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Resumo

A identificação do modelo de arma que disparou um cartucho é informação forense que

pode ser uma prova crucial num crime. Este processo é tradicionalmente realizado por

peritos em balística que comparam múltiplos cartuchos ao microscópio, o que pode ser

demorado e requer múltiplos recursos humanos. Como tal, esta dissertação apresenta o

desenvolvimento de uma técnica de identificação balística baseada em redes siamesas.

Esta abordagem visa auxiliar na classificação, ao fornecer uma lista dos modelos de

armas mais prováveis de terem provocado o disparo de um cartucho, poupando tempo e

recursos humanos.

Para o desenvolvimento deste instrumento, a Polícia Judiciária Portuguesa forneceu

um conjunto de imagens para a criação de um modelo de aprendizagem automática que

efetue esta identificação. Uma vez que esta coleção de dados ainda estava em con-

strução e não havia sido testada, as técnicas propostas nesta dissertação foram também

treinadas com outro conjunto de dados, o NIST Ballistics Toolmark Research Database,

com o objetivo de estabelecer um desempenho de referência.

Para a otimização da rede, técnicas de pré-processamento de dados, assim como de

transferência de conhecimento são também analisadas.

No conjunto de dados da Polícia Judiciária, o modelo de classificação proposto atingiu

valores de precisão de 57% em classificação top-1 e de 81% para classificação top-2.

Embora estes resultados pareçam promissores, esta técnica atingiu uma precisão de

100% em classificação top-1 com a base de dados da NIST Ballistics Toolmark Research

Database, sugerindo que podiam existir melhorias a ser realizadas no conjunto de dados

da Polícia Judiciária Portuguesa.

Palavras-chave: Redes siamesas, Processamento de dados, Classificação balística
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Abstract

Identifying the gun model that fired a given cartridge is an example of forensic informa-

tion that can be crucial evidence in a crime. This process has traditionally been carried

out by ballistics experts who visually compare multiple cartridges under the microscope,

which can be very time consuming and requires multiple human resources. As such, this

dissertation presents the development of a ballistics identification method based on

siamese neural networks. This approach aims to aid classification by delivering a list of

the most likely weapon models to have triggered the firing of a cartridge, saving time

and human resources.

For the development of such instrument, the Portuguese Criminal Police has provided

a dataset for training a machine learning model that performs this identification. Since

this dataset was still under construction and had not been tested, the techniques pro-

posed in this dissertation were also trained on another dataset, the NIST Ballistics Tool-

mark Research Database, with the purpose of establishing a benchmark performance.

For the optimization of the network, data pre-processing techniques as well as trans-

fer learning are also analysed through a development pipeline.

Using the Portuguese Criminal Police’s dataset, the proposed classification model

based on siamese neural networks reached accuracy values of 57% and 81%, for top-1

and top-2 gun model identification. While these results seem promising, this technique

reached an accuracy of 100% on top-1 classification with the NIST Ballistics Toolmark Re-

search Database, suggesting that there were still improvements that could be performed

on the Portuguese Criminal Police’s dataset.

Keywords: Siamese Neural Networks, Data processing, Ballistics classification
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CHAPTER 1

Introduction

The identification of the firearm model that fired a bullet is critical forensic information

that is traditionally performed by skilled examiners using microscopes and visual in-

spection. At the Portuguese Criminal Police’s (PCP) laboratories, this work is currently

performed using the FIRETYDE database of the German Federal Criminal Police and a set

of internal files with pictures of fired bullet cartridges.

When a hard surface comes into collision with a softer surface plastic deformation

occurs [1]. This deformation, produced in a casing when firing a projectile, is unique

to each weapon in the context of ballistics. This means that the marks imprinted by

weapons on the surfaces of a bullet or casing allow for the identification of the model of

the weapon that fired it [2]. Figure 1a depicts two common bullet cartridge markings:

the firing pin, which strikes the cartridge and triggers the firing of the bullet, and the

ejector, which causes the ejection of the bullet cartridge. Figure 1b depicts where the

parts referenced in Figure 1a are located in the weapon.

(a) Parts that may leave

marks on the cartridge

(b) Pistol parts diagram

[3]

Figure 1. Most relevant gun parts in the current context
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The process of identifying the firearm model based on the cartridge case head is

carried out by ballistics experts, who use microscopy to compare the marks found on the

cartridge case head under investigation with marks found on reference cartridge case

heads from multiple different gun models. Figure 2a portrays marks that are usually

found in fired cartridges while Figure 2b displays a cartridge case head image captured

with a microscope.

(a) Gun marks left on the

cartridge after being

fired

(b) Microscopy analysis

Figure 2. Fired cartridges analysis

With this method, examiners aim to find the gun model that produces the most similar

marks to the ones found in the cartridge under analysis. It is a time-consuming process

for the examiner, as it requires the handling of a variety of specialized equipment and the

completion of numerous steps in order to collect and analyze the samples appropriately.

Aside from that, the professionals must be well-trained on how to evaluate and compare

specimens, as well as know what to look for when doing so.

Multiple strategies based on machine learning, image processing, and region of inter-

est (ROI) extaction were proposed as ways of identifying the gun model that fired a given

cartridge. For the development of any Machine Learning algorithm, a significant amount

of data is needed to be able to train an accurate and generalizable model. For this

purpose, the PCP has scanned multiple cartridge case heads as two-dimensional images
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and three-dimensional point clouds. With a dataset such as the one being presented,

it should be possible to build a trainable model that could be integrated in a tool for

assisting the examiner’s work, by providing them with a list of the most likely firearm

models for the gun that fired the cartridge under investigation.

1.1. Motivation

Spent firearm cartridges hold important information regarding the firearm that was be-

hind the firing of the corresponding bullet. When a criminal shooting incident takes

place, ballistic evidence in the form of spent bullet cartridges are collected when pos-

sible [4]. If that evidence cannot be retrieved from the scene, it can be photographed

for further investigation.

According to Kara in [5], when cartridges are collected for investigation, firearm

experts are frequently asked two questions:

• What firearm model was behind the shooting of the cartridge?

• What was the specific firearm used?

The answers to these questions make it possible to determine if there is a relation

between two or more incidents that involve shootings.

To be able to identify the weapon model that was behind a shooting, ballistics re-

search laboratories produce comparison marks on bullet cartridges by firing them in a

controlled environment. The crime scene evidence is then compared to the reference

control material as well as cartridges from other crime scenes [6]. The process of com-

paring reference cartridges from multiple weapon models to the cartridges found in a

crime scene is what allows an examiner to draw a conclusion regarding the weapon model

that was associated to the shooting. This process relies on the ability of ballistics special-

ists in being able to visually inspect and find relevant marks in the cartridges. It is also

required that experts compare different sample cartridge cases under the microscope

with the purpose of finding matching marks and, consequently, the matching weapon or

weapon model.

According to the PCP, the manual identification of the firearm model that was asso-

ciated to a shooting incident is only successful 16% of the time. This low success rate,
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associated with the fact that this is a very laborious task that requires experts to allo-

cate multiple hours of their time, is what motivates the need for an automatic ballistic

identification system adequate to the most common weapons used in Portuguese crimes.

It is also important to mention that such system does not aim to replace the examiners’

work but rather help them reach conclusions faster and with higher success rate.

1.2. Objectives

The main purpose of this research is to develop and train a semi-automatic firearmmodel

identification system, using the cartridge case head image dataset provided by the PCP.

This classification system could be subsequently integrated on a tool that would help

Portuguese ballistics experts carry out firearm models identification, by providing them

with a list of the most likely firearm models to have fired a bullet cartridge.

Since the dataset provided by the PCP is experimental and under development at

the time of this dissertation’s work, another dataset, the NIST Ballistics Toolmark Re-

search Database (NBTRD), was used as benchmark for the developed technique. With

this dataset, we aim to demonstrate the performance of the proposed technique on an

established ballistic image repository.

The outcome of this work should be regarded as a proof of concept for a technique

that aims to automatically provide examiners with a list of the most likely gun models

to have fired a given cartridge given its image, consequently reducing the time spent on

such task.

1.3. Research Questions

The identification of the firearm model that was behind the shooting of a given cartridge

is a challenging process that yields an important piece of information for criminal inves-

tigation purposes. In the context of the development of a system that does this task

automatically, it is important to answer the questions:

• Can an automatic ballistics classification system help improve the success rate

achieved by the PCP’s ballistic experts?

