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Resumo

Ultimamente tem havido bastante desenvolvimento de viaturas que se deslo-
cam automaticamente por sinais de radionavegac¢ao, como por exemplo drones ou,
futuramente, carros autopilotados. No entanto, também é cada vez mais facil

forjar sinais de radionavegacao, o que pode vir a ser um problema.

Com o crescimento desta ameaga também tem de haver uma preocupagao em
preveni-la e o objetivo desta dissertagao é estudar formas de mitigar este problema.
Para tal, foi usado um receptor de GNSS (Global Navigation Satellite System),
u-blox evk-m8t, capaz de devolver dados brutos retirados da leitura dos sinais sem
qualquer tipo de processamento. De maneira a analisar os dados foi usado um

raspberry pi.

Este problema nao é linear, visto que cada spoofer tem a sua especifidade, é

necessario prestar atencao as transi¢oes comparando dados antigos com recentes.

Como cada cenario é diferente, as variagoes vao ser observadas de modo a
tentar encontrar um padrao de variagoes. Estas variacoes serao testadas numa

rede neuronal de modo a encontrar sinais falsificados.

Falsificagao de sinais como um todo apresenta variacoes especificas que nao

deviam 14 estar, a variacao instavel do relogio é o fator mais influenciavel.

Este trabalho conseguiu concluir que é possivel implementar um algoritmo de
calibracao que consegue detetar padroes em sinais ilegitimos e distingui-los de
sinais legitimos. Os sinais falsificados normalmente sao mais incongruentes no que
toca a variacoes de propriedades de sinal e no seu funcionamento como um todo,
como por exemplo a posi¢ao que seria calculada retirando um satélite da equagao.

Estes sinais também apresentam variagoes nao previstas no atraso de relogio.

Palavras-chave: Radionavegacao, defesa contra spoofing, falsificacao, GNSS.
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Abstract

Lately, plenty of self navigation vehicles have been developed, as drones, or in
the future, self driving cars. However, it has become easier to forge radionavigation

signals, which can be a problem.

With the growing risk of this threat, there has to be way to solve it and this
thesis goal is to study various ways to mitigate this problem. For this effect,
an u-blox evk-m8t GNSS (Global Navigation Satellite System) receiver was used,
which is capable of returning raw unprocessed data from radio navigation signals.

A raspberry pi was also used to analyze the data.

This is not a linear problem, since each spoofer is unique, it is necessary to pay

attention to transitions, comparing old with new data.

Since each scenario is a different scenario, the variations will be observed in
order to try to find a variation pattern. These variations will be tested in a neural

network in order to find if it is viable to detect forged signals this way.

Spoofing as a whole also has specific variations that should not be there, the

unstable clock variation is the most influenceable factor.

This work managed to conclude that it is possible to implement a calibration
algorithm that is able to detect patterns in forged signals and distinguish them
from legitimate signals. Forged signals, normally, are more incoherent in variations
of signal properties and its functioning as a whole, for example, the position that
would be calculated by removing a satellite from the equation. These signals also

present unpredicted variations in the clock delay.

Keywords: radionavigation, anti spoofing; spoofing, GNSS.
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Chapter 1

Introduction

1.1 Motivation and context

Presently there are plenty of systems controlled by wireless communications, which,
in turn, use radio navigation through satellite as way to determine its position to
reach a predetermined location. With the evolution of technology and software
defined radios it is easy to hack a wireless system, therefore, there’s a need to

know how to defend against these threats.

Most wireless systems nowadays, like cell phones or even ships, use GPS to
determine its position. This is done by using trilateration of four or more satel-
lites [I]. However, GPS (Global Positioning System) signals have low power and
use DSSS (Direct Spread Spectrum) which is based on CDMA (Code Division
Multiplexing Access), so it is possible for a remote system to forge these signals
with a higher power. This problem could cause a ship to change its course [9], or

a cell phone to show a wrong location.

An attacker can forge these signals by using SDR (software defined radios)
which are programmable internally or by using software, like GNU radio, which

processes the signal in the computer and uses the SDR as transceiver [10].
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This project’s objective is to avoid a malicious signal emitter from changing
the system’s predetermined mission. There are many ways in which this can be
done, naming some, amplitude discrimination, in which signals with higher power
than usual are rejected, angle of arrival, in which an array of antennas is set and
if a signal is received with a different phase difference from the expected a forging
is detected [11]. Due to the time it takes to determine one’s location through
only GPS, Apple also maintains a database of hotspots and cell towers to quickly
determine its location [12], therefore it is also an effective way to determine the

forging of GPS signals.

1.2 Goals and research questions

This thesis goal is to study effective ways to detect spoofing of radio navigation

signals.

To accomplish this, a GPS receiver needs to be implemented based on an
already existing one. To achieve this goal, different GNSS receivers will be tested

in order to conclude which is the most effective one.

The first phase would be studying how GPS signals work and how to use
them. The second phase would be testing various GNSS receivers. Finally, the

third phase, would be implementing an anti-spoof solution in the GNSS receiver.

Concluding, this thesis final product will be an anti-spoof GPS system and, if
possible, it will use other GNSS systems.

That being said, this thesis looks to answer some questions:

Is it possible to make a spoofing free system?

Is it possible to use it in an efficient way?

Will it be useful in the marketplace?

What is the most effective way to do it?



Chapter 1. Introduction

1.3 Contributions

This dissertation presents the following contributions:

It reviews the existing approaches;

It does a study on how effective each measure is;

It makes a system that analyzes all of the existing approaches and through

artificial intelligence it decides whether the signal is legitimate or not;

It introduces new spoofing countermeasures like predicting the clock varia-

tion and fixing a position with this prediction.

The work conducted in this dissertation resulted in one publication:

e R. Dias, F. Cercas, J. Sanguino, J. Ponte, "Assessing spoofing of GPS sys-

tems", ConfTele 2019 - 11th Conference on Telecommunications, June, 2019

1.4 Dissertation Structure

This dissertation is composed of five chapters. The first chapter introduces the
dissertation theme, motivation and research questions, contributions and a short

summary of the dissertation structure.

The second chapter is a revision of theoretical aspects and related work relevant

to this dissertation.

The third chapter is about the implementation of the anti-spoofing techniques

and how the system was constructed.

The fourth chapter contains the experimentation results of the techniques men-

tioned in the previous chapter and its analysis.

In the fifth chapter the conclusions of the work are presented, as well as sug-

gestions for future work.






Chapter 2

Literature Review

In this chapter the theoretical basis for this thesis is introduced, namely how GPS

systems work.

2.1 GPS system overview

2.1.1 GPS signal

GNSS - Global Navigation Satellite System is the general designation for radionav-
igation constellations which includes systems as GPS - Global Positioning System,

Beidou, GLONASS and Galileo.

GPS constellation has currently 31 satellites which have a MEO - Medium
Earth Orbit with a 12 hour orbit. This system has multiple bands, however the
main focus of this work will be on L.1 band which is centered at 1575.42MHz. In
order to fix a position, trilateration is used. Knowing where multiple sources are
and how much time the signal takes to arrive, it is possible to set a range of the

distance travelled.

Figure 2.1 shows how trilateration would work. Knowing where Foghorn 1,

2 and 3 are, and knowing when they are going to transmit, it is possible to a
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draw circle of the range the signal has travelled, by crossing the three circles it
is possible to fix a position, in this scenario, it is A. However, this assumes the
receiver’s clock is synchronized with the Foghorn’s, and that is not the case, so

this problem would require at least four satellites to solve a four variable problem.

"\/

FIGURE 2.1: An example of trilateration [1]

GPS signals use DSSS - Direct Spread Spectrum which is based on CDMA -
Code Division Multiplexing Access. Each satellite has a specific PRN - Pseudo-
random noise code also known as C/A - Coarse Acquisition which is the civilian
access code. This code has a chiprate of 1Mb/s and is xored with data which has
a rate of 50b/s. The resulting signal is BPSK - Binary Phase Shift Keying modu-
lated in the L1 carrier, that means that the phase is 180 degrees when there is a
bit with a logic value of 1 or 0 degrees when the bit has the logic value of 0. This
signal is mixed with an P(Y) encrypted code xored with data carrier with a 90

degrees offset. The P(Y) code is only for military use. This process is illustrated

in Figure 1.
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FIGURE 2.2: Legacy GPS satellite signal structure [2]

2.1.2 Pseudorange detection

In order to acquire a lock, the receiver has multiple channels that use signal replicas
of the respective PRN code. It does this to achieve a auto-correlation with the
incoming signal, when there is a lock there will be a positive or negative peak,
depending on the value of the navigation data bit [3]. The local replica rotates
until there is a peak, in order to find in which chirp bit it is and to know when the
first arrived. Having one milliseconds marks, it is possible to know the propagation

delay with the clock bias. Figure [2.3]illustrates this process.

