercial services and brands, despite HGV being an independent public traded company. Besides the 18 existing brands, Hilton also has the Hilton Honors brand, the guests' loyalty program, which as of 31 December 2020, accounts for more than 120 million members.

belong to the Upper Midscale and Upscale categories, representing 65,59% of all rooms, corresponding to 668 571 rooms. Then, comes the Upper Upscale category with 296 590 rooms, totalling 29,10% of all rooms. Finally, with the lowest percentage of all rooms is the Others category, which includes Luxury, Midscale,

Timeshare categories rooms and a set of rooms not specified in the Hilton 2020 annual report. This latter category comprises only 5,31% of all rooms, equivalent to 54 126 rooms. In this way, we conclude that most of the rooms offered by Hilton belong to an upper-middle segment, which evidences the pursuit of Hilton to deliver outstanding customer experiences and superior operational performance.


Regarding the business model in place, Hilton operates its business through a Management and Franchise segment and an Ownership segment. Prior to the 2017 spin-offs, the PHR and HGV results were reported under the Ownership and Timeshare segments, respectively. Following the 2017 spin-offs, Hilton no longer reported the Timeshare segment because it ceased the isolated timeshare operations despite continuing to receive the previously mentioned fee. Alternatively, Hilton started including the timeshare properties in the Management and Franchise segment. Accordingly, this segment refers to all the hotels of thirdparty owners, including all the franchised hotels that license Hilton brands and the timeshare properties. The Management and Franchise segment generates revenue mainly from fees charged to hotel owners under management and franchise contracts. As of 31 December 2020, this segment included 715 managed hotels and 5 702 franchised hotels, including timeshare properties, consisting of 999 887 rooms.

When it comes to business management contracts, these are usually set to last 20-30 years (plus 5-year or 10-year extension options) and include early termination rights. Hilton receives from management contracts: a base management fee (a percentage of the monthly gross revenue of the hotel) and, when applicable, an incentive management fee (a percentage of the operating profits of the hotel). On the other hand, the franchise contracts are usually set to last approximately 20 years for new hotels and 10-20 years for the existing ones. These contracts include 10-year or 15-year extension options and, similar to the management contracts, the early termination rights. Under the franchising contracts, each franchisee pays

an application fee and a royalty fee (a percentage of the monthly gross room revenue of the hotel). Additionally, regardless of the type of contract, the owners/franchisees generally pay a monthly program fee based on the underlying hotel's sales and usage as reimbursements for advertising costs, participation in the Hilton Honors guests' loyalty program, training, computer systems, and quality assurance programs.

The Ownership segment includes owned, leased, and joint venture hotels. This segment primarily derives earnings from providing hotel rooms per night, food, and beverage. As of 31 December 2020, the ownership segment included 61 hotels totalling 19 400 rooms, comprising 53 hotels that Hilton wholly owned or leased, 1 hotel owned by a consolidated non-wholly owned entity, 2 hotels leased by a consolidated variable interest entity and 5 hotels owned or leased by unconsolidated affiliates.

As we can see in figure 4¹, the Management and Franchise Segment is the one that most represents Hilton's business, with 98,10% of the entire portfolio by rooms, where 75,93% of the segment is exclusively from franchising contracts with 773 982 rooms against 22,16% from management contracts with 225 905 rooms. On the other hand, the Ownership segment represents only 1,90% of total rooms, equivalent to 19 400 rooms.

2.1.3. Share performance, Shareholder Structure, and Dividend Policy

As of 13 December 2013, with the Initial Public Offering (IPO), Hilton returned to the NYSE with its shares valued at \$20,00. Hilton raised over \$2 300 Mn, representing the biggest-ever hotel IPO until that moment. Figure 5 shows the Hilton share price evolution registered before and during the period of the pandemic crisis. At the end of 2018, the share price was \$71,80, and thenceforward the price has only increased. However, in the first quarter of 2020, the Hilton share price dropped sharply due to the onset of the pandemic crisis. Around this time, there was the highest trading volume recorded so far. As confidence in the financial markets grew, the share price of Hilton recovered remarkably. Before the end of 2020, the company saw its shares reaching prices above \$100,00, ending the year at \$111,26.

¹ Due to the approximations, the sum of the Management and Franchise sub-segments equals 98,10%.

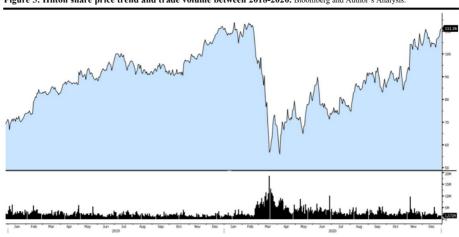
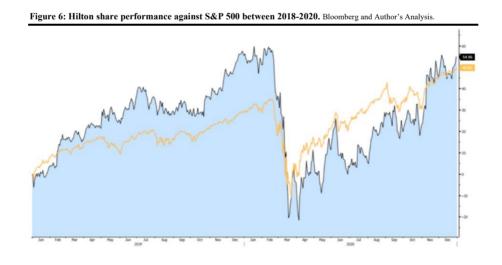
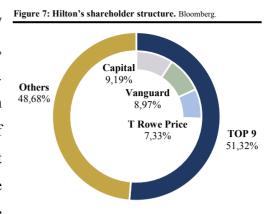




Figure 5: Hilton share price trend and trade volume between 2018-2020. Bloomberg and Author's Analysis.

As we can see in Figure 6, by comparing the Hilton share performance with the Standard & Poor's 500 (S&P 500) Index since the end of 2018, we conclude that during the pre-pandemic period the shares of Hilton appreciated above the S&P 500 Index. However, with uncertainty hanging in the financial markets in March due to the onset of the pandemic crisis, Hilton's shares ended up suffering a devaluation greater than the S&P 500 Index. In the following months, the trend remained the same, i.e., the pace at which the S&P 500 Index recovered was higher than that of Hilton's shares. In fact, what was truly surprising was the pace at which the S&P 500 Index recovered. According to Detrick (2021), the chief market strategist at LPL Financial, this recovery represented one of the most incredible bull markets ever seen. This trend was only reversed in November 2020, with Hilton recording a higher appreciation than the S&P 500 Index. Normalized as of 31 December 2018 prices, we can see that the share price of Hilton between 2018-2020 appreciated by 54,96%. By contrast, the appreciation of the S&P 500 Index was slightly lower, at 49,83%.

As of 31 December 2020, Hilton had only common stock having no preferred stock. At that time, the number of shares outstanding was 277 590 904. Figure 7 shows that 9 shareholders owned more than 50,00% of Hilton. Of this restricted group of shareholders, the Capital Group Companies stood out with 25 522 252 shares, representing a company stake of 9,19%. The Vanguard Group and the T Rowe Price

Group completed the podium, with 8,97% and 7,33% of the company stake, respectively.

As a result of the COVID-19 pandemic, Hilton suspended the payment of dividends. Usually, such dividends were paid quarterly and on an undefined basis. However, in March 2020, the company suspended the declaration and payment of dividends as part of proactive measures to secure its liquidity position in response to the pandemic. So far, there is no decision regarding the resumption of dividend payments, which will depend, among other things, on the results of operations, cash needs, financial condition, contractual restrictions, and other factors that the board of directors may consider relevant.

Figure 8 shows that during 2020 were paid only the dividends for the first quarter, equivalent to \$0,15. Therefore, the dividend yield analysis refers only to the period between 2016-2019. Since the payments of dividends were suspended in 2020, and we are only considering yearly values, comparing 2020 with any other year would be unfair. In addition, we are also considering an adjustment for 2016. This adjustment comes from a 1-for-3 reverse stock split of Hilton's outstanding common stock, completed in January 2017. Usually, companies perform a reverse stock split to boost their stock price by decreasing the number of shares outstanding. However, if this strategy is not followed by significant changes that improve operations, projected earnings, and other important information to investors, the result may not be as good as expected. Even so, Hilton saw its shares priced at \$55,81 in 2016 actually rise to \$79,86 in 2017.

Since each stock yielded \$0,84 in 2016, the current value would now be three times higher. In other words, each holder of one Hilton's share (the equivalent of 3 before this reverse stock split) had seen \$2,52 generated during 2016. Since this analysis is based on the dividend yield, which reflects how much a company pays out in dividends each year relative to its stock price, if we do not consider an adjustment, the dividend yield in 2016 would be deceptively high.

Such would happen just because we would be considering the three old stocks that yielded each one a dividend amount in the past, as only one stock now that generates such a total amount. Therefore, to obtain values that actually reflect what has happened during the last few years, we considered the dividends generated by an old stock in 2016 so that the impact of the reverse stock split does not bias the results.

In this way, we conclude that the dividend yield has varied very much, not following a specific trend. Even considering the adjusted dividends, 2016 registered the highest dividend yield compared to recent years. Since the dividends paid by Hilton between 2017-2019 remained unchanged, dividend yield varied due to a variation in the share price. If we had no other information, just by analysing the dividend yield for the period between those three years, we could conclude that Hilton's share price had decreased in 2018 and increased during 2019. In fact, it represents exactly what happened as Hilton's share price varied by -10,01% and +54,47% between 2017-2018 and 2018-2019, respectively.

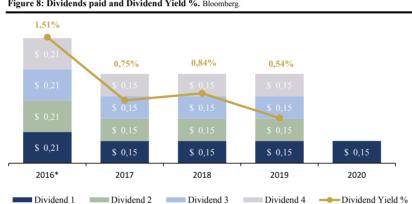
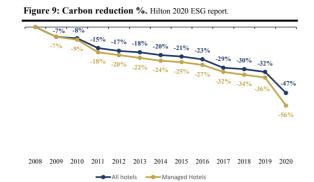


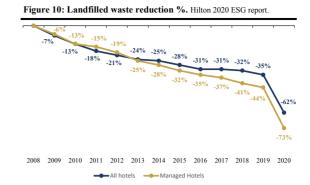
Figure 8: Dividends paid and Dividend Yield %. Bloomberg

2.1.4. Environmental, Social, and Corporate Governance

In 2020, a year after being appointed for the first-time global industry leader in the Dow Jones Sustainability Indices (DJSI), Hilton repeated the feat. Hilton thus consolidated its leadership position across economic, social, and environmental pillars. As one of the largest hotel companies in the world, Hilton recognizes that it is responsible for protecting the communities and the planet. Despite the challenges of the COVID-19 pandemic, Hilton remained committed to driving responsible travel and tourism globally. The company believes that as the world recovers from this crisis, the urgency for corporate responsibility leadership is greater than ever.

The terms Environmental, Social, and Governance (ESG) refer to business and investment sustainability. Even though its metrics are not currently a required part of financial reports for publicly traded companies, a growing number of companies are beginning to include them in their reported Financial Statements or in a separate document, which is the case of Hilton. The 2020 ESG report released by Hilton presents the ESG performance indicators of the company. In addition, the report also includes the primary goals defined by the company for 2030 in line with the global Sustainable Development Goals (SDGs) adopted by the United Nations in 2015.


According to Christopher J. Nassetta, Hilton was founded on the premise that travel can make the world a better place (Hilton, 2019). In this way, the company is committed to increasing the investment with the social impact and substantially reducing its environmental footprint. To be able to do that, in 2018, Hilton launched the Travel with Purpose 2030 Goals, aimed to generate a positive impact on the world's future.


Next, we will go into further detail about some of these goals, as well as Hilton's performance so far towards their fulfilment.

2.1.4.1. Environmental Impact

Hilton operates in some of the most beautiful places in the world and therefore recognizes that it must be an active part of its preservation. Relatively to the Environmental impact, one of the objectives concerns carbon emissions. As stated in the ESG report, Hilton is committed to leading the hospitality industry towards a zero-carbon economy and reducing its greenhouse gas emissions by 61,00% until 2030. Figure 9 shows that the company has continuously reduced its carbon emissions in the last years. However, Hilton recognizes that the recent abrupt reduction is neither representative nor sustainable since it is a consequence of the occupancy reduction and complete or partial suspensions of properties.

Another goal is to reduce waste by 50,00% until 2030. The strategy seeks to decrease the overall amount of waste produced in the hotels by 50,00% while also taking steps to divert the remaining waste from landfills through donation, recycling, composting, energy from waste incineration, and other opportunities. As we can see in Figure 10, we noticed that between 2016-2019 the trend of decreasing waste has almost stabilized. This situation is of great concern to Hilton's managers as it demonstrates the inability to control waste as the company grows. In 2020, the waste dropped sharply again just due to occupancy reduction.

2.1.4.2. Social Impact

In more than 100 years of Hilton history, there has never been an event more devastating to the hospitality industry than the COVID-19 crisis. This unprecedented year has given new urgency to supporting local communities, aiding team members, and promoting a culture of fairness.

Aiming to double its social impact investment until 2030, Hilton sought to use its global scale as a driver of opportunities, focusing on positively impacting human rights and strengthening communities. Hilton employees from 82 countries have been involved in various volunteer campaigns to help and respond to the urgent needs of local communities.

In addition, Hilton created the Hilton Workforce Resource Center in 2020, a personalized website aimed to connect Hilton's team members to temporary and permanent job opportunities in organizations facing COVID-19 hiring outbreaks. Over 150 firms posted around a million jobs, which proved the success of this initiative.

2.1.4.3. Corporate Governance

Hilton believes that its robust corporate governance structure is the key to ensuring the success and longevity of the business. Within the board of directors, Hilton has three specialized committees that assist the board in fulfilling its duties: the Audit Committee, the Compensation Committee, and the Nominating & ESG Committee.

Hilton is proud that 8 of 10 directors that compose the board are independent, with only 1 executive member, the CEO Christopher J. Nassetta. In terms of the committees, they are entirely composed of independent directors.