• Can the use of pre-processing on the provided data positively impact the auto-

matic gun model identification?
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1.4. Methodology

The development of the proposed work was carried out following an adapted version

of the methodology proposed by Peffers et al. in 2007 [7] designated “Design Science

Research Methodology (DSRM)”. This methodology aims to provide guidance and amental

model for the presentation of the outcome of digital science research artifacts [7].

With this methodology, it was is possible to systematically identify and create a so-

lution for the problem identified in this dissertation using a digital artifact. For this

process, a number of steps proposed by Peffers et al. in [7] were followed:

• Problem identification and motivation;

• Defining the objectives for a solution;

• Design and development;

• Demonstration;

• Conclusions.

In Figure 3 it is possible to visualize the model proposed by Peffers adapted to the

project’s context.

Figure 3. Adapted DSRM process model [7]

The original methodology proposes a development process that aims to iteratively

improve the developed artifact by having it evaluated by experts, which would be the

PCP examiners, in the last step of the iterative process and then modifying it according

to their feedback. Since the end result of the carried out research was only a proof of

concept for the used technique and not a finished product, the development iteration
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process was adapted to end with the prototype’s demonstration and validation regarding

its functionality.

This model shows that any given research can start off in either one of four pos-

sible starting points. The first step in this process has already been accomplished by

identifying and describing the project’s problem and motivation at the beginning of this

chapter.

In the second step, the methodology states that objectives for the digital artifact

should be established, which have been defined in section 1.2.

It is in the next step that the development of a solution starts. In this phase, the

proposed solution starts to take shape and is incrementally improved over various iter-

ations. In this case, the solution was developed using a predefined pipeline structure

using both the PCP and NTBRD datasets.

After the development of a solution, it has to be put into practice. In step number

four, the artifact built in the previous step was tested and its outcome was demonstrated

by predicting test set images.

The final step in this process is to document and publish the research carried out so

the scientific community can consider it in future scientific investigations.

1.5. Dissertation Structure

After defining the objective, methodology and motivation the dissertation for this work,

it is organized as follows:

In Chapter 2 a literature review is conducted regarding the state-of-the-art in ballis-

tics identification tools and techniques. This literature review uses the Preferred Report-

ing Items for Systematic Reviews and Meta-Analysis (PRISMA) methodology for systematic

reviews and meta-analyses [8].

Chapter 3 describes the proposed solution. It provides descriptions for the used

datasets, the classification approach, the image processing techniques as well as the

used pipeline for the project’s concretization.

In Chapter 4 the performance of the developed technique is demonstrated for both

datasets. A final evaluation is also carried out.

6



Chapter 5 is the final chapter where a conclusion regarding the research is presented.

A discussion concerning future work that can be carried out to further fulfil the realized

project is introduced as well.
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CHAPTER 2

Related Work

Facing the research questions and objectives presented in sections 1.2 and 1.3 the pre-

sented related work aims to find the best approach to be able to accurately predict what

gun model was behind the shooting of a cartridge. Additionally, reference datasets used

in this context are also in the scope of this search to provide reference metrics for the

developed technique.

Having this in consideration this related work shows what techniques have been em-

ployed in the context of ballistics identification with the objective of finding what is the

best way to approach the stated problem.

2.1. Search Methodology and Criteria

A systematic literature review was conducted using the PRISMA [8] flow Methodology in

order to find the answer to the question “What is the state of the art regarding automatic

identification of firearms based on spent cartridges images?”.

The papers to be analysed had to fulfil the following criteria:

• Source of paper: Conference Paper, Conference Review, Article, Review;

• Year: From 2010 to 2021;

• Language: English.

2.2. Research Query

In order to retrieve the publications related to this work, a query was formulated in

order to get all the results regarding firearm model identification, the use of cartridge

case images and the use of machine learning as well as image processing. As such, the

search query used was: (“Weapon” OR “Firearm” OR “Gun”) AND (“Cartridges” OR “Cas-

ings” OR “Shells” OR “Firing Pin” OR “Breech Face” OR “Tool Mark” OR “Ballistic”) AND

(“Classification” OR “Siamese Neural Network” OR “Neural Networks” OR “Convolutional
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Neural Network” OR “Machine Learning” OR “Identification” OR “Artificial Intelligence”

OR “Dataset” OR “Deep Learning” OR “Image Processing” OR “Image enhance” OR “Fea-

ture extraction”).

The search for this literature review was conducted within the Scopus repository using

the mentioned query. Google Scholar was also used for searches that were considered

relevant, outside the scope of this query.

2.3. Selection of Studies

The selection of studies was conducted considering some important aspects of this work:

Machine learning applications in the automatic identification of firearms based on im-

ages of spent bullet cartridges, other automatic techniques used for ballistics automatic

identification and image processing techniques used to process cartridge images. In Fig-

ure 4 the results of this search are detailed in a number of documents included and

excluded for each step.

Figure 4. PRISMA workflow diagram (adapted) [8]
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The first criteria to consider for document selection were its title and abstract. An

additional full document analysis was carried out when that information alone was not

conclusive. After selecting the studies for analysis, it is important to understand what

topics studies were mostly focused on. As such, the VOSviewer [9] tool was used to make

a map and analyse the bibliometric similarities within the analysed literature. Figure 5

shows a graphical representation of the bibliometrical map.

Figure 5. Graphical bibliometric representation [9]

By looking at the relative size of the nodes and cluster colors on the representation it

is possible to understand what topics are mentioned in the literature and their relevance.

With this in mind, we can see that the main topics are:

• Congruent matching cells method;

• The ballistics dataset;

• The content type of the used images;

• Laboratories influence on ballistics identification;

11



• Neural networks.

One of the topics that we were not able to identify in the collected literature were

the tools that are already available in the market and partially accomplish what we’re

trying to achieve, in other ways. These tools are already in use in laboratories and help

analyse and automatically identify firearms via ballistics imaging. Considering this, we

found it is important to discuss these methods, although no evidence was found during

the surveying process.

2.4. Literature Review

Congruent Matching Cells Method

In the reviewed literature, it was found that one of the most frequent methods used to

automatically find what gun fired a bullet is the congruent matching cells (CMC) method.

In [4], Tong et al. explains that the CMC technique was developed by the National In-

stitute of Standards and Technology (NIST) [10]. This method uses the cartridge’s 3D

topography and aims to correlate small correlation cell pairs, instead of the whole car-

tridges. In the approach developed in [4], a reference breechface impression is divided

into 7x7 cells, each cell being a correlation area, and each of these areas is compared

to similarly sized areas. Figure 6 presents the described technique being applied to two

breechface images, with the color representing topography values.

Figure 6. Breechface correlation cells [11]

12



For the correlation cells comparison, the cell of the known class image stays the same

while the image under analysis is fully rotated, changing the correlation cell at each

angle shift and making sure that the right correlation cell is not be missed during the

correlation process. Each pair of correlation areas is then classified as valid (matching

cells) or invalid (not matching cells) according to four parameters values. In [12], the

same author improves the used technique by applying correlations at a common angle and

making use of the correlation cells pairs in both directions to improve the identification

capability. Figure 7 shows the improvement of the new technique correlation over the

original technique.

Figure 7. Improved CMC method [12]

Figure 7 shows in red the cells that represent the original technique, while the blue

cells represent the additional cells that the improved CMC method could identify.

Besides the congruent matching cells identification problem, it is also essential to

be able to classify the image pairs as matches (same firearm) or non-matches (different

firearm). For this purpose, a numerical threshold, C, was suggested for cartridge case

matching. This parameter as a CMC classification criterion was initially proposed by

Song in [13] with a value of 6 and its value was kept for the research carried out in [12].

This criterion indicates that image pairs with 6 or more individual matching cells are

classified as cartridge matches, while pairs with a count inferior to 6 are classified as

non-matches.
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Ballistic Imaging Quality Assurance

The CMC method was developed by NIST, who had also made efforts to establish a Trace-

ability and Quality control system for ballistics applications and crime laboratories, with

the National Ballistics Imaging Comparison (NBIC). This project was carried out in com-

bination with the Bureau of Alcohol, Tobacco, Firearms and Explosives (ATF) as demon-

strated by Song et al. in [14]. The project consisted in the scanning of 2D and 3D mea-

surements and the correlation analysis of the NIST Standard Reference Material (SRM),

acquired by multiple crime laboratories based in the United States of America. Figure 8

shows one bullet example of the standard reference material used for evaluation over

different laboratories:

Figure 8. SRM 2460 bullet [12]

This was done in order to establish quality assurance across the laboratories. Vor-

burger et al. describe in [15] that with the second NBIC project, the process of acqui-

sition and correlation of the SRM is done again and its results collected and analysed by

NIST to define control parameters and limits, with the objective of assuring the compli-

ance with the ISO 17025 Standard.

