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Resumo

Atualmente, é necessario um perito em ecocardiografia para identificar o calcio na valvula
adrtica, e € necessaria uma imagem Tomografica Computorizada (TAC) cardiaca para a
quantificacdo do célcio. Ao realizar uma TAC, o0 paciente é sujeito a radiacdo, pelo que o
namero de TACs que podem ser realizadas deve ser limitado, restringindo a monitorizagéo do
paciente. A Visdo por Computador (VC) abriu novas oportunidades para uma maior eficiéncia
na extracdo de conhecimentos de uma imagem. A aplicacdo de técnicas de VC na
ecocardiografia pode reduzir a carga de trabalho médico para identificar o célcio e quantifica-
lo, ajudando os médicos a manter um melhor acompanhamento dos seus pacientes. Na nossa
abordagem, desenvolvemos uma técnica simples para identificar e extrair o nimero de pixéis
de calcio da ecocardiografia, através da utilizacdo de VC. Com base em ecocardiografias
anonimas de doentes reais, esta abordagem permite a identificacdo semiautomatica do célcio.
Como o brilho das imagens de ecocardiografia (com a intensidade mais elevada corresponde
ao calcio) varia consoante o0s parametros de aquisicdo, realizamos a binarizacdo das
ecocardiografias de forma adaptativa. Dado que o0 sangue mantém a mesma intensidade nas
ecocardiografias - sendo sempre a regido mais escura - utilizamos estruturas sanguineas na
imagem para criar um limiar adaptativo para a binarizacdo. Apos a binarizagdo, a regido de
interesse (ROI) com calcio, foi selecionada interactivamente por um especialista em
ecocardiografia e extraida, permitindo-nos calcular o numero de pixéis de calcio,
correspondente a quantidade espacial de célcio. Os resultados obtidos com as nossas
experiéncias sdo encorajadores. Com a nossa técnica, a partir de ecocardiografias recolhidas
para 0 mesmo paciente com diferentes configuracbes de aquisicdo e diferentes brilhos,
conseguimos obter uma contagem de pixéis de célcio, onde os valores de pixéis mostram uma
margem de erro absoluta de 3 (numa escala de 0 a 255), que se correlacionou bem com a
avaliacdo humana perita da area de célcio para as mesmas imagens.

Palavras-chave: Imagens de ultrassom; Ecocardiografia; Calcio da Valvula Adrtica;

Classificagdo da imagem; Visdo por computador
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Abstract

Currently, an echocardiography expert is needed to identify calcium in the aortic valve, and a
cardiac CT-Scan image is needed for calcium quantification. When performing a CT-scan, the
patient is subject to radiation, and therefore the number of CT-scans that can be performed
should be limited, restricting the patient's monitoring. Computer Vision (CV) has opened new
opportunities for improved efficiency when extracting knowledge from an image. Applying
CV techniques on echocardiography imaging may reduce the medical workload for identifying
the calcium and quantifying it, helping doctors to maintain a better tracking of their patients.
In our approach, we developed a simple technique to identify and extract the calcium pixel
count from echocardiography imaging, by using CV. Based on anonymized real patient
echocardiographic images, this approach enables semi-automatic calcium identification. As the
brightness of echocardiography images (with the highest intensity corresponding to calcium)
vary depending on the acquisition settings, we performed echocardiographic adaptive image
binarization. Given that blood maintains the same intensity on echocardiographic images —
being always the darker region — we used blood structures in the image to create an adaptive
threshold for binarization. After binarization, the region of interest (ROI) with calcium, was
interactively selected by an echocardiography expert and extracted, allowing us to compute a
calcium pixel count, corresponding to the spatial amount of calcium. The results obtained from
our experiments are encouraging. With our technique, from echocardiographic images
collected for the same patient with different acquisition settings and different brightness, we
were able to obtain a calcium pixel count, where pixels values show an absolute pixel value
margin of error of 3 (on a scale from 0 to 255), that correlated well with human expert
assessment of calcium area for the same images.

Keywords: Ultrasound images; Echocardiography; Aortic Valve Calcium; Image
Classification; Computer Vision.
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1 Introduction

Aortic valve stenosis is the most common cardiac valvular disease highly prevalent nowadays
[1], affecting 7% of the population over 65 years old. It has a 60% annual mortality rate in
untreated severe cases, with survival <5 years when symptoms evolve. The incidence and
prevalence of the degenerative type is increasing as this segment of the population grows older
[2]. It is estimated that 2 262 325 people are at risk in Portugal, accounting for 22% of the
population [3]. According to the European Society of Cardiology's recommendations for
diagnosing and treating aortic stenosis, echocardiography is the first-line method to make the
diagnosis and monitor the patient and valve calcification is a main feature to assess severity. A
standardized diagnostic tool is needed to diagnose, assess the severity of the stenosis, and
follow-up this large population.

Computed tomography (CT) provides a calcium quantification method, expressed as
calcium score, and when applied to aortic valve stenosis, it has been shown that valve
calcification is related to disease severity. The amount of valve calcium must often be calculated
because the severity of stenosis is directly related to prognosis and has impact on the decision
to replace the valve. This is particularly important when assessing severity with
echocardiography, which may be difficult or debatable in up to 20% of cases [4]. Previous
studies have shown the value of cardiac CT-scans for determining the aortic calcium score,
which is the only current imaging modality available for this purpose. Nevertheless, this
approach bears costs, not only monetary but from health too, since it is an ionizing technique,
that uses radiation to extract the amount of calcium [5], which may have long-term effects on
the health condition of the patient.

Before performing a CT-scan to obtain a calcium score, the calcium is first identified from
the early stages of the disease by echocardiography [6], non-invasive non-radiation method that
uses ultrasound to scan the heart. The reliable quantification of the calcium amount has not
been done, using only echocardiography data analysis.