2.1.3 Navigation Data

Like shown in Figure the navigation data has a 50b/s bitrate, which is much
lower than the chiprate of the code. Navigation data needed to calculate the
satellite position is subdivided into three subframes. These subframes contain the

following polynomials values. Figure shows the needed parameters [2].
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FIGURE 2.3: C/A code correlation [3]

2.1.4 Satellite position calculation

The data referenced in the previous section contains ephemeris parameters which

can be used to calculate a satellite’s position at a given time, in order to retrieve

accurate results the time of transmission should be used. However, the pseudor-

anges need to be corrected because the satellites are not in total synchronization

between them. Ignoring troposphere and ionosphere propagation delay, the time

of transmission would be:

seudorange
t = rcvlow — pseudorange
c

(2.1)

Where rcvTow is the time of reception of the signal where the time of travel is

subtracted, since the pseudorange and rcvTow both contain the same clock bias,
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FIGURE 2.4: Orbital parameters [2]

it gets canceled. To apply the satellite’s clock correction the following term needs

to be calculated:

Aty = apo+ api(t —toe) + aga(t —too)? + At, (2.2)

Where ayy, ap and ayy are the polynomial coefficients retrieved in ephemeris

subframe one, t,. is time of clock referenced in seconds and At, is as follows:

At, = Fe\/Asin(Ey,) (2.3)

Where /A, e and Ej, are orbital parameters given in the ephemeris. F is a
constant value. FEj is calculated through iteration having already a transmission
time, so for a first approximation the equation 2.1 can be used and then At,, can

be calculated and the new E, as well.
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Figure 2.5 shows how GPS time is corrected. As mentioned before, besides
the clock bias of the user, three more things influence the imprecision. The
Ephemerides contain the parameters needed in order to determine how much a
clock has drifted over a period of time and parameters to determine ionospheric

delays. Troposphere corrections require additional models which vary with the

weather [2].
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L 4 ol Trus
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- TRUE 5V CLOCK EFFECTS < ODEL*
- EQUIPMENT GROUP DELAY
DIFFERENTIAL EFFECTS
- RELATIVISTIC EFFECTS T
@, Bn
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FIGURE 2.5: Satellite time correction [2]

2.1.5 Sagnac effect

The developed position calculator also takes into account the Sagnac effect which
gives an error of around 20 meters. This effect works on the earth rotation, when

the receiver measures the pseudoranges, the signal that is arriving it is not a direct

one, since the earth has moved.

Figure[2.6]illustrates this phenomenon. On the left side the circle is not moving,
so the signal in both directions travels the same distance. On the right side, the

10
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atart start

end end

FIGURE 2.6: Sagnac effect [4]

circle has moved, so the signal traveling in the counter clockwise direction travels a
smaller distance and the signal traveling in the clockwise direction travels a larger

distance [4].

2.1.6 Position fix

In order to fix a position, as mentioned before, four satellites are needed to solve

a four equation system. The pseudorange to a satellite can be written as:

p=||ls—r|| +cAt (2.4)

Where p is the pseudorange, s is the position of the satellite, r the position of
the receiver, /[s-r// is the distance between the satellite and the receiver, ¢ is the
speed of light and At is the receiver clock bias. The position of the satellite can be
calculated using the ephemeris parameters, so this equation has four variables, the
coordinates of the receiver, x,y,z and the clock bias. By, stacking four pseudorange

measurements, a matrix of equations can be assembled in order to fix a position.

11
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ph= (@t =)+ (gt —y)? + (2 = 2)? + cAt
PP = (@2 = 2)? 4 (1 —y)* + (22 = 2) + et (2.5)
P’ = V(@ =)+ (yP —y)? + (% — 2)? + cAt
Y s Py S S R

Where 2", y™ and 2™ are the nth satellite’s coordinates in ECEF format [I].

2.1.7 Least Squares

Sometimes there are more than four satellites visible, and having only four vari-
ables, it is preferable to use as many measurements as possible. This problem can
be solved using the least squares algorithm that produces a solution approximation

to overdetermined systems in which there are more equations than variables.

7 =Hz (2.6)

Where Z is a matrix of n lines and one column, n is respective to the number
of observations. Matrix x has one column and four lines respective to the position
of the receiver and its clock bias. H is an n by four matrix. The x matrix can be

isolated.

H'Z =2 (2.7)

When there are four observations, H will be a four by four matrix and so will
its inverse, Z will be a four by one matrix. In this case there won’t be any problem
multiplying this matrices, because H is a square matrix and therefore it has an
inverse, however if there are more than four observations H is not going to have
an inverse matrix. However rewriting equation [2.6] the following way, removes this

problem.

12
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r=(H'H)Y'H"Z (2.8)

Equation allows multiple observations, however the equations of the posi-
tion fix need to be represented in this format. An observation can be written as

following.

P =] —r||+ cAt (2.9)

Where p’ is the pseudorange of the satellite j measured by the receiver, s/ is
the position of the satellite j, r is the position of the receiver, c¢ is the speed of

light and At is the clock bias of the receiver.

The least squares method is iterative and through trial and error tries to find an
approximation to the solution. The position of the receiver, r, wants to be known,
so by linearizing the equation around ry an approximation can be obtained. The
first estimation can be any set of values, however this is a linear system and is only
valid for the values near rq, so if the differences between r, the solution, and 7,
the estimation, are too big, then the solution is not considered valid or reliable.
If r is near r(, it means that there is a low error since the solution is close to the

point where the approximation was made.

. T T
p—e) s =—€) r+cAt (2.10)
- . . . iT

Where p’ is the pseudorange of the satellite j measured by the receiver, €}
is the transposed normalized vector between satellite j and the estimation of the
receiver rg, 7 is the position of the receiver, c is the speed of light and At is the
clock bias. This equation can now be stacked and converted to the Z=Hzx format

as follows [13].

13
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pt—ells! —el" 1] | =
2 2T 2 2T
p*—es s —e 1
=1 Y (2.11)
pP—ey s? —ey 1 z
pt— el —ed 1] |eAt

2.2 Neural Networks

In this project neural networks were tested in order to achieve the desired result
since only the variance of parameters are measured, this algorithm would try to

find a pattern.

output

FIGURE 2.7: Structure of a Neural Network

In this scenario there is a neural network with three layers, input, hidden and
output, having three, four and one nodes respectively. Each node of the nth layer
value depends on the sum of the values from the nodes in the previous layers and

multiplied by calculated weights.
value = f(z w;iT;) (2.12)
J

14
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Where the value is respective to a node in the nth layer, w; is respective to
the weight of the node j of the nth-1 layer and z; is respective to its value. The
resulting sum goes into an activation function to introduce non-linearity between
the input and the output, the simplest activation function would be the step
function, that is, if the sum is above a given threshold then value would be equal
to one, otherwise it would be equal to zero. However, a lot of values would be lost

in this scenario, so the commonly used activation method is the Sigmoid function.

10 P

08

06
flZ)

0.4+

0.2+

0.0 =T T T T T T T T T 1

FI1GURE 2.8: Sigmoid function

Where 7 is the function input and y-axis is the output, so all values are between

zero and one [I4].

f(z) = (2.13)

2.3 Related work

Todd E. Humphreys et al present anti-spoofing solutions in [4]. In this paper

anti-spoofing techniques are discussed and then presented in which way it can fail.
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This paper suggests six ways to prevent spoofing, amplitude discrimination, time-
of-arrival discrimination, navigation inertial measurement unit (IMU) cross-check,
polarization discrimination, angle of arrival discrimination and cryptographic dis-
crimination. The first and second method would only work against the most simple
spoofing systems. The third, fourth and fifth methods require additional hardware

however they are more effective.

At least 20 ships in the black sea got their course changed according to [2].
Fake signals were sent in a subtle way in order not to change the ship’s course
abruptly but smoothly. This website alerts to the danger of GPS spoofing and
how it is becoming easier, this way self-driving vehicles or autonomous ships could

be hijacked.

According to [5] Apple maintains a database of Wi-Fi hotspots and cell towers
around one’s location in order to calculate its position faster, because using just
GPS data could take minutes to get a fix. In this paper, fake SSIDs and BSSIDs

are generated in order to test this theory. After a while, the position is changed.

The work in [6] uses a two antenna array separated by 1.46 meters oriented
along the true North-South axis to detect spoofing. In this paper the expected
carrier phase differences are calculated for each satellite. If the measured delta
phase doesn’t match the profiled expected value a spoofing signal is identified.

The units used in this difference are L1 cycles.

The work in [7] suggests some ways to achieve the desired goal. The first one
is to monitor the absolute power of each carrier, that is, ignore signals with a
power higher than a given threshold. The third method suggests comparing L1
and L2 frequencies power. The fifth method suggests checking the Doppler shift,
by obtaining the receiver’s relative speed with respect to the satellite it can be

compared to the carrier frequency received.

c+ v,
Cc+ Vg

f=ro (2.14)
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Where f is the frequency emitted by the transmitter, in this case the satellite, v,
is the velocity of the receiver, v, is the velocity of the source and c is the velocity
of the signal. If the receiver is moving towards the source, v, is positive and if the
source is moving away from the receiver, wv, is positive. In Fig. 1 this effect can
be observed. When the source of the waves, the ambulance, is moving towards the
observer each successive wave is moving closer to him, decreasing the wavelength

and increasing the frequency.

The ninth method suggests comparing known ephemeris data to the one re-
ceived in order to check for anomalies in the satellite’s position. This method
would require an internet connection to obtain such data from NORAD which
sometimes might not be practical. The tenth method suggests that data relating
to power and position should be monitored in order to find abrupt changes. How-
ever, a clever attacker might be able to fool the system, like mentioned before, a
ship’s course was gradually changed having a smooth transition and not raising

any flags.

The tenth method suggests that data relating to power and position should
be monitored in order to find abrupt changes. However, a clever attacker might
be able to fool the system, like I mentioned before, a ship’s course was gradually

changed having a smooth transition and not raising any flags.

The work at [8] also suggests cryptographic authentication and it’s something
that’s already used in P(Y) code which is a military grade encrypted signal. Im-
plementing this in the civilian C(A) code would require changes to the GPS legacy
signal. Also most GPS devices developed until now would not be able to decrypt
the signal if changes were made. Although, if made properly, it would be a good

defence against spoofing, it’s not feasible, at least not for now.

