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ABSTRACT The number of available indoor location solutions has been growing, however with insufficient
precision, high implementation costs or scalability limitations. As fingerprinting-based methods rely on
ubiquitous information in buildings, the need for additional infrastructure is discarded. Still, the time-
consuming manual process to acquire fingerprints limits their applicability in most scenarios. This paper
proposes an algorithm for the automatic construction of environmental fingerprints on multi-storey buildings,
leveraging the information sources available in each scenario. It relies on unlabelled crowdsourced data
from users’ smartphones. With only the floor plans as input, a demand for most applications, we apply
a multimodal approach that joins inertial data, local magnetic field and Wi-Fi signals to construct highly
accurate fingerprints. Precise movement estimation is achieved regardless of smartphone usage through
Deep Neural Networks, and the transition between floors detected from barometric data. Users’ trajectories
obtained with Pedestrian Dead Reckoning techniques are partitioned into clusters with Wi-Fi measurements.
Straight sections from the same cluster are then compared with subsequence Dynamic Time Warping
to search for similarities. From the identified overlapping sections, a particle filter fits each trajectory
into the building’s floor plans. From all successfully mapped routes, fingerprints labelled with physical
locations are finally obtained. Experimental results from an office and a university building show that this
solution constructs comparable fingerprints to those acquired manually, thus providing a useful tool for
fingerprinting-based solutions automatic setup.

INDEX TERMS Crowdsourcing, fingerprinting, indoor location, inertial tracking, magnetic field, multi-

storey, unsupervised, Wi-Fi.

I. INTRODUCTION

Nowadays, the use of Global Positioning System (GPS) has
become vulgar and it is around us during our everyday lives.
Using a global network of satellites, a user or an object can be
located with at least four different satellites through the pro-
cess of trilateration. This technology has become extremely
reliable and accurate, but it does not work inside buildings or
underground. This is due to the loss of the satellite signal as
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it has to go through solid structures, such as walls. To further
increase the losses, buildings with metallic structures in their
foundations will see an increased decline in signal strength or
even total loss due to the Faraday cage effect. This problem
can affect potential applications for indoor location such as
tracking automated cars inside warehouses, locating patients
and visitors in healthcare facilities, keep track of inventory in
smart offices, among other applications.

To solve this problem, two major groups of Indoor Posi-
tioning Systems (IPS) arose, those that require the installation
of additional infrastructure and infrastructure-free solutions.
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The former usually resorts to beacons capable of emitting
signals that are received and re-transmitted back. By using
similar techniques to trilateration, these methods can locate
the receiver. The drawbacks of such solutions are the high
costs associated with the installation and maintenance of the
required infrastructure, while the main advantage is their
higher accuracy [1]-[4].

Regarding the infrastructure-free IPS, the most common
type utilises one or more sources of information, such as
Wi-Fi and magnetic field signals. These are possible given
the embedding of several sensors in smartphones, from Iner-
tial Measurement Units (IMU) to radio antennas. To exploit
such information, the most common approach is the use of
fingerprints on fingerprinting-based solutions. A fingerprint
is the mapping of a building with the desired sources of
information, collected by sensors across the area. At the end
of the data collection process, after saving to each position the
corresponding sensor reading, a map is constructed using the
gathered information and a schematic. This fingerprint can be
used to compare real-time data with the one in the fingerprint
to help locate the user [5]-[7].

As mentioned, most infrastructure-free methods use fin-
gerprints as the basis for storing information. However, they
require a time-consuming construction process, as the entire
area has to be covered by the sensors.

To avoid this problem, new approaches have been tried
and one of the most promising is crowdsourcing. This tech-
nique has been used in numerous areas, such as outdoor
navigation or collaborative translation. Crowdsourcing is a
method to solve complex problems with help from a group
of users who, whether actively or opportunistically, assist on
simpler tasks [8]. Thus, crowdsourcing comes as a solution
to address the initial setup burden of fingerprinting-based
IPS [9]. Leveraging the sensing capabilities of smartphones,
anonymous users can support the fingerprints construction
process.

For this purpose, in an initial phase, crowdsourcing con-
tributors naturally walk over the area of interest while their
smartphones’ sensors collect data opportunistically. Then,
with further processing after the collection campaign, a fin-
gerprint can be built automatically and maintained when
buildings change. However, existing algorithms present lim-
itations, either regarding their results, limited application or
the need for manual input of a set of parameters.

To address these limitations, we present an innova-
tive approach to automatically construct fingerprints with
crowdsourcing, for the desired environmental sources. After
the initial data collection campaign, which may be defined
according to the use case needs and complemented in later
iterations, the construction process can be triggered. Given
the floor plans for the different floors, users’ trajectories are
reconstructed with Pedestrian Dead Reckoning (PDR) and
iteratively fitted to the correct locations with a particle filter,
aided by a barometer-based module to detect floor transitions.
When compared to the literature, the great innovative aspect
of our solution is its unique multimodal approach, taken
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to enhance the mapping accuracy. Depending on scanning
restrictions from users’ devices, trajectories are firstly parti-
tioned into Wi-Fi similar areas with an unsupervised Machine
Learning (ML) algorithm. Straight segments of the same
group and with approximate orientation are compared with an
adaptive distance measure based on the perceived magnetic
field, to identify overlapping areas with high confidence.
With the proper fitting of each route into the correct floor
plan from mapped overlaps in previous iterations, fingerprints
are obtained. To assert the validity of the proposed solution,
evaluation tests were performed in two different settings,
a single-floor office building, and a larger multi-storey uni-
versity, using crowdsourced data from one user left out of the
construction process. The crowdsourcing fingerprints were
compared to those obtained by the traditional method and the
signal differences were computed to verify their similarity.
Also, the acquisitions from the test user were submitted to an
IPS using both the crowdsourced and traditional fingerprints.
The attained results on the test conditions assert the quality
of the algorithm.

The innovative aspects of this work for the automatic
fingerprints construction based on crowdsourcing are the
following:

o Leverage different pervasive sources depending on the
use case;

o Improved accuracy through multimodal validation of
crowd contributions;

o Accurate step detection based on Deep Learning;

« Mapping of multi-storey buildings from floor transitions
detection;

o Unconstrained by buildings dimensions, fitting any
indoor environment.

This paper is organised as follows: Section II discusses the
literature review and the previous work of our team on this
topic. The detailed description of the proposed approach is
available in Section III. In Section IV we present and discuss
the performance of our solution on the evaluation tests on two
distinct environments. At last, in Section V the conclusions
are taken and the future directions envisioned.

Il. RELATED WORK

Indoor location solutions often rely on fingerprinting tech-
niques to decrease implementation costs related to the
acquisition and maintenance of radio equipment. However,
such infrastructure-free solutions need the manual labour
of acquiring fingerprints, either during the initial setup and
whenever the venue’s characteristics change. Especially in
large environments, this effort may suppress the benefits of
fingerprinting-based solutions.

Works have been proposed to address this issue, resorting
to crowdsourcing to tackle the labour-intensive fingerprints
construction process. Crowdsourcing is thus used in this
context to acquire a significant amount of data from large
groups of users. Therefore, the need for an expert is dismissed
thanks to the participation of ordinary users [10]. Providing
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a comparable level of accuracy on fingerprints construction
will contribute to decreasing the costs of deployment and
maintenance, crucial to widen the usage scenarios of indoor
localisation.

Depending on the use case, different approaches to crowd-
sourcing may be deployed. While in some cases users may
need to take active action while participating in the data
collection, in others the acquisition may take place oppor-
tunistically. As an example, in [11], crowdsourcing users
need to annotate when passing by specific landmarks, so the
system can use these predetermined positions to adjust
the localisation estimations. On the other hand, in [12],
users only need to normally walk throughout the venues,
while smartphones collect data opportunistically from the
available sources, dismissing any further effort from the
crowd. When crowdsourcing-based solutions are deployed
into production through marketable products, considerations
regarding incentive mechanisms and privacy issues must be
taken into account to ensure adherence from data collection
contributors [10], [13].

Throughout the literature, different approaches relying on
the use of crowdsourcing have been considered. Depending
on the use-case, different sources of information and pro-
cessing techniques are leveraged. Furthermore, while some
solutions require buildings’ floor plans to start fingerprints
mapping, others dismiss this requirement, demanding instead
additional input parameters.

A. FLOOR PLAN-INDEPENDENT CROWDSOURCING

Some authors ground their efforts on the premise that floor
plans are not available in specific contexts, and the manual
mapping process may imply prohibitive costs. Therefore,
some solutions seek for the mapping process automation
[14]-[16], which often rely on inertial sensing to apply on
PDR techniques, together with additional sources as the
Wi-Fi distribution or local magnetic field.