As a result of the pursuit to maintain the highest ethical standards in the hospitality business, acting with integrity, and conducting the business in compliance with the law, in 2020

and for the third consecutive year, Hilton was appointed as one of the most ethical companies in the world by Ethisphere.

2.1.5. Financial Analysis

For this analysis, we exclusively considered the period between 2016-2020. It is also crucial to mention that this analysis and the exercise valuation were performed according to Hilton's Financial Statements taken from Bloomberg (the Income Statement, the Balance Sheet, and the Cash Flow Statement) and not from Hilton 2020 annual report. Companies can report values differently, using different criteria. Consequently, the same data may look slightly different across various fillings, making comparisons difficult. Since we need to compare data from several companies, we chose to use the Financial Statements that Bloomberg provides. The Income Statement considered is according to the Generally Accepted Accounting Principles (GAAP). Regarding the Balance Sheet and the Cash Flow Statement, we also considered those harmonized by Bloomberg, which standardizes the datasets using industry and market practices so that users can easily compare companies in the same industry (Annex A, B, and C).

2.1.5.1. Profitability

As we can see in Figure 11, in 2020, the total revenues of Hilton were \$4 307 Mn, representing an abrupt decrease of 54,43% compared to 2019. During the last five years, the primary revenue sources have been the franchise and licensing fees, the owned and leased hotels, and the other revenues from managed and franchised properties. These three sources, which annually generate an average of 90,00% of total revenues, in 2020 ended up recording a combined decrease of 53,66%, equivalent to \$4 716 Mn.

Of the three, the one that experienced the biggest decrease, in relative terms, was the owned and leased hotels component, registering -70,39% compared to 2019. This component, which represents the revenues derived from the hotel operations, including hotel room, food, and beverage sales, was greatly affected by the temporary closure of some hotels due to the pandemic, generating only \$421 Mn in 2020. In absolute terms, the biggest drop was registered by the other revenues from managed and financial properties component, which represents the amounts contractually reimbursed to Hilton by property owners. This component, which generated \$5 686 Mn in 2019, did not exceed \$2 707 Mn in 2020.

Concerning the other sources of revenue, it is relevant to mention that all of them also recorded decreases in their values, evidencing the brutal impact caused by the COVID-19 pandemic (Annex D).

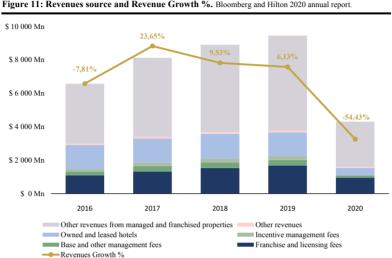


Figure 11: Revenues source and Revenue Growth %. Bloomberg and Hilton 2020 annual report

Figures 12 and 13 show the variation of the EBITDA (Earnings Before Interests, Taxes, Depreciations, and Amortizations) Margin and the Net Profit Margin, respectively. Both Margins reflect the poor performance of Hilton in 2020. If, on the one hand, EBITDA Margin recorded a much lower value than it had been registering until then, due to a decrease of \$2 105 Mn in EBITDA, on the other hand, the Net Profit Margin even registered a negative value, resulting from the Net Loss of \$715 Mn recorded in 2020.

-16.60% 2018 2019

Net Income — Net Profit Margin %

From the Operating Margin perspective, we can see in Figure 14 that was registered a negative variation close to 27 p.p., from 2019 to 2020. Such happened mainly due to an abrupt drop in the Operating Income, which registered a negative value of \$418 Mn. Thus, the Operating Margin, which until then had always recorded values above 13,00%, ended up

recording in 2020 the value of -9,71%, indicating the inability of Hilton to generate profit through its core operations.

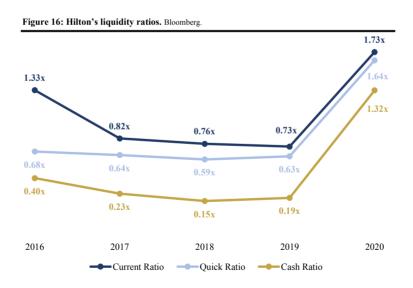
Concerning Hilton's return ratios, which measure how effectively an investment is being managed, there is a point that is important to clarify. Figure 15 does not consider the Return on Equity (ROE)² between 2019-2020 since Hilton's amount of Equity Before Minority Interest had recorded negative values in those two years and because Hilton recorded a Net Loss of \$715 Mn in 2020. These two factors combined would generate an artificially high ROE. In fact, when a company has a Net Loss or negative Equity Before Minority Interest, ROE should not be calculated.

Therefore, considering only the period between 2016-2018, we conclude that Hilton's ROE followed a growth trend until 2018. In contrast, the Return on Assets (ROA) and the Return on Invested Capital (ROIC) appeared to have stabilized after 2017 until everything changed in 2020. Due to the Net Loss, Hilton's ROA recorded a negative value of 4,51%, suggesting that the company cannot use its assets effectively to generate income. Concerning ROIC, which also decreased in 2020, this one recorded a negative value of 3,25%. Such a decrease was motivated by an abrupt drop in the Net Operating Profit After Taxes (NOPAT), which registered a value of \$1 176 Mn in 2019 and a negative value of \$327 Mn in 2020, which indicates a Net Operating Loss (Annex E and F).



Figure 14: Total Revenues, Operating Income, and Operating Margin. Bloomberg. Figure 15: Hilton's return ratios. Bloomberg

2.1.5.2. Liquidity


Regarding the Liquidity ratios, which indicate the ability of a company to meet its short-term obligations, we had similar trends recorded in the Current Ratio, the Quick Ratio, and the Cash Ratio.

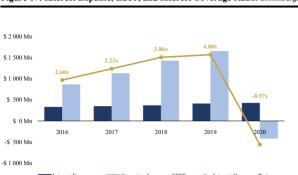
² We considered the Return on Common Equity.

Figure 16 shows that the Current Ratio, which has remained constant after dropping considerably in 2016, recorded a considerable rise in 2020. The reason for such an increase were the current assets, which registered an increase of almost \$2 109 Mn. As of 31 December 2020, the company had 1.73x more current assets than current liabilities, indicating the ability of the company to pay off its current liabilities (payable within one year) with its total current assets.

The last two ratios, the Quick and the Cash Ratio, are more conservative liquidity ratios as they exclude all assets that are more difficult to convert into cash, i.e., are not so liquid. The big difference between them lies only in the fact that the Cash Ratio takes the test of liquidity even further. In 2020, the values recorded by the Quick Ratio and the Cash Ratio were 1.64x and 1.32x, respectively. Thus, we conclude that the company does not demonstrate a lack of assets that are easy to convert into cash, so it is not likely that Hilton encounters serious problems paying off its short-term liabilities. Notice that the Cash Ratio is slightly lower as it only represents the most liquid assets.

All these increases were mainly motivated by a rise in the cash and cash equivalents component, which in 2020 amounted to \$3 218 Mn, a value five times bigger than the one recorded in 2019 (Annex G).

2.1.5.3. Solvency


Solvency ratios, also known as Leverage ratios, are similar to Liquidity ratios since they also measure the ability of a company to pay off its obligations. However, Solvency ratios focus more on the long-term sustainability of a company rather than its current liability payments.

As we can see in Figure 17, the Interest Coverage Ratio of Hilton was favourably evolving until it registered a considerable drop in 2020 due to the drastic reduction in the Earnings Before Interests and Taxes (EBIT). This negative Interest Coverage Ratio indicates that Hilton ended 2020 with no capacity to cover or pay its current debt obligations with its operating profit.

Regarding the ratios presented in Figure 18, it is relevant to mention that the Debt-to-Equity for 2019 and 2020 was not estimated since the shareholder's equity accounting values for those years were negative. The Debt-to-Equity tells us how much debt a company has per \$1,00 of equity, so a negative ratio is not meaningful. In this way, we can only conclude that until 2018, the Debt-to-Equity, which followed a growth trend, contrasted with the stagnation trend registered by the Debt-to-Assets and the Debt-to-Capital. The value recorded for Debtto-Equity in 2018 demonstrates that Hilton had 13.05x more total debt than shareholder's equity. Such value is quite worrying because it indicates that the company is financed predominantly by debt rather than equity, which is dangerous since debt financing requires regular interest payments. Concerning Debt-to-Assets, which represents the portion of assets funded with debt, it reached a value of 0.69x in 2020, representing an increase of 33,38% compared to 2018. Similarly, the Debt-to-Capital recorded a value of 1.15x in 2020, representing an increase of 23,44%. Both increases were due to a significant increase in the short- and long-term debt by \$4 346 from 2018 to 2020. This growth in debt can be explained by the company's need to finance the losses recorded during 2020. Since the cash from operations was significantly lower than recorded until then, the company had to go into debt to be able to respond to the difficulties imposed by the pandemic.

Regardless of the ratios considered, what is vital to mention is that very high values are not healthy, as they indicate a heavily leveraged company. These debt ratios are meaningful to investors, whose equity investments could be put at risk if the debt level is too high. These ratios are of particular concern when a company wants a credit rating agency to assign a rating to one of its debt securities. As the ratios reveal a high debt burden, the rating agency may assign a low rating, increasing the interest cost of the securities. Typically, companies within the hospitality industry have a lot of long-term liabilities in the form of debt, along with current liabilities. This debt is usually related to the financing of the hotels. So, it is not surprising that Hilton registered a large amount of debt, but it should warn of the importance of carrying out an effective debt management (Annex H).

Figure 17: Interest Expense, EBIT, and Interest Coverage Ratio. Bloomberg.

3.90x
1.13x
0.80x
0.93x
1.05x
1.15x
0.25x
0.46x
0.52x
0.61x
0.69x
2016
2017
2018
2019
2020

2.2. Hospitality Industry

Defining the hospitality industry, unlike other industries, is not an easy task since there is not one clear product. According to Walker and Walker (2014), the word hospitality comes from *hospice*, an old French word meaning to provide care or shelter for travellers. Nowadays, hospitality has gained a broader meaning referring to several businesses and services linked to leisure.

Along with the hospitality industry, there is the tourism sub-industry. According to Walker and Walker (2014), if we consider both as only one great industry, it comprises five distinct areas: Travel, Assembly and Event Management, Restaurants and Managed Services, Recreation, and Lodging.

The following analysis is based on the data provided by the World Travel & Tourism Council (WTTC), one of the most reliable entities regarding hospitality and tourism.

2.2.1. Macroeconomic Environment

During the last century, there has been a global trend towards an increased and unrestricted movement of people. However, an unprecedented pandemic in 2020 changed everything.

In 2020, Travel & Tourism (T&T) GDP growth registered a decrease of 49,10% compared to the previous year, the largest drop recorded until then. Figure 19 shows how impactful COVID-19 [C] was by comparing it with the September 11 attacks [A] and the global financial crisis of 2009 [B]. This decrease was so abrupt that the world economy's GDP growth surpassed the T&T GDP growth for the first time in nine years. T&T GDP, which accounted for 10,40% of global economy GDP in 2019, contributed only 5,50% in 2020, equivalent to \$4 671 Bn. Another relevant indicator is employment since T&T has been an excellent driver for job creation and a dynamic engine of employment opportunities. The results presented

demonstrate, once again, the brutal impact of COVID-19, causing the loss of 62 million jobs during 2020.

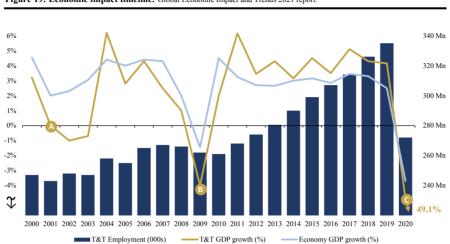


Figure 19: Economic impact timeline. Global Economic Impact and Trends 2021 report.

Furthermore, it remains to consider the distribution of visitor spending, as it helps to justify the change in T&T GDP contribution from certain regions of the world, analysed in the following pages.

According to the WTTC report, the visitor total spending in 2020 was \$2 878 Bn, representing a decrease of about 51,93% compared to 2019. As we can see in Figure 20, the distribution between domestic and international visitor spending has become less equitable. The international visitor spending, representing 28,30% of the visitor total spending in 2019, accounted only for 18,00% in 2020. Conversely, domestic visitor spending represented 82,00%, a slight percentual rise compared to 2019. However, this relative rise of 10,30% represents an absolute decrease of \$1 935 Bn, -45,05% in relative terms compared to 2019. Regarding international visitor spending, it decreased by 69,40%, a more severe reduction due to the additional travel restrictions for international tourists in 2020. In absolute terms, it represented a decrease of \$1 174 Bn.

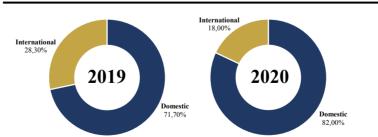


Figure 20: Domestic against International Spending. Global Economic Impact and Trends 2021 report.

As we can see in Figure 21, the regions of the world that recorded the most significant declines in terms of the T&T GDP contribution in 2020 were the Caribbean, Asia Pacific, Europe, and the Middle East. These four regions recorded decreases of +50,00% compared to 2019. After analysing the variations in visitor spending, we can conclude that international visitor spending represented the most significant drop, in relative terms, compared to domestic visitor spending. Thus, it is not surprising that the smaller regions that are most dependent on international markets have almost collapsed, as was the case of the Caribbean and the Middle East.

For larger regions, such as Asia Pacific and Europe, the justification for such drastic declines goes beyond the decreasing of international visitor spending. Both regions experienced several lockdowns and numerous restrictions on the free movement of people within their own countries, making the impact felt twofold, on the one hand by the absence of international visitors, and on the other hand by the limitations imposed on T&T within their borders.

For regions such as Africa, North America, and Latin America, the impacts suffered appear to have been less severe. However, if we consider North America, the decrease of 42,20% represented in absolute terms the third-largest drop, equivalent to \$910 Bn.