The work at [9] suggests using a M-Estimator based extended Kalman filter
which is able to provide an accurate position in the presence of outlying errors
due to spoofing. It takes into account the user’s position, velocity, clock bias and

clock drift to make a prediction based on previous values and compare them to
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the current received ones. If the error is large, the weight matrix decreases, if the

error is small, the weight matrix is not influenced.

The work at [4] suggests using vestigial signal defense. A receiver copies the
incoming digitized front-end data into a buffer. After that, the receiver selects
one of the various GPS signals being tracked, then it removes the signal from the
buffered data. Once this signal has been removed from the buffered data, the
receiver performs acquisition for the signal with the same PRN identifier in the
buffered data. These steps are repeated over and over and the results are summed

until the signal meets a desired C/NO threshold.
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Anti-spoofing techniques

3.1 Hardware used

The U-Blox EVK-M8T was connect via UART Serial, which is shown in the block

diagram below.

Active U-Blox Raspberry
antenna EVK-M8T Pi

F1GURrE 3.1: Block diagram

3.1.1 U-Blox EVK-MS8T

In order to retrieve raw GPS data a GPS receiver is needed, the one used was
U-Blox EVK-MST. This device returns all types of raw information, from sinal
properties like Doppler shift and carrier to receiver noise density ratio to signal

observations like pseudoranges and ephemerides.
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@blox

GRS/GNSS Evawaton Kt

e st

F1GURE 3.2: U-Blox EVK-MS8T [5]

3.1.2 Raspberry Pi

Raspberry Pi is a microcomputer which allows processing of the data incoming to
it. In this scenario binary data was being received via the RX pin, in order to read
the incoming data, a binary parser was developed. This parser would deconstruct

the frames and store the respective variables.

FIGURE 3.3: Raspberry Pi 1 Model A [6]

3.1.3 Ettus N210

Ettus N210 is a software defined radio board which allows the transmission and
reception of sinals, aswell as signal processing, through internal programming or
using the computer as the processing unit and this device as the transceiver [7].
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In this scenario there was a need to have a spoofer in order to retrieve values
and find patterns. An open source spoofer was used, using this device as the trans-
mitter. The software used was gps-sdr-sim, which takes as input an ephemerides
file and a position, with that information it generates fake signals posing as a

genuine satellite [15].

i
gl

il

A Usk
- ’mumﬂ“

J

FIGURE 3.4: Ettus N210 [7]

3.2 Software used

3.2.1 wu-center

U-center is a visual interface software developed for Windows which allows the user
to analyze real time the data being returned from the u-blox device. It also allows
the user to configure the device settings, like which messages should it return,
which GNSS constellations should it be looking for, refresh rate and many other

parameters.

3.2.2 gnss-sdr-sim

Like mentioned before, a spoofer was needed to infer some kind of pattern and
distinguish it from the real signals. This program takes as input a position and
ephemerides. It generates a binary file based on the specifications needed, and
after that the spoofer can be executed through the ettus n210 board.
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FiGURE 3.5: U-center

3.2.3 Neuroph studio

In order to discover some kind of pattern, a neural network was tested. After
retrieving data from the u-blox device, using a developed python script running
in the raspberry pi, a neural network was trained. This program trains the algo-
rithm based on a previously given dataset, the number of neurons per layer are

adjustable, as well as the number of layers.

3.3 Information transmission

The required information is transmitted via UART from the u-blox device to the
raspberry pi. Figure shows the structure of the UBX-RXM-RAWX message

which contains signal properties like pseudoranges and Doppler shift measure-

ments.

The developed program reads the buffer and checks if the header, class and

ID match with the given values. In this case, it was done in a way that allows
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FIGURE 3.6: Neuroph Studio
Heackar Class |ID Length (Bytes) Fayload Checksum
Message Structure 0xBS Ox62 |0x02 |0x15 |16 + 32*numMeas see below |CK_A CK_B

FIGURE 3.7: UBX-RXM-RAWX Message structure [§]

the reading of multiple measures from different satellites through the "numMeas"

field which indicates how many measurements there are in a message.

After receiving this information, the ephemeris of a satellite is polled by con-

structing the message in Figure |3.8|

Header Class | ID Length (Bytes) Payload Checksum
Message Structure | O0xB5 0x62 | 0x0B |0x31 |1 see below |CK_A CK_B
Payload Contents:
Byte Offset Number | Scaling Name Uit Description
Formar
0 u1 - avid - SV ID for which the receiver shall return its
Ephemeris Data (Valid Range: 1 .. 32).

F1GURE 3.8: Poll UBX-AID-EPH structure [§]
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The data is transmitted in little endian format, which consists in transmitting
the least significant bytes first in order to facilitate the storage in the receiver.
This way the least significant byte is stored in a lower register address and the
most significant byte is stored in a higher register address, the developed program
took this in consideration. Only the byte order is litle endian, the bit order is big

endian.

Figure [3.9) shows the structure of the UBX-AID-EPH, it has the three sub-

frames of navigation data that contain the parameters to calculate the satellite

position.
Header Clazs [ID Length [Bytes) Payload | Checksum
Message Structure | 0xB5 0x62 | 0x0B| 0x31|(8) or (104) ses below | CK_A CK_B
Payload Contents:
Byte Offset Mumber | Scaling MNarme Unit Description
Format
0 U4 - svid - SV ID for which this ephemeris data is

(Valid Range: 1 .. 32).

4 u4 - how - Hand-Over Word of first Subframe. Thisis
required if data is sent to the receiver.

0O indicates that no Ephemeris Data is
following.

Start of optional block

] u4[B] |- sfld - Subframe 1 Words 3..10 (SF1D0..SF1D7)
40 u4rg] |- sf2d - Subframe 2 Words 3..10 (SF2D0..5F2D7)
= u4rg] |- sfid - Subframe 3 Words 3..10 (SF3D0..SF3D7)

End of optional block

FIGURE 3.9: UBX-AID-EPH message structure [§]

Figure shows the parameters that the subframe two has. Each subframe
is divided into ten words, however the u-blox device only returns words three
to ten. Each word has 24 bits without the parity bits, which are three bytes.
Figure [3.9 shows that each subframe transmitted by the u-blox will have 32 bytes.
From word three to ten, there are eight words which amount to 24 bytes, the rest
are delimiters between words with the 0x00 value. Since the bytes come in litle
endian order, the parameters will need some rearrangements, for example, looking

at Figure [3.9 at word three, IODE will not be the first byte but the last one.
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FIGURE 3.10: Subframe two message structure [2]

After unpacking the needed information, it is stored in the system by doing

the necessary conversions.

3.4 Raspberry pi implementation

Before implementing any anti-spoofing measures, there needs to be an understand-
ing on how the receiver is working. If it is just returning a position, there is no way
to know which corrections where made to it. So, in order to understand exactly
what is happening, a GPS position calculator was developed which would do its
calculations based on raw data and ephemerides. Clock drift data was used for

spoofing detection measures, not being needed to fix a position.

The fluxogram in Figure explains the logic behind this implementation.

For every one minute that passes, there is a verification on the number of satellites
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FIGURE 3.11: Fluxogram of the system developed

and if it is possible to get a fix. It was done this way in order to give a chance for
the receiver to transmit as many data as possible. As mentioned before, the NAV-
CLOCK is not relevant to fix a position. When RXM-RAWX data, respective
to a satellite, is received, the raspberry pi immediately polls for the respective
ephemeris. RAWX data is received multiple times in order to check for variation
on signal properties like pseudoranges, Doppler effect and others. If the raspeberry

pi already has a given ephemeris, it won’t poll it again, not until it is reseted.

After the one minute mark, there is a counting process in order to find which

time of the week is in majority. In this scenario, pseudoranges are associated to a
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given received time of the week which indicates at which instant this measurement
was received. After calculating the position of the satellites and excluding the
ones which have data relative to different instants, there is a recount. If, after this
exclusion process, four satellites are still available, the program attempts the first

position fix, otherwise it returns to the reading activity.

Two position fixes are needed in order to exclude below the horizon satellites
which might be affecting the position calculation through multipath transmissions
and to fix the Sagnac effect. After that, there is a recount, if there are not at least
four satellites, the program returns to the reading activity in order to find more
satellites. Removing below the horizon satellites in this process not only excludes

multipath problems, but also spoofed signals which should not be visible.

After fixing the second position, epheremides are erased in the reset activity.

FIGURE 3.12: Developed position calculator

Sometimes two satellites will be near each other and the H”H matrix will be
singular, that is, non invertible. To solve this problem, this program adds noise
to the matrix until the determinant is different than zero, thus making the matrix
invertible. The other way to solve this is to remove one of the satellites in conflict.
A matrix is non invertible when the determinant is zero. This program iterates a
while loop until the determinant is different than zero adding a four by four matrix
of noise containing the value 0.00001. Both the HTH matrix and the noise matrix

are four by four.

27



Chapter 3. Anti-spoofing techniques

3.5 Flags to detect spoofed satellites

There is no straight forward way to detect spoofing or satellite’s that are not
real, it is all about paying attention to transitions and finding the odd variations.
In order to know exactly what is happening, the algorithm to fix a position was
programmed. It collects ephemerides and signal related information in order to
this. It also collects clock drift values in order to predict positions which is talked
about further ahead. This section presents techniques to detect forged signals from

specific signals.