Other works complement the floor plan mapping process
with the further construction of fingerprints for different lay-
ers. Lieral. [17] leverage users’ inertial data, where they split
trajectories into segments, the corridors. Magnetic features
are retrieved from such segments, which are clustered to iden-
tify similar sequences. Collected Wi-Fi measurements are
assigned to a final position after obtaining the final corridor
map. Luo et al. [18] developed PiLoc, a system that constructs
Wi-Fi fingerprints by segmenting users’ trajectories into sets
of curves with adjacent straight sections. The authors find
similar curves by evaluating their shape and Wi-Fi trend,
which are merged into a final floor plan and fingerprints.
With SmartSLAM, Shin et al. [19] employ a Simultaneous
Localisation and Mapping (SLAM) approach to construct
floor plans with Wi-Fi fingerprints based on Hidden Markov
Models (HMM), which leverage inertial sensing and Wi-Fi
measurements to expand the inferred trajectories.

In a previous approach to this topic, our group proposed in
[12] the use of crowdsourcing on an algorithm to construct
indoor floor plans and geomagnetic and Wi-Fi fingerprints
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effortlessly. The solution leverages inertial sensing to infer
crowdsourcing users’ trajectories, from which straight seg-
ments are retrieved and clustered, to divide venues into areas
with similar Wi-Fi pattern. Same cluster segments are com-
pared with an adaptive distance measure to identify which
are overlapping. The floor plans are constructed by perform-
ing geometric transformations to routes, so similar sections
are mapped into the same locations. Finally, fingerprints
are retrieved by matching the collected sources into each
position.

Although these solutions fit specific use cases where
obtaining a floor plan is not feasible, they present lower
accuracy due to lacking reference points or map constrains.
Furthermore, in most scenarios, a map is necessary to display
the localisation information to the systems’ users, so they can
navigate throughout a mall or an airport, for example.

B. FLOOR PLAN-DEPENDENT CROWDSOURCING

When the venues’ floor plans are given, the fingerprints
construction process is constrained by the possible locations
where users may be, which limits the error possibilities. From
crowdsourcing data, different approaches may use floor plans
as the only requirement for the fingerprints construction or
use them together with additional inputs.

Trogh et al. [20] optimise Wi-Fi signal maps with the input
of a set of APs’ locations, to calculate an initial simulated
fingerprint. With new data, radio values are corrected with the
Viterbi algorithm, used to estimate the most likely path, con-
sidering both the movement information and the similarity
between Wi-Fi measurements and preliminary fingerprints.
In another approach, Ahn et al. [21] use as landmarks the
location of payment terminals in a shopping mall, to estimate
an initial radio map and correct the users’ locations. Then, the
authors update the fingerprint with the collected Wi-Fi data
while crowdsourcing users walk throughout the building.

With no further inputs, Wu et al. developed LiFS [22],
a solution that resorts to Multi-Dimensional Scaling (MDS)
to create a stress-free floor plan that reflects real walking
distances between locations. By evaluating distances between
Wi-Fi measurements, the authors measure spatial similarity
to obtain their locations and construct the Wi-Fi fingerprints.
The floor plan is used by Zhou et al. [16] to extract the pos-
sible paths that users may take. If in vertexes activities such
as turns happen, an activity recognition algorithm is applied,
together with users’ trajectories inference, to compute the
corresponding positions and obtain the Wi-Fi fingerprints.
A different approach is taken by Rai et al. with Zee [23],
where a particle filter is applied to the collected inertial data,
to expand the possible positions of each step, constrained by
the floor plan. If a trajectory converges into a single location,
a backward propagation process labels the Wi-Fi acquisitions
to the inferred locations.

C. LITERATURE COMPARISON
Different approaches try to automatise the fingerprints
construction process leveraging crowdsourcing. However,
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as limitations can be pointed out, a sufficiently scalable
solution is still needed. Most solutions demand annotated
landmarks as inputs or take advantage of a limited group of
information sources, which independently present cuamulative
errors due to low-accuracy sensors and non-linear signal
distribution. Furthermore, most solutions only focus on map-
ping Wi-Fi fingerprints to be deployed on smartphones. With
increasing throttling and restrictions on Wi-Fi scans from
Android and iOS, such solutions may stop working in real
contexts.

To address these limitations, the proposed solution maps
fingerprints of different sources depending on the use case
and with the available data collected by crowdsourcing volun-
teers. The full process is done automatically without explicit
manual effort from users during the collection campaign
as, contrarily to most available solutions, there is no need
to previously define any landmarks or to install additional
equipment. Also, in a real deployment setting, users are not
constrained by the crowdsourcing device usage and do not
have to input any information or manual annotation, as the
full process is done unsupervisedly. These reasons may have
a positive impact on users’ adherence to the data collection.
Although our approach is based on particle filtering as some
previous works, it improves the traditional inertial sensing-
based mapping process with more layers of information,
as the geomagnetic field and the Wi-Fi network if avail-
able. Leveraging these sources, we can identify similarities
between acquisitions, discovering which were collected in the
same locations and therefore should be mapped together. This
innovative process eliminates any ambiguity regarding the
possible fitting of each trajectory within the maps, common in
traditional approaches, and which escalates in buildings with
similar floor plans in different storeys. In this sense, the pro-
posed solution also addresses multi-storey buildings, while
most literature solutions only consider one floor without the
possibility of transitions.

The innovative aspects proposed in our solution ensure the
accurate fingerprints construction, which is verified in the
experiments we conducted in two different venues.

Ill. MULTI-LAYER CROWDSOURCED FINGERPRINTS
CONSTRUCTION

This work addresses current literature limitations with
an innovative approach that leverages multiple sources
depending on their availability from crowdsourced data,
to autonomously construct environmental fingerprints for
fingerprinting-based IPS.

Figure 1 presents an overview of the proposed multi-layer
fingerprints construction process, which can be divided into
five different modules. After the crowdsourced collection
period, the first module deals with the processing of inertial
data to understand users’ motion while they move throughout
the indoor environments. When Wi-Fi information is avail-
able from smartphones, a second module resorts to ML tech-
niques to cluster such data, dividing buildings into smaller
areas with similar radio patterns. An important step for the
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FIGURE 1. System overview.

accurate mapping is applied in the algorithm’s third module,
where geomagnetic data from different contributions is com-
pared, to identify which were collected in the same locations.
From that, the fourth module applies an iterative method
to accurately map the estimated trajectories into the correct
location of the floor plan, and into the correct floor on multi-
storey buildings. After processing all crowd contributions,
with all floor plans populated, fingerprints are constructed in
the fifth and final module of this solution.

A. HUMAN MOTION ANALYSIS
The first module of the fingerprints construction process
deals with the processing of inertial data, collected with-
out any explicit effort from crowdsourcing users. IMUs
embedded in most smartphones contain increasingly accurate
accelerometers, gyroscopes and magnetometers. From such
devices, we leverage pervasively collected linear accelera-
tion, angular velocity and local geomagnetic field data, that
is processed to analyse the crowd behaviour and understand
their trajectories across the building. Different stages con-
tribute to the movement inference of this module.
Magnetometers aim to locally register the Earth’s mag-
netic field. Although smartphones apply a calibration mech-
anism to eliminate the soft and hard iron distortions, this
process often fails to remove brief distortions caused by
ferromagnetic materials, which enables us to leverage them
in our algorithm (Section III-C). As sometimes sensors get
severely uncalibrated, an initial process removes unreliable
acquisitions, from the accuracy status provided by Android
smartphones.

1) SENSOR FUSION

To crowdsource data from smartphones, it is essential to
widen the devices’ usage scenarios, independently of how
users place them. Sensor fusion algorithms translate the
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inertial and magnetic data from the reference frame of the
device to the reference frame of the Earth, which is important
for three reasons. Firstly, it allows the decomposition of
geomagnetic field data into East, North and Up directions,
allowing the generation of geomagnetic fingerprints for each
axis. Secondly, it assists in obtaining the heading of the user at
each step. Finally, it allows the application of more robust step
detection algorithms. To achieve this translation, accelera-
tion, rotation and magnetic data are combined through sensor
fusion employing a complementary filter.