The standard of calcium detection requires training from medical professionals, and the
process is dependent on human performance and is time-consuming. Moreover, results may
depend on the settings used for the image acquisition. No guantitative method was published
for detecting and measuring valve calcium for clinical decisions to the authors knowledge.

There are several approaches to this problem, such as by adopting Machine Learning (ML)
techniques. An example of this approach in the healthcare field can be seen in predicting the

probability of lethal pneumonia to optimize costs, manage low-risk patients as outpatients, and
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hospitalize high-risk patients [7]. A key ML technique, Convolutional Neural Networks (CNN),
Is the engine behind many of the recent advances in the field. A major drawback of CNN-based
approaches is that it inherently works as a 'black box', with little visibility into the rationale and
explanation of the classification decision provided by CNN [8]. As a black-box metaphor, CNN
suffers from a lack of human interpretability, which is fundamental in understanding the
methods' operation. Besides, implementation CNNs requires large amounts of labeled data to
meet the technique training requirements [9], which we do not have access to, in this thesis,
forcing us to look for alternative methods. Therefore, the we have looked to a standard
Computer Vision technique, which brings the added advantage of supporting explanation. With
this approach we performed the binarization of the grey-level echocardiography image input,
with an adaptive image threshold technique for image segmentation, where in the end, the
binary image results in white foreground (the calcium regions), with all other anatomic

structures in black.

1.1 Objectives
This work aims to develop and evaluate an aortic valve stenosis Computer Vision model
applicable to echocardiographic images. Our model identifies aortic valve calcification and
obtains a quantification of the pixel’s intensity and area, proportional to the amount of calcium,
in parallel to a CT-scan calcium scan analysis.

In this thesis, we present our Computer Vision algorithm and prototype system able to
identify and quantify calcium in the aortic valve via adaptive image segmentation of
echocardiography imaging. We aim at helping doctors and patients having better track of aortic

valve disease, using a non-invasive and non-ionizing approach.

1.2 Methodology
Information Systems (1S) research risks losing leverage over the fields where its applicability
is critical if it lacks a strong component that provides applied research solutions [10]. IS study
is characterized by two major paradigms.

On one side, there's behavioral science, which tries to come up with theories that predict
person or organizational conduct. On the other hand, design-science seeks to extend human and

organizational capacities by developing creative artifacts [11].
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In light of this, the Design Science Research Methodology (DSRM) and the six principles
suggested by Peffers et al. [10] are used in this dissertation. This approach has its roots in
engineering and artificial sciences, and its main goal is to create relevant artifacts that add value
to the fields in which they are used. According to the authors, Figure 1.1 represents a nominal

sequence of SiX activities that resumes the DSRM operation.

Process Iteration

v v 2 I
<
2 2 g
IDENTIFY o DEFINE DesieN & 3 DEMONSTRATION E EvaLuaTion % COMMUNICATION
. PROBLEM 2 OBJECTIVESOF | DEVELOPMENT 3 3 b b 8
Nominal process & moTvATE g A SOLUTION g E Find suitable | & ;;g:;veow = Scholarfy
sequence = £ i = e, icati
. Define problem £ = Artifact e context = officient E publications
What would a = c £
Show better ad‘ifac! :I? Use artefact to : lterate back fo ,% Professional
importance accomplish? solve problem o design @ publications
= o
@
=
DEsieN &
PROBLEM- OBJECTIVE- DEVELOFMENT- CLIENT/
CENTERED CENTERED CENTERED CoNTEXT
INITIATION SOLUTION INITIATED

INmIATION

Possible Research Entry Points

Figure 1.1 DSRM process model, Peffers et al. [10]

The DSRM has four different entry points, also known as methods, but we used the first
one, Problem-Centered-Initiation, since it is, by definition, the starting point of our method.

Since DSRM takes a problem-solving approach, it's critical to evaluate the artifacts to
provide feedback and a better understanding of their problems, emphasizing in the improving
of both their quality and design in subsequent iterations of the process. Before the final artifact
is produced, this build-and-assess loop is normally repeated several times [12].

The DSRM method was used in two iterations in our work: (1) the initial entry point to the
design and construction where we have done the assessment on a controlled environment. (2)
We performed a clinical evaluation of our work, in this exploratory study, where we performed
a set of tests in several different echocardiographies.

According to the methodology, a single initial meeting was held to determine all of the
assessment criteria, as stated in our work's objectives.

Our main goal with this project is to create a prototype that can identify and quantify
calcium from echocardiographies. To perform the evaluation, we have chosen the Calcium
Identification (CI) and Calcium Quantification (CQ) as the capabilities to be evaluated in our
work.
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Despite the fact that DSRM is a unified concept, artifact evaluation is still a topic of
discussion within the DSRM community, as evaluation parameters are described in a
fragmented or incomplete manner in the DSRM literature [13]. To get around this stumbling
block, we agreed to use Prat et al [13] hierarchical assessment criteria for IS objects. This
hierarchy is depicted in Figure 1.2, where we test our objects using the highlighted parameters

having in consideration that this evaluation was performed on this exploratory study.