The NIST has also developed an open-access Ballistics Toolmark Research Database

(NBTRD) [16] where scanned 3D and 2D data from multiple cartridge cases and toolmark

surfaces is available for researchers to be able to conduct their experiments and meth-

ods and compare results. This database eliminates the need for researchers to create

their own datasets, which is an expensive and time-consuming process, and allows new
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algorithms and methods to be objectively evaluated.

Image Processing

Regarding Image processing techniques, Gerules et al. [17] state the importance of the

use of image preprocessing techniques for correction of acquisition defects or image

enhancement for use on other algorithms. Some techniques used for this purpose are

described, those include: Noise reduction techniques which smooth the image, such as

the Gaussian Kernel [18]–[20]. Other authors have also used the median filter for noise

generated by some types of sensors [21]. The author also states that the images are

processed and their background is removed to extract the relevant parts of the image.

For this purpose, automatic edge detection methods that rely on sharp changes in inten-

sity within the image such as the Sobel operator and the Canny Edge were mentioned

[22]–[24].

In [25], Huang et al. develops a binarization algorithm for edge detection and com-

pares it to previously proposed algorithms: Otsu [26], Chow and Kaneko [27] and Yanowitz

and Bruckstein [28]. The results of the proposed algorithm are shown in Figure 9:

Figure 9. Comparison of the algorithm proposed in [25]

The proposed algorithm, which is shown in Figure 9, outperforms the algorithms it

was tested against. The same author, states in [29] that to extract relevant features

from cartridges images, it is necessary to first process them. It is also declared that,

to do so, it is required to binarize the images. In their analysis, three edge detection

operators are compared and it is found that the combination of the Sobel operator and

the Canny operator yield the optimal results regarding edge detection.
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In a study conducted by Kara [5], the author uses the Turkish BALİSTİKA 2010 system

to compare similarities and differences between cartridges using firing pin impressions,

capsule traces, and the combination of these areas. The results of the comparison be-

tween the different parts of the cartridges suggest that the firing pin impression is the

most effective of the three for ballistics classification.

Machine Learning Classification

Regarding the use of Machine Learning in the identification of firearms it was found that

in 2011, Kamaruddin et al. [30], tried using firing pin based geometric moments pro-

posed by Ghani et al. [2] in 2010 to train a back propagation neural network with the

“trainlm” algorithm and a 6-7-5 architecture, achieving 96% accuracy on firearm classi-

fication. One year after that development, Leng et al. [29] proposed a novel method for

feature extraction called the “circle moment invariants”. They then used the outputs of

this extractor as features to train a 3 layer backpropagation Neural Network, obtaining

a 98% accuracy for firearm identification.

Recently, Giudice et al. [31] suggested the use of breech face only images, gener-

ated from 3D point clouds, as input for a siamese neural network. This network showed

positive results for a Top-N probability based metric.

Available Ballistic Identification Systems

In the book “Handbook of firearms and ballistics: examining and interpreting forensic

evidence” [32], Heard mentions a list of ballistic identification systems that are available

in the market, namely:

• ARSENAL by Papillon Systems of Russia;

• EVOFINDER by SCANBII Technology;

• FIREBALL from Australia;

• CIBLE, a French system;

• TAIS, a Russian system;

• BALLISTIKA from Turkey.
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Heard also states that these systems cannot replace the examiners that do the ballis-

tics comparisons. These systems generate a list of the most likely candidates as possibles

matches. With these results, experts still have to manually compare and analyse the pos-

sible matching cartridges to the cartridges being analysed. This being said, similarly to

the system that is being proposed, the ultimate decision on whether there is a match

still has to come from the examiners [32].

Summary

The previously analysed techniques show that there are many ways one can approach a

ballistic identification problem. There is software in the market that can be used for

ballistic analysis and identification, as well as other techniques such as the Congruent

matching cells technique or machine learning algorithms, which have also shown poten-

tial. In this literature review, it was possible to observe that only one siamese neural

network technique has been applied in this field in recent years, using 3D point clouds.

This shows that there might be unknown potential in this approach, considering the use

of images instead of three-dimensional data.

2.5. BALCAT Project

The work presented in this dissertation was developed within the scope of the BALCAT

project, commissioned by the Portuguese Criminal Police. The BALCAT project consists

in the creation of a ballistics classification tool that is being developed by INOV - Instituto

de Engenharia de Sistemas e Computadores Inovação, with who we are collaborating with

by developing the presented cartridge images’ classification algorithm.

The BALCAT project can be divided into three main phases:

(1) Image acquisition and labelling phase;

(2) Ballistics classification technique development;

(3) Deployment into production.

In the image acquisition phase, an application was developed by INOV for the acquired

scans to be uploaded, segmented and the relevant parts of the images annotated. Al-

though no part was taken in the development of this interface, it was necessary to do
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some of the annotations since there were not enough annotations to proceed with the

presented work.

The second phase is where the work being described in this dissertation comes in.

For this stage, an automatic ballistics identification method was developed with the

capacity of returning a list with the most likely firearm models to have fired a given

cartridge.

At last, it is necessary to deploy this network into production at the PCP’s headquar-

ters. For this task, it is intended that the developed technique is integrated into an

application that can be operated by the end user, developed by INOV. Besides having

the pre-trained model to classify the images, it is also planned that this tool has the

ability to further train this model as more data is uploaded into the system.

Regardless of the accuracy of the developed tool, it should be viewed as a technique

for optimizing the examiners’ search by providing indications on which cartridges to

target, and not as a substitute for the examiner’s work.

It is also important to note that the work presented in this dissertation is only one of

the parts that make up the BALCAT project. This project involves other tasks that were

outside the scope of this dissertation, such as the gathering of data and its annotation

as well as the creation of the tool that can be used by the examiners. With this in mind,

this dissertation presents the development and test process behind the method used to

classify the images that are uploaded into the final system.
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CHAPTER 3

Design and Development

This chapter presents the development process of a siamese neural network architecture

with the ability to classify cartridge case images. From the literature review presented in

the previous chapter, the most promising machine learning based approach for firearm

model identification uses a siamese neural network whose inputs are 3D point clouds

[31]. Since this technique achieved good results when compared with other state-of-

the-art algorithms, it should be worth to apply a similar concept to the two dimensional

imagery domain and to evaluate its outcome.

On the other hand, due to limitations on the amount of available images, the use of

SNNs is potentially a good fit for the application since these networks usually require

a smaller number of images for training when compared with traditional classification

approaches [33]. Thus, the PCP has digitized a portion of its archives with the purpose

of building a tool that is able to help them with the identification process.

Since the PCP’s dataset is experimental and has not been tested before in other ap-

plications its effectiveness cannot be taken for granted. In the current state of the art it

was also found that the NIST had setup and published an open source dataset, the NBTRD

[16]. Furthermore, it was used by several other scientific studies, making it a relevant

dataset to use as reference. The works [1] [31] [34] [35] [36] [37] are examples of studies

that have used this dataset to carry out their ballistics related scientific investigation.

With this in mind, this dataset will also be described and used as a benchmark for the

proposed technique’s performance.

3.1. Image Acquisition and ROI extraction

PCP’s Dataset

Regarding the collection of the images gathered by the PCP, the ToolScan imaging system
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[38] was used to acquire 2D and 3D data of several fired cartridges in a single scan. The

2D scanning of the cartridges results in a matrix of casings as illustrated in Figure 10.

Figure 10. PCP’s scan output image

These images then needed to be segmented into multiple singular cartridge case head

images for it to be useful in a neural network training approach. To address this issue,

a threshold was applied to the images to binarize them, and then the Hough Circles

algorithm was used to determine the positions of the cartridges. Figure 11 shows an

example with the cartridges’ suggested final positions.