A complementary filter tracks the rotation of the user with
the gyroscope while using the magnetometer and accelerom-
eter as absolute references for stabilisation of North and
Up directions, respectively. This is achieved by combining
the high-frequency component of the gyroscope with the
low-frequency components of the magnetometer and the
accelerometer. The contribution of each of these components
is determined by the parameter « according to the following
Equation:

‘ I
= T +dt 1
where t is the time constant for the split between rela-
tive (gyroscope) and absolute (accelerometer and magne-
tometer) references and dt the sample interval. A value of
v = 0.5s was chosen, equal to the inverse of the typical
walking frequency upper bound of 2 Hz [24].

2) PEDESTRIAN DEAD RECKONING

The movement of pedestrians is characterised using PDR
techniques, where the motion of the user is evaluated at
each step. This can be split into three distinct problems: step
detection, step length and heading variation estimation.

TABLE 1. Architecture of the Deep Convolutional Network for step
detection.

Layer Channels  Filter Size  Activation  Shape
Convolution 2 64 ReLU [66, 2]
Convolution 4 32 RelLU [35, 4]
Convolution 8 16 RelLU [20, 8]
Convolution 16 8 ReLU [13, 16]
Convolution 16 4 RelLU [10, 16]
Convolution 1 10 None [1, 1]
Flatten - - - [1]

Step detection is achieved through the use of a Deep Con-
volutional Neural Network whose architecture is presented
in Table 1. The network takes as input a sliding window of
1.28 seconds of acceleration data transposed to the reference
frame of the user using the method proposed in [25]. The
output is a time series bounded by the interval [0, 1] and can
be interpreted as the probability of there being a step at each
instant. This time series is filtered using a fifth-order low-pass
filter with a cut-off frequency of 2 Hz. Steps are detected in
this signal by identifying peaks with values above 0.1.

The Neural Network is trained using as ground truth the
result of the step detection algorithm described in [5], which
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is developed for a specific device placement, namely held in
the hand as if the user was looking at the screen. Following
the sensor fusion processing, together with the transposition
of the reference frame of the device to the user’s, described
in [25], all contributions are aligned into the same reference,
regardless of the device usage. As such, we can use the inertial
data in a reference frame independent from the placement of
the device, to train a Neural Network and create a step detec-
tion algorithm independent of this placement. Moreover, the
adjustment of the aforementioned threshold allows obtaining
an ideal threshold between sensitivity and specificity. Further
developments on this algorithm will be addressed in future
work.

The length of each step is computed using the method
proposed by Weinberg [26]:

d = K/Anax = Amin @)

where A, and A,;;, are the maximum and minimum values
of the vertical acceleration in the Earth reference frame for
that step and K is a calibration constant, here set to 0.45.

Finally, the heading variation at each step is computed
through the numerical integration of the z component of
the gyroscope in the reference frame of the Earth. With all
movement parameters obtained, it is possible to estimate
consecutive positions between steps.

Although PDR can be affected by problems due to noise
accumulation on inertial sensors, often causing drift on the
heading or erroneous displacement estimation, our multi-
layer solution mitigates these errors.

3) FLOOR TRANSITIONS

The path estimation is done across a two-dimensional plane,
where the vertical movement of users is ignored by the
employed methods. Therefore, considering the demand for
a solution that works in multi-storey buildings, a floor transi-
tion detection mechanism was developed.

To efficiently detect when crowdsourcing users change
floor, without any specific user annotation, we leverage the
pressure data collected by devices’ barometer. The atmo-
spheric pressure is essentially stable at the same altitude,
varying at different heights. However, in practice, unstable
atmospheric conditions and factors such as the indoor humid-
ity and temperature may affect the local pressure reading.
Also, different sensors between devices may produce incon-
sistent readings. These reasons hinder the usage of the abso-
lute pressure values to identify the floors where users are.
Still, between devices, when the altitude of the sensing device
changes, either in the upward or downward direction, the
pressure reading changes accordingly, being lower in higher
altitudes.

Therefore, we propose a threshold mechanism that pro-
cesses the relative variations in barometric data for the detec-
tion of floor transitions. As the atmospheric pressure is
affected by the momentary conditions of the venue, as its
room temperature, initial filtering is applied to the collected
signal, to remove the expected noise. Then, the smoothed
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signal is normalised by its mean and standard deviation,
followed by a peak detection mechanism of values above
0.1. The relative differences of the smoothed pressure value
between those peaks are computed, and if any surpass the
lower threshold of 0.25 hPa, the floor of the user changed.
This threshold was defined from experiments in the university
venue and may need to be adjusted when deploying our
solution in other venues with different floor heights. Also,
by the evaluation of the transition duration, it is possible to
infer with high confidence the type of transition.

With this mechanism, in the university setting, we are
able to detect when a user transitions one floor, its direction
and type (stairs, lifts or ramps). In our study, the trajecto-
ries performed by participants only had at most one floor
transition, so our algorithm only considers this scenario.
However, as transitions of more than one floor will result
in proportional multiples of pressure differences, we believe
that our algorithm can be adapted for such scenarios, to be
addressed in future work. Moreover, with drastic changes in
the indoor atmospheric conditions, high variations in the local
pressure readings may mislead to erroneous detection of floor
transitions. The current mechanism does not deal with this
problem, as during experiments it was not verified, but future
developments will take it into consideration. Nevertheless,
as our solution relies on crowdsourcing with multiple layers
and a particle filter to expand particles into the floor plan,
erroneous trajectories will likely not be mapped. If eventually
they are, constructed fingerprints will not be affected given
the large volume of data leveraged throughout this process.

4) DOMAIN CONVERSION

The final step of the motion analysis addresses the high
variability of walking patterns between humans. People of
different ages or in distinct contexts display different walking
speeds, which greatly impacts signals acquisition. Consider-
ing the importance of having comparable magnetic and Wi-Fi
signals in the next modules of our solution, we apply a domain
conversion mechanism. The collected signals, originally in
the time domain and referenced to a timestamp, are converted
to the distance domain, with sensor readings indexed to a spe-
cific distance travelled by the user. Knowing both the times-
tamps of each sample and the walking parameters obtained
with PDR, we apply a linear interpolation to estimate values
between displacements.

For the collected geomagnetic field data, as sensors collect
with high sampling rates, a fixed interpolation value can be
chosen with negligible risk of deviated estimations. Consid-
ering both the needs for the accurate representation of the
original signal and computational efficiency requirements,
we selected an interpolation value of 10 cm.

On the other hand, Wi-Fi measurements consist of
packages of information, received after requests from smart-
phones, which have a low sampling rate. For this rea-
son, the domain conversion of Wi-Fi is done by estimating
the displacement corresponding to the timestamp of each
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package, considering the steps before and after the reply
timestamp.

B. WI-FI CLUSTERING

The second module of the presented algorithm clusters Wi-
Fi data into groups of similar information, only possible
in close areas of some location. Depending on the Wi-Fi
readings restrictions from collection devices, this mechanism
processes reply packages following device requests for sur-
rounding Access Points (APs), to divide a floor plan into
smaller areas of similar radio patterns.

For this purpose, the specifications of Wi-Fi networks are
leveraged. Ubiquitous in indoor environments, such networks
are employed in several IPS [5], [7], [16] and consist of multi-
ple APs distributed throughout buildings. Each AP may have
defined several Wireless Local Area Networks (WLANSs),
each one characterised by a unique Basic Service Set Identi-
fier (BSSID). This important feature is registered in the reply
packages received by the devices, together with the Received
Signal Strength Indicator (RSSI), which allow the association
of an AP to a specific location.

The use of radio signals for positioning presents some
challenges, ranging from signal attenuation due to buildings’
construction materials, to signal fluctuations and noise related
to the dynamic changes in the environment, such as the
human body itself or the device heterogeneity [9], [27]. These
challenges affect the accuracy of IPS based only on Wi-Fi
signals. Nevertheless, Wi-Fi networks still provide important
information that, if available, we use to divide the floor plans
into smaller areas, aiming to lower the errors of following
modules and to optimise the computational efficiency.

Contrarily to IPS solely based on Wi-Fi, the aforemen-
tioned challenges do not greatly impact our unsupervised
fingerprints construction solution. In this scenario, Wi-Fi data
is used in the clustering to divide buildings into smaller
areas, to facilitate further modules. Still, before clustering
Wi-Fi data, an initial pre-processing step is applied to reduce
signal’s noise due to interferences and devices’ variability.