System Evaluation

dimensions criteria Sub-criteria
— efficacy ]
[ goal ] ([ validity ]
[ generality ]
— [ utility
—[ understandability
— [ consistency with ] — [ ease of use
people

[ ethicality

— side effects

. [__environment ] consistency with | [ fit with organization
organization [

side effects

harnessing of recent
technologies

consistency with
technology

]
]
]
J
]
— [ utility ]
J
J
J

[ side effects

—— [ simplicity
(artifact evaluation] — clarity

—— [ completeness |
]
J
J

— style

— [ structure ] another model

[correspondence with]

[ homomorphism ]

o [ fidelity to ]
—[ evel of detal ] modeled phenomena

—— [ consistency |

—— [ completeness |

—[ consistency ]
I [ activity ] [

accuracy |

—— [ performance ]

—— [ efficiency
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e [ evolution ]

—— [learning capability]

Figure 1.2 Hierarchy of criteria for IS artifact evaluation, Prat et al.[13]
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Table 1.1 shows the generated objective statements, which serve as goals to be assessed in

the two iterations of the DSRM method, based on both the chosen capacity and criteria (Chapter

5).
Table 1.1 Objective statements to be used in the DSRM evaluation
Capability Dimension Criteria Obijective statement
Cl&CQ Goal Efficacy To improve the doctors time
on identifying and evaluating
the calcium severity
Cl&CQ Environment Consistency with | It can help doctors to save
people / utility time on doing the prognostics.
Cl&CQ Environment Consistency with | Provides understandable
people / | results. An identification and
understandability an absolute quantification
Cl&CQ Environment Consistency with | Easily understandable, and
people / ease of use can be wused with barely
training
Cl&CQ Environment Consistency with | Provides an alternative on
organization / utility automatically identify and
quantifying calcium
Cl&CQ Environment Consistency with | Can keep better tracking of the
organization / fit with | patients
organization
Cl&CQ Structure Simplicity Click and Run application
with no extra implementation
Cl&CQ Structure Level of detail Provides knowledge extracted
from the image
Cl&CQ Activity Consistency It gives consistent results
despite the different image
settings
Cl&CQ Activity Performance Has good performance on
loading and interpreting the
images
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Cl&CQ Evolution Robustness Must be prepared for any
usage without resulting in
errors

Each evaluator assigns a score based on proof that the objective statement's added value
has been achieved. With this in mind, we've chosen to use the ISO 15504 four-level NLPF scale
[14], which is divided into four levels:

e Not Achieved (NA) - [0-15%]

e Partially Achieved (PA) - ]15-50%)]
e Largely Achieved (LA) - ]50-85%)]

e Totally Achieved (TA) - ]85-100%]

1.3 Outline of the Dissertation
Having the objectives and methodology defined, we will have six chapters (Introduction
included). The chapters are:

Chapter 2: Outlines a systematic literature review on the state-of-the-art of calcium
identification and scoring from echocardiographies and CT-scans, based on computer vision,
using the PRISMA method.

Chapter 3: Provides the description of the artifact as the process of image classification,
covering the binarization process, the normalization of the image and ultrasound properties.

Chapter 4: Outlines the Prototype Demonstration, following Figure 1.1, covering the steps
where the user is an operator and where there is image processing.

Chapter 5: Presents the evaluation of our artifacts, based on the DSRM process. Providing
the validation of our study, where we performed test on echocardiographies never previously
seen, in order to evaluate the robustness and capabilities of the prototype.

Chapter 6: Presents the discussion and conclusions of the work developed, where we

highlight the contributions and limitations of our work.
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2 State of the art

2.1 Search Strategy and Inclusion Criteria

The current European guidelines for diagnosing and treating aortic stenosis recommend
echocardiography as first-line method to establish every patient's diagnosis, and repeat
echocardiography every 6 months for severe cases or yearly for the moderate disease [6].

The morphology and function of cardiac valves can be assessed in vivo in patients using
echocardiography, which is widely used, does not use radiation, and can therefore be repeated
throughout one's life; it has a high temporal and spatial resolution that can evaluate valve
morphology and mobility for every cardiac cycle in either 2D tomographic or 3D models; it
can also evaluate the valve morphology and mobility for every cardiac cycle, as well in either
2D tomographic or 3D models.

We have concentrated our efforts on evaluating what the research studies are assessing
regarding the score of calcium in the aortic valve and in the coronary.

Several studies have been conducted to predict cardiovascular events, being calcium
presented in the aortic valve an accurate predictor of these events [15]. From our analysis, it
became clear that all of our analyzed studies focused on utilizing CT-scans, since from a
standard coronary artery calcium computed tomography scan, we can measure the Aortic valve
calcification [16]. In terms of getting coronary score calcium, this is only possible using this
resource [5]. Nevertheless, this approach bears costs, namely, monetary and health costs, since
it corresponds to a very invasive scan, considering it uses radiation to extract the amount of
calcium [5]. More recently, the CT-calcium score of the aortic valve has been used to identify
aortic stenosis severity.

No work regarding aortic valve calcification quantification has been published from the
studies found, as demonstrated in Figure 2.1. This means that there is no evaluation of the
calcium score using only the echocardiography information, only detection and prevention has
been studied. Figure 2.1, was created using the VOS Viewer tool using as input all the papers

found, except those that use CT-Scan imaging.
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Figure 2.1 Topics relations from the literature review in echocardiography imaging

Once we add to our search CT-Scan imaging, we start obtaining published works related to
quantifying the calcium in the coronaries, including some papers adopting deep learning. Figure

2.2 depicts the correlation of relevant terms in the literature with CT-scan imaging.

coronary artewalcium score
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Figure 2.2 Topics relations from the literature review in echocardiography and CT-Scan imaging

A systematic literature review was made by following the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analysis) Methodology [17], and with the following
26



research question: “What is the state of the art of analyzing Ultrasound and CT-scan imaging,
to find the calcium score of the aortic valve?”.

Paper repositories searched were Scopus and Web of Science Core Collection (WoSCC),
and the research was conducted through March 2021. All the results had to be journal papers,
articles, or reviews published between 2016-2021 and written in English. The collected papers
were only about Computer Science or Medicine. or Medicine.