Even though 2020 was a disaster, the WTTC believes that what happened may be used as a lesson for progress. Through the To Recovery & Beyond report, the council identified some trends and explored changes that may be needed to sustain travel and tourism in the future.

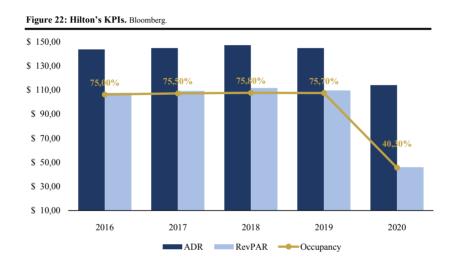
From a demand perspective, COVID-19 has changed the preferences and behaviours of travellers, which are now looking for something more familiar, reliable, and safer. Domestic and regional vacations, as well as outdoor activities, are the preferences in the short-term.

While there is still a lot of uncertainty about the longevity of these changes, the T&T sector has a unique opportunity to rethink and update existing business models in partnership with local communities as a solution to offer tourists what they most want. Additionally, it is essential that companies also participate in the discussion of sustainability since environmental problems are affecting the quality of human life and, consequently, businesses. It is also important to mention social sustainability as we face a growing wave of support for diversity and inclusion in society. Thus, given the high participation of women, minorities, and youth compared to other sectors, T&T should demonstrate the ability to protect and further engage vulnerable groups, reducing poverty and inequality.

2.2.2. Competition

2.2.2.1. Key Performance Indicators

According to Verot (2021), co-founder of HotelMinder, the Key Performance Indicators (KPIs) for hotels are the best metrics to assess a hotel's financial performance. We considered the three main KPIs for hotels: the Occupancy Rate, the Average Daily Rate, and the Revenue Per Available Room.


The first indicator, the Occupancy Rate, is widely used in the hospitality industry, and it represents the total number of room nights sold divided by the total number of room nights available at a hotel or group of hotels for a given period. Therefore, it is an indicator of demand and helps managers determine the achievable Average Daily Rate pricing ranges as demand for hotel rooms increases or decreases.

The Average Daily Rate (ADR), which indicates the average revenue earned for an occupied room, is calculated by dividing the hotel room revenue by the total number of room nights sold for a given period. Therefore, it represents a good metric because it allows companies to access information regarding the pricing environment and the customers' trends.

The last indicator analysed is named Revenue Per Available Room (RevPAR). RevPAR is calculated by dividing the hotel room revenue by the total number of room nights available, sold or not, to guests for a given period or by multiplying the Occupancy Rate by the ADR. In

this way, it represents the most useful indicator because it provides a metric correlated to those two primary key drivers of performance.

Figure 22 shows that until 2019 Hilton recorded very stable values concerning any of the KPIs. The considerable variation occurred in 2020, with Hilton recording values much lower than usual. It is relevant to mention that although the company's RevPAR was affected by the ADR reduction, the major impact was caused by the Occupancy Rate decrease. Given the travel restrictions due to the COVID-19 pandemic, the Occupancy Rate fell by 46,76% compared to 2019. The region of the world that contributed most to this significant decrease, according to the Hilton 2020 annual report, was Europe, which varied on -47,80% registering an Occupancy Rate of 28,60%.

As we can see in Table 5, Hilton was one of the companies that recorded the sharpest declines in all KPIs in 2020, compared to some of the direct competitors listed in the annual report. However, despite such drastic drops, Hilton continued to stand out for its higher values compared to its competitors. The main highlight is the RevPAR, as only Marriott obtained a value higher than the RevPAR obtained by Hilton.

To take the lead and overtake Marriott in this KPI, Hilton will have to work to increase its ADR since the Occupancy rate does not seem to be the problem, as Marriott registers a rate below the Hilton rate. Therefore, Hilton may adopt strategies that will enhance customers' experience, such as shuttle transfers, tours, or activities to increase the ADR, which will lead to an increase in the RevPAR.

Table 5: KPIs comparison between Hilton and its competitors. Bloomberg.

I/DIa	Occi	ıpancy	AI	OR	RevPAR		
KPIs	2020	YoY	2020	YoY	2020	YoY	
Hilton	40,30%	-46,76%	\$ 114,03	-21,24%	\$ 46,00	-58,05%	
Marriott	35,50%	-51,83%	\$ 130,40	-28,59%	\$ 46,28	-60,55%	
Intercontinental	39,50%	-43,73%	\$ 94,72	-18,32%	\$ 37,41	-54,07%	
Hyatt	48,60%	-34,77%	\$ 160,00	-12,55%	\$ 41,00	-69,91%	
Whyndham					\$ 24,51	-32,59%	
Choice	45,60%	-27,50%	\$ 71,63	-12,02%	\$ 32,70	-36,12%	

2.2.2.2. SWOT Analysis

Table 6 presents Hilton's SWOT Analysis, a methodology widely used to characterize the company's competitive position.

Table 6: Hilton's SWOT Analysis. Author's Analysis.

Strengths	Weaknesses
 Global presence with high recognition Brand portfolio diversity Growth potential, as Hilton has many development project pipelines 	 Significant dependence on U.S. markets Inability to effectively manage its global operations since it owns a high number of hotels High debt levels
Loyal customers, resulting from the quality of services provided by Hilton	
Opportunities	Threats
· Take advantage of the potential of emerging	· Since it belongs to a Cyclical Industry, revenues are
markets to invest even more since Hilton is a prestigious	strongly correlated to the overall economy's
company in such markets	performance
· Focusing on the technological progress	· The growing popularity of emerging platforms like
· Explore the possibilities that the mid-level budget	Airbnb , which have the potential to change the game
	rules
hotel industry offers instead of focusing only on the	luies

3. Valuation

As mentioned before, Hilton's valuation will result from the outputs of two models. The first model adopted is the FCFF, a DCF model. Through this model, we considered an explicit forecasting period of five years (2021-2025), where we discounted the cash flows projected at the WACC discount rate. Then, we assumed a TGR that allowed us to project future cash flows (the ones after the explicit forecasting period). After obtaining the target share price, we performed a sensitivity analysis to capture the impact of the assumed TGR and WACC on the results.

Afterwards, we performed a Relative Valuation applying the two most widely used multiples: the P/E and the EV/EBITDA. As mentioned in the literature review, it is recommended to use forward-looking multiples rather than historical multiples, as these deliver a more reliable result. Therefore, we considered the multiples for the Next Twelve Months based on the projected performance. Then we established a peer group composed of companies that operate in the same kind of business as Hilton, as well as the rules used to identify possible outliers. After completing all these steps, it was possible to estimate the target share price of Hilton.

Finally, a detailed analysis of the values obtained was carried out.

3.1. Assumptions

First of all, we had to make a few assumptions that allowed the forecast of the variables needed to carry out this valuation exercise. To accomplish such a task, we considered the financial data of Hilton between 2016-2020. Then, we estimated the median of such values and considered them projection drivers. We did not consider the mean because the values recorded in 2020 were very different from those recorded until then. Thus, given the existence of outliers in the sample, it is recommended to use the median instead of the mean. In this way, we fulfilled all the requirements that allowed us to complete the valuation exercise.

Next, we will present the assumptions made and their rationale.

3.1.1. Revenues

Making a weighted and realistic revenue growth estimate is essential to obtain accurate projections. Despite being a very complex exercise, the highest degree of rigour is required at this stage as it is the most important assumption of the entire master's project since several

other assumptions depend on this item. As the future is still quite uncertain concerning the development of this pandemic crisis, it is essential to make a projection that reflects the situation expected for the following years.

Therefore, to make a more reliable assumption, we will assume that Hilton will have the same revenue growth as the one for the hotel industry for 2021-2025, as projected by the Statista website. Since Statista has been the market leader in providing reliable business data, it seems to be the safest source of revenue projections. Furthermore, these projections for the industry reflect what is expected to happen with Hilton, i.e., a significant growth in the next few years and an eventual stabilization after that.

In this way, Hilton's revenues were projected for the next five years considering the projection made for the hotel industry, as depicted in table 7.

Table 7: Revenue growth projections. Statista and Author's Analysis.

In Millions of USD	2019	2020	2021 (F)	2022 (F)	2023 (F)	2024 (F)	2025 (F)
Revenue Growth	6,13%	-54,43%	42,00%	57,10%	19,80%	14,10%	9,30%
Revenues	\$ 9 452	\$ 4 307	\$ 6 116	\$ 9 608	\$ 11 511	\$ 13 134	\$ 14 355

Therefore, Hilton will see a full revenue recovery from the impact of COVID-19 in 2022. This scenario is quite optimistic for some, for others pessimistic. However, this projection is in line with the projections made by several analysts, such as Riaz (2021), Hospitality Advisor Leader of EY. According to him, a very likely scenario refers to a full recovery from the impact of this pandemic crisis in the first quarter of 2022, which supports our decision to project Hilton's revenue growth according to the projection made by the Statista website for the hotel industry.

3.1.2. EBIT

To project the EBIT, we considered that each of the variables that constitute the EBIT varies in proportion to the revenues. It is reasonable to consider this assumption since Hilton has always presented constant values of Gross Profit, Other Operating Income, and Operating Expenses as percentage of the revenues (except for 2020, when variations more abrupted were registered).

Table 8 shows the projection of Hilton's EBIT considering for each projection driver the median of the last five years.

Table 8: EBIT projections. Bloomberg and Author's Analysis

In Millions of USD	2016	2017	2018	2019	2020	2021 (F)	2022 (F)	2023 (F)	2024 (F)	2025 (F)
1. Gross Profit	\$ 5 297	\$ 6 862	\$ 7 574	\$ 8 198	\$ 3 687	\$ 5 201	\$8171	\$ 9 789	\$ 11 169	\$ 12 208
Revenues %	80,55%	84,39%	85,04%	86,73%	85,60%	85,04%	85,04%	85,04%	85,04%	85,04%
2. Other Operating Income	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0
Revenues %	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
3. Operating Expenses	\$ 4 429	\$ 5 730	\$ 6 142	\$ 6 541	\$ 4 105	\$ 4 232	\$ 6 649	\$ 7 966	\$ 9 089	\$ 9 934
Revenues %	67,35%	70,47%	68,96%	69,20%	95,31%	69,20%	69,20%	69,20%	69,20%	69,20%
EBIT (= 1 + 2 - 3)	\$ 868	\$ 1 132	\$ 1 432	\$ 1 657	-\$ 418	\$ 969	\$ 1 522	\$ 1 823	\$ 2 081	\$ 2 274

3.1.3. Depreciation and Amortization

For the projection of Depreciation and Amortization, since historical results have not shown a general trend as a percentage of any of the items usually considered, such as revenues or property, plant, and equipment (PP&E), we decided to use an alternative approach.

Since Depreciation and Amortization correspond to the difference between EBITDA and the sum of EBIT and Operating Lease Rental Expense Adjustments, we decided to project each of these items as a percentage of the revenues to obtain the Depreciation and Amortization projection. Usually, it is not necessary to consider the Operating Lease Rental Expense Adjustments. However, according to Bloomberg, since Hilton adopted a New Leasing Accounting Standard Codification (ASC 842) in 2019 and 2020, we must consider such adjustments.

It is also important to mention that the values presented for the last five years of Depreciation and Amortization were taken from the Cash Flow Statement and not from the Income Statement. Sometimes the values depicted for the same item, such as Depreciation and Amortization, differ from one statement to another. In this case, the Cash Flow Statement is the only reliable place to get Depreciation and Amortization values because it accounts for accumulated expenses.

Table 9 presents the projection of Depreciation and Amortization according to the assumptions made.

 Table 9: Depreciation and Amortization projections.
 Bloomberg and Author's Analysis

In Millions of USD	2016	2017	2018	2019	2020	2021 (F)	2022 (F)	2023 (F)	2024 (F)	2025 (F)
1. EBITDA	\$ 1 541	\$ 1 468	\$ 1 757	\$ 2 147	\$ 42	\$ 1 207	\$ 1 896	\$ 2 271	\$ 2 591	\$ 2 832
EBITDA Margin %	23,43%	18,05%	19,73%	22,71%	0,98%	19,73%	19,73%	19,73%	19,73%	19,73%
2. Operating Lease Rental Expense Adjustment	\$ 0	\$ 0	\$ 0	\$ 144	\$ 129	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0
Revenues %	0,00%	0,00%	0,00%	1,52%	3,00%	0,00%	0,00%	0,00%	0,00%	0,00%
3. EBIT	\$ 868	\$ 1 132	\$ 1 432	\$ 1 657	-\$ 418	\$ 969	\$ 1 522	\$ 1 823	\$ 2 081	\$ 2 274
Depreciation and Amortization (= 1 - 2 - 3)	\$ 673	\$ 336	\$ 325	\$ 346	\$ 331	\$ 238	\$ 373	\$ 447	\$ 510	\$ 558

3.1.4. Capital Expenditures

By analysing the historical CAPEX, which refers to the investments made in tangible fixed assets by Hilton, we could see that they have remained in line with the evolution of revenues. Thus, we considered that the CAPEX projection driver would correspond to the median of the historical CAPEX as a percentage of revenues.

In the table below, we can see the CAPEX projection considering this premise.

Table 10: CAPEX projections. Bloomberg and Author's Analysis.