Although APs are fixed in the same location and work gen-
erally with the same transmitting power, the produced signal
is highly variable due to interferences. As such, we apply a
noise removal mechanism to increase trust in the clustering
mechanism. Firstly, a search over all replies from previously
crowdsourced acquisitions removes APs that never register
RSSIs above —50 dBm neither have a variation between
collected values higher than 30 dBm, as they have low
discriminative power. An additional process eliminates all
RSSIs below —80 dBm, as low values present ambiguous
information since they can either be due to far distances from
the AP or shorter distances with high attenuation from thick
walls, for example. The WLANS operating in the 5 GHz radio
band are also eliminated from the clustering mechanism,
since older devices cannot detect them. Each reply package
is an individual object to be clustered, containing as features
the information of all APs ever detected in the building.
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Regarding device heterogeneity between collection devices,
which results in variations in the signal strength measured at
the same time and place, each reply package is individually
normalised by the maximum and minimum values. All previ-
ously removed or non-existing RSSIs assume the value of —1,
contrarily to remaining RSSIs that take values in the interval
[0, 1]. With this pre-processing step we address most issues
that can jeopardise the use of Wi-Fi signals.

The applied clustering algorithm is described in detail in
[12]. Due to factors such as the computational complexity
given the high number of features, the K-Means algorithm
was chosen. This unsupervised ML algorithm optimises clus-
ters by assigning each object to its closest centroid. In an
iterative process until reaching convergence, the centroids are
recomputed and objects reassigned. K-Means is a partitional
clustering algorithm, which requires setting K, the number
of clusters. As we aim to build an unsupervised algorithm,
such information is not available. Therefore, we employ the
method of Zhang et al. [28], which uses the sum of the
squared distances between each object and its centroid for the
different number of clusters, to compute, from the obtained
graph, the maximum curvature point. This value is the ideal
number of clusters, therefore the selected K. Due to Wi-Fi
throttling in some devices, sampling rates are decreasing to
as low as four Wi-Fi scans in each two-minute period. Conse-
quently, the outliers removal mechanism of [12] is dismissed,
as it is not possible to ensure that between two consecutive
replies, the user did not pass in a different cluster area.

The automatic clusters selection process enables the appli-
cation of this method in different scenarios, since the number
of identified Wi-Fi patterns will increase with the size of the
building. Although the maximum K value is set at 10 due to
the algorithm limitations when testing in more clusters, this
value is reasonable for most scenarios. If in future work we
face cases where 10 clusters are insufficient, new methods
for the automatic selection will be researched. Also, with the
expansion of the crowdsourcing datasets in such scenarios,
the clustering algorithm may take more resources to reach
a convergence point. Nevertheless, as our solution will run
offline after an initial collection campaign, no major prob-
lems are expected to come with the increased complexity.

C. GEOMAGNETIC SIMILARITIES
Before applying a particle filter to fit crowdsourced acqui-
sitions to a building’s floor plans, the third module of our
algorithm ensures the process is done with high accuracy. The
Earth’s magnetic field is thus used in this context to identify
which acquisitions were collected in the same location.
Although the geomagnetic field is essentially stable around
the same region, it is highly affected by construction materials
and electrical equipment. These cause specific and persistent
interferences on the field, that produce unique patterns on the
collected signals. With this useful information, we can iden-
tify precise locations within the crowdsourced data. As such,
we apply a comparison mechanism to identify similarities
between acquisitions.
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1) TRAJECTORIES SEGMENTATION

The amount of data generated with crowdsourcing poses a
problem to extensively compare individual signals to each
other. The quadratic complexity of the problem requests the
limitation of the comparisons set. Considering this, we apply
a segmentation mechanism to the inferred trajectories, so it is
possible to only retrieve signals that provide the most useful
information for the similarities identification process.

From the Wi-Fi clustering results, if available, an initial
segmentation splits trajectories into sections that have con-
secutive Wi-Fi reply packages with the same cluster label.
This is done to ensure that each new section fully belongs to
the same area of the building.

A second segmentation step evaluates the shape of each
section. The process to infer trajectories from inertial data is
sometimes sensible to device movements that do not relate to
the users’ motion. Although sensor fusion aligns the devices
to the Earth’s reference, sudden and brief tilts on the phone
may not be recognised and produce mistaken turns. As such,
further segmentation extracts from the initial segments the
straight portions, which do not suffer from this problem.

Based on the premise that longer similar magnetic
sequences are more reliable regarding their uniqueness,
a minimum threshold for the segment size is defined. This
value results of a balance between the approximate length
of the corridors of a building and the process efficiency.
In both use cases we present, an office and a university, for
generalisation, a minimum length of 5 meters was set. Still,
the threshold for the university venue, as it is larger, could be
more restrictive.

2) NOTABLE INSTANTS DETECTION AND SIMILARITIES
IDENTIFICATION

When a segment does not vary much within itself, no inter-
ferences produced the unique patterns we aim to find, so it
has insufficient information to produce a robust compari-
son. As such, to ease the process of comparisons between
previously segmented sections, geomagnetic similarities are
only computed using segmented magnetic field signals that
present a magnitude standard deviation higher than a thresh-
old, defined to be 1 uT in both use cases.

After this selection process, the most notable instant
of each segment is calculated using a self-similarity cost
matrix that comprises the multidimensional Euclidean dis-
tance between each instant of the segment and its remaining
instants. The multidimensional distance includes the intensity
value and the first derivative of the three axes of the magnetic
signal resulting in a 6-dimensional vector. The first derivative
is used to capture the shape of the signal, since different
smartphones have usually different offsets in the magnetic
field readings. Inspecting the self-similarity cost matrix, the
most notable instant is the one that produces the maximum
cost compared to the rest of the segment. This process is
exemplified in Figure 2, where the self-similarity cost matrix
from a 1-axis signal is drawn, together with resulting summed
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FIGURE 2. Process of the most notable instant detection, for a 1-axis
signal, which corresponds to the instant of the maximum sum of costs,
obtained from the self-similarity cost matrix.

costs (in green), from which the identified maximum repre-
sents the signal’s most notable instant (in red).

Next, the identification of segments that were collected in
the same location is achieved by comparing pairs of signals
from straight segments that present the same Wi-Fi cluster.
Furthermore, with the absolute orientation known after sen-
sor fusion, the process will also only match segments with
concordant directions, with a maximum difference of 45°.

Since the obtained segments have different lengths,
depending on the performed trajectories, the comparison
between segments is done with the combination of two mod-
ifications of the Dynamic Time Warping (DTW) algorithm:
the subsequence DTW [29] and the derivative DTW [30].
From a first signal, the subsequence to be searched among
the segments that fit the previous conditions is retrieved
from a pre-defined window size around its identified notable
instant. In an iterative process, where the window size of the
subsequence is progressively increased, the modified DTW
algorithm is applied to obtain the warping path distances.
Depending on both the resulting alignment and the computed
distance value, the overlap of a subsequence to other seg-
ment is accepted or rejected, and the optimal window size
is selected. Figure 3 depicts the resulting alignment from the
comparison process between two magnetic sequences from
different contributions, collected in the same location.

D. AUTONOMOUS FLOOR PLANS MAPPING

The innovative fourth module of the presented solution deals
with the accurate mapping of crowd contributions into the
correct locations, from the outputs of previous modules,
which will be used to obtain environmental fingerprints. This
fully unsupervised process only takes as inputs the floor plans
of buildings, with only the annotation of floor transitions,
as stairwells or lifts.
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FIGURE 3. Alignment of two magnetic sequences from the similarities
detection process between two contributions.

To achieve this, this module is divided into two different
components, which recursively interact together until achiev-
ing an optimal convergence point. One of such components
consists of a particle filter, which maps crowd contributions
into possible locations of available floor plans, from the ini-
tial trajectories reconstruction information. Considering that
multi-storey buildings often have overlapping characteristics
between floors, a second component then ensures that routes
are fitted into the correct location of the correct floor.

1) TRAJECTORIES MAPPING WITH PARTICLE FILTERING
The identification of possible locations for each acquisition
is achieved by constraining PDR data to a floor plan using a
variation of a Condensation particle filter, where each particle
constitutes a set of four variables: position x, position y,
heading y and significance s [31].

At each step, a step length I’ and a heading variation d6’
are sampled for each particle from Gaussian distributions L
and d©® as such:

L~ N(,1xa}) 3)
d® ~ N(db, o) “)

where [ is the length of the step as determined by Equation 2
and d6 the original difference between the heading of the
current step and the heading of the previous step. These are
applied to the position of the particle as such:

pﬁ,” = pﬁ,’t_l +do’

P =P 1 cosl)

pit = pi' = 4 sin(p")

Pt = P x P(L = 1) x PO = d')3  (5)

- s

where p"' is particle i at step ¢. If the position (p%', pi;") is not
a walkable position, the particle is removed.