From our search queries and selection regarding Coronary Artery Disease scoring using
CT-Scans and Echocardiographies, we found a list of 10 papers, as shown in Table 2.1.

We can notice that there is a larger sample in terms of studies when we are dealing with
CT-Scans. In fact, we can see that we have four times more papers regarding CT-Scans, than
papers with echocardiography imaging analysis.

Using echocardiography, studies [18] and [19] use intravascular ultrasound (IVUS) in order
to differentiate fibrous tissue and fibro-fatty tissue from the necrotic core and dense calcium,
leaving behind the intention of getting the calcium score from the IVUS. In [20] researchers
aim to detect a coronary artery disease, using only echocardiography automatically. However,
IVUS is an invasive study not applicable for aortic valve study.

Going through the studies performed with CT-Scans, we can see that in [21] researchers
try to categorize the Mitral Annular calcification and predict its valve embolization. Study [22]
aims to investigate which calcium score is a predictor of the coronary artery disease recurring
to CT-Scans. The validation study [23] tries to use deep learning to perform calcium
quantification on CT-Scans. In the study [24], researchers automatically exclude negative CT
examinations for coronary artery calcium through algorithm training. The validation study [25]
evaluates the performance of deep learning for automatic calcium scoring. Study [26] proposes
a computationally efficient method to automatically extract the coronary artery calcium by
employing convolutional neural networks on CT-Scans. On [27], we are again presented with
other deep learning methodologies to automatically get a CT-Scan coronary artery calcium

score.
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Table 2.1 Selected papers comparison

paper [18] | [19] | [20] | [21] | [22] | [23] | [24] | [25] | [26] | [27]
Year 2018 | 2018 | 2018 | 2020 | 2017 | 2021 | 2020 | 2020 | 2019 | 2021
Echocardiography X X X
CT-Scan X X X X X X

Coronary artery disease

Coronary Calcium Score X X X X

Mitral Annular
Calcification

Coronary artery disease
characterization (plaque)

Deep Learning X X X X X

Risk Assessment

With training X X X X X X X X

IVUS image X X

coronary plaque
classification

Validation Study X

From our analysis, we can see that cardiac CT-scan imaging has been used for coronary
calcium calcification and prognosis prediction, and some literature works adopt deep learning
algorithms, while, as mentioned, there is no published work on obtaining a calcium score from
echocardiography, which would avoid the disadvantages of an ionizing method such as CT-
scan.

In our study, in order to avoid the use of CT-scans and the algorithm training requiring
large data sets, and since no work was identified by the authors, using echocardiography
imaging analysis, we aimed to assess this technique for identifying and quantifying calcium in

aortic valves of patients with aortic stenosis.

2.2 Study Selection
The initial selection of papers was made using the tittle, abstract and keywords of the study,

and in some cases when that information was insufficient, the full document was analyzed.
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2.3 Data extraction and synthesis
The data was managed and stored using Zotero [28] and Microsoft Excel. It included title,
author, year, journal, subject area, keywords and abstract.

For data analysis and synthesis, a qualitative assessment was conducted based on PRISMA.
All the paper repositories — Scopus and WoSCC — were searched systematically regarding the
published work related with the concepts “Ultrasound Image” or “Echocardiogram” or “CT-
Scan”, the target population “aortic valve calcium” or “aortic valve” and within the context of

the study “Image Binarization” or “Computer Vision” or “Calcium Score”.

2.4 Results
Our query was performed in each repository. Figure 2.3 shows our PRISMA workflow for the
total of studied papers.

Our search query was “("Ultrasound image*" OR "echocardiogram*" OR "CT-scan") AND
("Coronary artery calcium™ OR "coronary artery*" OR "aortic valve calcium” OR "aortic
valve") AND ("Image classification™ OR "computer vision" OR "calcium score")”, retrieving
100 different papers. Considering that our study is focused on echocardiography, we have
excluded the studies that involve CT-scans, having only a sample of 14 papers related to
echocardiography imaging what shows that this is an area yet unexplored by the community.

After performing a manual process towards identifying significant topics, research
questions, and methods, identifying the outcomes, and removing the duplicates, 10 documents
were obtained. Our research systematization considered year, area, RQ topic, and a small

description.
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3 Design and Prototype Development

Our technique envisages the identification of the presence of calcium in the aortic valve. We
tested several image enhancement processes aiming to highlight the areas with a high

concentration of calcium, which is described in the next sections.

3.1 Echocardiography Binarization Process - Initial approaches
Our developments adopted the OpenCV library [29] — an open source library for image and
video analysis [30]. In the first stage, we equalized the image histogram in order to improve the
contrast of the image and stretch the intensity range, using the “equalizeHist” function. This
equalization relies on the mapping of one distribution to another distribution - more uniform
and wider distribution of the pixel intensity values - to spread the intensity values over the
whole range. For the histogram of the input image H;, its cumulative distribution H' ;, is:
31)

Where i is the intensity values from the given histogram and j the more uniform distribution
of intensity values.

To use this as a remapping function, we have to normalize H’(i). Since the pixel grayscale
intensities go from 0 to 255, the new intensity values of the equalized image can be obtained
by applying the following remapping function to the source echocardiography image,
src(x, y):

(3.2)
equalized(x,y) = H'(src(x,y))

Subsequently, to improve the contrast of equalized(x,y), a Contrast Limited Adaptive
Histogram Equalization algorithm [31] was implemented that will divide the image into several
non-overlapping regions of almost equal sizes, creating several histograms that will redistribute
the image brightness, achieving the results in the overall image contrast depicted in Figure 3.1.
To conclude the process, a thresholding technique was used, to segment the image into

foreground and background, for further interpretation.
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Figure 3.1 Echocardiography image with CLAHE

Nevertheless, this simple approach relying solely on histogram equalization leads to poor
and inconclusive results in terms of visualizing and extracting the presence of calcium, as
shown in Figure 3.1. The red circle represents where there is calcium on the aortic valve, and
in yellow, other structures are marked, which are indistinguishable from each other.