3.5.1 Doppler shift

From equation 1.1, the following can be deduced.

ar= 2 (3.1)

Where f; is the GPS L1 band frequency, 1575.42 MHz, c is the speed of light.
By collecting pseudorange data in two instants, a satellite’s speed relative to the
receiver, Av can be infered, by subtracting the pseudoranges and dividing them
by the time difference. This value can be compared against the measured Doppler

shift in the integration stage. See Figure 3.15]

3.5.2 C/N,

Carrier to noise density ratio, also know as the ratio of carrier power and the
noise power per bandwith unit can also be used to determine strange variations.
Usually spoofed signals have high power, so if one signal has an abrupt transition,

it should be suspected. See Figure |3.15]

28



Chapter 3. Anti-spoofing techniques

3.5.3 Ephemeris integrity

In the receiver implemented, for each position fix, an ephemeris for each satellite
is polled. That way for every new calculations there are always new ephemeris.
By storing the old ephemerides and comparing them against the new ones when
calculating the satellite’s position, both positions can be compared, in order to

find abrupt changes.

--Sat Pos 21: New Eph--
e e

X: 10465999,9264]136

Y: 11933311.5408138

Z: 22100898.5375861

--Sat Pos 21: Old Eph--
—

X: 10465999,5123386

Y: 11933311.8873755

Z: 22100898.5498615

--Sat Pos 16: New Eph--
e o o

X: 18828082.1062352
Y: -3678077.62994914
£: 18371228. 1755685

--Sat Pos 16: 0ld Eph--

e e

X: 18828082.1770028
Y: -3678077.58751673
Z: 18371228.1136684

FiGURE 3.13: Ephemris integrity

3.5.4 RAIM

Receiver autonomous integrity monitoring (RAIM) must be used when there are
at least five satellite’s visible [8]. This algorithm creates subsets of all possible

combinations between the set of visible satellites and performs a consistency check.
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After fixing a position with all the available satellites, RAIM can be used to
recalculate the receiver’s position without a given satellite, if there is one that is

far away from the overall position, then that satellite should be excluded [16].

| ---- - ARRAY COUNT----|
counter: S

svlid: 21

svid: 26

svid: 20

svIid: 10

svIid: 16

---Raim started---
---Removed sv: 16

Longitude: -9.1531008007
Alritude: 154.3355913626
Delta_clock: -0.000604451045849
Tow: 322265.999322

.- -Removed sv: 10

Latitude: 38.7486751245
Longitude: -9.15311265895
Altitude: 53.0420738328

Delta clock: -0.000604676887531
Tow: 322265.999322

Latitude: 38.7485419915
Longltude: -9.15555904753
Altitude: -219.611410109
Delta_clock: -0.00060561911667
Tow: 322265.999322

Latitude: 38.7489102905

Longl tude: -9.15275458106
Altitude: 122.883550173

Delta clock: -0.000804443252279
Tow: 322265.995322

Latitude: 38.7481446034
Longitude: -9.150155826G86
Alti1tude: S59.723189835
Delta clock: -0.000602936352347
Tow: 3I2TIE5.000322

FIGURE 3.14: RAIM
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3.5.5 Expected range

After fixing a position it is possible to retrieve a clock bias and know how it drifts
since the receiver returns that parameter. The orbits of GPS satellites usually are
around 20,000 Km, so by subtracting the clock bias times the speed of light to the

pseudorange, the expected range should be around that value.

The tested spoofer usually had very high pseudoranges, after all it wasn’t
synchronized to GPS time, which would imply a large clock bias for it to make
sense. So, if the clock bias is set and fixed to a small number, the expected range

should be near the observed one.

After the calculation of the receiver’s position, it is also possible to measure the
range between the receiver and the satellite and compare it with the pseudorange

of the satellite minus the clock bias times the speed of light.

$$$PP$$Recelved: 26
- - [_r_u[‘upi:-r ET
-RcvTow:

320

-Estimated range: 20709894.221878

-Tow: 320963.5999322

FIGURE 3.15: Expected range, C/Ny variation and Doppler shift

3.5.6 Excluding below the horizon satellites

After fixing a position with the available satellites, it is possible to determine the
elevation of each one to the receivers position. If a satellite has an elevation below

zero, it means it shouldn’t be there.

The spoofer tested, gps-sdr-sim, didn’t take into account this effect so the

elevation can be calculated for each satellite in the new position or the old position
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depending on how long before it was. The satellites used for each calculation should
also be cross verified, in order to find some that suddenly disappeared or appeared

with different properties.

3.6 Flags to detect spoofing

3.6.1 Predicting the clock bias

The u-blox device returns clock drift parameters, so it is possible to know how it
will change overtime. After fixing a position, the clock bias is stored. When a new

fix is needed, the following equation is used:

At = Aty + §(TOW — TOW ) (3.2)

Where At is the expected new clock bias, Aty is the clock bias calculated from
the previous position fix, TOW is the current GPS time of the week, TOW| is
the last position fix GPS time of the week and 0 is the clock drift.

The clock drift is how much the clock bias gets delayed per second, multiplying
that for the time that passed it is possible to know how much it delayed. Using this
method only three measurements are needed which is the receiver’s position, since
the clock bias is already known. This position is compared against the normal

position fix.

Having the distance between both positions, it can be divided by the speed
of light and added or subtracted to the expected clock bias, generally the calcu-
lated clock bias is inside this range. Since the used spoofer, gps-sdr-sim, is not
synchronized with GPS time, the clock bias will change abruptly in unexpected

ways.
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3.6.2 Position variation

Usually spoofers change the position in a gradual way, so this method would not
be as effective. However it is something to always consider, it is not possible for

someone to travel large distances in one instant.

3.6.3 Overall

Using the mentioned methods one can implement multiple variations. Using the
method of predicting the clock bias, it is useful to compare the position fixed using
this method and the normal position fix. Applying RAIM on both, removing a
given satellite per combination, it is possible to see which satellites are contributing

most to the position bias.

3.7 Using Neural Networks

Since this is not a very complex problem with large amounts of data and variables,
only ten nodes were used in the hidden layer with one node in the output that
returns a value between zero and one. Being one a spoofing detection. The inputs

will vary for each test scenario.

In order to optimize the functioning of this neural network, every data was
normalized to the range between zero and one. For every input the maximum and

minimum were retrieved and then the conversion was made.

lue — mini
NormalizedV alue = ——c — TR (3.3)

MaxImum — minimum

3.7.1 Detecting spoofed satellites

For this problem five inputs were considered. Doppler shift variation, C'Ng vari-
ation, RAIM position difference without the given satellite to the global solution,
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variation of the ephemeredis given position and difference between the range be-
tween the satellite and the receiver and the pseudorange minus the clock bias.
C N variation is respective to the variation between two readings of this parame-
ter. After fixing a position there’s also a way to know how much a specific satellite
is off the global position by using RAIM, and it is also possible to use the calcu-
lated clock bias and check if the pseudorange minus the clock bias times the speed
of light is the same as the distance between the receiver and the satellite. Saving
the ephemeredis from the previous position fix, it is also possible to compare the

satellite position they return against the new ephemerides.

Solving this problem requires a special attention to variations, looking for
changes that shouldn’t happen. By having the position fix time span only the
biggest variations are considered. Doppler shift variation is the difference between

the predicted one and the observed.

3.7.2 Detecting spoofing

In order to detect spoofing, one should check for the variation between the clock
prediction and the calculated one from the position fix. Variation in position from
one iteration to another is also important, however they must be close in time.
The variation between the position fix and the position fix with the expected clock

bias is also another input.
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Implementation results

4.1 Observation

It is easier to detect spoofing when there is a variation from a non spoofing en-
vironment to spoofing one, however it is also possible to find discrepancies in a
forged environment. In order to assess the results, the following formula will be

applied.

|Reference — Value|

(4.1)

Deviation =
Re ference

The Deviation of a given Value relative to a Reference value.

4.1.1 C/N, variation

The easiest way one would figure how to spot a forged signal would be to look at the
signal power, however that is not straightforward and only the simplest spoofers
would be detected with this method. The spoofer used allows an adjustment in
power, however a transition from a real signal to a spoofed one would be easily

detected.
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Real signals have a bigger C'/N variation, since the sources are further away
and susceptible to all kind of phenomenons. A spoofer with a direct line to a

receiver, usually does not vary much. Table shows the observed variations.

TABLE 4.1: C/N, variation

Spoofed Signal(%) | Real Signal(%)
Minimum | 0 2.32
Maximum | 2.27 43.75
Average 1.07 10.59

4.1.2 Doppler shift

U-blox receiver retrieves the measured Doppler frequency shift at the integration
stage, since this effect is generated through the movement between the receiver
and the transmitter, it can be predicted through the variation of the pseudoranges.
This variation should not be measured on a big time span, because of the clock
drift. For a time span of one second, the clock drift of this receiver is around 0.180

microseconds.

Real signals should be uniform and have close values between the predicted
and observed Doppler shift, since the variation of the pseudoranges is an indicator
on how the satellite is moving according to the receiver. For forged signals, it is an
harder task, since they are on a fixed position and have to simulate the variation
of the pseudoranges in order to match the transmitted frequency. Table shows
the variation from the observed and expected Doppler frequency shift for real and

forged signals.

TABLE 4.2: Doppler shift

Spoofed Signal(%) | Real Signal(%)
Minimum | 6.47 0.066
Maximum | 508436023.9 6.5
Average 120364027.4 1.61
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4.1.3 RAIM

After fixing a position, and having more than four satellites, it is possible to

compare how much a position fix drifts from the one with the exclusion of the

respective satellite. In an non spoof environment, the absence of a satellite should

not influence the calculation of the position in more than a couple hundred meters.