Figure 11. Proposed cartridges positions

For the segmentation task, a 10% size increase was applied to the circle’s boundaries

and the corresponding bounding box is cropped according to each circle’s size and po-

sition. The identification of the cartridges’ position (using binarization and the Hough

Circles method) and their segmentation were both done with OpenCV[39]. In addition

to this acquisition, PCP examiners also annotated the majority of the images’ cartridge

case outline, breechface impression, ejector mark and firing pin impression.
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All the mentioned work regarding the scanned images’ segmentation was carried out

by researchers at INOV who have shared and allowed the publication of the developed

dataset.

NBTRD

The database developed by NIST also includes 2D and 3D data from cartridges. According

to Zheng et al. in [16], the 3D data was collected using a disc-scanning confocal micro-

scope. For firing pin impressions, a 20X objective was employed and 10X objective was

used for the breech face.

The 2D data was collected using a stereo microscope, which allowed the rendering

of 2D images from different points of view. A 4X objective was used to collect firing pin

images while a 2X objective was employed for the cartridge case breechface impressions.

Besides NIST, other entities have also uploaded data but for the scope of this project

only NIST collected images were used. Figure 12 shows example cartridge images from

the NBTRD.

Figure 12. NBTRD example images

Since there are very few firing pin images for each gun model, only breechface images

were considered for this part of the project. Every breechface image was acquired under

two different light conditions, which enhance the image in distinct ways. Figure 13 shows

the difference between image acquisition under a ring light and a 6 o’clock light. From

this image it can also be observed that, while the firing pin impression is not in focus, it

is possible to observe its impression outline.
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(a) Ring Light

image

(b) 6 o’clock

light image

Figure 13. NBTRD cartridge images captured under different light
conditions

3.2. Dataset Characteristics

PCP’s Dataset

After the images were segmented and labelled the dataset ended up width a total of

1295 images distributed throughout five different classes (five different gun models).

Table 1 shows the number of cartridges per class and how many unique weapons were

used to fire those rounds.

Table 1. PCP’s base dataset characteristics

Gun model Number of images Unique firearms

GT28 746 235
P6 150 46
315 Auto 150 38
950B 149 42
Baby 99 30

It is possible to understand that the dataset is significantly unbalanced, especially

due to the large amount of “GT28” cartridge samples in contrast to the other classes.

Furthermore, both the number of images and the firearm variability within each class is

limited, taking into consideration that reference machine learning datasets such as the

MNIST [40] or ImageNet [41] often contain classes with thousands of images.

Additionally, the dataset must be divided so that the Training Set, Validation Set, and

Test Set do not share any unique guns. Not doing this could cause the network to learn

characteristics of the weapons and not generalize the learning to the weapon model.
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Another factor that was considered is the number of available annotations. Consider-

ing the low amount of images, it was important to focus the network’s training on the

most relevant parts, which has been suggested to be the firing pin impression in a study

conducted by Kara in [5]. Table 2 shows the number of annotations for each class.

Table 2. PCP’s dataset number of annotations

Gun model Breechface Firing pin Ejector

GT28 741 740 631
P6 80 79 4
315 Auto 146 148 88
950B 70 70 0
Baby 40 40 0

From Table 2 it is possible to observe that, since the dataset is not yet in a finished

version, not all of the images have annotations for the ejector, breechface and firing pin.

These are important components to annotate due to the fact that not every part of the

cartridge image holds relevant information to its classification. Due to the low amount

of samples, the training should be more focused on the important parts of the image.

Figure 14 demonstrates the different possible annotations in the dataset collected by

the PCP.

Figure 14. Annotated cartridge image

NBTRD

The NBTRD, mostly consisting of data collected by NIST, is an open source dataset con-

taining 3D data as well as 2D data. For the purpose of this dissertation, the number of
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cartridges collected from that dataset were arranged with the objective of being smaller

than or equal to the PCP’s dataset classes’ frequency. The collected dataset number of

images per class is described in Table 3.

Table 3. NBTRD characteristics

Gun model Number of images Unique firearms

Ruger P95DC 100 10
Ruger P9PR15 80 10
SW 10-10 72 12
Hi-Point C9 60 10
SW 40VE Sigma 60 10

Table 3 shows that similarly to the PCP’s dataset, this collection of images is also un-

balanced and even more limited in both quantity and variability. This way, the obtained

results can confirm whether the dataset size has a significant impact on the network’s

performance. Contrary to the homologous dataset, the images from the NBTRD do not

have any annotations associated. Similarly to what was done for the PCP’s dataset, it

must be divided so that the Training Set, Validation Set, and Test Set do not share any

unique guns.

3.3. Proposed Classification System

Unlike conventional neural networks, a Siamese Neural Network (SNN) does not directly

predict classes for a given input sample, instead, it takes two inputs and outputs the

probability of both belonging to the same class, according to Koch in [42]. Since the

current problem deals with images, the followed approach uses two identical parallel

Convolutional Neural Networks (CNN) to process the input images and output the match

probability.

The network training aims to reduce the distance between the outputs of the con-

volutional networks, for images of the same class, while increasing it for different class

images. This sort of network is advantageous since it operates by computing a proba-

bility for pairs of images rather than individual pictures, allowing the same data to be

utilized several times by pairing the dataset in different ways. Figure 15 demonstrates
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the general architecture of an SNN based on CNNs that was used in this problem, adapted

from [42].

Figure 15. Proposed SNN architecture in [42] (adapted)

Since SNNs do not directly classify the images’ classes, a way to do predictions needs

to be applied. With this in mind, for any technique used for this purpose, it is necessary

to first select a set of reference images from each gun model for comparison. After this

selection two methods were tested: Distance classification and Probability classifica-

tion, which are going to be described.

Distance Classification

Assuming that any two images of the same class should have a low distance between

them on a well performing SNN (measured at the output of the CNN part of the SNN),

the cartridge under analysis can be classified by measuring the distance between the

CNN feature vector of the mentioned image to the feature vector of every reference

cartridge (computing the distance). This way, it is then possible to classify it as the

class of the images with the average lowest distance or output a list ordered by relative

distance to each class. Figure 16 demonstrates how this process was carried out.
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Figure 16. Proposed distance classification method

Probability Classification

Similarly to the distance classification, the probability classification compares the output

of an image to the output of multiple reference images. As previously mentioned, an

SNN outputs the probability of a match. With this in mind, the image to classify is paired

with every reference image and it is possible to form a list with the average matching

probability per class. The most likely class to be a match will be on the top of this list

and therefore it will be considered as the predicted class. Figure 17 demonstrates how

the probability classification process was implemented.
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Figure 17. Proposed probability classification method

3.4. Proposed Pipeline

In order to methodologically develop the most adequate SNN for the problem at hand,

a procedure pipeline was defined for this work. Since an SNN is composed of two equal

CNNs, it is suggested that this pipeline is used to develop a well performing CNN and,

by removing its classification layer, use it as a feature extractor for the structure of the

target siamese neural network, which was then retrained.

Figure 18 depicts the proposed pipeline. This pipeline shows the followed process

used to find a CNN with a good performance, within the tested parameters. For each

phase, the best approach is chosen and used in the following step.
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Figure 18. Proposed pipeline for the PCP’s Dataset

Region of interest extraction

The cartridge case head images needed some consideration regarding the portion of the

image that was used for training and classification. For this reason, the first stage of

the pipeline evaluates three possibilities: breech face image region, firing pin image

region and full image. The missing firing pin impressions and breech face impressions

were annotated in order to increase the data available for this assessment. The ejector

mark had to be discarded for this project due to a lack of information and consistency

while annotating it.

Data Balancing

One of the problems present in both datasets is the imbalance between classes fre-

quency. This presents an issue since most classification algorithms tend to have a high

bias toward the majority class [43], which results in a tendency to classify more images

as the most frequent class and, therefore, decreasing performance. Considering this

issue, the developed pipeline presents two data balancing techniques that were tested

and compared to a network trained on unbalanced data.

One of the tested techniques is Over-Sampling. This technique, presented by Jap-

kowicz in [44], consists in randomly duplicating images from the minority class (possibly

applying preprocessing function to differentiate the image) until it reaches the same

amount as the majority class. This causes the overall dataset to grow, at the expense

of having a considerable amount of duplicates.

The other technique that was tested is Under-Sampling, which is also mentioned in

[44]. This technique consists in randomly eliminating samples from the majority classes
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until the amount of examples equals the minority class. This approach ensures that no

duplicate data is present at the expense of a considerable loss of data in the predominant

classes.