In Millions of USD	2016	2017	2018	2019	2020	2021 (F)	2022 (F)	2023 (F)	2024 (F)	2025 (F)
CAPEX	\$ 317	\$ 58	\$ 72	\$ 81	\$ 46	\$ 52	\$ 82	\$ 99	\$ 113	\$ 123
Revenues %	4,82%	0,71%	0,81%	0,86%	1,07%	0,86%	0,86%	0,86%	0,86%	0,86%
CAPEX	\$ 317	\$ 58	\$ 72	\$ 81	\$ 46	\$ 52	\$ 82	\$ 99	\$ 113	\$ 123

3.1.5. Non-Cash Working Capital

Working capital, also known as Net Working Capital, is the difference between current assets and current liabilities. This item, as mentioned in the literature review, tells us about the capital needed to run the day-to-day operations of a company. However, according to Damodaran (2006), whenever we apply the DCF Valuation approach, we should consider the Non-Cash WC rather than the typical Net WC. The author states that we should remove items such as cash and investments in marketable securities because they are not available for daily operations since they are tied to treasury bills, short-term investments, or commercial papers. Besides Damodaran, Glenn (N.D.), a well-known financial analyst, believes that the classic version of WC that includes cash and cash equivalents has shown little reliability.

In general, the computation of Non-Cash WC would be non-cash current assets minus non-debt current liabilities. However, due to the lack of information and since what matters to us is the change in Non-Cash WC, we estimated it based simply on the values that have been registered in the Cash Flow Statement. Thus, we estimated the median of the historical change in Non-Cash WC as a percentage of revenues, and we considered it the projection driver.

Table 11 shows the projections made for the change in the Non-Cash WC of Hilton.

Table 11: Non-Cash WC projections. Bloomberg and Author's Analysis.

In Millions of USD	2016	2017	2018	2019	2020	2021 (F)	2022 (F)	2023 (F)	2024 (F)	2025 (F)
Δ Non-cash WC	\$ 258	\$ 17	\$ 97	\$ 179	\$ 1 002	\$ 116	\$ 182	\$ 218	\$ 249	\$ 272
Revenues %	3,92%	0,21%	1,09%	1,89%	23,26%	1,89%	1,89%	1,89%	1,89%	1,89%
Δ Non-cash WC	\$ 258	\$ 17	\$ 97	\$ 179	\$ 1 002	\$ 116	\$ 182	\$ 218	\$ 249	\$ 272

3.1.6. Corporate Tax Rate

We decided to follow the recommendation of Fernández (2004) and Damodaran (2012), considering the effective tax rate as the corporate tax rate for the explicit forecasting period and the U.S. marginal tax rate as the corporate tax rate for the perpetuity.

However, as we can see in Table 12, to project the effective tax rate, we had the problem of having negative values in 2017 and 2020. Therefore, we decided to consider the statutory tax rate for the projection of the corporate tax rate whenever the effective tax rate was negative. In this way, we created an artificial corporate tax rate for the last five years that allowed us to project the future corporate tax rate. Additionally, since the oldest values recorded contrast sharply with the most recent ones, we decided only to consider the years 2019 and 2020, as they are the ones that represent the before and after the beginning of the pandemic crisis.

Regarding the marginal tax rate, this one changed after 2017 due to the 2017 Tax Cuts and Jobs Act (TCJA) which decreased the rates that U.S. companies must pay from 35% to 21%. Since the previous change occurred in 1993, denoting a reasonable stability of the rate over the years, it is fair to assume that the current rate of 21% will be in place for a long period of time.

Table 12: Corporate Tax Rate projections. Bloomberg and Author's Analysis.

In Millions of USD	2016	2017	2018	2019	2020	2021 (F)	2022 (F)	2023 (F)	2024 (F)	2025 (F)	Perpetuity
Effective Tax Rate	103,15%	-44,62%	28,66%	28,78%	-22,08%						
Statutory Tax Rate (Marginal)	35,00%	35,00%	21,00%	21,00%	21,00%						21,00%
Corporate Tax Rate	103,15%	35,00%	28,66%	28,78%	21,00%	24,89%	24,89%	24,89%	24,89%	24,89%	21,00%

3.1.7. Terminal Growth Rate

To project the TGR, we followed the recommendation of Goedhart et al. (2010) that the best proxy of the TGR is the expected growth rate of long-term consumption for industrial products plus the inflation.

Accordingly, we used the projections provided by the International Monetary Fund (IMF) of the GDP growth rate and the inflation growth rate at the global level until the cruise year (the first year of the perpetuity). As Hilton operates worldwide, we tried to estimate the most realistic value possible for Hilton's TGR, considering the different regions in which it operates. Due to the lack of more accurate data, we had to consider some countries as references for the entire region according to the presence of Hilton hotels there. For example, we selected Morocco as a reference because it was one of the countries where Hilton has the most hotels on the African continent (Annex I).

After that, we estimated a weighted TGR according to Hilton's revenue origin. In this way, since 83,42% of Hilton's revenues come from the U.S., we weighted the GDP and the Inflation growth rate by such proportion. Conversely, we did the same with the rest of the world, as table 13 shows.

Table 13: TGR estimation. IMF and Author's Analysis

In Millions of USD	Revenues	Revenues %	GDP %	Inflation %	Weighted TGR
Rest of the World	\$ 714	16,58%	2,28%	1,95%	0,70%
U.S.	\$ 3 593	83,42%	1,70%	1,97%	3,06%
Total	\$ 4 307	100,00%			
TGR					3,76%

3.2. DCF Valuation

3.2.1. Free Cash Flow to the Firm

In addition to all the assumptions already made, two more were considered regarding perpetuity. The first, and usually the most assumed, was that all items were projected based on the TGR. The only exception, and consequently this additional assumption, was that the CAPEX was projected according to the following formula:

$$CAPEX_{Perpetuity} = D&A_{Perpetuity} \times (1 + TGR)$$
 (33)

Such was necessary since the CAPEX has never been higher than the Depreciation and Amortization in the past few years. Therefore, to assume that all items would grow at the same constant rate, including the CAPEX, was to say that this trend would continue perpetually, implying that the company would be slowly liquidating itself. In this way, the analyst must always review this situation in the terminal year to determine whether adjustments to FCFF are necessary since something like this is not sustainable in the long-term. So, normalizing such an item is not so unusual. Table 14 shows the projections for the FCFF based on the assumptions considered in this master's project.

Table 14: FCFF projections. Bloomberg and Author's Analysis

Table 14. FCFF projections. Bloomberg and Auth	or s Anarysis.					
In Millions of USD	2021 (F)	2022 (F)	2023 (F)	2024 (F)	2025 (F)	Perpetuity
1. EBIT	\$ 969	\$ 1 522	\$ 1 823	\$ 2 081	\$ 2 274	\$ 2 360
2. EBIT x (1 - t)	\$ 728	\$ 1 143	\$ 1 370	\$ 1 563	\$ 1 708	\$ 1 864
3. Depreciation & Amortization	\$ 238	\$ 373	\$ 447	\$ 510	\$ 558	\$ 579
4. CAPEX	\$ 52	\$ 82	\$ 99	\$ 113	\$ 123	\$ 601
5. Δ Non-cash WC	\$ 116	\$ 182	\$ 218	\$ 249	\$ 272	\$ 282
FCFF (= 2 + 3 - 4 -5)	\$ 797	\$ 1 252	\$ 1 500	\$ 1 712	\$ 1 871	\$ 1 560

3.2.2. Weighted Average Cost of Capital

To estimate the WACC, we needed to compute the market value of equity, the market value of debt, the cost of debt, and the cost of equity (since the corporate tax rate has already been estimated).

The market value of equity was obtained according to the formula (6). As of 31 December 2020, Hilton's stock was priced at \$111,26, according to Bloomberg, and the number of shares outstanding was 277 590 904, so the market value of equity obtained was \$30 885 Mn.

Instead of the market value of debt, we considered the book value. The reason that led us to consider this, instead of calculating the market value according to the formula (7), was the fact that there was a significant lack of information, especially regarding the weighted average maturity of long-term debt. A solution could be to consider the values from the annual report of Hilton and not from Bloomberg, but that would be inconsistent with the values assumed so far and with the reasons why we decided to consider such values. Therefore, we assumed that the market value of debt matches the book value of \$11 628 Mn.

In the following pages, we present the values obtained for the rest of the inputs necessary to estimate the WACC.

3.2.2.1. Cost of Equity

We used the CAPM to calculate the cost of equity, and to do so, we had to estimate several inputs. First, we started by determining the risk-free rate. According to Damodaran (2012), since we are considering USD in the valuation, the best choice would be to consider U.S. long-term government bonds as the risk-free rate, specifically the 10-year U.S. government bonds. We assumed the value of 0,93% as the risk-free rate, which corresponds to the 10-year U.S. government bond as of 31 December 2020, according to the Federal Reserve Economic Data (FRED) website.

Then, we had to consider a levered beta for the company. Since Hilton is a listed company, we just considered the beta estimated by the Zacks website, of 1.33.

Finally, to obtain the MRP, we used the value presented on the Statista website and in the document of Acin et al. (2020). As Hilton is a U.S. company, the MRP used was the U.S. MRP, equivalent to 5,60%. However, since Hilton has a worldwide presence, we ended up including a CRP in the cost of equity calculation. In a similar way to what we did with the TGR, we

assumed the weighted average value of CRP for each region where Hilton is located (sometimes represented by a reference country) according to Hilton's revenue origin in 2020. We obtained the value of 0,37% for the CRP (Annex J and K).

After considering all these assumptions, and with the particularity of having decided to include the CRP, we applied the formula (8) to estimate the cost of equity. Firstly, we multiplied the beta by the MRP, and then we added the risk-free rate and the CRP, which generated a cost of equity of 8,75%.

3.2.2.2. Cost of Debt

To obtain the cost of debt, and following what we presented in the literature review, we should start by computing the cost of debt pre-tax and then the cost of debt after-tax. Therefore, we started by adding the risk-free rate to the default spread to estimate the cost of debt pre-tax. To obtain the default spread, we applied the methodology mentioned by Damodaran (2012). Thus, we calculated the mean of the historical Interest Coverage Ratio and determined the credit rating using the rating estimation model provided by the author, called Synthetic Rating (Annex L and M). Then, by applying the formula (12), we achieved the after-tax cost of debt of 1,97%.

3.2.2.3. Summary

After applying the formula (5), we conclude that the WACC at which the FCFF must be discounted is 6.78%. Table 15 detail all the results that supported this value for the WACC.

Table 15: WACC estimation summary. Author's Analysis.

In Millions of USD	2020
Hilton's stock price	\$ 111,26
Number of Shares Outstanding	277 590 904
Market Value of Equity	\$ 30 885
Short-Term Debt	\$ 226
Long-Term Debt	\$ 11 402
Market Value of Debt	\$ 11 628
Risk-free rate	0,93%
Hilton Levered Beta	1,33
Market Risk Premium	5,60%
Country Risk Premium	0,37%
Cost of Equity	8,75%
Risk-free rate	0,93%
Default Spread	1,56%
Cost of Debt Pre-tax	2,49%
Corporate Tax Rate	21,00%
Cost of Debt	1,97%
WACC	6,78%

3.2.3. Terminal Value

To calculate the Terminal Value, we applied the formula (14). As Table 14 demonstrates, we obtained a cash flow for the initial year of the perpetual growth stream of \$1 560 Mn. Then, we divided this value by the difference between the WACC and the TGR, which resulted in a Terminal Value of \$51 732 Mn.

3.2.4. FCFF - Target Share Price

Finally, we arrived at the EV of \$43 008 Mn after applying the formula (2). To obtain the EQV, we needed to make some adjustments. According to the literature review, it is necessary to consider the Non-Equity Claims and the NOA.

Accordingly, we needed to subtract from the EV the values of \$8 410 Mn and \$4 Mn, corresponding to the Net Debt and the Minority Interest (the two Non-equity claims to be considered). On the other hand, we needed to add the NOA, which in the case of Hilton, corresponds only to the Prepaid Pensions costs shown in the Balance Sheet.

When a company runs a defined-benefit pension plan, it must fund the plan yearly. Thus, according to the GAAP, a company may recognize a portion of the excess assets of the pension fund in the Balance Sheet. In this way, the amount in the Balance Sheet of Hilton corresponds to the amount that the company owns, but it is meant to cover the pension costs. Therefore, we considered this item as an NOA because this amount belongs to the stockholders, despite not being reflected in the Income Statement. However, a problem arises when converting this amount into shareholder value since these funds are subject to tax liability if someone claims them. The conservative rule in dealing with overfunded pension plans is to presume that the tax costs of reclaiming the excess funds are so expensive that few firms would attempt to do it. However, we tried to estimate what would be a fair and realistic value, so we considered the Post-1986 Excess Contributions rate and concluded that only half of the value recorded in the Balance Sheet represents value for the shareholders, which corresponds to \$6 Mn (Annex N).

The table below summarizes all the computations made to obtain the EQV. As we can see, after considering all these inputs, we obtained a value of \$34 600 Mn. Dividing such a value by the number of shares outstanding gave us the target share price of \$124,64. So, we conclude that this value represents an upside potential of 12,03% compared to its close price of \$111,26 as of 31 December 2020.

Table 16: FCFF model results. Author's Analysis.

In Millions of USD	2020	2021 (F)	2022 (F)	2023 (F)	2024 (F)	2025 (F)	Perpetuity
FCFF		\$ 797	\$ 1 252	\$ 1 500	\$ 1 712	\$ 1 871	\$ 1 560
WACC		6,78%	6,78%	6,78%	6,78%	6,78%	6,78%
TGR							3,76%
Terminal Value							\$ 51 732
Present Value of the FCFF		\$ 747	\$ 1 098	\$ 1 232	\$ 1 317	\$ 1 348	
Present Value of the TV							\$ 37 266
1. Enterprise Value	\$ 43 008						
2. Net Debt	\$ 8 410						
3. Minority Interest	\$ 4						
4. Non-Operating Assets	\$ 6						
Equity Value (= 1 - 2 - 3 + 4)	\$ 34 600						
Number of Shares Outstanding	277 590 904						
Target Share Price (FCFF)	\$ 124,64						

3.2.1.1. Sensitivity Analysis

We performed a sensitivity analysis to assess the accuracy of this valuation exercise. In this way, we could understand how certain variables impact the target share price. Usually, the variables WACC and TGR are analysed since they are key elements of the assumptions made.