In a second approach, we tried Region-based Segmentation [32], where we aimed to
segment different objects (calcium/non-calcium) by analysing their pixel values. This technique
classifies the pixels — based on a threshold applied to each pixel value — as an object or
background. Moreover, since we may have multiple objects — given that calcium can go from
severe to none in different scale values — we initially defined multiple thresholds to segment
multiple objects, as represented by Figure 3.2. However, if we have an image with no significant

grayscale difference, this approach will fail to get accurate segments.
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Figure 3.2 Echocardiography with Region-based Segmentation

To mitigate this issue, we tried another approach to have a more comprehensive and
interpretable image. We tried an Edge Detection algorithm [33] where the pixel brightness is
scaled to an embossed image, where the height of each “mountain” corresponds to the pixel
brightness. Figure 3.3, shows us the application of Edge Detection on an echocardiography
image of the left ventricle. This approach turned out to be redundant since it is representing the
pixels values by “mountains heights”. This could be immediately calculated if the first step
extracted the pixel's exact value and minimised computation time. Otherwise, after
implementing this algorithm, we would need to implement another one to find each “mountain”
height.
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Figure 3.3 Echocardiography with Edge Detection

After the above-described initial approaches to our problem, we concluded that instead of
focusing our interest in mimicking human eye comprehension of the calcium presence, we
could address our challenge in a different way, by extracting the region of interest's pixel values
and see how they correlate with the amount of calcium present in the aortic valve.

In a first step, we performed image binarization with a fixed threshold of 140 in the pixel
grayscale value (in a scale from 0 to 255), where the pixels with an intensity above 140 were
transformed in white (255), and the remaining in black (0), thus helping to identify the regions
where we have the presence of calcium.

To deal with some natural constraints in terms of noise that characterize echocardiography
imaging, particularly the process of sampling still images from the echocardiography video, we
performed different blurring treatments to clean some of the image's noise due to the
echocardiography's motion. Blurring an image will average rapid changes in the different pixel
intensities, and this corresponds to a low-pass filter applied to the image [34], which removes
noise while leaving the majority of the image structures still present in the image as depicted in
Figure 3.4.

34



Blur=5 Blur=7

Figure 3.4 Echocardiography image with four levels of blurring applied

As we can see from Figure 3.4, when we have a Blur = 11 (experimentally adjusted with
trial and error)), we can easily identify visually the regions where there is a presence of calcium
(identified by the red circles). On this operation the central element of the image is replaced by
the median of all the pixels in the kernel area, where the 11 means that takes into consideration
a kernel of 11 by 11.

We then applied to the resulting images of this blurring phase, a binarization operation with
a fixed pixel threshold value of 160, experimentally obtained by analysing 48 cases of
echocardiography images, where 255 corresponds to calcium, as seen in Figure 3.5. This initial
approach of a using a fixed threshold, is not sufficient for our problem at hand, since our images'
brightness may vary, given different data collection conditions. To tackle this issue, we need to

perform and adaptive binarization technique, which will be further explained.
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Figure 3.5 Binarization of an echocardiography image, for each size of the kernel parameter

In Figure 3.5, it is noticeable that when the blurring parameter increases from 5 to 11, we
get a cleaner image (without small white dots — noise). However, we can also notice that in the
region of interest (marked with red circles), when the blur increases, we lose pixels, since the
region gets smaller. To mitigate this, we applied a mask dilation operator to each region of
interest.

As shown in Figure 3.6, by applying the dilation mask to the regions of interest of the
image, we can recover the pixels lost in the blurring phase.

The next phase is to turn our binarization adaptive and not based solely on a fixed threshold

(initially set to 160), given the high variability in the imaging data collection procedures.
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Figure 3.6 Application of the dilation mask to the regions of interest of the image in order to recover the pixels lost in the

blurring phase

3.2 Adaptive Binarization Process
To achieve this adaptive binarization, starting with a fixed threshold, we need to confer it a
normalization value, in order to adapt to the various images changes resulting from the settings
applied to the echocardiographic image acquisition.

The echocardiographic image suffers two steps of processing: (1) a post-processing stage,
where specialists introduce gains in the image, immediately after data acquisition, defined by
windowing or grey-scale mapping, using the window width (WW) and level (WL) (2), and an

image analysis stage performed by the specialist.

3.2.1 Post-processing Normalization

After the echocardiography raw data acquisition, specialists add gains to the image in a post-
processing procedure. In our process, we need to compensate for the new brightness that the
image acquires by such a process. To accomplish this, the specialist selects a region outside the
ultrasound sector, that will act as a normalization boundary of “dark” regions, as represented in

Figure 3.7.
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Figure 3.7 Normalization Region to mitigate the post image processing

Once we have this sub-matrix, we subtracted the mean of its values from our calcium ROI
pixel values, thus compensating for the image gain of this stage.