To counteract sample redundancy, particles are penalised
for occupying the same grid square as other particles. This is
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achieved by applying the following Equation:

i\t
Py
03 exp(—0.5%)

ps' = (6)
where C is the number of particles in the same grid square as
pi!, A the total number of occupied grid squares and N the
maximum number of particles.

Finally, the particles are resampled with replacement. The
probability of each particle being sampled is proportional to
its significance. Therefore, at each new step from the pedes-
trian, a new generation of particles is created from the pre-
vious generation, considering for each particle the estimated
step length and heading change, obtained from Equations 3
and 4, together with the introduction of random noise from
Equation 5.

When the full route is expanded after the last step is pro-
cessed, the resulting particles are clustered using DBSCAN.
In each cluster the particle closest to its centroid is selected
and a path is created by recursively tracing back its expansion
history. Each path is compared to the path obtained by PDR
using the following Equation:

T
1
D = mingepo, 360 7= g(xpf,t _ (cos 0x4r1 + sin @ydr1))2
+ (" — (sinOx¥" 4 cos Oy 1))? 7

where x” and y?/ are the x and y positions of a path from the
particle filter, x¥" and y¢" are the x and y from dead reckoning
and T is the number of steps. The path from the cluster with
the lowest D value is chosen as the path reconstruction.

To deal with multi-floor mappings, the initial distribution
of particles across the floor plans accounts for the detected
floor transitions from the first module. Based on the premise
that the existence of a transition restricts the possible posi-
tions within the building where the user was in that specific
moment, such trajectories are expanded from an initial dis-
tribution of particles around the specific transition locations,
as shown in Figure 4a. For example, if the floor transition
detector outputs that the user went up a stairwell, then the
algorithm will place particles around the stairwell locations,
from which is possible to go up, as well as on their cor-
responding ends. From there, the particle filter expands the
trajectory backwards, for the portion before the transition,
and forwards for the portion after. If multiple transitions had
occurred in the same acquisition, then the previous expansion
would be performed until the next transition moment. Here,
a further mechanism verifies if the last position is close to
the corresponding transition type, which means the expansion
was successful and can be continued in the other end of the
stairwell, for example.

Contrarily, when a contribution was fully collected within
the same floor, as the system cannot restrict the possible loca-
tions to start the expansion, particles are distributed across the
full area of the floor plans and expanded forward from the
initial moment. In order to automatically scale the system to
the size of the considered floor, instead of setting an initial
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FIGURE 4. Difference between initial particles distribution from
single-floor and multi-floor contributions.

number of particles, we distribute the necessary particles in a
regular grid with a spacing of 0.6 m between them, as depicted
in Figure 4b.

2) ITERATIVE ACCURATE TRAJECTORIES MATCHING

While the particle filtering component has a central role in
mapping users trajectories into buildings floor plans, it alone
cannot provide adequate accuracy to construct in an unsuper-
vised way fingerprints for IPS.

As such, we deployed an iterative method that progres-
sively maps users contributions to their correct locations,
relying on the geomagnetic similarities identification from
Section III-C.

Algorithm 1 describes the developed iterative method. Dur-
ing this process, depending on the particle filter expansion
results, trajectories can be stored in three different categories.
When the algorithm is certain that some acquisition is accu-
rately mapped, it stores the trajectory as a final mapping in
mappedList, and can be used to aid the mapping of others.
If a trajectory could be fitted into one or more floor plans,
the algorithm classifies the mapping as ambiguous, so it will
be stored in completeQueue, as further validation is needed.
At last, usually due to dead reckoning problems, the particle
filter may fit trajectories incompletely on the floor plan.
If they are long enough and got the major part mapped,
incompleteQueue stores such trajectories to be verified later.

Firstly, based on the retrieved segments’ length and the
number of detected floors, trajectories are classified into three
score levels of decreasing relevance (c/ value in Algorithm 1).
This process orders which acquisitions have more informa-
tion for the initial mapping with the particle filter.

Starting with acquisitions with the lowest score level, i.e.,
when cl is equal to 1, the particle filter tries to map them into
the available floor plans. The successful mappings are stored
in completeQueue, to be then tested to verify if previously
identified magnetic similarities exist among them and if the
corresponding locations are close enough. In that case, such
trajectories are considered to be mapped and those crowd
contributions are accepted and stored in mappedList. When
no overlaps are confirmed, acquisitions are maintained in
completeQueue until a new verification is conducted in a sub-
sequent iteration. Depending on the existence of successfully
mapped routes in mappedList, the next step uses geomagnetic
similarities to map new trajectories using Algorithm 2. After
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this, or if mappedList remains empty, the classification score
increases and the process is repeated until the maximum
classification score is processed, i.e., when ¢/ is equal to 3.
After this moment, this method cannot accept as final any
more complete mappings, so Algorithm 3 will verify if it is
possible to use incomplete routes from incompleteQueue for
the future fingerprints.

Algorithm 1 InitialFullMapping

Result: mappedList, completeQueue, incompleteQueue
for cl=1to 3 do
for acquisition with classification == cl do
map trajectory with particle filter;
if mapping successful then
‘ update completeQueue;
end
else if mapping incomplete then
‘ update incompleteQueue;
end

end
verify existence of similarities between
completeQueue mappings;
if similarities confirmed then
update mappedList;
run MapFromSimilarities;
end

end
run MapIncompleteTrajectories;

With a previous set of acquisitions successfully mapped
in mappedList, Algorithm 2 maps new trajectories, from the
existing geomagnetic similarities between them and the ones
already mapped. Firstly, all similarities in similaritiesList
are ordered by the optimal window size from the extension
process and the lower distance value, obtained from the mod-
ified DTW described in Section III-C. Then, iteratively all
similarities from similaritiesList are verified and when one is
found between an already mapped and a new trajectory, the
overlapping section is taken as the start, and from there the
particle filter maps the remaining positions of the new acqui-
sition. Since the algorithm is certain about the location of the
already mapped acquisition, we can take the outputs of the
particle filter as the accurate mapping of the new, to be stored
in mappedList. If the particle filter outputs an incomplete
mapping that meets the minimum requirements, the trajectory
is added to incompleteQueue. Finished the process, a new
search verifies if, among the mapping in completeQueue,
it is possible to verify from the overlaps, the mapping of any
acquisition with the ones recently mapped.

When Algorithms 1 and 2 reach a convergence point
where no more trajectories can be added to mappedList,
a further search in Algorithm 3 verifies if it is possible
to add stored incomplete routes from incompleteQueue to
the final mappings, from the remaining similarities. If some
incomplete mappings are accepted, they are transferred to
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Algorithm 2 MapFromSimilarities

Result: mappedList, completeQueue, incompleteQueue
sort similaritiesList;
while similaritiesList not empty do
nMappings = len(mappedList);
for similarity in similaritiesList do
if both acquisitions mapped then
erase similarity;
end

else if one acquisition mapped then
map new trajectory with particle filter from

overlap;
if mapping successful then
update mappedList;
erase similarity;
break;
end
else if mapping incomplete then
‘ update incompleteQueue;
end

end

end
verify existence of similarities with completeQueue
mappings;
if similarities confirmed then
‘ update mappedList;
end
if len(mappedList) == nMappings then
| break;
end

end

mappedList and Algorithm 2 will verify if it is possible to
expand unmapped trajectories from the overlaps with the
new additions. This process is repeated until reaching a new
convergence point, where no more incomplete mappings can
be accepted with certainty.

Algorithm 3 MapIncompleteTrajectories

Result: mappedList, completeQueue, incompleteQueue
while incompleteQueue not empty do
verify existence of similarities with

incompleteQueue mappings;
if similarities confirmed then
update mappedList,;
run MapFromSimilarities;
else
‘ break;
end

end

After convergence of all processes, no more acquisitions
can contribute to the crowdsourced buildings’ fingerprints.
Although some remaining trajectories in the queues may
be correct, its accuracy cannot be assured by the solution.
With this, the cost of discarding some users’ contributions is
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assumed, to ensure that all accepted mappings are done with
high confidence, from which the necessary fingerprints may
be constructed.

E. FINGERPRINTS CONSTRUCTION

With the results from the trajectories mapping process, each
crowd contribution now has the information of its real loca-
tion on the building. From the set of acquisitions collected
on each floor, the last module of our solution is able to
autonomously produce the environmental fingerprints for
fingerprinting-based IPS. Although in our use case, the
geomagnetic field and the Wi-Fi are the leveraged sources,
the process is extensible to more sources of information.

The fingerprints construction process is essentially similar
for both sources. Fingerprints consist of maps resembling the
floor plans of a building, with the annotation of the expected
readable value of each source at each position. These maps
have a predefined resolution, which is chosen depending on
the desired localisation resolution and the source sampling
rate.