The tables below show the impact that each of these variables have in the target share price, assuming variations of $\pm 0.50\%$ in the WACC and $\pm 0.25\%$ in the TGR. Since the WACC was the variable most subject to the assumptions made, we decided to execute in this variable a larger degree of variation that the one used for the TGR.

From this analysis, we concluded that both variables generate different reactions when subjected to the same type of variation (ceteris paribus). In this way, when the WACC increases, the effect on the target share price is downward. Conversely, when the TGR increases, the target share price also increases. Furthermore, these tables allowed us to see that a tiny variation causes significant differences in the target share price.

Table 18 also allows us to conclude that the impact suffered by the target share price is more pronounced when susceptible to changes in the WACC than in the TGR. We can affirm this because when we submitted both variables to the same variation (in this case $\pm 0,50\%$), the variation in the target share price was more significant in the case of the WACC.

Table 17: Sensitivity Analysis \$. Author's Analysis

			Terminal Growth Rate (g)							
		3,26%	3,51%	3,76%	4,01%	4,26%				
	5,78%	\$ 159,22	\$ 178,05	\$ 201,55	\$ 231,71	\$ 271,81				
	6,28%	\$ 127,74	\$ 140,35	\$ 155,46	\$ 173,91	\$ 196,93				
WACC	6,78%	\$ 105,21	\$ 114,18	\$ 124,64	\$ 136,99	\$ 151,80				
	7,28%	\$ 88,28	\$ 94,96	\$ 102,58	\$ 111,37	\$ 121,62				
	7,78%	\$ 75,10	\$ 80,23	\$ 86,01	\$ 92,55	\$ 100,02				

Table 18: Sensitivity Analysis %. Author's Analysis.

			Terminal Growth Rate (g)						
		3,26%	3,51%	3,76%	4,01%	4,26%			
	5,78%	27,74%	42,85%	61,70%	85,90%	118,07%			
	6,28%	2,49%	12,60%	24,73%	39,53%	57,99%			
WACC	6,78%	-15,59%	-8,39%	0,00%	9,91%	21,79%			
	7,28%	-29,17%	-23,82%	-17,70%	-10,65%	-2,43%			
	7,78%	-39,75%	-35,63%	-31,00%	-25,75%	-19,76%			

3.3. Relative Valuation

To validate or not the target share price obtained previously, we performed a Relative Valuation. In general, obtaining the target share price via Relative Valuation only takes two steps and it starts by setting the peer group. In this way, we sought to find a set of comparable companies that belonged to the same industry and shared similar financial features as Hilton.

We started by considering the companies that Hilton mentions in its 2020 annual report as direct competitors: Marriott International, Choice Hotels International, Wyndham Hotels & Resorts, Hyatt Hotels Corporation, and Intercontinental Hotels. We selected only five of the companies included in the annual report after taking into account aspects such as the fact that they were listed on the stock exchange or not.

Since the hospitality industry is not just hotels, we chose to expand our peer group. We decided to include companies from the lists provided by the Standard Industrial Classification (SIC) and the Global Industry Classification Standard (GICS), two industrial classification systems available on Bloomberg which organize companies according to the type of business. The SIC classifies Hilton as a company in the sector of Hotels and Motels, whilst the GICS classifies it as Hotels, Resorts, and Cruise Lines. Since there is no consensus on which system provides a better set of comparable companies, we considered companies from both.

In this way, as a peer group, we started to consider the group of five companies from Hilton 2020 annual report and four more companies from the classification systems: Wynn Resorts, MGM Resorts International, Las Vegas Sands Corporation, and Expedia Group. Through a group with such features, we tried to capture not only the performance of direct competitors but also of those who, despite not constituting direct competitors due to the type of service they provide, end up offering a sort of competition. Given that Hilton had a high Market Cap, we ended up restricting the group to companies that exclusively had a Market Cap above \$5 000 Mn. Then, within the companies that fitted into this group, we chose those with the highest Market Cap. We took these choices in an attempt to restrict the group of comparable companies even further. However, since this would not be entirely possible, we set some rules to identify potential outliers in the peer group.

We considered as outliers the observations that were distant by \pm one standard deviation from the mean. At this point, we had the option of choosing the mean or the median, but we ultimately opted for the mean since we assumed that we would identify and remove the outliers,

conversely to what was done in the FCFF model. Therefore, there was no need to use the median. After identifying and removing the outliers, we recalculated the mean.

Since 2020 was an atypical year and some companies registered negative values for some of the analysed multiples, we decided that all the companies that did not present positive values in the analysed multiples should be excluded. Such occurred because these companies would be useless in determining Hilton's target share price, which would ultimately equal zero.

In this way, it remains only to justify the choice of the P/E and the EV/EBITDA as multiples for this Relative Valuation. In fact, they were chosen because they represent the best multiples to consider for a company like Hilton. Especially the EV/EBITDA that unlike the P/E considers both the shareholder and debt perspectives, which is vital to value capital-intensive companies like hotels.

It is also important to mention that, in line with what is defended by Damodaran (2012), we considered forward-looking multiples. Since 2020 was tough, resorting to past values would not accurately represent the most expected future scenario. Thus, instead of calculating the Trailing Last Twelve Months (LTM) multiples, we calculated the Next Twelve Months (NTM) multiples. The multiples denoted as NTM refer to the projected performance in the coming twelve months, producing values on a future standing point. Analysts often choose multiples denoted as LTM because are easier compared to NTM multiples since no projection drivers are needed. To overcome this difficulty, we considered the projections made by analysts from Bloomberg, Barclays, and JP Morgan.

3.3.1. Multiples – Target Share Price

Thus, the tables below show the results obtained considering all the assumptions made. It is important to note that the projections made for the multiples only concern the projection driver of each multiple, as stated by Bernström (2014), which in this case was the Earnings Per Share (EPS) and the EBITDA. As we did not have access to the equity research reports prepared by Barclays and JP Morgan for all the companies considered peers, we based our projections on the information available (Annex O and P).

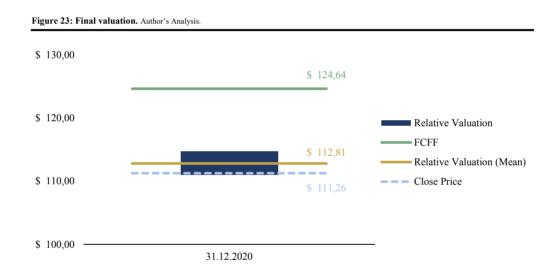
In this way, table 19 shows the target share price of Hilton according to the multiple P/E. By analysing the table, we can see that the company is slightly undervalued since the value produced by the P/E (NTM), which was \$114,70, is higher than the close price recorded as of

31 December 2020. Since the P/E is an Equity Value multiple, no additional calculations were necessary.

Table 19: P/E (NTM) target share price. Author's Analysis.

D/E	T: 1 C 1 1	Cl. D.: (21.12.2020)	EDG (MEN)	D/E (MEN)
P/E	Ticker Symbol	Share Price (31.12.2020)	EPS (NTM)	` ′
Marriott International	MAR	\$ 131,92	\$ 2,39	55,31x
Choice Hotels International	СНН	\$ 106,73	\$ 3,78	28,26x
Wyndham Hotels & Resorts	WH	\$ 59,44	\$ 2,67	22,29x
Hyatt Hotels Corporation	Н	\$ 74,25	-\$ 2,56	-29,00x
Wynn Resorts	WYNN	\$ 112,83	-\$ 5,18	-21,80x
Intercontinental Hotels	IHG	\$ 64,02	\$ 1,12	57,16x
MGM Resorts International	MGM	\$ 31,51	-\$ 1,29	-24,43x
Las Vegas Sands Corporation	LVS	\$ 59,60	-\$ 0,51	-118,02x
Expedia Group	EXPE	\$ 132,40	\$ 2,15	61,68x
Marriott International	MAR	\$ 131,92	\$ 2,39	55,31x
Choice Hotels International	СНН	\$ 106,73	\$ 3,78	28,26x
Wyndham Hotels & Resorts	WH	\$ 59,44	\$ 2,67	22,29x
Intercontinental Hotels	IHG	\$ 64,02	\$ 1,12	57,16x
Expedia Group	EXPE	\$ 132,40	\$ 2,15	61,68x
Average				44,94x
Std. Deviation				18,22x
Average + Std. Deviation				63,16x
Average - Std. Deviation				26,72x
Marriott International				55,31x
Choice Hotels International				28,26x
Intercontinental Hotels				57,16x
Expedia Group				61,68x
Average				50,60x
Hilton Worldwide Holdings	HLT		\$ 2,27	
Target Share Price (PER)		\$ 114,70		

On the other hand, table 20 shows the target share price of Hilton according to the multiple EV/EBITDA. For this multiple, we had to make some adjustments, similarly to the FCFF model, i.e., add the NOA and subtract the Non-Equity Claims from the EV to obtain the EQV. In this way, we obtained a target share price of \$110,92, slightly lower than the close price recorded as of 31 December 2020.


Table 20: EV/EBITDA (NTM) target share price. Author's Analysis.

EV/EBITDA	Ticker Symbol	Enterprise Value (31.12.2020)	EBITDA (NTM)	EV/EBITDA (NTM)
Marriott International	MAR	\$ 53 255	\$ 2 126	25,04x
Choice Hotels International	CHH	\$ 6 766	\$ 348	19,43x
Wyndham Hotels & Resorts	WH	\$ 7 657	\$ 548	13,97x
Hyatt Hotels Corporation	Н	\$ 9 283	\$ 272	34,14x
Wynn Resorts	WYNN	\$ 21 520	\$ 676	31,85x
Intercontinental Hotels	IHG	\$ 14 243	\$ 557	25,56x
MGM Resorts International	MGM	\$ 36 083	\$ 1 887	19,12x
Las Vegas Sands Corporation	LVS	\$ 58 311	\$ 1 214	48,03x
Expedia Group	EXPE	\$ 26 713	\$ 1 477	18,08x
Average				26,14x
Std. Deviation				10,52x
Average + Std. Deviation				36,65x
Average - Std. Deviation				15,62x
Marriott International				25,04x
Choice Hotels International				19,43x
Hyatt Hotels Corporation				34,14x
Wynn Resorts				31,85x
Intercontinental Hotels				25,56x
MGM Resorts International				19,12x
Expedia Group				18,08x
Average				24,75x
Hilton Worldwide Holdings	HLT		\$ 1 584	
1. Enterprise Value		\$ 39 198		
	1			
2. Net Debt		\$ 8 410		
Minority Interest		\$ 4		
4. Non-Operating Assets		\$ 6		
Equity Value (= 1 - 2 - 3 + 4)		\$ 30 790		
Number of Shares Outstanding				
Target Share Price (EV/EBITDA)		\$ 110,92		

As both multiples consider projections for the future, there is always a high degree of uncertainty regarding the values presented. Therefore, to produce a fairer comparison with the result obtained by the FCFF model, we decided to consider the mean resulting from the values obtained via P/E and EV/EBITDA multiples as the result of the Relative Valuation. In this way, we obtained the value of \$112,81 per share, which, as it is higher than the closing price, led us to conclude that Hilton's shares were undervalued at the end of the year 2020.

3.4. Valuation Results

As of 31 December 2020, Hilton's close share price was \$111,26, a price below compared to the target share prices estimated in this master's project. As we can see in Figure 23, both the valuation models applied in this valuation exercise generated values above the actual close price. Therefore, our investment recommendation is to BUY.

4. Conclusion

Even though 2020 had been a tough year, with many uncertainties hanging over the financial markets, this master's project aimed to overcome the difficulty in projecting what will be the future and estimating the fair value of Hilton Worldwide Holdings as of 31 December 2020.

The difficulties started with choosing which models to apply since there is no perfect model to value a company. As mentioned in the literature review, the recommended process would be to apply the DCF-FCFF model and then perform a Relative Valuation using multiples to validate the valuation exercise.

Despite the impact of COVID-19 and the risks adjacent to the hospitality industry, both models led us to conclude that the shares of Hilton were underpriced. The DCF-FCFF model yielded a target share price of \$124,64, representing an upside potential of 12,03%. As for the Relative Valuation, the multiples P/E (NTM) and EV/EBITDA (NTM) generated values of \$114,70 and \$110,92, respectively. Both these values resulted in an average value per share of \$112,81, indicating an upside potential above 1%.

The results obtained reveal a sense of coherence, as both models, the DCF-FCFF and the Multiples, generate relatively similar values. However, it is relevant to notice that 2020 was an atypical year, so the assumptions made may be biased or skewed. Although we have always sought to consider reliable data sources such as the Zacks website and Statista website, our analysis is subject to miscalculation and biased interpretation. Since we live in times of great uncertainty, projecting what the future will be is one of the most challenging tasks to fulfil. There will be companies that will recover quicker and others that, despite their enormous potential, will take a little longer.

So, we would like to suggest further research as new data is being released, as well as alert to the fact that all the assumptions assumed in this master's project have influenced the results obtained. The investor should compare the outputs from this master's project with those from other equity research reports. A possible recommendation regarding Hilton's equity valuation would be to consider the Financial Statements issued by the company rather than, as done in this master's project, those provided by Bloomberg according to the GAAP. We conduct our equity valuation in a way that to us seems fairer, but other approaches and methodologies always could add value to the valuation exercise.