This method was tested on several images. Figure 3.8 depicts the example of one
echocardiography with 3 most used different types of gains set in a post-processing stage, with
the settings Window Width fixed at 250 and Window Level (WL) permuting between 75, 100
and 125.
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Figure 3.8 Echocardiography examples with different Window Levels (WL) and fixed Window Width of 250 (1) WL= 75,
(2) WL =100, and finally, (3) WL = 125

In Figure 3.9 we have the normalized the result of the calcium threshold obtained with these

representative echocardiography cases, showing coherent results extracted from the calcium

present in the aortic valve, where we have the mean and the median of the values extracted

from our ROI. We can see that the values of pixels intensity extracted have a low absolute

variation, suggesting the validity of our model since we have the same image with different

gains.
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Figure 3.9 Threshold values of pixels intensity for calcium, extracted from echocardiography with different post-

processing gains.
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3.2.2 Ultrasound Properties Normalization

After post-processing (prior stage), we proceeded with a second normalization process that is
related to the configuration of the ultrasound properties (related to acquisition settings that alter
the image brightness and contrast) during the echocardiography raw data acquisition, which has
direct consequences on the echocardiography brightness. To mitigate this, we needed to
interactively find a darker region of the echocardiography (inside the ultrasound range) and
consider the mean of the values of that region as a “black threshold”, a reference area. By means
of a manual step performed by a specialist, he/she interactively selects an area of the image (or
of a different image belonging to the same sequence of still frames that share the same data
collection tunning parameters), where a structure with very low brightness is known to exist,

typically corresponding to blood flow.

Adult Echo TISO.4  MI1.0
X5-1
38Hz t . M3

Figure 3.10 Normalization Region (right ventricle cavity)

We started to look to an image of the right ventricle cavity as a potential candidate for a
reference ROI, given its substantial presence of blood and minimal signal refractions. We
selected a ROI in this image (as shown in Figure 3.10), corresponding to a darker region
allowing us to define the “dark™ level of the image, by taking the mean of the values in that
ROI and then normalized all pixel values of the image, by subtracting the “dark” value from
their values. This would create a dynamic threshold, changing every time the brightness varies
due to modifications on the ultrasound properties changes. We performed the same test with

the ROI placed at the left atrium cavity, as shown in Figure 3.11.
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Figure 3.11 Normalization Region (left atrium cavity)

The normalization process implemented in Figure 3.10 and Figure 3.11, were applied to
three different patients, and both concluded that the tests performed with the normalized ROI
in the left ventricle cavity (a) were more consistent and accurate than the right ventricle cavity

(b), as shown in Figure 3.12.
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Figure 3.12 Variation between normalization regions
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Our image normalization process relies on a “dark” ROI to be interactively defined in the
same left ventricle cavity where we are detecting the calcium presence.
After image normalization, the final binarization result with this adaptive threshold is

depicted in Figure 3.13.

Figure 3.13 Binary image of the Aortic Valve (region of interest) where our algorithm found 2 areas with calcium.

Once we have the calcium regions (Figure 3.13), we can easily define a 2D pixel mask for
each region (inspecting the ROI and keeping the 2D coordinates of the white pixels). If we
apply these masks to the original image, we can extract the pixel values of each sub-image that
we consider as calcium, allowing us to compute some simple descriptive statistics measures,
such as mode, median, mean and standard deviation. Given that pixel values vary with the
ultrasound properties, we subtracted the mean value of the normalization region from the values
of the original image, to get normalized values regardless of the ultrasound properties. From
the descriptive statistics analysis, we noticed that for all the different cases studied, the one with
the lowest variation was the mean, as shown in Table 3.1. That said, we used this metric to

validate all new cases.
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Table 3.1 Descriptive statistics Variation, where Echocardiography 1 to 9 belongs to patient 1, Echocardiography 10 to 16

belongs to patient 2 and 17 to 24 belongs to patient 3

Echocardiography

Normalization by Mean

Normalization by Median

1 181 184
2 171 175
3 184 193
4 187 193
5 191 199
6 174 175
7 174 181
8 189 190
9 171 173
10 173 179
11 171 185
12 182 187
13 176 186
14 175 186
15 168 168
16 176 184
17 178 182
18 178 180
19 180 179
20 182 183
21 176 176
22 182 183
23 180 180
24 176 175
Variation 5.78 6.94

These tests were performed on three different patients, where each of them performed 9

echocardiographic acquisitions with different settings - with the most representative parameters

—resulting in 27 echocardiographic images, aiming to validate the normalization method. From

these echocardiographies, 3 of them had not enough quality to be analyzed, being discarded. In
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Table 3.1 we can see that the mean pixel values extracted from each of these 3 different patients
are coherent, having a low absolute difference between them, showing a low standard variation

as well, which suggests that our normalization method is valid.
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4 Prototype Demonstration

Considering the research approach performed in the previous section, our goal was to develop
a prototype that uses, as input, the echocardiography and identifies calcium providing a score.
considering the different acquisitions settings. The major effort is the normalization due to the
different acquisition settings. The following flowchart in Figure 4.1 explains the complete

process that was developed to achieve our goals.

Indentification of calcium and extraction of the pixels values in a region of interest
Image input Remiayel Image Processin, SelectNorialization Region Image Segmentation
ge.Inp Post-processing gains g 9 (NR) 9 g
Selection of Selection of
( start ) Normalization Normalization
Region Region (Blood)
g
13
=]
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13 . .
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£ i
= ——Post-processing = False— under are
8 black)
=
Select Region Of Interest (ROI) Coordinates Extraction Values Extraction Output
| — -
Area of the aortic
. valve with calcium
|| Select Region and normalized
of Interest mean value of the
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Submatrix ed
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End
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from the RQI pixel values MEAN, and
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Submatrix calcium (white loriginal image| pixels values Do the
pixels) normalization of
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from the —>MEAN, of the
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Figure 4.1 Process Description

The image processing consisted of 9 different stages with two different operators — user
and machine. The stages where the user is an operator and there is image processing will be

described in this chapter.
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4.1 Image input
In the first stage, the user must select the image from which he intends to extract the calcium
severity, allowing the machine to transform this image into grayscale and obtaining all the

values scaled within the grayscale range (from 0 to 255), as shown on Figure 4.2.