Table shows how much in average the receiver changes its position if one

given satellite is removed.

TABLE 4.3: RAIM position drift

Spoofed Signal(m) | Real Signal(m)
Minimum | 8969.4 0.47
Maximum | 254893.1 345.24
Average 85372.74 85.42

4.1.4 Ephemerides variation

It is always useful to save the last used ephemeris and compare the satellite position

using both the new and old ephemeris. Most spoofers won’t change the ephemeris,

so in this test scenario a conclusion can’t be inferred.

TABLE 4.4: Ephemerides variation

Spoofed Signal(m) | Real Signal(m)
Minimum | 0.06 0.11
Maximum | 0.60 2.40
Average 0.22 0.61

4.1.5 Expected range

After fixing a position it is always useful to check the range at which the satellite

is from the receiver, since the position of the receiver and the satellite are known.

From the position fix the clock bias is also determined, so by subtracting the clock

bias times the speed of light from the pseudorange the expected range can be
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obtained. Both ranges can be compared. Table shows the variation of the
expected range from the determined one using the positions of the receiver and

the satellite.

TABLE 4.5: Expected range variation

Spoofed Signal(%) | Real Signal(%)
Minimum | 0.067 0.017
Maximum | 31.36 12.98
Average 15.74 6.96

4.1.6 Clock variation

The clock of a GPS receiver usually corrects its bias when it is near one millisec-
onds. So, unless the bias is near that value, it can be predicted through the clock
drift. When spoofing starts the clock bias will have a great value, so if it goes
from microseconds to seconds, it should be suspicious. Also, knowing how the
clock drifts, even if the spoofer is synchronized, if the clock bias is not near the

expected one, then spoofing should be suspected.

After the first fix, the clock bias can be determined, this can be observed in

the Figure

----- POSFIX:-----
Latitude: 38.7493576803
Longitude: -9.15357089746
Altitude: 149.993197005

Delta clock: -0.000828017454661

Tow: 225754.999

| ----- ARRAY COUNT- - - -

counter: 4

svid: 10

svid: 27

svid: 26

svIid: 20

| ____________________

--Delta Clock stored: -0.000828017454661
--Tow stored: 225754.999

FIGURE 4.1: Clock bias fix
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Knowing how the clock drifts it is possible to obtain an estimation. In this
scenario a lower and an upper range were set, based on the clock bias plus the drift
and the position difference, as shown in the following equation. In this work, the
position difference was considered as a deviation in the clock as well, this assumes

a static position.

Atyin = Aty + (TOW — TOW ) + distanceTimeShi ft (42)
4.2

At e = Aty + 6(TOW — TOW ) — distanceTimeShi ft

Where Aty is the previously calculated clock bias, 6(TOW — TOW,) is the
clock drift times the time difference between calculations and distance TimeShift

is the distance between both position fixes divided by the speed of light.

Expected min delta clock: -0.000837286006857
Expected max delta_clock: -0.000!

Inside range: VALID

————— POSFIX:-----

Latitude: 38.74S
Longitude: -9.1
Altitude:
Delta_clock: -0.000837430392529

Tow: 225808.999

F1GURE 4.2: Clock bias prediction

In this scenario the calculated clock bias is inside the expected range, like
shown in Figure [4.2] Since the clock bias drifted the way it was supposed to, this

position fix can be considered legitimate.

Figure shows a spoofing scenario, where the receiver was given enough
iterations to adjust its clock bias to these signals. A random location was chosen

for this test.

Figure [4.4] shows the prediction range of the clock bias and the calculated
value. It is possible to observe the clock bias is not close to the estimated range,
in contrary to the previous scenario in which it in the estimated range. The bias

was off range by 5.800730359 * 1075 seconds, which can amount to an error of,
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P POSFIX:-----

Latitude: 1.36234055704
Longitude: 103.992751154
Altitude: 12.643442112

Delta clock: 0.000678128504119
Tow: 172964.001

FIGURE 4.3: Clock bias fix in spoofing environment

roughly, 1739.015 meters. This approximation was done by multiplying the given
time for the speed of light. However the calculated positions are really close, so it

should be suspicious how one parameter predicts one thing and the other another

thing.
Expected min delta_clock: 0.000668453702049
Expected max delta clock: 0.000668381306189
Outside range: INVALID
----- POSFIX:-----
Latitude: 1.36230797454

Longltude: 103.992813941
Altitude: 20.1239197794

Delta clock: 0O.00066258057583
Tow: 173081.001

FIGURE 4.4: Clock bias prediction in spoofing environment

TABLE 4.6: Clock variation offset from range

Spoofed Signal(seconds) | Real Signal(seconds)
Distance | 5.800730359 x 10° 0

4.1.7 Distance between position fixes

This method is only useful when the receiver is assumed as static or in a slow
movement, since it is normal for some vehicles to change its position abruptly.
However if records of previous position fixes are kept, it is possible to determine
the position of the receiver, its average velocity and the direction in which it is
going towards to. Figure 4.5 shows the new position fix, which would make the
distance between both position fixes 26.153394 meters, which is an acceptable

value since this algorithm does not have all the corrections of the pseudoranges.
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| ARRAY COUNT
counter: 4

svid: 10

svid: 27

----POSFIX:-----

Latitude: 38.7494405117
Longitude: -9.1533806 568
Altitude: 12¢
Delta cloc

Tow: 225808.999

FIGURE 4.5: Distance shift between position fixes

In the spoofing scenario, both fixes are shown in Figure |4.3| and Figure [4.4]
The distance between them is 10.723805 meters. This is a rudimentary position
calculator, so this conclusion might not be as accurate as intended, however the

precision of position is better in a spoofed scenario.

TABLE 4.7: Distance between position fixes

Spoofed Signal(meters) | Real Signal(meters)
Distance | 10.72380 26.153394

4.1.8 Difference between position fix and expected position

Using the clock prediction and only calculating the variables respective to the posi-
tion of the receiver, it is possible to compare it against the position fix determining

the four variables.

Figure [4.6] compares both algorithms. It can be observed that the clock bias
calculated was close to the one predicted. The distance between both positions is

46.21688 meters, so it is possible to infer that there was no tampering of the data.

Figure [4.7] shows this difference in a spoofing environment. The euclidean
distance between both positions is 2674.057778 meters, which indicates that this

position might not be legitimate.
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----- POSFIX:-----

Latitude: 38.7492552184
Longiltude: -9.15341222077
Altitude: 170.436843179

Delta _clock: 6.51291670043e-05
Tow: 242613.999739

|--=--- ARRAY COUNT--- - |
counter: S

svid: 22

svid: 3

svid: 1

svid: 11

svid: 23
| |
----- POSFIX3SAT: - - - - -

Latitude: 38.7493037439
Longitude: -9.15356918428
Altitude: 123.115832611
Delta_clock: 6.4983462824%9¢e-05

FIGURE 4.6: Difference between position fix and expected position

----- POSFIX:-----
Latitude: 1.36230797454
Longitude: 103.9952813941
Altitude: 20.1239197794
Delta clock: 0.00066258057583
Tow: 173081.001

|----- ARRAY COUNT----|
counter: 4

svIid: 32

svId: 11

svid: 27

svid: 31

- - - -POSFIX3SAT:- - - - -
Latitude: 1.35273449716
Longitude: 104.004620413

Altitude: 2094.16753827
Delta clock: 0.000668417504119

A A A i D i e D e e

FIGURE 4.7: Difference between position fix and expected position in a spoofing
environment

4.1.9 Conclusion

These methods have a different approach than the usual ones, since they focus
more on how the values should vary and not so much on how they should be. Any
spoofer can change the values to what they want to, however it is harder to imitate

a behaviour. Table[4.9/shows how this parameters should change for a spoofed and
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TABLE 4.8: Difference between position fix and expected position

Spoofed Signal(meters) | Real Signal(meters)
Distance | 2674.05777 46.21688

a real signal, being lower a smoother variation and higher an abrupter variation.

TABLE 4.9: Conclusion on spoofed satellites detection

Spoofed Signal | Real Signal
C/N, Lower Higher
Doppler shift variation Higher Lower
RAIM variation Higher Lower
Ephemerides variation Lower Higher
Expected range variation | Higher Lower

When it comes to detecting spoofing the Table shows the respective con-
clusions. In a spoofing scenario it is expected for the clock variation to be further
away from the expected range, where the real signal should be inside it. Since the
spoofer acts closer to the receiver than the satellites, it is expected for variations in
position to be lower because there are less variables that can influence this factor
like different satellites used for a position fix or multipath propagation. The dif-
ference between position fix and expected position should follow the same pattern
as the clock variation from the expected range since both work on an expected

clock bias, therefore the spoofed signal should have a larger distance difference.

TABLE 4.10: Conclusion on on detecting spoofing

Spoofed Signal | Real Signal
Clock variation from the expected range Higher Lower
Distance between position fixes Lower Higher
Difference between position fix and expected position | Higher Lower

4.2 Using Neural Networks

In order to develop this model, data will be retrieved from scenarios where there

is only spoofing and scenarios where there is no spoofing.
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4.2.1 Detecting spoofed satellites

Figure shows the implemented neural network for this scenario. In 1 is respec-
tive to the Doppler shift variation, In 2 is respective to C/N, variation, In 3 to
RAIM position difference without the given satellite to the global solution, In 4
to the variation of the ephemeredis given position and In 5 to the difference be-
tween the range between the satellite and the receiver and the pseudorange minus
the clock bias. Out 1 is respective to the detection, logical value of one, or no

detection, logical value of zero, of a spoofed satellite signal.