5. References

5.1. Academic Material and Books

- Acin, J. F., Apellaniz, E., & Fernández, P. (2020). Survey: Market Risk Premium and Risk-Free Rate used for 81 countries in 2020. Working Paper, IESE Business School, University of Navarra.
- Altman, E. I. (1984). A Further Empirical Investigation of the Bankruptcy Cost Question. *The Journal of Finance*, *39* (4): pp. 1067-1089. https://doi.org/10.2307/2327613.
- Barroso, C. D., Ferreira, M. A., Inácio, P. L., Mota, A. G., Nunes, J. P., & Oliveira, L. (2015). Finanças da Empresa – Teoria e Prática (5ª Ed.). Edições Sílabo Lda.
- Bernström, S. (2014). Valuation: The Market Approach (1st Ed.). John Wiley & Sons Inc.
- Biasio, R., Eckert, A., Maragno, M. & Mecca, M. S. (2011). Métodos de avaliação do valor das empresas: proposição de aplicação em uma empresa prestadora de serviços contábeis. *Scientia Plena*, 7 (11).
- Borgersen, T. A., & Kivedal, B. K. (2018). Commercial Real Estate at the ZLB: Investment Demand and CAPM-WACC Invariance. *Nordic Journal of Surveying and Real Estate Research*, *13* (1): pp. 32–53. https://doi.org/10.30672/njsr.68989.
- Custódio, C., & Mota, A. G. (2015). Finanças da Empresa Um Guia para a Análise e Decisão de Executivos (1ª Ed.). Edições Sílabo Lda.
- Damodaran, A. (1999). *Estimating risk parameters*. Working Paper, Stern School of Business, New York University.
- Damodaran, A. (2005). Valuation Approaches and Metrics: A Survey of the Theory and Evidence. *Foundations and Trends in Finance*, *1* (8): pp. 693-784. http://dx.doi.org/10.1561/0500000013.
- Damodaran, A. (2006). Damodaran on Valuation (2nd Ed.). John Wiley & Sons Inc.
- Damodaran, A. (2008a). What is the riskfree rate? A Search for the Basic Building Block. Working Paper, Stern School of Business, New York University.

- Damodaran, A. (2008b). *Equity Risk Premiums (ERP): Determinants, Estimation and Implications*. Working Paper, Stern School of Business, New York University.
- Damodaran, A. (2011). *The Little Book of Valuation: How to Value a Company, Pick a Stock, and Profit* (1st Ed.). John Wiley & Sons Inc.
- Damodaran, A. (2012). *Investment Valuation: Tools and Techniques for Determining the Value of Any Asset* (3rd Ed.). John Wiley & Sons Inc.
- Damodaran, A. (2020). *Country Risk: Determinants, Measures and Implications The 2020 edition*. Working Paper, Stern School of Business, New York University.
- Dierks, P., & Patel, A. (1997). What is EVA, and How Can It Help Your Company?. *Management Accounting*, 79 (5): pp. 52-58.
- Ezzel, J. R., & Miles, J. A. (1980). The Weighted Average Cost of Capital, Perfect Capital Markets and Project Life: A Clarification. *The Journal of Financial and Quantitative Analysis*, *15* (3): pp. 719-730. https://doi.org/10.2307/2330405.
- Fernández, P. (2001). *Valuation using multiples: How do analysts reach their conclusions*. Working Paper, IESE Business School, University of Navarra.
- Fernández, P. (2004). 80 Common Errors in Company Valuation. Working Paper, IESE Business School, University of Navarra.
- Fernández, P. (2007a). Company Valuation Methods. The Most Common Mistakes in Valuation. Working Paper, IESE Business School, University of Navarra.
- Fernández, P. (2007b). Valuing Companies by Cash Flow Discounting: Ten Methods and Nine Theories. *Managerial Finance*, *33* (11): pp. 853-876. https://doi.org/10.1108/03074350710823827.
- Fernández, P. (2011). WACC: Definition, Misconceptions and Errors. *SSRN Electronic Journal*, 29 (4). http://dx.doi.org/10.2139/ssrn.1620871.
- Fuller, R. J., & Hsia, C. (1984). A Simplified Common Stock Valuation Model. *Financial Analysts Journal*, 40 (5): pp. 49-56. https://doi.org/10.2469/faj.v40.n5.49.

- Equity Research of Hilton Worldwide Holdings Inc.
- Girard, E. (2018). How Does Country Risk Matter?. *The Journal of Global Business and Technology*, *14* (1): pp. 53-67.
- Goedhart, M., Koller, T., & Wessels, D. (2010). *Valuation Measuring and Managing the Value of Companies* (5th Ed.). John Wiley & Sons Inc.
- Gordon, M. J. (1962). *The Investment, Financing and Valuation of the Corporation.*Homewood (1st Ed.). Richard D. Irwin Inc.
- Gordon, M. J., & Shapiro, E. (1956). Capital Equipment Analysis: The Required Rate of Profit. *Management Science*, *3*(1): pp. 102–110. https://doi.org/10.1287/mnsc.3.1.102.
- Grabowski, R., & Pratt, S. (2010). *Cost of Capital: Applications and Examples* (4th Ed.). John Wiley & Sons Inc.
- Henry, E., Pinto, J., Robinson, T., & Stowe, J. (2010). *Equity Asset Valuation* (2nd Ed.). John Wiley & Sons Inc.
- Holt, W., Nokhasteh, A., Sullivan, P., & Young, M. (1999). *All Roads Lead to Rome: An Integrated Approach to Valuation Methods*. Working Paper, Goldman Sachs Investment Research.
- Kaplan, P. D., & Peterson, J. D. (1998). Full-Information Industry Betas. *Financial Management*, 27 (2): pp. 85-93. https://doi.org/10.2307/3666295.
- Krishnamurti, C., & Vishwanath, S. (2009). *Investment Management: A Modern Guide to Security Analysis and Stock Selection* (1st Ed.). Springer-Verlag Berlin Heidelberg.
- Lintner, J. (1965). The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets. *The Review of Economics and Statistics*, 47 (1): pp. 13-37. https://doi.org/10.2307/1924119.
- Luehrman, T. A. (1997a). Using APV: A better tool for valuing operations. *Harvard Business Review*, 75 (3): pp. 145-154.
- Luehrman, T. A. (1997b). What's it worth? A General Manager's Guide to Valuation. *Harvard Business Review*, 75 (3): pp. 132-142.

- Markowitz, H. M. (1959). *Portfolio Selection: Efficient Diversification of Investments* (1st Ed.). John Wiley & Sons Inc.
- Mota, A. (2020). Company Valuation. Working Paper, IBS, ISCTE.
- Mullins, D. W. (1982). Does the capital asset pricing model work?. *Harvard Business Review*: pp. 105–114.
- Myers, S. C. (1974). Interactions of Corporate Financing and Investment Decisions Implications for Capital Budgeting. *The Journal of Finance*, *29* (1): pp. 1-25. https://doi.org/10.2307/2978211.
- Reddy, N. R. V. R., Reddy, T. N., & Rajesh, M. (2011). Valuation through EVA and Traditional Measures an Empirical Study. *International Journal of Trade, Economics and Finance*, *2* (1): pp. 19-23. https://doi.org/10.7763/ijtef.2011.v2.73.
- Schill, M. J. (2013). *Business Valuation: Standard Approaches and Applications*. Working Paper, Darden School of Business, University of Virginia.
- Sharpe, W. F. (1964). Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. *The Journal of Finance*, 19 (3): pp. 425 42. https://doi.org/10.1111/j.1540-6261.1964.tb02865.x.
- Talmor, E., & Vasvari, F. (2011). *International Private Equity* (1st Ed.). John Wiley & Sons Inc.
- Walker, J. R., & Walker, J. T. (2014). *Introduction to Hospitality Management* (4th Ed.). Pearson Education Inc.
- Welch, I. (2009). Corporate Finance: An Introduction (1st Ed.). Pearson Education Inc.
- Williams, J. B. (1938). The Theory of Investment Value (1st Ed.). Harvard University Press.

5.2. Reports

Choice Hotels International 2020 Barclays Equity Research Report

Expedia Group 2020 Barclays Equity Research Report

Global Economic Impact and Trends 2021 Report

Hilton Worldwide Holdings 2016 Annual Report

Hilton Worldwide Holdings 2017 Annual Report

Hilton Worldwide Holdings 2018 Annual Report

Hilton Worldwide Holdings 2019 Annual Report

Hilton Worldwide Holdings 2020 Annual Report

Hilton Worldwide Holdings 2020 Barclays Equity Research Report

Hilton Worldwide Holdings 2020 Environment, Social, and Governance Report

Hilton Worldwide Holdings 2020 Proxy Statement

Intercontinental Hotels 2021 J. P. Morgan Equity Research Report

Las Vegas Sands Corporation 2021 J. P. Morgan Equity Research Report

Marriott International 2021 J. P. Morgan Equity Research Report

MGM Resorts International 2021 J. P. Morgan Equity Research Report

To Recovery & Beyond: The Future of Travel & Tourism in the Wake of COVID-19 Report

Wyndham Hotels & Resorts 2020 Barclays Equity Research Report

Wynn Resorts 2021 J. P. Morgan Equity Research Report

5.3. Internet References

- Detrick, R. (2021). *S&P 500 doubles from its pandemic bottom, marking the fastest bull market rally since WWII.* https://www.cnbc.com/2021/08/16/sp-500-doubles-from-its-pandemic-bottom-marking-the-fastest-bull-market-rally-since-wwii.html, Consulted on 16-05-2022.
- Foushee, S. N., Koller, T., & Mehta, A. (2012). Why bad multiples happen to good companies. https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/why-bad-multiples-happen-to-good-companies, Consulted on 20-02-2022.
- Glenn, N. (Copyright © 2022 Analyst Answers). *What is Non-Cash Working Capital? 5 Reasons You Need It.* https://analystanswers.com/what-is-non-cash-working-capital-5-reasons-you-need-it/, Consulted on 24-06-2020.

Hilton (2019). Hilton Enters 100th Year with Record Growth and Industry-Leading Initiatives.

https://stories.hilton.com/releases/hilton-enters-100th-year-with-record-growth-and-

industryleading-initiatives, Consulted on 15-05-2022.

Oran, O. (2013). Hilton Worldwide raises over \$2.3 billion in biggest-ever hotel IPO.

https://www.reuters.com/article/us-hilton-ipo-idUSBRE9BA17G20131211, Consulted on

12-05-2022.

Riaz. U. (2021). How to better forecast recovery in the hotel industry.

https://www.ey.com/en_us/real-estate-hospitality-construction/how-to-better-forecast-

recovery-in-the-hotel-industry, Consulted on 04-06-2022.

Verot, B. (2021). Top Hospitality KPIs to Evaluate Your Hotel Performance.

https://www.hotelminder.com/top-hospitality-key-performance-indicators, Consulted on

02-06-2022.

5.3.1. Others

Aswath Damodaran blogspot: https://aswathdamodaran.blogspot.com

Aswath Damodaran website: https://pages.stern.nyu.edu/~adamodar/

Bloomberg Terminal

FRED website: https://fred.stlouisfed.org/

IMF website: https://www.imf.org/en/Home

Statista website: https://www.statista.com/

World Travel & Tourism Council website: https://wttc.org/

Zacks website: https://www.zacks.com/

67

6. Annexes

Annex A – Income Statement (GAAP). Bloomberg.

L. Milliana CHCD	FY 2016	FY 2017	FY 2018	FY 2019	FY 2020
In Millions of USD except per share	12/31/2016	12/31/2017	12/31/2018	12/31/2019	12/31/2020
Income (Loss) Incl. MI					
Revenue	\$ 6 576	\$8131	\$ 8 906	\$ 9 452	\$ 4 307
+ Sales & Services Revenue	\$ 1 806	\$ 1 978	\$ 2 040	\$ 1 984	\$ 582
+ Other Revenue	\$ 4 770	\$ 6 153	\$ 6 866	\$ 7 468	\$ 3 725
- Cost of Revenue	\$ 1 279	\$ 1 269	\$ 1 332	\$ 1 254	\$ 620
+ Cost of Goods & Services	\$ 1 279	\$ 1 269	\$ 1 332	\$ 1 254	\$ 620
Gross Profit	\$ 5 297	\$ 6 862	\$ 7 574	\$ 8 198	\$ 3 687
+ Other Operating Income	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0
- Operating Expenses	\$ 4 429	\$ 5 730	\$ 6 142	\$ 6 541	\$ 4 105
+ Selling, General & Admin	\$ 409	\$ 439	\$ 443	\$ 441	\$ 311
+ General & Administrative	\$ 409	\$ 439	\$ 443	\$ 441	\$ 311
+ Research & Development	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0
+ Depreciation & Amortization	\$ 353	\$ 336	\$ 325	\$ 346	\$ 331
+ Other Operating Expense	\$ 3 667	\$ 4 955	\$ 5 374	\$ 5 754	\$ 3 463
Operating Income (Loss)	\$ 868	\$ 1 132	\$ 1 432	\$ 1 657	-\$ 418
- Non-Operating (Income) Loss	\$ 328	\$ 379	\$ 354	\$ 413	\$ 506
+ Interest Expense, Net	\$ 334	\$ 351	\$ 371	\$ 414	\$ 429
+ Interest Expense	\$ 334	\$ 351	\$ 371	\$ 414	\$ 429
- Interest Income	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0
+ Foreign Exch (Gain) Loss	\$ 16	-\$ 3	\$ 11	\$ 2	\$ 27
+ (Income) Loss from Affiliates	_		_		_
+ Other Non-Op (Income) Loss	-\$ 22	\$ 31	-\$ 28	-\$ 3	\$ 50
Pretax Income	\$ 540	\$ 753	\$ 1 078	\$ 1 244	-\$ 924
- Income Tax Expense (Benefit)	\$ 557	-\$ 336	\$ 309	\$ 358	-\$ 204
+ Current Income Tax	\$ 654	\$ 393	\$ 323	\$ 378	\$ 31
+ Deferred Income Tax	-\$ 97	-\$ 729	-\$ 14	-\$ 20	-\$ 235
Income (Loss) from Cont Ops	-\$ 17	\$ 1 089	\$ 769	\$ 886	-\$ 720
- Net Extraordinary Losses (Gains)	-\$ 371	\$ 0	\$ 0	\$ 0	\$ 0
+ Discontinued Operations	-\$ 371	\$ 0	\$ 0	\$ 0	\$ 0
+ XO & Accounting Changes	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0
Income (Loss) Incl. MI	\$ 354	\$ 1 089	\$ 769	\$ 886	-\$ 720
Net Income Avail to Common, GAAP					
- Minority Interest	\$ 16	\$ 5	\$ 5	\$ 5	-\$ 5
Net Income, GAAP	\$ 338	\$ 1 084	\$ 764	\$ 881	-\$ 715
- Preferred Dividends	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0
- Other Adjustments	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0
Net Income Avail to Common, GAAP	\$ 338	\$ 1 084	\$ 764	\$ 881	-\$ 715

Annex B – Balance Sheet (Standardized). Bloomberg.