Figure 4.2 Image loaded in Grayscale

4.2 Remove Post-processing Gains

In this section, the system asks the user if the echocardiography selects has post-processing
gains. If the image was subjected to such processing stage it is crucial to compensate them to
get the real acquisition values and ensure a more precise result. To do this, the user needs to

select a region out of the sector, as represented in Figure 4.3.
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Figure 4.3 Normalization Region to mitigate the post image processing
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This process will exclude the new brightness and treatment given on post-processing,
achieving the original image collected by the specialist.

4.3 Image Processing
Once the image is scaled, it will be applied a blur to it, fading some of the image's
noise, since this process averages out rapid changes in the different pixel intensities, as shown

in Figure 4.4.

Figure 4.4 Blurred image

4.4 Select Normalization Region & Image Segmentation
To identify calcium, we need to compute a threshold for image segmentation. This means that
the image will be binarized where the foreground (the calcium region) is white.

For the threshold, we started with a constant threshold for the pixels, of 160. Pixel values
above such figure are considered calcium and the ones under this value are non-calcium pixels
(blood, fat, muscle, or fibrous).

This initial constant threshold was weighted and defined by the experts in cardiology and
echocardiography, Professor Ana Gomes de Almeida and Professor Luis Rosario with more
than 20 years of experience. However, pixel intensities from echocardiographic images change
with the acquisition parameters settings, such as image depth, ultrasound pulse frequency,
image compressing. Moreover, the post-processing level of gain intensity also changes the
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overall pixel intensity. We analysed images collected with a combination of different parameter
settings, to test our normalization intensity values approach, and identify cutoffs for
calcification in patients, with and without calcification, for controlling these parameters. Visual
assessment by experts, was used as our reference for calcium analysis. Since after collecting
the echocardiography image there is a processing stage (gains are applied to the image), we
would end up with an echocardiography image with different values of brightness and setting
a constant binarization threshold would not provide good image segmentation. To tackle this
issue, we performed an adaptive normalization of our threshold by adding the extra-brightness.
This extra-brightness is taken from a region of the echocardiography that should be completely
black, the left atrium cavity, as shown in Figure 4.5:

Adult Echo TISO3 MI12
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Figure 4.5 Left atrium cavity that will create a dynamic threshold for binarization

Achieving a dynamic threshold will normalize our echocardiography images allowing our
model to identify the calcium in different cases with different gains. The calcium presence can

be seen in Figure 4.6, marked by the red circle.
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Figure 4.6 Calcium in the binarized image

4.5 Select Region of Interest

Once the image is binarized, the system asks to the user to interactively select the Region Of
Interest (ROI) that should contain the aortic valve. When the ROI submatrix is retrieved, we
will loop over the image to extract the coordinates of the white pixels. Figure 4.7, depicts the
end result: the submatrix with the binarized ROI.

Having the exact coordinates from where the calcium is present on the aortic valve, we will
go to our original images and obtain the pixel values of the region of the aortic valve with
calcium, from the coordinates extracted previously. After getting such pixel values, we will
calculate the mean of our matrix of pixels. In order to get these values normalized, we compute
the difference between the calcium selected from the echocardiography and the normalization
region selected in Figure 4.5.

Regions identified as calcium — with an intensity above the dynamic threshold — will allow,
after binarization, counting the number of white pixels, a proxy to the region area, and an
indication similar to the calcium score identified by a CT-scan. This approach requires

validation performed by means of visual analysis conducted by echocardiography experts.
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5 Evaluation

We used the DSRM process model in two different iterations in our research.
Each iteration had a different entry point, which was determined by the stage of the process
as well as the feedback we got after each demonstration and evaluation.

Figure 5.1 summarizes and shows all of the iterations we've gone through so far.

v v v

Identify Define Design & Demonstration Evaluation Communication
Problem & P! Objectives of a | Development > » »
Motivate Solution
Define problem What would a Artifact Find suitable Observe how Scholarly
Show importance better artifact context effective, efficient publications
accomplish?
Use artifact to Iterate back to Professional
solve problem design publications

| 1 st DSRM iteration >
I 2nd osemiteration >

Figure 5.1 DSRM lterative cycles scheme

5.1 First DSRM lteration

The first iteration took the most time. It started with the initial identification of the problem and
goals and ended with the creation of the first tested version of the artifacts on the demonstration,
which made up the vast majority of the established work.

For this study we used Philips's ultrasound equipment, model Epiq 7 (Eindhoven, The
Netherlands).

After the performed tests, we created a validation set with 12 echocardiographic studies
(from 12 different patients with calcific aortic stenosis) chosen randomly from the database,
where we aimed to check our model's accuracy in terms of classifying whether we have, or
have not, a presence of calcium on the echocardiography image, based in the amount of
calcification as assessed by CV-based calculation of the number of pixels, in comparison with
the calcium area measured manually by planimetry in cm? [35].

In Table 5.1, we present the results extracted from the validation set composed of these 12

samples, from which we have found a high correlation between the amount of calcium based
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on the number of white pixels, and the calcium area measured manually by the
echocardiography experts (Professor Ana Gomes de Almeida and Professor Luis Rosario).

Table 5.1 Validation Study in a controlled patient representative — the number of white pixels (showing calcium) versus

planimetry area measured manually.

Number of white pixels |Planimetry area (cm2) |normalized mean
case 1 325 1.12 166
case 2 722 1.44 174
case 3 242 0.81 168
case 4 669 1.96 170
case 5 2251 2.67 175
case 6 2565 2.82 190
case 7 1026 1.98 188
case 8 917 1.45 174
case 9 1007 1.62 178
case 10 1315 1.77 172
case 11 206 0.72 165
case 12 1771 1.99 186

Pearson correlation between the number of white pixels and the area calculated by
planimetry was 0.92, p=0.00048, as depicted in the correlation graph in Figure 5.2.