The process takes an empty map of all walkable locations
of the building, one for each magnetometer axis and one
for each Wi-Fi BSSID. Then, each map position will get
the reading values of all previously mapped acquisitions that
pass by. As magnetometers collect with high sampling rates,
it is possible to retrieve a reading from almost any resolu-
tion. In the case of Wi-Fi signal, the empty maps receive
the readings from the mapped positions that correspond to
all received packages. After this annotation process, each
fingerprint position may have several values from different
contributions. Considering that some acquisitions may be
influenced by anomalous fluctuations, each fingerprint posi-
tion assumes the median value from all that were registered.

As a result of this process, some positions may not be
mapped as no accepted acquisitions passed by. We then
apply a further interpolation to minimise this problem using
a Gaussian kernel around each unmapped position with a
predefined interpolation window. The interpolation process
iterates over all possible positions of the fingerprint that do
not possess a previously mapped value. Then, the value for
the current unmapped position is the average of the mapped
positions within the kernel weighted by their distance to the
unmapped positions using the Gaussian kernel. If there is
only one mapped value, then, the new value will be equal.
If there are no previously mapped values within the kernel,
the position will remain unmapped. This process is repeated
for all unmapped positions. In the end, a smoothing algorithm
is applied. It iterates over all fingerprints positions, and using
the previous kernel dimensions, the mean of all values within
the range is calculated, which will be assumed as the new
value.

The large range of available Wi-Fi equipment works
under international standards, but manufacturers can change
some devices’ settings, which affect networks configurations.
As an AP may have different BSSIDs, even working on the
same radio band, the size of such data, especially in large

VOLUME 9, 2021

buildings, may be impracticable in terms of computational
costs. As it is not possible to unambiguously define which
BSSIDs belong to the same AP, we apply an unsupervised
ML process to cluster all Wi-Fi fingerprints into a smaller set
that contains all information.

To cluster the obtained fingerprints, we begin by defining a
suitable distance metric. First, the RSSI values are rescaled to
be bound by the interval [0, 1]. Assuming a minimum value
of —100 dB and a maximum value of 0 dB, this is achieved
by applying the following Equation:

RSSI["} = (RSSI{ , + 100)/100 @)

where RSSI;) y 1s the RSSI value of fingerprint i at the position
X, y and RSSI; y’ the re-scaled value. The distance metric is

then defined as such:

i 3" IRSSI]"} — RSSIL |.| x (RSS ;y' + RSSIY) )

> (RSSI{y + RSSIy )

The resulting distance matrix is then used with DBSCAN
to cluster the fingerprints, and outliers are removed. Finally,
the fingerprints of each cluster are combined by taking the
median value at each coordinate.

The presented solution outputs environmental fingerprints
that follow the provided floor plans’ of buildings. In our use
case, fingerprints for all geomagnetic field axes and clustered
fingerprints for the detected Wi-Fi APs are produced. The
first are collected with a resolution of 20 centimetres, while

the second have a resolution of 1 meter, given the lower
sampling of Wi-Fi measurements.

IV. SYSTEM EVALUATION

This Section deals with the validation of the proposed
method, to assert its applicability in any indoor scenario.
For this purpose, two validation strategies were implemented.
Firstly, the crowdsourcing fingerprints obtained with our
solution were compared to those obtained from traditional
methods. The point-by-point differences provide an insight
of how similar both types are, and if changes in localisation
are to be expected when replacing the manual fingerprints.
Next, in order to deeply understand the impact of the crowd-
sourcing fingerprints in a real setting, we used a set of test
acquisitions as the input for a fingerprinting-based IPS [5].
By evaluating the localisation performance attained by the
same data but using the different types of fingerprints, we can
verify the potential of crowdsourcing for this purpose. At last,
we asserted the computational complexity of the presented
solution, with tests regarding the time and memory require-
ments considering different use cases.

We tested our solution in two different settings, a single-
floor smaller office building and a larger multi-floor uni-
versity. These two distinct environments aim to verify the
achieved results in different deployment use cases. In both
settings, with a crowdsourcing-based approach, groups of
users with different Android smartphones collected data
while walking throughout the buildings. A logger app was
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FIGURE 5. Example set of six routes designed for the office building.
Crowdsourcing users were instructed to start the trajectories at the green
circle and finish at the red circle.

provided to register the available data. A set of routes was
predefined in both venues, to provide ground truth infor-
mation for the evaluation. Figure 5 schematises six of such
routes on the office building, from the total of 51 routes
designed for both venues. The test routes cover the entire
buildings area, considering that some locations should be
crossed in different directions and different times of the day,
to ensure data variability. The crowdsourcing volunteers were
then instructed to start at the green circle and finish at the
red circle. Also, the moments of each change of direction
were annotated on the logger app, to provide ground truth
information for the localisation results evaluation. In each
venue, the data of one user was excluded from the proposed
fingerprints construction process, so validation tests do not
produce biased results against repeated movement patterns or
behaviours.

The first setting is an office building with a single-floor
and an accessible area of 205 m?2 (Figure 6a). In this dataset,
six users collected data over 22 predefined trajectories,
totalling 135 acquisitions for 95 minutes. From this set, 22
(16.3%) contributions from a user were left out for further
validation. Two smartphones were used for the acquisitions
(LG Nexus 5 and Huawei Nexus 6P), being handled in texting
position. From the geomagnetic similarities identification
process, 68 of total contributions (60.2%) had overlaps iden-
tified. From all similarities, 79.6% were effectively collected
in the same sections of the building. From those possible
to be mapped acquisitions, 66 (97.1%) were fitted into the
floor plan and contributed to the fingerprints. This represents
58.4% of the total usable dataset. All routes were mapped into
the correct locations, although 15 had minor fails, as in the
case of expanding to a near parallel corridor. Nevertheless,
this reduced number of errors is not expected to greatly affect
the results of the crowdsourced fingerprints.

The second venue is a university with two interconnected
buildings, from which we collected data over three differ-
ent floors, with transitions of different types (Figure 6b).
This setting extends the results from the previous venue
as it resembles more common use cases with the inclusion
of some open spaces. For a total area of 3900 m?, six
users collected 167 acquisitions with seven smartphones (LG
Nexus 5 and G7, Google Pixel and Pixel 3, Samsung S9,
Huawei Nexus 6P and Xiaomi Mi8), placed either on the
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(a) Office building floor plan.

(b) University buildings floor plans.

FIGURE 6. Buildings floor plans.

hand in texting position, or in the pocket. 52 acquisitions
were excluded by the uncalibration detection process. From
the remaining set of 115 contributions, totalling 351 min-
utes, 17 of such acquisitions (14.8%) were not used, for
further validation. As this building contains larger open space
areas, to ensure covering the full space, the 29 designed
routes included free movement areas. Resulting from our
solution, in this venue 66 acquisitions entered the mapping
process (67.3%), as they had identified similarities. 54.2%
of all similarities were collected in overlapping locations,
alower value justified by the standard similarity threshold. 48
(65.8%) of usable acquisitions were mapped, totalling 49.0%
of processed contributions. From the mapped set, three routes
were mapped in the wrong floor and minor mistakes were
identified only in six acquisitions, with the major part in
the correct locations. Again, this is often due to erroneous
expansion to parallel areas, caused by undetected steps or
inaccurate stride length estimation.

From the presented numbers, the number of crowd contri-
butions that were effectively used to construct the required
environmental fingerprints may seem quite low. However,
with users freely moving with the smartphone in not com-
pletely fixed positions, the acquisitions may be affected by
some errors, which in the end diminishes the confidence
that the system has in such contributions, being discarded
throughout the process. This ensures that the produced finger-
prints present a competitive accuracy for a system like ours
to be deployed in any indoor setting.

A. FINGERPRINTS COMPARISON

To compare the results between crowdsourced fingerprints
and traditional ones, we computed the absolute differences
point by point, for all magnetic axes and Wi-Fi APs.
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FIGURE 7. Constructed magnetic fingerprints before any interpolation,
obtained by the traditional and crowdsourcing methods, respectively.
Both fingerprints show the magnitude of the three axes of the magnetic
field.

Traditional fingerprints were collected by the method
described in [5], on which a user manually collects data
throughout the buildings with a smartphone. Although this
method provides ground truth coordinates for fingerprints
construction, due to its time-consuming procedure, the data
collection process is performed by a single device in a pre-
defined time of the day. On the other hand, crowdsourced
fingerprints include contributions from multiple users over
different moments and using different devices. However, they
lack ground truth coordinates, which can contribute to erro-
neous mappings.