In Millions of USD except per share	FY 2016 12/31/2016	FY 2017 12/31/2017	FY 2018 12/31/2018	FY 2019 12/31/2019	FY 2020 12/31/2020
Total Assets	12/31/2010	12/31/2017	12/31/2018	12/31/2019	12/31/2020
+ Cash, Cash Equivalents & STI	\$ 1 062	\$ 570	\$ 403	\$ 538	\$ 3 218
+ Cash & Cash Equivalents	\$ 1 062	\$ 570	\$ 403	\$ 538	\$ 3 218
+ ST Investments + Accounts & Notes Receiv	\$ 0 \$ 755	\$ 0 \$ 1 005	\$ 0 \$ 1 150	\$ 0 \$ 1 261	\$ 0 \$ 771
+ Accounts Receivable, Net	\$ 755	\$ 1 005	\$ 1 150	\$ 1 261	\$ 771
+ Notes Receivable, Net	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0
+ Inventories	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0
+ Raw Materials + Work In Process	\$ 0 \$ 0	\$ 0 \$ 0	\$ 0 \$ 0	\$ 0 \$ 0	\$ 0 \$ 0
+ Finished Goods	\$0	\$0	\$0	\$0	\$0
+ Other Inventory	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0
+ Other ST Assets	\$ 1 740	\$ 432	\$ 430	\$ 294	\$ 213
+ Prepaid Expenses + Derivative & Hedging Assets	\$ 89 \$ 3	\$ 127 \$ 4	\$ 160 \$ 1	\$ 130	\$ 70 \$ 0
+ Deferred Tax Assets	_	_	— ·		_
+ Taxes Receivable	\$ 13	\$ 36	_	_	_
+ Discontinued Operations	\$ 1 478	\$ 0	\$ 0	\$ 0	\$ 0
+ Misc ST Assets Total Current Assets	\$ 157 \$ 3 557	\$ 265 \$ 2 007	\$ 269 \$ 1 983	\$ 164 \$ 2 093	\$ 143 \$ 4 202
+ Property, Plant & Equip, Net	\$ 341	\$ 353	\$ 367	\$ 1 247	\$ 1 118
+ Property, Plant & Equip	\$ 767	\$ 803	\$ 848	\$ 1 756	\$ 1 604
- Accumulated Depreciation	\$ 426	\$ 450	\$ 481	\$ 509	\$ 486
+ LT Investments & Receivables + LT Investments	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0
+ LT Receivables					_
+ Other LT Assets	\$ 22 313	\$ 11 868	\$ 11 645	\$ 11 617	\$ 11 435
+ Total Intangible Assets	\$ 11 476	\$ 11 466	\$ 11 316	\$ 11 237	\$ 10 918
+ Goodwill	\$ 5 218 \$ 6 258	\$ 5 190 \$ 6 276	\$ 5 160 \$ 6 156	\$ 5 159 \$ 6 078	\$ 5 095
+ Other Intangible Assets + Deferred Tax Assets	\$ 82	\$ 111	\$ 90	\$ 100	\$ 5 823 \$ 194
+ Derivative & Hedging Assets	\$ 0	\$ 11	\$ 16	_	\$ 0
+ Prepaid Pension Costs	\$ 10	\$ 9	\$ 7	\$ 10	\$ 11
+ Discontinued Operations	\$ 10 347	\$ 0	_	_	_
+ Investments in Affiliates + Misc LT Assets	\$ 398	\$ 271	\$ 216	\$ 270	\$ 312
Total Noncurrent Assets	\$ 22 654	\$ 12 221	\$ 12 012	\$ 12 864	\$ 12 553
Total Assets	\$ 26 211	\$ 14 228	\$ 13 995	\$ 14 957	\$ 16 755
Liabilities & Sharahalders' Fanity					
Liabilities & Shareholders' Equity + Payables & Accruals	\$ 1 208	\$ 1 237	\$ 1 347	\$ 1 475	\$ 1 064
+ Accounts Payable	\$ 314	\$ 282	\$ 283	\$ 303	\$ 224
+ Accrued Taxes	\$ 56	\$ 12	_	_	_
+ Interest & Dividends Payable + Other Payables & Accruals	 \$ 838	 \$ 943	\$ 1 064	\$ 1 172	 \$ 840
+ ST Debt	\$ 33	\$ 46	\$ 16	\$ 170	\$ 226
+ ST Borrowings	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0
+ ST Lease Liabilities	_	_	_	\$ 170	\$ 226
+ ST Finance Leases + ST Operating Leases	_	_	_	\$ 37 \$ 133	\$ 56 \$ 170
+ Current Portion of LT Debt	\$ 33	\$ 46	\$ 16		3 170
+ Other ST Liabilities	\$ 1 443	\$ 1 179	\$ 1 252	\$ 1 226	\$ 1 141
+ Deferred Revenue	\$ 0	\$ 366	\$ 350	\$ 332	\$ 370
+ Derivatives & Hedging + Discontinued Operations	\$ 4 \$ 774	\$ 2 \$ 0	\$ 3	_	\$ 0
+ Misc ST Liabilities	\$ 665	\$ 811	\$ 899	\$ 894	\$ 771
Total Current Liabilities	\$ 2 684	\$ 2 462	\$ 2 615	\$ 2 871	\$ 2 431
+ LT Debt	\$ 6 583	\$ 6 556	\$ 7 266	\$ 8 993	\$ 11 402
+ LT Borrowings + LT Lease Liabilities	\$ 6 341 \$ 242	\$ 6 323 \$ 233	\$ 7 041 \$ 225	\$ 7 748 \$ 1 245	\$ 10 235 \$ 1 167
+ LT Finance Leases	\$ 242	\$ 233	\$ 225	\$ 208	\$ 196
+ LT Operating Leases	_	_	_	\$ 1 037	\$ 971
+ Other LT Liabilities	\$ 11 095	\$ 3 519	\$ 3 556	\$ 3 565	\$ 4 408
+ Accrued Liabilities + Pension Liabilities	\$ 0 \$ 215	\$ 0 \$ 165	\$ 0 \$ 145	\$ 0 \$ 134	\$ 0 \$ 143
+ Deferred Compensation	\$ 113	\$ 117	\$ 113	\$ 118	\$ 116
+ Deferred Revenue	\$ 42	\$ 829	\$ 826	\$ 827	\$ 1 004
+ Deferred Tax Liabilities	\$ 1 778	\$ 931	\$ 898	\$ 795	\$ 649
+ Derivatives & Hedging + Discontinued Operations	\$ 0 \$ 6 894	\$ 0 \$ 0	\$ 0	\$ 0	\$ 0
+ Misc LT Liabilities	\$ 2 053	\$ 1 477	\$ 1 574	\$ 1 691	\$ 2 496
Total Noncurrent Liabilities	\$ 17 678	\$ 10 075	\$ 10 822	\$ 12 558	\$ 15 810
Total Liabilities	\$ 20 362	\$ 12 537	\$ 13 437	\$ 15 429	\$ 18 241
+ Preferred Equity and Hybrid Capital + Share Capital & APIC	\$ 0 \$ 10 223	\$ 0 \$ 10 301	\$ 0 \$ 10 375	\$ 0 \$ 10 492	\$ 0 \$ 10 555
+ Common Stock	\$ 10 223	\$ 10 301	\$ 10 3/3	\$ 10 492	\$ 10 333
+ Additional Paid in Capital	\$ 10 220	\$ 10 298	\$ 10 372	\$ 10 489	\$ 10 552
- Treasury Stock	\$ 0	\$ 891	\$ 2 625	\$ 4 169	\$ 4 453
+ Retained Earnings + Other Equity	-\$ 3 323 -\$ 1 001	-\$ 6 981 -\$ 741	-\$ 6 417 -\$ 782	-\$ 5 965 -\$ 840	-\$ 6 732 -\$ 860
Equity Before Minority Interest	\$ 5 899	\$ 1 688	\$ 551	-\$ 482	-\$ 1 490
+ Minority/Non Controlling Interest	-\$ 50	\$3	\$ 7	\$ 10	\$4
Total Equity	\$ 5 849	\$ 1 691	\$ 558	-\$ 472 \$ 14.057	-\$ 1 486
Total Liabilities & Equity	\$ 26 211	\$ 14 228	\$ 13 995	\$ 14 957	\$ 16 755

Annex C – Cash Flow Statement (Standardized). Bloomberg.

In Millions of USD except per share	FY 2016 12/31/2016	FY 2017 12/31/2017	FY 2018 12/31/2018	FY 2019 12/31/2019	FY 2020 12/31/2020
Cash from Operating Activities					
+ Net Income	\$ 338	\$ 1 084	\$ 764	\$ 881	-\$ 715
+ Depreciation & Amortization	\$ 673	\$ 336	\$ 325	\$ 346	\$ 331
+ Non-Cash Items	\$ 41	-\$ 588	\$ 69	-\$ 22	\$ 90
+ Stock-Based Compensation	\$ 91	\$ 121	\$ 127	\$ 154	\$ 97
+ Deferred Income Taxes	-\$ 85	-\$ 729	-\$ 14	-\$ 20	-\$ 235
+ Other Non-Cash Adj	\$ 35	\$ 20	-\$ 44	-\$ 156	\$ 228
+ Chg in Non-Cash Work Cap	\$ 258	\$ 17	\$ 97	\$ 179	\$ 1 002
+ (Inc) Dec in Accts Receiv	-\$ 156	-\$ 204	-\$ 161	-\$ 105	\$ 488
+ (Inc) Dec in Inventories					\$ 0
+ Inc (Dec) in Other	\$ 414	\$ 221	\$ 258	\$ 284	\$ 514
+ Net Cash From Disc Ops		_	\$ 0	\$ 0	\$ 0
Cash from Operating Activities	\$ 1 310	\$ 849	\$ 1 255	\$ 1 384	\$ 708
Cash from Investing Activities					
+ Change in Fixed & Intang	-\$ 398	-\$ 133	-\$ 159	-\$ 85	-\$ 92
+ Disp in Fixed & Intang	\$ 0	\$ 0	\$ 0	\$ 120	\$ 0
+ Disp of Fixed Prod Assets	_		\$ 0	\$ 120	\$ 0
+ Disp of Intangible Assets			\$ 0	\$ 0	\$ 0
+ Acq of Fixed & Intang	-\$ 398	-\$ 133	-\$ 159	-\$ 205	-\$ 92
+ Acq of Fixed Prod Assets	-\$ 317	-\$ 58	-\$ 72	-\$ 81	-\$ 46
+ Acq of Intangible Assets	-\$ 81	-\$ 75	-\$ 87	-\$ 124	-\$ 46
+ Net Change in LT Investment	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0
+ Dec in LT Investment	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0
+ Inc in LT Investment	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0
+ Net Cash From Acq & Div	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0
+ Cash from Divestitures	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0
+ Cash for Acq of Subs	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0
+ Cash for JVs	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0
+ Other Investing Activities	-\$ 25	-\$ 14	\$ 28	-\$ 38	-\$ 15
+ Net Cash From Disc Ops	_		\$ 0	\$ 0	\$ 0
Cash from Investing Activities	-\$ 423	-\$ 147	-\$ 131	-\$ 123	-\$ 107
Cash from Financing Activities					
+ Dividends Paid	-\$ 277	-\$ 195	-\$ 181	-\$ 172	-\$ 42
+ Cash From (Repayment) Debt	\$ 356	-\$ 36	\$ 671	\$ 653	\$ 2 469
+ Cash (Repurchase) of Equity	\$ 0	-\$ 891	-\$ 1 721	-\$ 1 538	-\$ 296
+ Increase in Capital Stock	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0
+ Decrease in Capital Stock	\$ 0	-\$ 891	-\$ 1 721	-\$ 1 538	-\$ 296
+ Other Financing Activities	-\$ 123	-\$ 602	-\$ 69	-\$ 56	-\$ 99
+ Net Cash From Disc Ops	_	_	\$ 0	\$ 0	\$ 0
Cash from Financing Activities	-\$ 44	-\$ 1 724	-\$ 1 300	-\$ 1 113	\$ 2 032
Effect of Foreign Exchange Rates	-\$ 15	\$8	-\$ 10	-\$ 2	\$ 0
Net Changes in Cash	\$ 828	-\$ 1 014	-\$ 186	\$ 146	\$ 2 633
Cash Paid for Taxes	\$ 677	\$ 526	\$ 288	\$ 363	\$ 79
Cash Paid for Interest	\$ 478	\$ 314	\$ 330	\$ 360	\$ 433

Annex D – Revenues Sources. Bloomberg.