Figure already shows an example of data from a spoofed satellite. Inl is
not zero, since neuroph studio does an approximation, but close to zero which is
not frequent in spoofed signals. In2 has a value near zero, which is more usual
for a spoofed signal than for a real signal, unless the spoofer intentionally changes
the power of the signal. In3 and In)5 are the highest values. In4, like mentioned
before, is lower in spoofed signals. Even though Inl was an exception to the rule,

the neural network was capable of detecting it was a forged signal.

FIGURE 4.8: Neural Network to detect spoofed satellites

In order to train the neural network, data is needed, from either spoofed signals
or real signals, so to facilitate the visualization of the solution, a neural network
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with 19 samples will be trained. This 19 samples will be split, 70 percent for
training and 30 percent for testing. In order to infer the accuracy of the model,

some samples must be used only for testing. For a final product more samples

would be needed.

TABLE 4.11: Neural Network data first scenario

Inl

In2

In3

In4

Inb

o
et

—+
—_

5.51515E-11

0.061776062

1.6096E-05

1

0

3.02558E-09

0.214285714

0.000352148

0.226124764

0.203199766

8.78705E-09

0.142857143

0.000129397

0.221975152

0.357443548

8.37785E-10

0.053156146

0.000140697

0.203346702

0.221049285

1.33194E-09

0.360902256

9.25617E-05

0.027666185

0.001572

0

0.057142857

0.001154503

0.231659561

0.150066639

1.25857E-08

0.207792208

0

0.226787736

0.300176768

4.59983E-10

0.061776062

5.92986E-05

0.197285185

0.270280084

1.8343E-09

0.147465438

7.2611E-05

0.022996656

0.337203507

2.66276E-09

0.152380952

0.000566526

0.236837984

0.092319348

4.55887E-09

0.065306122

9.77733E-05

0.232301038

0.227161397

2.0633E-09

0.623376623

6.28108E-05

0.19200164

0.304327038

1.33597E-09

1

0.001332994

0.022531179

0.41336838

0.080698679

0.050793651

0.148139239

0.022972461

0.001573843

1

0

0.215819986

0.038979065

0.04630737

0.102246424

0

1

0.231459005

0.768545467

0.237458039

0.043956044

0.035168316

0.030313963

0.807583303

1.27963E-08

0

0.213316776

0.082331323

1

6.27836E-08

0.051948052

0.397082776

0

0.386595343

ol Rl e Ml Bl Mol el Hen) Hen) Hewl el Hev) Hen) Nen) ool Revl Hev) Nev) Ne)

Table already has the data normalized to the interval between zero and
one, the value one is the maximum and zero, the minimum. Randomly 70 percent

will be used for training and 30 percent for testing.

Input: 0; 0; 0,2133; 0.0823; 1; Output: 0.9966; Desired output; 1; Error: -0,0034;

Input: ; 0.0532; 0.0001; 0.2033; 0.221; Output: 0.0045; Desired output: @; Error: 0,0045;
Input: 0; 0.0519; 0.3571; 0; 0.3866; Output: 0.9727; Desired output: 1; Error: -0.0273;
Input: 0; 0.0613; 0; 1; 0; Output: O; Desired output: 0; Error: 0;

Input: 0; 0,2078; 0; 0,2268; 0,3002; Cutput: 0; Desired output: 0; Error: 0;

FIGURE 4.9: Test scenario one results

Figure 4.9 shows the test results for the mentioned scenario. There is a very low
error, so this experiment was successful, some inputs were so low that the program
automatically rounded them to zero. As mentioned before, the dataset is too small
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in order to make a satisfying product, hence it is only for the simplification of the

solution.
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Conclusion

The objective of this work was to study effective anti-spoofing measures due to the
emerging self-driving vehicles that use GPS as a navigation system. The spoofer
tested was gps-sdr-sim and this spoofer had some particularities that might make

it distinguishable from real signals.

The biggest characteristic of this type of spoofers is that its clock is not syn-
chronized, so the clock bias obtained after a position fix will be big, making an
abrupt transition. The pseudoranges also will have big values. Even if there is
synchronization in the spoofer, it will not know the clock bias of the receiver. The
receiver, knowing how its clock drifts, can predict how much the clock bias is going

to be.

Some parameters have values that do not change that much, however it is still
a significant change that the neural network can predict. The objective of this
work was not to try to find which values the parameters should have, because
they are easily changed, but how the variation happens, how the spoofer thinks
per say. It is possible for a neural network to find a pattern in this data, as long

as 1t 1s well trained and labeled.
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5.1 Future work

Given these flags and the methods studied, a robust system can be built using
thousands of samples in different scenarios using different spoofers and without
spoofing. Implementing an AI algorithm capable of analyzing the data and re-
turning an answer quickly in order to deal with the forged signals and possibly
ignore them. There is not straightforward solution to this problem, however there
is a pattern among spoofers and real signals, that pattern can be trained with the
neural network. It is also worth to look at other GNSS systems in order to use
all available information to determine a position. The easiest way would be to
detect spoofing in GPS and change to another constellation, however it would be

interesting to make a system that uses satellites from diffrent constellations.

This work can also be continued with the help of sensors that indicate the
velocity, acceleration and direction of the receiver. Wi-Fi routers and GSM towers
can also be used as a reference for positioning. The receiver can calculate a pattern
for the way it is moving, by saving previous positions, it is possible to determine in
which direction it is going to and the velocity of it. An Al algorithm can determine

if a receiver was supposed to move in a certain direction with a certain velocity.
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Appendix A

Code

from __future__ import division
from decimal import x*

import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import math

import serial

import binascii

import struct

import pyproj

import numpy

import time

import itertools

port = serial.Serial("/dev/ttyAMAO",

baudrate=9600,

#poll_eph = "\zB5\z62\z0B\z31\z00\2z00\z3C\zBF"

ecef = pyproj.Proj(proj=’geocent’,

lla = pyproj.Proj(proj=’latlong’,

tolerance = 1x(10%*%-12)

miu = 3.986005*x(10*%*14)

omega_e = 7.2921151467*(10%**-5)
c = 299792458

F = -4.442807633%(10%*(-10))

51

ellps=’WGS84"’,
ellps=’WGS84"’,

timeout=3)

datum=’WGS84’)
datum=’WGS84°’)
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26 rt = 6371*%(10%*3)
27 l1freq = 1575.42%(10**(6))
28 lastRcvTow 0

29

I
o

30 storedpx

31 storedpy = O

32 storedpz = 0

33

34 start = time.time ()

35 delta_clock = 0

36 delta_clock_set = False
37 delta_clock_tow = 0

38

39 clock_variance = 0

40

41 drift_clock = 0

42 drift_clock_set = False
43

44 clock_biasread = 0

45

46 class sv:

47 def __init__(self, id, pr, rcvTow):

48 self.id = id

49 self.pr = pr

50 self . rcvTow = rcvTow
51

52 svList = []

93

54 def raim(lengthL, svPos):
55 if (lengthL >4):

56 print("---Raim started---")

o7 it = lengthL-1

58 for subset in itertools.combinations(svPos,it):
59 for svCheck in svPos:

60 found = False

61 for svCheck2 in subset:

62 if (svCheck.id == svCheck2.id):

63 found = True
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64 if (found == False):

65 print ("---Removed sv: ¥%s" Y% svCheck.id)

66 sv_remv = svCheck

67 lat ,lon,ecefrx, ecefry, ecefrz = getFix(subset,0)

68 sv_remv.delta_raim = math.sqrt((storedpx-ecefrx)**2 + (

storedpy-ecefry)**2 + (storedpz-ecefrz)*x*2)
69 def printSvData(sat):

70 global delta_clock

71 for svcnt in sat:

72 PTIIT (" %ok okook ok ok ok ok ok ok skook ok ok okok ok ok kok ok !

73 print ("xsv_id: %s*" % svcnt.id)

74 print ("xdelta_doppler: Y%sx" ¥ svcnt.variance)

75 print ("*xdelta_cnO: Y%sx*" % svcnt.variancecnO)

76 if hasattr(svcnt,’delta_raim?’):

T print ("+xdelta_raim: %sx*" I svcnt.delta_raim)

78 if hasattr (svcnt,’variance_ef?):

79 variance_ef = (1.5727-svcnt.variance_ef)/1.5727
80 print ("xdelta_eph: %sx*" % svcnt.variance_ef)

81 rangeFrompr = svcnt.pr - Decimal (c*delta_clock)
82 if hasattr (svcnt,’varianceR’):

83 variance_range = math.fabs((Decimal(svcnt.varianceR)-

rangeFrompr) /Decimal (svcnt.varianceR))

rin variance_range: %S » variance_range
84 t("* ‘y * " 7 )
85 PTImt (" ks skook s ok okook ok ok skook ok ok kookok ok ok ok !