Therefore, in this comparison, we are only interested in
evaluating the differences between both methods of finger-
prints construction. Since crowdsourced fingerprints rely on
human motion analysis, contrary to traditional fingerprints
that use ground truth coordinates, the distribution of sensed
values will not necessarily be concordant. This increases the
difficulty of the comparison process. For this reason, before
computing the absolute differences point by point, unmapped
areas in the fingerprints are interpolated using the methods
described in Section III-E.

To schematise this process, Figure 7 shows the constructed
geomagnetic fingerprints of the magnitude of all axes from
both processes, before any interpolation. While Figure 7a
has the data collected throughout the ground truth positions,
which the expert provided to the system, Figure 7b has
the crowdsourcing fingerprint, automatically constructed by
our solution. In the last, each position, represented by each
small square, contains the median between all contributions
mapped into it.

On the other side, Figure 8 shows the same fingerprints
after the interpolation process. While Figure 8a contains
the interpolation output corresponding to the traditional fin-
gerprint, Figure 8b includes the interpolation result from
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(b) Crowdsourced magnetic fingerprint.
FIGURE 8. Interpolated magnetic fingerprints for the magnitude of the
three axes, collected, respectively, by the traditional and crowdsourcing
methods.

TABLE 2. Statistical metrics of values differences between traditional and
crowdsourced fingerprints.

Magnetic Field (uT) Wi-Fi (dBm)

Office  University  Office  University
Mean 3.0 6.0 32 49
Standard Dev. 2.0 6.5 3.0 4.7
Median 2.4 3.9 2.0 4.0
Percentile 75 3.9 8.0 5.0 7.0
Percentile 90 5.8 13.5 7.0 11.0

the crowdsourcing method. After the interpolation process,
we can provide a more complete point-by-point compari-
son between both types of fingerprints. Furthermore, these
results allow for a visual comparison between both methods.
Although some differences can be denoted, the general colour
pattern is very similar, as most contributions were mapped
into the correct locations.

The results of the fingerprints comparison process are
available in Table 2. These metrics were computed from
the point-by-point absolute differences between the three-
axes magnitude values in the case of geomagnetic field, and
between the mean differences of all APs in the case of Wi-
Fi. The presented performance metrics allow concluding that
the signal differences between traditional and crowdsourced
construction processes are relatively low, which supports the
applicability of our solution in real settings. Nevertheless, the
fingerprints differences are generally higher in the university
venue than in the office. This is due to the data variability
originated by the larger set of acquisition devices in the uni-
versity, which creates higher differences when compared to
the traditional fingerprints with a single device, even though
the positioning results may actually be improved. Also, the
amount of acquisitions that finished the mapping process
and contributed to the fingerprint is comparably lower to the
office building.
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FIGURE 9. ECDFs resulting from the comparison processes between
original and crowdsourced fingerprints, where the point-by-point signal
differences were computed for the presented venues.

Figure 9 represents the Empirical Cumulative Distribu-
tion Functions (ECDF) that sum up the presented metrics.
In Figure 9a, the ECDFs for the magnetic fingerprints com-
parison for all axes of the available floors are displayed, while
Figure 9b presents the ECDFs for the Wi-Fi fingerprints com-
parison for all APs. The better results of the office building
can be here denoted too.

B. LOCALISATION PERFORMANCE

Next, to understand the performance of crowdsourcing fin-
gerprints in real scenarios, we relied on the fingerprinting-
based IPS developed by Guimaraes et al. [S], which tested the
positioning results with the crowdsourced fingerprints against
the traditional ones. This system relies on inertial, magnetic
and Wi-Fi data, collected from smartphones, to locate users
using a particle filter. By expanding the particles across the
floor plan at each detected step, considering the match of
sensor readings with the fingerprints, this solution is able to
locate users in real-time. For the purpose of this evaluation
experiment, we relied on the also available offline mode,
which takes previously acquired data and applies the same
techniques as in real-time. To allow the system evaluation,
this IPS can check some positions of the designed trajectory,
annotated by the user during the acquisition. These expected
locations are compared with the positions achieved by the
system, given by the centroid of all particles at each step.
The closer each centroid is to the expected location, the
higher is the system performance. As such, to evaluate the
quality of crowdsourcing fingerprints, we submit a set of test
acquisitions to this IPS, using each type of fingerprint, and
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TABLE 3. Summary of characteristics of the test set for both the office
and the university venues.

Office University
Total Test Routes 21 17
Average Routes Length (m) 385 £ 11.8 1524572
Average Evaluation Positions 85+22 7.0+£2.6

compare the difference between the expected and computed
positions.

As the acquisitions of one contributor were left out from the
construction process in each venue, we used their data in this
evaluation, to ensure unbiased results. Table 3 summarises the
main characteristics of the test sets for both venues, including
the number of tested acquisitions, together with their average
length and average number of evaluation positions. Although
the trajectories made by the users are from the previously
designed routes, it does not have influence in the results,
as the continuous relation between consecutive sensed values
is lost when constructing fingerprints. Each tested acquisition
was run six times with both types of fingerprints, to accom-
modate the random factor in particles distribution.

We present the results through three metrics, namely the
average error of the centroid throughout the ground truth
evaluation positions, the final centroid error, and the final
error of the particle with the highest probability. For each
metric, the mean value of all runs from all tested acquisitions
was computed.

For the office building, 22 different routes across the space
were tested from one user, and Table 4 presents the com-
parative results. For the university venue, the contributor
performed 17 acquisitions with different trajectories, and the
localisation performance is available in Table 5. Each value in
Tables 4 and 5 was obtained by performing the average error
between all acquisitions, with the error of each acquisition
achieved by averaging all six runs on the system.

In the first building, the initialisation of the IPS on each
acquisition was achieved through the automatic distribution
of particles, around the most similar area, from the Wi-Fi
fingerprints comparison with the first received scan. Due
to Wi-Fi acquisition constraints on the smartphones used in
the second venue, which will be discussed below, here the
initial position of each test was given to the system. Although
different initial conditions are applied between buildings, the
remaining localisation process runs similarly, which do not
greatly affect the final results.

Regarding the office building, we verified that for the
crowdsourcing fingerprints, constructed with the proposed
method, the localisation performance actually exceeds the
traditional method. This may be explained by the fact that
the new fingerprints are constructed with more information,
either due to the more data included, or the higher variability
achieved by the different collection devices. These character-
istics approximate the new fingerprints to reality.

On the other hand, the localisation performance of the
university venue is lower, when compared to the office
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TABLE 4. Localisation performance of the test set on the office building
with the crowdsourcing fingerprints, compared to those collected by the
traditional methods.

Office Localisation Errors (m)

Crowdsourcing  Traditional

Fingerprints Fingerprints
Average Centroid Error 3.35 3.94
Final Centroid Error 3.19 3.70
Best Particle Final Error 2.85 3.69

building, even though the initial position of the user was
given. These generally worse results are verified in both
traditional and crowdsourcing fingerprints. Different reasons
explain this difference and are related to the inner character-
istics of the utilised IPS. Firstly, the system was until this
moment never tested in such a large venue. The inherent
sensor errors accumulate over time, and although correction
mechanisms address some of them, problems such as missing
steps or heading drift may still happen, which in a larger
environment can affect the localisation process. Secondly,
in this venue, we came across unusual Wi-Fi network set-
tings. Fingerprinting-based IPS often rely on Wi-Fi maps,
where one is obtained for each AP, with a specific signal
decay pattern, continuously descending from the AP loca-
tion. However, this venue’s network works under a Single
Channel Architecture (SCA), in which multiple APs operate
in the same frequency channel and present to clients a single
BSSID. Throughout the building, devices sense a stable sig-
nal strength, as a central controller decides which AP each
device connects to. Although this setting provides a better
user experience, it clearly causes problems in systems that
expect to match Wi-Fi readings to specific areas of different
fingerprints, so they can then be combined to contribute with
a restrict possible location for the particle filter expansion.
Together with this issue, most of the used smartphones run
on Android versions that already constrain Wi-Fi scans to
the limit of four requests in every two-minute period, which
in the end provided fewer data to be used, the reason why
we gave the initial position of each tested acquisition to
the localisation system. This is a problem that, as addressed
in Section II, will limit Wi-Fi-based IPS. However, as our
solution proposes, the construction of multi-layer fingerprints
helps in overcoming these issues. As the tested IPS relies on
different sources of information, namely the inertial tracking,
Wi-Fi and magnetic field [5], the system is still able to work
and obtain a continuous location for the user, with an error in
a range that fits most localisation scenarios.