After the two methods were tested, the one that produced the best performing CNN

was used to test the following techniques.

Image Processing

The majority of machine learning problems include data preparation techniques before

feeding it to networks. Images, for example, can be preprocessed using computer vi-

sion techniques that extract features, remove noise, highlight regions of interest, and

facilitate the generalization process of the models to get superior performances.

Due to the lack of images in the current problem, an image processing technique was

used with the objective of highlighting the regions of interest and removing parts of the

images that do not contain relevant information. This way, the training can be focused

on the most relevant parts of the image.

On the other hand, CNNs are developed and trained to learn optimized image filters

that, when applied to the images, should highlight key features in the images, as the

network advances into deeper layers [45]. Having this in consideration, if a CNN is al-

ready trained to find the best filter parameters for an image, using image processing

may not be useful.

Transfer Learning

The ideal scenario for a regular machine learning application is when there is a large

number of labelled examples with equal distribution. However, for a dataset to have

the mentioned characteristics is sometimes very costly, time-consuming, or even im-

possible to get [46]. Typically, gathering adequate data is difficult and it is often not

equally distributed, which is the case for the datasets used in the context of this work.

In real use case scenarios datasets are often not perfect, either due to imbalance

or shortage of datapoints. Transfer Learning (TL), which focuses on knowledge transfer

across domains, is a potential machine learning paradigm for addressing this challenge,

29



as it usually uses reference neural networks to learn from standard large and diversified

datasets. This already obtained knowledge is then transferred to other problems by

training new layers on top of the network with the least ideal dataset, keeping the pre-

trained weights, a technique called fine tuning.

It is important to note that transferred knowledge does not always have a positive

impact on new domains, especially if there is little in common between areas [46].

In this application, three deep learning models were tested: ResNet [47], Inception

[48] and VGG16 [49]. The models were chosen based on the fact that they have been

widely used for general classification applications and their performance is frequently

used as a benchmark for other architectures [50]. Additionally, although these designs

all have different architectures, they all share the same basic working principle, being

made up of convolutional, pooling and other types of layers while classifying at the im-

age level [51].

Data Augmentation

When adopting convolutional neural networks, one of the most common preprocessing

applications is data augmentation (DA). DA is a technique that consists of artificially

expanding and diversifying a dataset. It generally improves model performance, con-

tributes to the overall data’s heterogeneity and aims to provide improved generalization

on the trained model [52]. This operation works by taking the training images and apply-

ing different image transformations before every training epoch. These transformations

can include flipping, scaling, rotations, width and height shifts and other operations like

brightness.

Some examples of data augmentation techniques such as rotation, height and with

shift applied on the NBTRD can be observed in Figure 19.
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Figure 19. Rotation, height and width shift data augmentation on the
NBTRD

This procedure is usually beneficial for studies that have smaller datasets and do not

have the ability to generalize well, such as this one. Data augmentation also allows

their models to be trained on the same data multiple times, delaying the time it takes

to reach a state of overfitting and generalizing better.

Despite data augmentation approaches that enrich a dataset with label-preserving

changes, hundreds of datapoints are generally still required for the successful training of

a deep neural network, depending on the complexity of the subject under investigation

[52] (i.e. number of classes, image complexity, etc.).
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CHAPTER 4

Experimental Results

In this chapter, the steps that were carried out to follow the pipeline proposed in sec-

tion 3.4 are presented, as well as the parameters and techniques used to obtain the

results. Over the course of this portion of the dissertation, some determinations are

stated regarding what approach should be followed in each step of the pipeline. A sec-

tion highlighting final remarks concerning the obtained results is also presented at the

end of the chapter.

For the development of every CNN that is presented in this chapter, the python

library “Keras Tuner” [53] was adopted. This library allows for the automated tuning

of the network’s hyper parameters within a set of predetermined bounds. After the

ideal hyperparameters have been found, the best performing model is returned (already

trained).

For the developed networks’ hyperparameter tuning, the parameters presented in

Table 4 were used for both datasets.

Table 4. Parameters used for hyperparameter tuning

Nº Layers Layer Filters/Neurons Filter Size/dropout Activation

1-5 Convolutional 4-64 2-4 relu
1-5a MaxPooling - 1-3 relu
1 Flatten - - -
1-3 Dense 2-256 - sigmoid or relu

0-3b Dropout - 0-0.3 -
1 Dense (classification) 5 - softmax

a Interspersed with convolutional layers
b Interspersed with dense layers

Throughout the experiments an image size of 150x150 px was used. This value was

found to achieve a good balance between the hardware memory limitations, the net-

work’s training speed and the visible detail on the images.
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After the development of the CNNs, the SNNs were constructed and the two eval-

uation methods, the distance method and the probability method, were compared. In

the end, the results for both datasets were evaluated and a discussion regarding the

performance of the datasets is presented.

4.1. Region of interest extraction

For the first section of the work, only the PCP’s dataset was considered, since the NBTRD

does not have annotations to enable the segmentation of the images. In this first part,

a custom network was built and trained for each of the possible regions. Since not every

image was annotated with the breech face and the firing pin impressions, there was still

some work in this regard.

For the breech face images, since the coordinates for the center of the cartridges

were known (by using the Hough Circles method mentioned in Section 3.1) and because

the breech face is centered relative to the cartridge, it was possible to get this annota-

tion for all the images, by applying a fixed radius at the center of the cartridges.

For the firing pin region extraction it was not as simple, due to the fact that the firing

pin is not at a fixed point. Therefore, the firing pin impressions that were annotated

were automatically segmented, while the others were segmented by hand.

With the techniques mentioned above, it was possible to have firing pin impression

images and breech face images for all of the labelled data.

An example for each one of these images can be seen in Figure 20.

(a)

Full

image

(b)

Breech

face

image

(c)

Firing

pin

image

Figure 20. PCP’s example images used in the first phase of the pipeline
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Although the data for this step is unbalanced, the test and validation data do need

to be balanced, otherwise, the results would not be reliable. This happens because, if

there is a majority class in the test or validation data and the network is biased towards

the majority class, the accuracy of the network can be inaccurately high. Due to the

fact that there was also a need to do these splits in a way that unique firearms are not

shared between them, it was not possible to keep the validation and test sets perfectly

balanced. With this in consideration, the training, test and validation data frequency

can be seen in Table 5.

Table 5. Number of images per set for each class

Number of images for: 315 Auto 950B Baby GT28 P6 Total

Training 108 105 58 700 100 1071
Validation 28 30 27 29 32 146
Testing 14 14 14 17 18 77

After running the hyperparameter tool on the splits presented in Table 6 the accura-

cies and losses achieved for each region were the following:

Table 6. Accuracy and loss results for region of interest extraction on the
PCP’s dataset

Image type Validation loss Test loss Validation accuracy Test accuracy

Full images 1.80 1.82 40% 37%
Breech face 3.11 3.31 44% 47%
Firing pin 1.34 1.73 65% 53%

Table 6 shows that every result showed a relatively high loss, especially for breech

face images. Overall a slight increase in accuracy can be noticed from the full images to

the breech face, although the losses are also higher. The best results were achieved for

the firing pin images, where a significant increase in validation accuracy (less noticeable

in the test accuracy) and a slight decrease in loss can be observed. These results confirm

the conclusions drawn by Kara in [5], where the firing pin images showed the most

promising results for firearm identification.

From this experiment’s results, the following tests with the PCP’s dataset were con-

ducted considering the firing pin images only.
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4.2. Data Balancing

In this section, two data balancing techniques were tested and compared to the datasets

without any data balancing. This allows to understand if there is any advantage in using

balanced datasets over the unbalanced datasets. Regarding data balancing approaches,

an under sampling technique was applied to the dataset. For this method, each class

contains about the same amount of images as the class that contains the lower amount of

samples. An oversampling technique was also applied. For this approach, each classes’

images were randomly duplicated until their frequency is similar to the majority’s class

frequency. Both techniques were presented by Japkowicz in [44].

In this section, the networks were trained and tuned using the keras tool with the

parameteres depicted in Table 4.

It is also important to mention that the training set, validation set and test set do

not share different samples associated to the same firearm. In other words, different

samples coming from the same gun are assigned to only one of these sets.

PCP

The training, validation and test set splitting setups for the PCP’s dataset are presented

in Table 7.