86

87 def fixSagnac(sv,ecefx, ecefy, ecefz):

88 print ("---Sagnac---")

89 for svi in sv:

90 Delta_fim=0.000001

91

92

93 delta_x = Decimal(ecefx) - svi.X

94 delta_y = Decimal(ecefy) - svi.Y

95 delta_z = Decimal (ecefz) - svi.Z

96 dist_rcv = Decimal (math.sqrt((delta_x)**2+(delta_y) *x*2+(

delta_z) **2))
97 delta_t = dist_rcv/Decimal (c)
98
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99 Dist_fim=dist_rcv

100 Dist_inicio=0

101

102 while (math.fabs(Dist_fim-Dist_inicio)>Delta_fim):

103 Delta_rad=Decimal (omega_e-svi.omega_dot)*(delta_t)

104

105 Dist_inicio=Dist_fim

106 A = Decimal (pow(svi.sqrt_A,2))

107 n = Decimal (math.sqrt(Decimal (miu)/(A**3))) + Decimal(svi.
delta_n)

108

109 sentTow = Decimal(svi.rcvTow-delta_clock) - Decimal(delta_t)

110 tk = sentTow - Decimal(svi.toe)

111

112 if (tk>302400) :

113 tk = tk - 604800

114 elif (tk<-302400):

115 tk = tk + 604800

116

117 M = Decimal(svi.MO) + n*tk

118 delta_E =1

119 E =M

120 while (math.fabs(delta_E)> tolerance):

121 delta_E = (M - (E-Decimal(svi.e*math.sin(E))))/(1-Decimal (
svi.e*math.cos(E)))

122 E = E+delta_E

123 sVk = Decimal(Decimal (math.sqrt(1-Decimal (pow(svi.e,2))))x*
Decimal (math.sin(E)))/(1-Decimal (svi.e*math.cos(E)))

124 cVk = Decimal(Decimal (math.cos(E)-svi.e)/(1-Decimal(svi.ex*
math.cos (E))))

125 true_anomaly = Decimal(math.atan2(sVk,cVk))

126

127 if (true_anomaly<0):

128 true_anomaly = true_anomaly + Decimal (2*math.pi)

129

130 arg_latitude = true_anomaly + Decimal(svi.omega)

131
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delta_u = (Decimal(svi.Cuc) * Decimal (math.cos (2%

arg_latitude))+Decimal (svi.Cus)* Decimal (math.sin (2%

arg_latitude)))

u = Decimal(arg_latitude +

delta_i = (Decimal(svi.Cic)

delta_u)

* Decimal (math.cos (2%

arg_latitude)) +Decimal(svi.Cis) * Decimal (math.sin (2%

arg_latitude)))
i = Decimal (Decimal(svi.iO0)

)))

delta_r = (Decimal(svi.Crs)

+ delta_i + tk*(Decimal(svi.idot

* Decimal (math.sin (2%

arg_latitude)) + Decimal(svi.Crc) * Decimal (math.cos (2%

arg_latitude)))

r = A*(1-Decimal(svi.e*math.cos(E))) + delta_r

omega = Decimal (svi.omegaO)

+ Decimal(svi.omega_dot -

omega_e)*tk - Decimal (omega_e*svi.toe)

Xkl=Decimal (r*Decimal (math

Ykl=Decimal (r*Decimal (math

X=Decimal (Xkl*Decimal (math
i)*math.sin (omega)))

Y=Decimal (Xkl*Decimal (math.
i)*math.cos (omega)))

Z=Decimal (Ykl*Decimal (math.

XYZ = numpy.matrix ([[X],[Y]

if (delta_t>0):
Mat_transll=Decimal (math.
)*(delta_t)))
Mat_transl12=Decimal (math.
)*x(delta_t)))

Mat_trans13=0

.cos(u)))
.sin(u)))

.cos (omega))-Ykl*Decimal (math. cos(

sin(omega))+Ykl*Decimal (math.cos(

sin(i)))
,[Z11)

cos(Decimal (omega_e-svi.omega_dot

sin(Decimal (omega_e-svi.omega_dot

%)
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157 Mat_trans21=Decimal (-math.sin(Decimal (omega_e-svi.
omega_dot)*(delta_t)))
158 Mat_trans22=Decimal (math.cos(Decimal (omega_e-svi.omega_dot

)x(delta_t)))

159 Mat_trans23=0
160 Mat_trans31=0
161 Mat_trans32=0
162 Mat_trans33=1
163 Mat_trans = numpy.matrix([[Mat_transl1l,Mat_transl2,

Mat_trans13],[Mat_trans21,Mat_trans22,Mat_trans23],[Mat_trans31

,Mat_trans32,Mat_trans33]])

164 XYZ = Mat_trans.dot(XYZ)

165 delta_x = (svi.X) - XYZ.item(0,0)

166 delta_y = (svi.Y) - XYZ.item(1,0)

167 delta_z = (svi.Z) - XYZ.item(2,0)

168 dist_prev = math.sqrt((delta_x)**2+(delta_y)**2+(delta_z)
*%2)

169

170 svi.X = (XYZ.item(0,0))

171 svi.Y = (XYZ.item(1,0))

172 svi.Z = (XYZ.item(2,0))

173

174 delta_x = Decimal (ecefx) - (svi.X)

175 delta_y = Decimal(ecefy) - (svi.Y)

176 delta_z = Decimal(ecefz) - (svi.Z)

177 dist_rcv = Decimal (math.sqrt ((delta_x)**2+(delta_y) *x*2+(

delta_z) **2))

178 delta_t = dist_rcv/Decimal(c)
179

180 Dist_fim=dist_rcv

181

182 def checkHealth (tupSv):

183 for svi in tupSv:

184 if (svi.health==1):

185 print("Sv: %s, not healthy" % svi.id)
186 svi.pos = 0

187

188 def checkElev(sv,lat,lon):

o6
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189 for svi in sv:

190 lat

math.radians (lat)

191 lon = math.radians(lon)

192 phi = math.radians(svi.lat)

193 teta_L = math.radians(svi.lon)

194 L = teta_L-1lon

195 r = rt + svi.alt

196 pl = (math.cos(phi)*math.cos(L)*math.cos(lat)+math.sin(lat)*

math.sin (phi))

197 p2 = r*math.sqrt (1-(pl*x*2))

198 p3 = math.sqrt ((rt**2) +(r**2) -(2*rt*r*xpl))
199 print ("----Range for sat Ys: Y%s----" % (svi.id,p3))
200 svi.varianceR = p3

201 E = math.acos(p2/p3)

202 E = math.degrees(E)

203 if (E<0):

204 svi.pos=0

205 print("------------------- ")

206 print("->Sat: %s" % svi.id)

207 print ("->Elev: %s" % E)

208 print (" ---------cmo - ")

209

210 def svPosCount () :
211 toCalc = []
212 counter = 0

213 for svi in svList:

214 if (svi.pos==1):

215 counter = counter+l1

216 toCalc.append(svi)

217 print("|----- ARRAY COUNT----|")
218 print ("counter: %s" % counter)

219 for stest in toCalc:

220 print("svId: %s" % stest.id)
221 print("|--------mmo oo~ [")
222 return (counter ,toCalc)

223

224 def MostTowCount ():

225 toCalc = []
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for svi in svList:
if (svi.pos==1):

toCalc.append(svi)

print("|----- ARRAY COUNT TOW----1")
print("| svi: %s tow: %s |" % (svi.id,svi.rcvTow))
print ("|-------------------- [")

count = 0

Tow = 0

for tCsV in toCalc:

countaux=0

for tCsV2 in toCalc:
if (tCsV.rcvTow == tCsV2.rcvTow):

countaux= countaux+1

if (countaux >count) :
count=countaux
Tow = tCsV.rcvTow

return Tow

def getFix3SAT(svPos, clock):

o8

r0 = numpy.matrix ([[Decimal (0)],[Decimal (0)],[Decimal (0)]])
errorC = 1000

clock_d = clock * c

it = 0

while errorC>0.001 and it<=20:

rO0 = numpy.matrix ([[Decimal (r0.item(0,0))],[Decimal(r0.item

(1,0))],[Decimal (r0.item(2,0))11)

Z = numpy.zeros (shape=(len(svPos) ,1))
linc = 0

H = numpy.zeros(shape=(len(svPos) ,3))

for svr in svPos:

vetor_sj_r = numpy.subtract([[svr.X],[svr.Y],[svr.Z]],r0)

mv_sj_r = numpy.linalg.norm(vetor_sj_r)
unit_vetorT = (vetor_sj_r / mv_sj_r).T
Zd2 = unit_vetorT.dot([[svr.X],[svr.Y],[svr.Z]1])
Z2

Decimal (svr.pr)- Decimal (clock_d) - Zd2

H2 = -unit_vetorT

H2 = numpy.asarray (H2) .reshape(-1)
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263 Z[linc] = [Z2.item(0,0)]

264 H[linc] = H2

265 linc = linc+1

266 pl = (H.T).dot(2Z)

267 p2 = (H.T).dot (H)

268 while numpy.linalg.det(p2)==0:

269 noise = numpy.full((3,3),0.00001)
270 P2 = p2 + noise

271 p3 = numpy.linalg.inv(p2)

272 x = p3.dot(pl)

273 errorC = math.sqrt((r0.item(0,0)-Decimal(x.item(0,0))) **2+(xr0.

item(1,0)-Decimal(x.item(1,0)))**2+(r0.item(2,0)-Decimal(x.item
(2,0))) *%x2)

274 r0 = x[:,:]

275 it = it+1

276 lon, lat, alt = pyproj.transform(ecef, 1lla, x.item(0,0), x.item
(1,0), x.item(2,0), radians=False)

277 print(’>----- POSFIX3SAT:----- )

278 print("Latitude: %s" % lat)

279 print ("Longitude: %s" % lon)

280 print ("Altitude: %s" % alt)

281 print("Delta_clock: %s" % clock)