Nevertheless, when evaluating the results of the crowd-
sourcing fingerprints by comparing relative differences
between both methods, we conclude that the presented
method achieves slightly better results, with performance
errors generally lower than the ones achieved with traditional
fingerprints. This proves that even though the university
venue includes less mapped acquisitions than the office build-
ing, especially if we consider the area difference, 3900 m?
to 205 m?, respectively, the constructed fingerprints are well
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TABLE 5. Localisation performance of the test set on the university venue
with the crowdsourcing fingerprints, compared to those collected by the
traditional methods.

University Localisation Errors (m)

Crowdsourcing Traditional

Fingerprints Fingerprints
Average Centroid Error 4.89 5.55
Final Centroid Error 6.17 6.21
Best Particle Final Error 7.31 7.46

suited for the deployment on a real localisation application.
As such, with more available contributions from more users
and devices, the method is expected to produce more accurate
fingerprints, that may even exceed the results of the tradi-
tional construction methods, as verified in the office building.

We believe that the two presented scenarios provide a broad
representation of the use cases that can benefit from this
type of solution. Both the office and the university venues
include several features that are present in most buildings, and
account for their challenges, such as multiple floor transitions
and open spaces. Nevertheless, more use cases could be tested
to confirm the attained results, which will be considered in
future work.

C. SYSTEM COMPLEXITY

To verify that our solution is deployable in most indoor local-
isation scenarios, we performed a study of the computational
complexity of all modules. This estimation is not trivial, as the
presented system contains several procedures that depend on
a large number of variables and often in the outcomes of
previous steps. Nevertheless, we can estimate which modules
can escalate in larger venues and with more data.

Regarding the human motion analysis module of
Section III-A, it has a complexity of O(n), where n is the
number of available acquisitions. Still, depending on the
length of the acquisition, the processing time will also vary.

Next, the module of Section III-B, which performs the

clustering of Wi-Fi data, presents a complexity of O(r.skf#),
where s represents the number of Wi-Fi scans to be clustered,
k the number of clusters and p the number of features. In our
automatic selection of the number of clusters, we extend the
computational complexity of the K-Means algorithm [32],
with an iteration over r, the number of clusters to test. This
variable should not exceed 10 clusters, which will not have a
great impact on the complexity.

The third module of our solution, described in Section III-C,
has a greater impact on the system complexity. While the
trajectories segmentation process has linear complexity, O(n),
as it varies with the number of acquisitions, the notable
instants detection algorithm is applied to each segment, hav-
ing a complexity of O(s), where s is the number of segments.
In larger venues, where more and longer acquisitions can be
potentially acquired, the number of segments will increase.
This will have an impact on the similarities identification,
which presents a worst case complexity of O(l.s%), with
s the number of segments and / the length of the shorter
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TABLE 6. Computational costs of the presented solution in the two
presented venues, the office with one floor and the university with three
floors, using 10 and 100 (98 in the university) acquisitions.

Office University
Time (s) Mem. (Mb) Time (s) Mem. (Mb)
10 routes 155 260 1347 672
100 routes 840 522 147973 1113
Factor 54 2.0 109.9 1.7

segment between each pair to be compared, included due to
the iterative process of increasing the window length. Our
modification to the DTW itself presents a complexity of
O(w?), with w representing the size of the window. As such,
longer segments will have more windows tested, which are
iteratively extended, thus impacting in the cost of the algo-
rithm. These complexity limitations support the need for the
reduction of the number of compared segments, either by the
Wi-Fi clusters identification and the verification of segments’
absolute orientation.

The mapping of trajectories into the floor plans, presented
in Section III-D, can be divided in different processes. Firstly,
in Algorithm 1, trajectories are mapped into the floor plans,
having a complexity of O(n.f), with n the number of acquisi-
tions and f the number of floors. Next, the iterative accurate
trajectories mapping from similarities, presented in Algo-
rithm 2, has a complexity that tends to 0(02), with o the
number of overlapping pairs of segments from the previous
module. Algorithm 3 depends on the number of incomplete
routes, i, presenting a complexity of O(i).

Finally, the complexity of the fingerprints construction is
O(f .a), which linearly depends on the number of floors of the
venue, f, together with their area, a.

To verify these complexity estimations, we present in
Table 6 the computational costs regarding time and memory
of our solution, for the two presented venues, with 10 and
100 acquisitions. We performed these tests in a laptop with
an Intel Core 17-10750H processor with 12 cores at 2.60 GHz
and 32 Gb of RAM memory.

From the results, it is clear that the university venue has
a higher computational cost than the office building, both
in terms of memory and time. This difference is visible
even within the same dataset size. As explained, besides the
number of acquisitions, the number of floors and the area of
the buildings highly affect the cost. With longer acquisitions
from contributors, more straight segments will be retrieved,
which will be longer given the long corridors. Therefore, both
the geomagnetic similarities and the floor plans mapping will
take more time and memory to process.

Although the complexity of the presented solution is not
ideal, it does not greatly affect its scalability to other sce-
narios, as the overall process will run on the cloud after
a data collection period with crowdsourcing. Nevertheless,
in the future, the complexity of these innovative algo-
rithms can be improved before the deployment in real use
cases.
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Regarding the acquisition costs on the crowdsourcing con-
tributors’ devices, it is limited to the collection process. A log-
ger app running ideally on the background will pervasively
collect readings from the required sensors, with a sampling
rate that can be optimised considering the device characteris-
tics. Then, when the device is connected to a Wi-Fi network,
the collected data will be sent to a server to be processed.
An accurate estimation of the performance and battery costs
on the smartphones will be conducted once our solution is to
enter production.

V. CONCLUSION

This paper presents an innovative method for the automatic
construction of environmental fingerprints for infrastructure-
free fingerprinting-based IPS. We rely on crowdsourcing to
collect large volumes of data, from a higher set of users
and devices. Without any annotation from the contributors,
we rely on the processing of multiple layers of information,
to increase the confidence of the solution.

Through the integration of inertial tracking with the mag-
netic field and Wi-Fi data, we identify highly specific simi-
larities that allow the identification of acquisitions collected
in the same location. Taking advantage of buildings’ floor
plans, we apply a particle filtering approach, to expand each
trajectory into the correct placement. A transitions detection
mechanism detects when users change floors, so the mapping
algorithm can use that information to construct fingerprints
of multi-storey buildings. While our solution focuses on Wi-
Fi and geomagnetic fingerprints, it can be easily adapted
to produce maps for other environmental sources, such as
Bluetooth.

While across the literature there are works in this topic,
there is a lack of benchmark mechanisms to evenly com-
pare solutions. Therefore, we evaluate our system on two
different venues, by comparing at each position the values
of the constructed fingerprints with the proposed method,
to those obtained from the traditional manual collection pro-
cess. Also, we verify the localisation performance using both
types of fingerprints on the two presented buildings. With the
obtained results, we ensure that our solution is able to provide
effortless fingerprints mapping in real scenarios. As such, the
deployment costs of fingerprinting-based IPS can be lowered,
extending the usage scenarios of location-based services.

With the different sources of information leveraged in this
work, we address the Wi-Fi scans limitation in smartphones.
The restrictions applied tend to increase, which will limit the
usability of current Wi-Fi-only solutions.

Regarding future work, the presented step detection mech-
anism and further stride length estimation process will be
improved and validated with standard methods. Also, we will
address the limitations of the current solution for the floor
transitions detection, namely the susceptibility of the baro-
metric data to unstable atmospheric conditions and the adjust-
ment of the transition threshold in different venues and
for multiple floor transitions. In this sense, an innovative
algorithm based on deep learning for the floor transitions
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detection is being developed, by using the discriminative
power of Deep Convolutional Neural Networks to identify
these transitions. In order to reach an even broader range
of smartphones, this new module is being designed to work
both with inertial and barometer data together, or inertial data
alone. This module will infer the type of transition and its
duration, allowing its segmentation and further use within
the proposed system. This way, we believe that the technical
challenges of using barometric data will be overcome.

Furthermore, as our work provides an automatic method
for fingerprints construction when buildings change through
time, the constructed maps may lose localisation accuracy.
While in a real setting, a verification mechanism may trig-
ger the automatic reconstruction of fingerprints, an update
method to increasingly add informative data to the existing
maps may be more optimal. As such, we leave this extension
of our solution for future work.

At last, to reassure the achieved experimental results and
to test the future developments, more use cases will be lever-
aged, and new trials will be conducted in different conditions.
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