Table 7. Number of images per set for each class considering data
balancing on PCP’s dataset

Type Number of images for: 315 Auto 950B Baby GT28 P6 Total

Training 108 105 58 700 100 1071
No balancing Validation 28 30 27 29 32 146

Testing 14 14 14 17 18 77

Training 74 74 74 74 74 370
Undersampling Validation 13 17 16 15 15 76

Testing 10 10 9 11 9 49

Training 700 700 700 700 700 3500
Oversampling Validation 28 30 27 29 32 146

Testing 14 14 14 17 18 77
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Table 8 shows that the undersampling technique achieved the best overall results.

It reached a lower loss value and an higher test accuracy, performing better than the

unbalanced and oversampled data, which has a very high loss.

Table 8. Accuracy and loss results for PCP’s dataset using data balancing
techniques

Type Validation loss Test loss Validation accuracy Test accuracy

No balancing 1.34 1.73 65% 53%
Undersampling 1.26 1.27 63% 57%
Oversampling 2.8 4.67 62% 47%

These results made sense as an unbalanced dataset could cause the model to have

a tendency towards classifying images as the majority class, lowering its performance.

Alternatively, oversampling produces an even lower performance. These results might

be due to the fact that by oversampling, the network is essentially training on the same

images multiple times, not introducing any variability. In this case, where the oversam-

pling is high, multiplying the images around 7 times for some classes, the results show

that this approach is not beneficial. Considering these results, the next experiments

with PCP’s dataset were carried out considering the undersampled data.

NBTRD

For the NBTRD images to keep their aspect ratio of 4/3, but hold about the same amount

of pixels as the PCP’s dataset, the size was set to 170x130 px.

The dataset spliting strategies presented in Table 9 were done so they resemble the

same procedure applied to the PCP’s dataset splits.

With the NBTRD it was found that the validation and test accuracy was the same

throughout all the experiments. The only differentiating factor was the value of the

loss function, which was very high for the undersampled test set and the lowest in the

unbalanced set. Taking this into account, the next tests with the NBTRD made use of

the unbalanced dataset, which showed the best performance.

Table 10 shows the performance of the network for each of the tested sampling

techniques on the NBTRD dataset.
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Table 9. Number of images per set for each class considering data
balancing on the NBTRD

Type Number of images for: P95DC P9PR15 10-10 C9 40VE Total

Training 82 62 54 42 42 282
No balancing Validation 12 12 12 12 12 60

Testing 6 6 6 6 6 30

Training 42 42 42 42 42 210
Undersampling Validation 12 12 12 12 12 60

Testing 6 6 6 6 6 30

Training 82 82 82 82 82 410
Oversampling Validation 12 12 12 12 12 60

Testing 6 6 6 6 6 30

Table 10. Accuracy and loss results for the NBTRD using data balancing

Type Validation loss Test loss Validation accuracy Test accuracy

No balancing 0.00010 0.46 100% 93%
Undersampling 0.00054 10.51 100% 93%
Oversampling 0.034 0.56 100% 93%

4.3. Image Processing

In this section, an image processing technique based on the work described in [54] is pre-

sented. It aims to be able to identify and enhance the most relevant areas in the images

such as firing pin impressions and breechface marks while also eliminating irrelevant

marks from the images. As such, the developed technique consists in:

(1) Resizing to the target size;

(2) Applying a median blur;

(3) Enhancing the contrast via an adaptive histogram equalization;

(4) Binarizing the image using Otsu’s thresholding method [26];

(5) Applying image erosion followed by a dilation to reduce mask’s noise;

(6) Applying the obtained mask to the contrast enhanced image.

The original method proposes gamma correction as a means of contrast enhance-

ment. By experimenting with different approaches it was found that this method would

not yield satisfactory results regarding contrast increase. Therefore, two other methods

were tested: histogram equalization and adaptive histogram equalization. By analysing
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Figure 21 it is clear that the visual differences between these image operations are sub-

stantial. The experiments with the gamma correction method showed that, while the

image is brighter, the contrast does not significantly improve. The histogram equal-

ization technique did show potential in terms of contrast, but it resulted in an over

exposed image. The method that is believed to produce the most balanced results was

the adaptive histogram equalization, which significantly improved the contrast on the

image without over exposing it.

(a)

Original

image

(b)

Gamma

correc-

tion

(c) His-

togram

equaliza-

tion

(d)

Adaptive

his-

togram

equaliza-

tion

Figure 21. Contrast improvement techniques

PCP

The proposed technique was applied to the PCP’s dataset. Figure 22 illustrates the result

of the proposed image processing technique for two firing pin images.
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(a) Firing
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Figure 22. PCP’s dataset image processing

The application of this method to the images seemed to have a strange impact by

highlighting a predominant cross on the center of the firing pin image, as can be observed

in Figure 22.

In cooperation with the examiners at the PCP, it was found out that these light

crosses, which are present in most of the images of this dataset, are not a characteristic

of the cartridges themselves, but a result of the imaging acquisition process caused by

the scanning instrument.

Because of this issue, it was decided that for the PCP’s dataset, an approach without

binarization step should also be tested, as the binarization would not produce the desired

results. With this in consideration, a network with only contrast enhanced images was

also trained, as shown in Figure 21d.
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It was found that using the proposed image processing technique did not result in

an improvement of the network’s accuracy, while using contrast enhancement alone

also did not cause the network’s accuracy to increase. Table 11 compiles the results

of the best performing network against two networks trained on an image processed

dataset, one following the full method, and the other only applying the technique up

to the contrast enhacement step. The results show a decrease of 9% accuracy for the

full image processing procedure, while almost tripling the networks’ loss. Regarding the

images with enhanced contrast, it is possible to see that the test accuracy remained the

same while the test loss decreased.

Table 11. Accuracy and loss results for PCP’s dataset using image
processing

Type Validation loss Test loss Validation accuracy Test accuracy

No processing 1.26 1.27 63% 57%
Full technique 3.31 3.81 61% 48%

Contrast enhancement 1.22 0.92 58% 57%

Since the performance on the test set for the contrast enhanced technique improved

the trained model by reducing loss, the next tests were carried out with this preprocess-

ing applied.

NBTRD

On the NBTRD, the same image processing methods were applied. Figure 23 shows how

the proposed technique and only contrast enhancement affect the NBTRD images.

From these images, it is possible to understand that the processed data has higher

contrast with less visible detail due to the image resizing. It is also possible to state

that the general firing pin shape remains in the image as well as the breech face marks,

while the darker areas with less detail are removed.

The outcome demonstrated in Table 12 suggests that the use of the image processing

techniques slightly affected the performance of the network regarding loss, without any

noticeable decrease in its accuracy.
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Figure 23. NBTRD Image Processing

Table 12. Accuracy and loss results for NBTRD using image processing

Type Validation loss Test loss Validation accuracy Test accuracy

No processing 0.00010 0.46 100% 93%
Binarization 0.0068 0.78 100% 93%

Contract enhancement 0.00015 1.14 100% 93%

Although the processed images show visually promising results, the network’s perfor-

mance did not improve relative to the unprocessed images. Thus, the next experiments

were carried out using the original unprocessed images.

4.4. Transfer Learning

For the Transfer learning section three pre trained network architectures were used:

ResNet V2, Inception V3 and VGG16. These networks were used with the imagenet

dataset weights. Although this dataset is not similar to the NBTRD or the PCP’s dataset
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these weights can be useful as feature extractors, given their vast generalization power

across different classes.

Since this approach is based on previously developed networks, the keras tuner pa-

rameters had to be modified. In this context, not many additional layers are required

to train the network, given the fact that the used architectures already contain a vast

number of layers. As such, for the tuning of the network, an additional Convolutional

and Pooling layers, as well a small number of fully connected layers were considered so

their outputs could be used as feature vectors. Table 13 shows the parameters used for

the fine tuning of the transfer learning networks.

Table 13. Parameters used for hyperparameter tuning with transfer
learning

Nº Layers Layer Filters/Neurons Filter Size/dropout Activation

1 Transfer Learning - - -
1 Conv 4-32 2-5 relu
1 MaxPool 1-2 - -
1 Flatten - - -
1-3 Dense 2-256 - sigmoid or relu
1 Dense (classification) 5 - softmax

PCP

The use of TL in the PCP’s dataset had an overall positive impact in the results. Of the

three tested networks, the Inception V3 had the poorest performance, even significantly

worse than the approach without transfer learning. While both the ResNet V2 and the

VGG16 outperformed the network without transfer learning, it is clear that the VGG16

had a very significant impact, improving the model’s test accuracy by 12% and decreasing

its loss. Table 14 shows how each TL based architecture network affected the model’s

performance.