52



-
- L
-
®
-
25 -
-
-
-
2 ® ™ i [
-
[

1 * .-

3 2 [ »

-
-
1 e e
-
T -
-

= -

2 >
-
0
1) S00 1000 1500 2000 2500 3000

Figure 5.2 Correlation Graph, where Y-axis is planimetry and X-axis the number of white pixels taken from our

approach.

5.2 Second DSRM iteration
This iteration's evaluation was carried out to ensure that our artifacts were suitable for their
intended use, as described by the objective statements presented in Chapter 1.2 and defined in
consultation with our experts.
For the evaluation, as stated previously we've used the standard 1SO 15504 four-level NLPF

scale [14], having the following levels:

e Not Achieved (NA) - [0-15%)]

e Partially Achieved (PA) - ]115-50%)]

e Largely Achieved (LA) - ]50-85%)]

e Totally Achieved (TA) - 185-100%]

Table 5.2 Results of the evaluation (2nd DSRM iteration)

Criteria Objective statement Expert #1 |Expert #2
To improve the doctors time on identifying and
Efficacy evaluating the calcium severity

Consistency with

people / utility

It can help doctors to save time on doing the

prognostics.
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Consistency with

people / Provides understandable results. An
understandability identification and an absolute quantification LA
Consistency with Easily understandable, and can be used with

people / ease of use  |barely training

Consistency with Provides an alternative on automatically identify

organization / utility |and quantifying calcium

Consistency with
organization / fit with

organization Can keep better tracking of the patients

Click and Run application with no extra
Simplicity implementation

Level of detail Provides knowledge extracted from the image

It gives consistent results despite the different

Consistency image settings

Has good performance on loading and

Performance interpreting the images

Must be prepared for any usage without resulting
Robustness in errors PA
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6 Discussion and Conclusions

In this exploratory study, a Computer Vision approach enabled us to identify and quantify the
amount of calcium based on echocardiography imaging analysis, in calcific aortic valve
stenosis. This degenerative disease evolves with ageing and is an epidemiological issue due to
the high mortality, if left untreated. Literature studies performed with cardiac CT calcium score,
showed that the amount of valve calcification is related to severity and may help identify high-
risk patients with indication for valve replacement.

According to the Agatston method, calcium quantification by cardiac CT is usually
presented as a calcium score and is validated by histopathology [36]. Although it is a reference
method for calcification, CT is an ionizing method and its use in repeated studies should be
avoided. On the other hand, echocardiography is a non-invasive non-ionizing technique based
in ultrasound that could be used for calcium detection quantification if an automated method
was available and reliable. There is a lack, so far, of a reliable quantification method for
calcium by using echocardiography, although this could be a most appropriate method since it
is free of negative effects on human health and is a widely available technique. However, the
guantification of calcium based on echocardiography imaging is a challenge. Calcium is
reliably detected visually by experts, but visual quantification is unreliable and subject to
variability. In this thesis, calcification of aortic valve was used in the scope of a proof-of
concept.

From echocardiographic studies of calcific aortic stenosis, we analyzed the effect of
changing the post-processing windowing conditions (width and level) and found a high level
of agreement of intensity pixel values after normalization (by subtracting from the values of a
ROl in a dark part of the image, at flow echogenicity void). An adaptive cutoff was found for
pixels intensity that ensured the presence of calcium as validated by visual inspection.

Furthermore, in additional echocardiographic studies, we analyzed the pixels values when
changing the settings of acquisition that affect the brightness and contrast (ultra-sound
frequency and compression) and the final values for pixels and normalized pixels at the
reference ROI, just showed a small difference between exams, opening the potential for wider
application in the clinical setting.

Additionally, a validation set of 12 cases of calcific aortic stenosis, chosen randomly from
a database, was selected for calcium quantification in the valves by assessing pixel number
counting after applying the proposed cutoff for calcium. As a proxy of the amount of valve

calcification, this number, in parallel to the CT calcium-score, showed an excellent correlation
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with valve calcification measured manually via planimetry by echocardiography experts. Being
the entire process represented by Figure 6.1.

Region of
Echocardiographic Image Interest with Output
Image Binarization calcium

Number of Planimetry | Calcium Pixel
white pixels area (cm2) intensity

Patient 1 325 1.12 166

Figure 6.1. Summarized process description

A limitation for this study is the small number of cases analyzed, in accordance however
to its exploratory purpose. A further study should be undertaken in the future with the inclusion
of a larger number of aortic valves with a large range of calcification to validate these results.
Besides expert image validation, as used in this thesis, a comparison with an additional
validated method must be undertaken.

Moreover, this study was developed using a specific echocardiographic equipment.
Findings must be compared in further studies using other machines that may possibly provide
different kind of ultrasound images regarding pixels intensity and possibly different cutoffs
need to be considered.

This work was a collaborative approach between a computer science and social sciences

university with a medical university and hospital to solve and provide a real problem.

6.1 Future Work
Despite the positive findings, further iterations to the work we have done in this dissertation
would be beneficial.

As pointed out in the introduction, we did not follow a ML approach, since we were lacking
in data. Now, for each echocardiography that our prototype analyses, we are not only using one
new echocardiography images each time we use it, but we are also annotating those images
with the ROI and the normalization region, what would be fundamental for a ML approach —
annotated images — therewith, we may save these images for a future ML model.

We aim in the future to apply the model to a larger number of echocardiographic images
with a broad range of calcification amount, as validated by an additional method, such as CT

calcium score.
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Finally, performing tests in a production environment would be critical, in order to evaluate
the robustness of our prototype and correct any failures that may occur in a production

environment.
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