	2015	2016	2017	2018	2019	2020
1. Franchise and licensing fees		\$ 1 091	\$ 1 321	\$ 1 530	\$ 1 681	\$ 945
2. Base and other management fees		\$ 230	\$ 324	\$ 321	\$ 332	\$ 123
3. Incentive management fees		\$ 142	\$ 222	\$ 235	\$ 230	\$ 38
4. Owned and leased hotels		\$ 1 434	\$ 1 432	\$ 1 484	\$ 1 422	\$ 421
5. Other revenues		\$ 82	\$ 105	\$ 98	\$ 101	\$ 73
6. Other revenues from managed and franchised properties		\$ 3 597	\$ 4 727	\$ 5 238	\$ 5 686	\$ 2 707
Total Revenues (= 1 + 2 + 3 + 4 + 5 + 6)	\$ 7 133	\$ 6 576	\$ 8 131	\$ 8 906	\$ 9 452	\$ 4 307
Total Revenues Growth %		-7,81%	23,65%	9,53%	6,13%	-54,43%

Annex E – Profitability Ratios (PART I). Bloomberg.

	2016	2017	2018	2019	2020
Total Revenues	\$ 6 576	\$ 8 131	\$ 8 906	\$ 9 452	\$ 4 307
EBITDA $(= 1 + 2 + 3)$	\$ 1 541	\$ 1 468	\$ 1 757	\$ 2 147	\$ 42
1. Operating Income	\$ 868	\$ 1 132	\$ 1 432	\$ 1 657	-\$ 418
2. Depreciation and Amortization	\$ 673	\$ 336	\$ 325	\$ 346	\$ 331
3. Operating Lease Rental Expense Adjustment	\$ 0	\$ 0	\$ 0	\$ 144	\$ 129
EBITDA Margin %	23,43%	18,05%	19,73%	22,71%	0,98%
Total Revenues	\$ 6 576	\$ 8 131	\$ 8 906	\$ 9 452	\$ 4 307
Net Income	\$ 338	\$ 1 084	\$ 764	\$ 881	-\$ 715
Net Profit Margin %	5,14%	13,33%	8,58%	9,32%	-16,60%
Total Revenues	\$ 6 576	\$ 8 131	\$ 8 906	\$ 9 452	\$ 4 307
Operating Income = EBIT	\$ 868	\$ 1 132	\$ 1 432	\$ 1 657	-\$ 418
Operating Margin %	13,20%	13,92%	16,08%	17,53%	-9,71%

Annex F – Profitability Ratios (PART II). Bloomberg.

	2015	2016	2017	2018	2019	2020
Net Income		\$ 338	\$ 1 084	\$ 764	\$ 881	-\$ 715
Equity Before Minority Interest	\$ 5 985	\$ 5 899	\$ 1 688	\$ 551	-\$ 482	-\$ 1 490
ROE (common equity) %		5,69%	28,58%	68,24%		
Net Income		\$ 338	\$ 1 084	\$ 764	\$ 881	-\$ 715
Total Assets	\$ 25 622	\$ 26 211	\$ 14 228	\$ 13 995	\$ 14 957	\$ 16 755
ROA %		1,30%	5,36%	5,41%	6,09%	-4,51%
NOPAT (= 1 + 2 + 3 - 4+[(5 + 6 + 7)*(1 - 8 V 9)]		-\$ 35	\$ 1 328	\$ 1 013	\$ 1 176	-\$ 327
1. Net Income before XO		-\$ 17	\$ 1 089	\$ 769	\$ 886	-\$ 720
2. Provision for Doubtful Accounts		\$ 0	\$ 0	\$ 0	\$ 0	\$ 0
3. Pension Expense (Income)		\$ 5	\$ 5	\$ 2	\$ 6	\$ 0
4. Service Cost		\$ 13	\$ 12	\$ 11	\$ 10	\$ 7
5. Interest Expense		\$ 334	\$ 351	\$ 371	\$ 414	\$ 429
6. Foreign Exchange		\$ 16	-\$ 3	\$ 11	\$ 2	\$ 27
7. Net Non-Operating		-\$ 22	\$ 31	-\$ 28	-\$ 3	\$ 50
8. Effective Tax Rate		103,15%		28,66%	28,78%	
9. Statutory Tax Rate		35,00%	35,00%	21,00%	21,00%	21,00%
Total Invested Capital (= $10 + 11 + 12 + 13 + 14 + 15$)	\$ 21 019	\$ 14 244	\$ 9 154	\$ 8 690	\$ 9 430	\$ 10 729
10. Short-Term Debt		\$ 33	\$ 46	\$ 16	\$ 170	\$ 226
11. Long-Term Debt		\$ 6 583	\$ 6 556	\$ 7 266	\$ 8 993	\$ 11 402
12. Total Equity		\$ 5 849	\$ 1 691	\$ 558	-\$ 472	-\$ 1 486
13. Allowance for Doubtful Accounts		\$ 27	\$ 29	\$ 42	\$ 44	\$ 132
14. Net Deferred Taxes		\$ 1 696	\$ 820	\$ 808	\$ 695	\$ 455
15. Accrued Income Taxes		\$ 56	\$ 12	\$ 0	\$ 0	\$ 0
ROIC %		-0,20%	11,35%	11,35%	12,98%	-3,25%

Annex G – Liquidity Ratios. Bloomberg.

	2016	2017	2018	2019	2020
Current Assets	\$ 3 557	\$ 2 007	\$ 1 983	\$ 2 093	\$ 4 202
Current Liabilities	\$ 2 684	\$ 2 462	\$ 2 615	\$ 2 871	\$ 2 431
Current Ratio	1.33x	0.82x	0.76x	0.73x	1.73x
Cash and Near Cash Items	\$ 1 062	\$ 570	\$ 403	\$ 538	\$ 3 218
Marketable Securities and Other ST Investments	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0
Accounts Receivables	\$ 755	\$ 1 005	\$ 1 150	\$ 1 261	\$ 771
Current Liabilities	\$ 2 684	\$ 2 462	\$ 2 615	\$ 2 871	\$ 2 431
Quick Ratio	0.68x	0.64x	0.59x	0.63x	1.64x
Cash and Near Cash Items	\$ 1 062	\$ 570	\$ 403	\$ 538	\$ 3 218
Marketable Securities and Other ST Investments	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0
Current Liabilities	\$ 2 684	\$ 2 462	\$ 2 615	\$ 2 871	\$ 2 431
Cash Ratio	0.40x	0.23x	0.15x	0.19x	1.32x

Annex H – Solvency Ratios. Bloomberg.

	2016	2017	2018	2019	2020
Operating Income = EBIT	\$ 868	\$ 1 132	\$ 1 432	\$ 1 657	-\$ 418
Interest Expense	\$ 334	\$ 351	\$ 371	\$ 414	\$ 429
Interest Coverage Ratio	2.60x	3.23x	3.86x	4.00x	-0.97x
Short-Term Debt	\$ 33	\$ 46	\$ 16	\$ 170	\$ 226
Long-Term Debt	\$ 6 583	\$ 6 556	\$ 7 266	\$ 8 993	\$ 11 402
Total Assets	\$ 26 211	\$ 14 228	\$ 13 995	\$ 14 957	\$ 16 755
Debt-to-Assets	0.25x	0.46x	0.52x	0.61x	0.69x
Short-Term Debt	\$ 33	\$ 46	\$ 16	\$ 170	\$ 226
Long-Term Debt	\$ 6 583	\$ 6 556	\$ 7 266	\$ 8 993	\$ 11 402
Total Capital	\$ 12 465	\$ 8 293	\$ 7 840	\$ 8 691	\$ 10 142
Debt-to-Capital	0.53x	0.80x	0.93x	1.05x	1.15x
Short-Term Debt	\$ 33	\$ 46	\$ 16	\$ 170	\$ 226
Long-Term Debt	\$ 6 583	\$ 6 556	\$ 7 266	\$ 8 993	\$ 11 402
Total Equity	\$ 5 849	\$ 1 691	\$ 558	-\$ 472	-\$ 1 486
Debt-to-Equity	1.13x	3.90x	13.05x		

Annex I – TGR projections. IMF and Author's Analysis.

GDP %		Until Perpetuity Un	ntil Perpetuity
Rest of the Americas	Canada	1,65%	1,65%
Europe	Germany	1,21%	1,21%
Middle East	Saudi Arabia	2,71%	2,71%
Asia Pacific	China	4,92%	2,62%
	Japan	0,46%	
	Australia	2,48%	
Africa	Morocco	3,24%	3,24%
Rest of the World			2,28%
U.S.			1,70%

Inflation %		Until Perpetuity Until Perpetuity
Rest of the Americas	Canada	2,02% 2,02%
Europe	Germany	1,90% 1,90%
Middle East	Saudi Arabia	2,01% 2,01%
Asia Pacific	China	2,00% 1,84%
	Japan	0,97%
	Australia	2,55%
Africa	Morocco	2,00% 2,00%
Rest of the World		1,95%
U.S.		1,97%

Annex J – CRP estimation (PART I). Damodaran Blogspot and Author's Analysis.

Country Risk Premium		2020	2020
Rest of the Americas	Canada	0,00%	2,90%
	Caribbean	5,42%	
	Central and South America	3,28%	
Europe	Eastern Europe and Russia	2,14%	1,48%
	Western Europe	0,81%	
Middle East		1,57%	1,57%
Asia Pacific	Asia	1,01%	0,51%
	Oceania (Australia)	0,00%	
Africa		4,69%	4,69%
Rest of the World			2,23%
U.S.			0,00%

Annex K – CRP estimation (PART II). Damodaran Blogspot and Author's Analysis.

In Millions of USD	Revenues	Revenues %	CRP %	Weighted CRP
Rest of the World	\$ 714	16,58%	2,23%	0,37%
U.S.	\$ 3 593	83,42%	0,00%	0,00%
Total	\$ 4 307	100,00%		
CRP				0,37%

Annex L – Interest Coverage Ratio estimation. Bloomberg and Author's Analysis.

In Millions of USD	2016	2017	2018	2019	2020	Mean
1. EBIT	\$ 868	\$ 1 132	\$ 1 432	\$ 1 657	-\$ 418	
2. Interest Expense	\$ 334	\$ 351	\$ 371	\$ 414	\$ 429	
Interest Coverage Ratio (= 1 / 2)	2,60x	3,23x	3,86x	4,00x	-0,97x	2,54x

Annex M – Synthetic Rating. Damodaran Blogspot.

If interest coverage ratio is					
>	≤to	Rating is	Spread is		
8,500	100,000	AAA	0,63%		
6,500	8,499	AA	0,78%		
5,500	6,499	A+	0,98%		
4,250	5,499	A	1,08%		
3,000	4,249	A-	1,22%		
2,500	2,999	BBB	1,56%		
2,250	2,499	BB+	2,00%		
2,000	2,249	BB	2,40%		
1,750	1,999	B+	3,51%		
1,500	1,749	В	4,21%		
1,250	1,499	B-	5,15%		
0,800	1,249	CCC	8,20%		
0,650	0,799	CC	8,64%		
0,200	0,649	С	11,34%		
(-100,000)	0,199	D	15,12%		

Annex N – Adjustments. Bloomberg.

In Millions of USD	2020
1. Long-term Debt	\$ 11 402
2. Short-term Debt	\$ 226
3. Cash and Cash Equivalents	\$ 3 218
Net Debt $(= 1 + 2 - 3)$	\$ 8 410
Minority Interest	\$ 4
4. Prepaid Pension Costs 50%	\$ 6
Non-Operating Assets	\$ 6

Annex O – EPS projections. Bloomberg, Barclays, JP Morgan, and Author's Analysis.

EDC Projections	Bloomberg (NTM)	Barclays (NTM)		JP Morgan (NTM)	Mean
EPS Projections		OLD	NEW		
Marriott International	\$ 2,91			\$ 1,86	\$ 2,39
Choice Hotels International	\$ 4,18	\$ 3,84	\$ 3,31		\$ 3,78
Wyndham Hotels & Resorts	\$ 3,00	\$ 2,52	\$ 2,48		\$ 2,67
Hyatt Hotels Corporation	-\$ 2,56				-\$ 2,56
Wynn Resorts	-\$ 6,07			-\$ 4,28	-\$ 5,18
Intercontinental Hotels	\$ 1,31			\$ 0,93	\$ 1,12
MGM Resorts International	-\$ 0,61			-\$ 1,97	-\$ 1,29
Las Vegas Sands Corporation	-\$ 1,24			\$ 0,23	-\$ 0,51
Expedia Group	\$ 1,15	\$ 2,79	\$ 2,50		\$ 2,15
Hilton Worldwide Holdings	\$ 2,15	\$ 2,68	\$ 1,97		\$ 2,27

Annex P – EBITDA projections. Bloomberg, Barclays, JP Morgan, and Author's Analysis.

EBITDA Projections	Bloomberg (NTM)	Barclays (NTM)	JP Morgan (NTM)	Mean
Marriott International	\$ 2 225		\$ 2 028	\$ 2 126
Choice Hotels International	\$ 390	\$ 306		\$ 348
Wyndham Hotels & Resorts	\$ 570	\$ 526		\$ 548
Hyatt Hotels Corporation	\$ 272			\$ 272
Wynn Resorts	\$ 501		\$ 850	\$ 676
Intercontinental Hotels	\$ 612		\$ 503	\$ 557
MGM Resorts International	\$ 2 304		\$ 1 470	\$ 1 887
Las Vegas Sands Corporation	\$ 414		\$ 2 014	\$ 1 214
Expedia Group	\$ 1 389	\$ 1 566		\$ 1 477
Hilton Worldwide Holdings	\$ 1 608	\$ 1 560		\$ 1 584