Table 14. Accuracy and loss results for the PCP’s dataset using TL

Type Validation loss Test loss Validation accuracy Test accuracy

Without Transfer Learning 1.22 0.92 58% 57%
ResNet V2 1.63 1.25 65% 58%

Inception V3 2.44 1.73 51% 46%
VGG16 1.06 0.83 70% 69%
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NBTRD

One of the problems that had been noticed throughout the development of the network

for the NBTRD was the fact that, although the validation accuracy was always 100%, the

testing accuracy never reached a value above 93%. The use of TL shows a significant

impact in the results regarding the network’s loss, especially for the test loss. It is also

possible to see that the VGG16 architecture was the only one that was able to reach

100% accuracy both on the validation and test sets, as well as reaching a very significant

decrease in loss. Considering these results, for the siamese neural network training, a

network using the VGG16 was used.

Table 15. Accuracy and loss results for NBTRD using TL

Type Validation loss Test loss Validation accuracy Test accuracy

Without Transfer Learning 0.00010 0.46 100% 93%
ResNet V2 0.00063 0.50 100% 93%

Inception V3 0.0022 0.12 100% 93%
VGG16 0.0076 0.018 100% 100%

4.5. Data Augmentation

For the training of the network using data augmentation the following parameters were

used:

• Random vertical 20 pixel variation;

• Random horizontal 20 pixel variation;

• Random rotation up to 25 degrees.

Data augmentation can help reduce overfitting [55] by augmenting the training data

without using other information. In this case, where the data is limited, it is also impor-

tant so that the network has more time to learn without overfitting on the training set.

PCP

The application of the proposed approach for data augmentation using the PCP’s dataset

resulted in images such as the ones seen in Figure 24.
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Figure 24. Data augmentation example on the PCP’s Dataset

In this case, looking at the results depicted in Table 16, it is clear that using DA did not

positively impact the classifier. Since the images from the dataset are very consistent

in terms of positioning, it is believed that this variation might not be beneficial to the

end results.

Table 16. Accuracy and loss results for NBTRD using Data Augmentation

Type Validation loss Test loss Validation accuracy Test accuracy

Without Data Augmentation 1.06 0.83 70% 69%
Data Augmentation 1.45 0.99 63 % 51%

NBTRD

For the NBTRD the same DA parameters used for the PCP’s dataset case were applied.

Figure 25 shows examples of images taken from the NBTRD after the applying the DA

parameters.
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Figure 25. Data augmentation example on the NBTRD

In this case, the results presented in Table 17 show that there was no improvement in

the network’s performance. Similarly to the images from the PCP’s dataset, the NBTRD’s

images are also very standard across the dataset regarding positioning and lighting, with

the added factor that their rotation is the same with reference to the firing pin impres-

sion. Attending to the achieved results, it is believed that using DA on this dataset does

not bring performance improvements.

Table 17. Accuracy and loss results for NBTRD using Data Augmentation

Type Validation loss Test loss Validation accuracy Test accuracy

Without Data Augmentation 0.0076 0.018 100% 100%
Data Augmentation 0.0109 0.019 100% 100%

4.6. Siamese Neural Network

For the development of an SNN for each of the datasets, the CNN that yielded the best

results was used as a feature extractor. All the tested CNNs had fully connected layers

outputs that can be used as feature vectors. Taking this into account, the classification

layer for the networks was removed and a feature extractor based on a CNN was used in

the SNN. The evaluation of the SNN’s performance, which takes pairs of images as input,

can be conducted in several ways:
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(1) Measuring the binary accuracy of the SNN, considering that a prediction values

above or equal to 0.5 means that both images belong to the same class, while

predictions below 0.5 mean that the images belong to different classes;

(2) Visualizing the embeddings (output vector of the network) for the convolutional

part of the network in a 2D space;

(3) Using a Top-1 and Top-2 (one of the two most likely classifications, out of five

classes) accuracy metrics with a distance and probability classification, both

presented in section 3.3.

For the latter assessment procedure (3), a number of reference images were needed

to compare the test set against. Therefore, twenty images from each class of the train-

ing set were chosen as a reference set for the classification of other images.

PCP

The results from the experiments described along this chapter allowed to conclude that

the setup leading to the best classification results for the PCP’s dataset is the following:

(1) Using firing pin images;

(2) Class balancing using undersampling;

(3) Contrast enhancement;

(4) Transfer learning using the VGG-16 architecture.

After the training of the SNN with the proposed setup, which adjusted all the net-

work’s weights using the binary cross-entropy loss function (which outputs a penalization

according to the classification error), images of the same class should have a similar fea-

ture vector (low distance), while images from different classes should have feature vec-

tors with higher distances. This information allows us to comprehend that this Siamese

Network is essentially clustering images from the same class. For this clustering to be

visualized in a two-dimensional space, a dimension reduction was carried out from the

embedding of every test set image to a two-dimensional coordinate using the Uniform

Manifold Approximation and Projection technique [56] and posteriorly plotted. The re-

sulting plot is depicted in Figure 26 and contains a point (dimensionality reduced feature
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vector) for each image in the test set. Furthermore, every point is plotted in the color

associated to the class it belongs to.

Figure 26. PCP’s dataset test set images embeddings visualized as
coordinates

This plot shows that the separation between classes in the PCP’s dataset was not

clear. Although some agglomeration is visible there is also a great amount of overlapping

between different classes.

Table 18 shows the accuracy that was achieved using this SNN with different met-

rics. For the first row, the trained SNN is used with random pairs of test images, where

predictions above or equal to 0.5 are considered the same class and predictions below

0.5 as different classes, therefore making it a binary classification metric (match or no

match). The second row of Table 18 uses the convolutional layers of the trained SNN to

compare feature vectors between test images and reference images, applying distance

classification presented in section 3.3. This metric achieved 57% and 81% accuracy on

the Top-1 and Top-2 metrics, respectively. The last row of Table 18 shows that the

probability classification, which compares test images and reference images using the

full SNN model, as explained in section 3.3, had the worst performance achieving 38%

and 51% accuracy for Top-1 and Top-2 metrics, respectively.

Having in mind that one of the main purposes of this project is not to replace the

examiners but to help them carry out the firearm identification task, these metrics also

48



make it possible to present of a list of the most likely firearm model. Therefore, Table

18 also shows a Top-2 metric, where accuracy was measured by checking if the target

gun class corresponded to one of the top two firearm models. While a technique such

as this one would not be ideal, this would save examiners a great amount of time by

correctly pointing them to two firearm models 80% of the time.

Table 18. Accuracy results for PCP using SNN based classifications

Type Top-1 Top-2 Accuracy

Binary Classification - - 67%
Distance classification 57% 81% -

Probability classification 38% 51% -

In this case, the results presented for the probability and distance classifications sug-

gest that the former performs better. While the distance classification uses the whole

feature vector to compute the distance for each class, the probability classification only

uses the single value output of the SNN for calculating each class’s probability. This

means that, by using the distance between classes, more information will be considered

in the classification process. With this in mind, it is reasonable to assume that the use

of more data could have lead to a greater classification performance.

NBTRD

For the construction of the Siamese Neural Network model the best performance CNN

network was used without the classification layer. The network that yielded the best

accuracy used the following setup:

(1) No data balancing;

(2) No image processing;

(3) Transfer learning using the VGG-16 architecture;

(4) No data augmentation;

By analysing Figure 27 it is clear that this dataset produced much clearer separation

between classes. In this case, although the Siamese network did not reach 100% accu-

racy, the embeddings produced by the parallel convolutional neural networks resulted

in a clear clustering between the different classes in the test set.
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Figure 27. NBTRD test set images embeddings visualized as coordinates

The embeddings produced resulted in a distance classification that reached 100%

accuracy, as shown in Table 19. Although the SNN only reached 96% accuracy, by using

the probability classification technique proposed in 3.3, a 100% success classification

was also achieved.

Table 19. Accuracy results for the NBTRD using SNN based classifications

Type Top-1 Top-2 Accuracy

Binary Classification - - 96%
Distance classification 100% 100% -

Probability classification 100% 100% -

4.7. Final Prototype Evaluation

As proposed in section 1.4, one of the key steps in developing an effective digital artifact

is to understand how it performs. This is what allows researchers to understand what

can be further improved and modify it accordingly.

Ideally, this evaluation would be carried out by deploying a functional tool and evalu-

ating it based on the users’ feedback, in this case, the PCP’s examiners. As described in

section 3, the deployment of the developed machine learning model is beyond the scope

of this dissertation, considering it is an instrument being developed by INOV. Given the
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fact that the tool under development is still in early stages and that its functionalities

go beyond the scope of this dissertation, an alternative system evaluation is presented.

With this in consideration, in order to evaluate the developed prototype, the two

evaluation targets that compose it are assessed.

The first evaluation target is the developed solution, the siamese neural network, and

the main question is whether or not its performance would be able to help the examiners

to improve their success rate while performing this task.

To address this question we can take the success rate of the examiners, which ac-

cording to information disclosed by the PCP is 16%, and compare it to what was achieved

by the network on the dataset provided by the PCP, which was 57% correct classification

on the top match of the list and 81% on the top-2 classification. Although the accuracy

achieved by the network was not very high, it is still a significant improvement that can

help examiners improve their identification accuracy as well as increase their response

rate. Although this shows great potential, only five classes of firearms are present in

the dataset. In reality, although these classes correspond to the most common firearms

models, it does not exactly match what the PCP’s experts are confronted with in a real

life scenario. Despite of this, a 57% accuracy still shows that this network still holds

significant potential.

The other evaluation target was whether or not image pre-processing techniques

would improve the performance of the classification. For this evaluation, it was possi-

ble to conclude that for the PCP’s dataset, the use of image processing in the form of

adaptive histogram equalization had a positive impact on the performance of the neural

network along with the segmentation of the firing pin area of the images, as well as a

data balancing technique via undersampling. While this is true for the PCP’s dataset,

the same does not happen with the NBTRD. In this case, the use of any of the tested

data pre-processing techniques did not have a positive impact on the classification per-

formance.

In this case, the results show that although the datasets were about similar in size and

number of classes, the performance of this approach on the reference dataset acquired
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by NIST was far superior, achieving 100% correct classification both on the regular CNN

and using the SNN’s distance and probability metrics.

Having these results in consideration, it is clear that the developed technique was

successful concerning ballistics identification, especially on the NBTRD. According to the

DSRM iterative process, the next step would be to go back some steps and improve on

the artifact’s design and implementation.

Since the possible improvements that were identified are at the image level, we

propose a second iteration of the digital artifact by re-acquiring the images with some

modifications to the dataset acquisition techniques. If such dataset is developed, there

is a high possibility that the results of training the same technique proposed in this

dissertation with this improved dataset would result in a model with higher accuracy

and robustness.
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CHAPTER 5

Conclusions

In this study, an automatic ballistics identification system based on siamese neural net-

works was developed. For the development of such system, the PCP provided an exper-

imental dataset with 1295 cartridge case images, which, so far, was only used in the

scope of the BALCAT project and on this dissertation. Due to the experimental nature

and untested characteristics of the PCP dataset, this dissertation also considered a well-

established dataset for benchmarking: the NBTRD, which was developed according to

NIST standards [16].

Using the pipeline shown in Figure 18 (on Chapter 3) the system was developed taking

into account region of interest extraction, data balancing, image processing, transfer

learning and data augmentation.

This pipeline enabled us to build a CNN model that would then be used as a feature

extractor for the SNN. With this approach, the results on the NBTRD dataset show that

ballistics identification is possible using Siamese Neural Networks, reaching a 100% ac-

curacy using siamese neural networks with a distance metric on a small test set. On the

other hand, the PCP’s dataset showed poorer results reaching 57% top-1 classification

accuracy using the SNN. Given that this system aims to be a support tool, the accuracy of

the target firearm model being in the top-2 most likely classification was also evaluated,

reaching an accuracy of 81%.

Considering that the first research question proposed in this dissertation was whether

an automatic technique would be capable of aiding ballistics experts carry out ballistics

identification, the results show that this objective was effectively accomplished. Al-

though the results were poorer on the PCP’s dataset, a 57% accuracy is still a significant

improvement over the 16% success rate achieved by examiners. Thus, we believe that
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the use of this technique would translate into a significant positive impact on the ballis-

tics identification, by improving accuracy and reducing the time spent doing such task.

While the results on the PCP’s dataset are not ideal, they show that there is relevant

information in the images that allow for their classification. This statement leads to

the second research question formulated in this dissertation, which was to understand

if data pre-processing could improve the results achieved by the proposed technique.

This was accomplished by applying different data processing techniques such as image

processing, data balancing and data augmentation.

These techniques showed some improvement on the dataset provided by PCP but

no improvement on the NBTRD, which reached 100% accuracy without any data pre-

processing techniques.

This information allows us to draw some conclusions:

• The developed technique has the potential to classify weapon models based on

cartridge images with high accuracy;

• There is room for improvement in the dataset provided by the PCP, which could

potentially improve the results obtained.

These conclusions were drawn by applying the same technique on both datasets and

seeing that the performance on the NBTRD was higher than the performance on the PCP’s

dataset, showing that the developed technique is effective. Having this in considera-

tion, the reason for the lower performance on the dataset provided by the PCP could

be related to various factors, such as: image quality, acquisition method, cartridges or

weapons used (that may be naturally more difficult to discriminate), which are the main

differentiating factors to the NBTRD dataset. As such, some improvements could pos-

sibly mitigate some of these differences by: Using microscopy to acquire the cartridge

images, acquiring every image under similar light conditions and focusing the acquisition

on the firing pin area. Although the provided evidence does not unequivocally prove that

reducing these differences would improve the results, since these differences in perfor-

mance could also be related to the firearms and cartridges present in each dataset, they

present a starting point in order to understand what can be made in order to improve

the classification performance on the PCP’s dataset.
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5.1. Limitations

The results obtained suggest that the main limitations identified in this work could be

related to the quality or characteristics of the PCP’s dataset. As such, there are some

factors that lead to this conclusion, namely:

• Firing pin impressions show light crosses in the center, which is not a character-

istic of the cartridge itself, but an artifact caused by the illumination conditions

during image acquisition;

• There was a low number of ejector mark impressions, which might have con-

tributed to improve the firearms’ identification if used;

• There were 3D scans that could solve the light cross issue but due to their size

more than 128GB of RAM would be needed to segment them, which is hard to

achieve;

• In the projects proposal it is stated that about 20000 individual cartridges would

be scanned, but the dataset only contains 1295 images.

• The image lighting conditions varied across different scans;

• The image size used on the network could not be greater than 150x150 px be-

cause of hardware limitations. Although experiences in machines with better

specifications showed that higher resolutions did not have a significant impact

on the results.

Besides these issues, there is also one problem regarding the NBTRD dataset. Although

it was shown that the network achieved 100% accuracy on the test set it is also true that

the test set was small, containing only 60 images across the 5 classes. Furthermore,

every two images corresponded to the same cartridge, only with two different light

perspectives. Although the network achieved peak performance on this dataset, such

high accuracy might not have been possible on a larger test set.

5.2. Future Work

Regarding work that could be done in the future, the findings in this dissertation show

that the main point that could be improved upon would be the dataset. For this purpose,

in a work to be carried out in the future, we propose some modifications to the image
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acquisition techniques that could potentially result in greater accuracy and fidelity for

the PCP’s dataset:

• Acquire images using microscopy technique;

• Acquire each cartridge image under constant lighting conditions;

• Focus the image acquisition on the firing pin area and its surroundings;

• Use a greater variety of unique firearms;

• Scan a greater variety of firearm models;

• Increase the number of acquired images.

One asset that is believed to have great potential in this application would be the 3D

scans, also acquired by the PCP. Since these scans are very large in size, most of them

above 30 GB, it was only possible to segment 398 individual cartridges, as the hardware

available would not allow to segment scans with sizes above 34 GB. In the future, further

investigation should be carried out to understand how to approach this issue and take

advantage of this data.

Besides the images used in the project, the hardware used to train the models would

also benefit from being upgraded, so that the training could be more extensive with

deeper models and increased image sizes.
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