282 print (2 ---------o - D)

283

284 def getFix(svPos, sagnac):

285 global clock_variance

286 global delta_clock

287 global delta_clock_set

288 global delta_clock_tow

289 global storedpx

290 global storedpy

291 global storedpz

292 global drift_clock

293 global drift_clock_set

294 rO0 = numpy.matrix ([[Decimal (0)],[Decimal (0)],[Decimal (0)1]1)

295 errorC = 1000

296 it = 0

297 while errorC>0.001 and it<=20:

29
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60

r0 = numpy.matrix ([[Decimal (r0.item(0,0))],[Decimal(r0.item
(1,0))],[Decimal (r0.item(2,0))11)
Z = numpy.zeros (shape=(len(svPos) ,1))
linc = 0
H = numpy.zeros(shape=(len(svPos) ,4))
for svr in svPos:
vetor_sj_r = numpy.subtract([[svr.X],[svr.Y],[svr.Z]],r0)
mv_sj_r = numpy.linalg.norm(vetor_sj_r)
unit_vetorT = (vetor_sj_r / mv_sj_r).T
Zd2 = unit_vetorT.dot([[svr.X],[svr.Y],[svr.Z]1])
Z2 = Decimal (svr.pr) - Zd2
H2 = numpy.insert(-unit_vetorT, 3, 1, axis=1)

H2 = numpy.asarray (H2) .reshape(-1)

Z[1linc] = [Z2.item(0,0)]
H[linc] = H2
linc = linc+1

pl (H.T) .dot(Z)
p2 = (H.T).dot (H)
while numpy.linalg.det(p2)==0:
noise = numpy.full((4,4) ,0.00001)
P2 = p2 + noise
print ("singular")
p3 = numpy.linalg.inv(p2)
x = p3.dot(pl)
errorC = math.sqrt((r0.item(0,0)-Decimal(x.item(0,0))) **2+(r0.
item(1,0)-Decimal(x.item(1,0))) **2+(r0.item(2,0)-Decimal(x.item
(2,0))) *%x2)
r0 = x[:-1,:]
it=it+1
lon, lat, alt = pyproj.transform(ecef, 1lla, x.item(0,0), x.item
(1,0), x.item(2,0), radians=False)
delta_clockaux = x.item(3,0)/c
if sagnac==1:
if (delta_clock_set==True):
#[-0.179,-0.185] us/s drift relogio
distance_timeshift = math.sqrt((storedpx-x.item(0,0))**2 + (

storedpy-x.item(1,0))**2 + (storedpz-x.item(2,0))**2) / c
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330 delta_tc_min = (lastRcvTow-delta_clock_tow)*(drift_clock)+
delta_clock+distance_timeshift
331 delta_tc_max = (lastRcvTow-delta_clock_tow)*(drift_clock)+

delta_clock-distance_timeshift

332 print ("Expected min delta_clock: %s" % delta_tc_min)
333 print ("Expected max delta_clock: %s" % delta_tc_max)
334 if (math.fabs(delta_clockaux)>math.fabs(delta_tc_min) and

math.fabs(delta_clockaux)<math.fabs(delta_tc_max)):

335 print ("Inside range: VALID")

336 clock_variance = 0

337 else:

338 print ("Outside range: INVALID")

339 if (delta_clockaux>delta_tc_min):

340 clock_variance = (delta_clockaux-delta_tc_min) /(

delta_tc_min-delta_tc_max)
341 else:
342 clock_variance = (delta_tc_max-delta_clockaux)/(

delta_tc_min-delta_tc_max)

343 delta_clock = x.item(3,0)/c
344 delta_clock_tow = lastRcvTow
345 delta_clock_set = True

346 drift_clock_set = False

347 storedpx = x.item(0,0)

348 storedpy = x.item(1,0)

349 storedpz = x.item(2,0)

350 print(’----- POSFIX:----- )

351 print("Latitude: %s" % lat)

352 print ("Longitude: %s" % lon)

353 print ("Altitude: %s" % alt)

354 print ("Delta_clock: %s" % delta_clockaux)

355 print ("Tow: %s" % lastRcvTow)

356 print(’----------------- )

357

358 return(lat,lon,x.item(0,0), x.item(1,0), x.item(2,0))
359

360 def pollEphSv(svEphId):

361 CK_A

0x00

362 CK_B 0x00
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363

364 CK_A = CK_A + 0xOB
365 CK_B = CK_B + CK_A
366

367 CK_A = CK_A + 0x31
368 CK_B = CK_B + CK_A
369

370 CK_A = CK_A + 0x01
371 CK_B = CK_B + CK_A
372

373 CK_A = CK_A + 0x00
374 CK_B = CK_B + CK_A
375

376 CK_A = CK_A + svEphId
377 CK_B = CK_B + CK_A
378

379 suml = CK_A & Oxff
380 sum2 = CK_B & Oxff

381

382 x = ’B5’ + 262> + 0B’ + ’31° + °01’ + °00° + format(svEphId,’02
x?) + format(suml,’02x’) + format(sum2,’02x?)

383 y = x.decode("hex")

384 return y

385

386 def checkSvList (id):

387 if (len(svList)==0):

388 return (False,0)

389 else:

390 for svi in svList:
391 if(svi.id == id):
392 return (True,svi)

393 return (False,bO0)
394
395 def sat_pos(sva):

396 print ("Exkx"

397 A = pow(sva.sqrt_A,2)
398 n = math.sqrt(miu/(A*%*3)) + sva.delta_n
399

62
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400 sentTow = Decimal (Decimal(sva.rcvTow) - Decimal(sva.pr/c))

401 delta_t
402
403 if (delta_t >302400) :

sentTow - sva.toe

404 delta_t = delta_t - 604800

405 elif (delta_t <-302400):

406 delta_t = delta_t + 604800

407

408 M = Decimal(Decimal (sva.MO) + Decimal(n)*delta_t)

409 delta_E = 1

410 E =M

411 while (math.fabs(delta_E)> tolerance):

412 delta_E = Decimal(M - (E-Decimal(sva.e)*Decimal (math.sin(E))))

/(1-Decimal (sva.e)*Decimal (math.cos(E)))

413 E = E+delta_E

414

415 #SV time correction

416

417 delta_tsv = sentTow - sva.toc

418 if (delta_tsv>302400) :

419 delta_tsv = delta_tsv - 604800

420 elif (delta_tsv<-302400):

421 delta_tsv = delta_tsv + 604800

422 delta_tr = Decimal(F*sva.e*sva.sqrt_A*math.sin(E))

423 delta_tsv = Decimal(Decimal(sva.af0) + Decimal(sva.afl)x*
delta_tsv + Decimal(sva.af2)*(delta_tsv**2) + delta_tr -
Decimal (sva.tgd))

424

425 sva.tcorr = delta_tsv

426

427  #///Fizing pseudorange///

428 fixedpr = Decimal(Decimal(sva.pr) + (delta_tsvx*Decimal(c)))

429 sva.pr = fixedpr

430

431

432

433 sentTow = Decimal (Decimal(sva.rcvTow) - Decimal(sva.pr/c))

434
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435 delta_t = sentTow - sva.toe

436

437 if (delta_t >302400):

438 delta_t = delta_t - 604800

439 elif (delta_t<-302400):

440 delta_t = delta_t + 604800

441

442 M = Decimal (Decimal(sva.MO) + Decimal(n)*delta_t)

443 delta_E =1

444 E =M

445 while (math.fabs(delta_E)> tolerance):

446 delta_E = Decimal (M - (E-Decimal(sva.e)*Decimal (math.sin(E))))
/(1-Decimal (sva.e)*Decimal (math.cos(E)))

447 E

448

E+delta_E

449 sVk = Decimal (math.sqrt(l-pow(sva.e,2))*math.sin(E))/Decimal (1-
sva.e*math.cos (E))

450 cVk = Decimal (math.cos(E)-sva.e)/Decimal (1-sva.e*math.cos(E))

451 true_anomaly = Decimal (math.atan2(sVk,cVk))

452

453 if (true_anomaly<0):

454 true_anomaly = true_anomaly + Decimal (2*math.pi)

455

456 arg_latitude = true_anomaly + Decimal(sva.omega)

457

458 delta_u = Decimal(sva.Cuc * math.cos(2*xarg_latitude)+sva.Cusx*

math.sin(2xarg_latitude))

459 u = arg_latitude + delta_u

460

461 delta_i = Decimal(sva.Cic * math.cos(2*xarg_latitude) + sva.Cis *
math.sin(2*arg_latitude))

462 i = Decimal(sva.iO) + delta_i + delta_t*Decimal(sva.idot)

463

464 delta_r = Decimal(sva.Crs * math.sin(2*xarg_latitude) + sva.Crc *
math.cos (2*arg_latitude))

465

466 r = Decimal (Decimal (A*x(l-sva.e*math.cos(E))) + delta_r)

467
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omega = Decimal (sva.omega0O) + Decimal(sva.omega_dot - omega_e)*

delta_t - Decimal (omega_ex*sva.toe)

Xkl=Decimal (r*Decimal (math.cos(u)))

Ykl=Decimal (r*Decimal (math.sin(u)))

#POSITION ECEF FORMAT

sva.X=Decimal (Xkl*Decimal (math.cos (omega)) -Ykl*Decimal (math.cos(

i)*math.sin (omega)))

sva.Y=Decimal (Xkl*Decimal (math.sin(omega))+Ykl*Decimal (math.cos(

i)*math.cos (omega)))
sva.Z=Decimal (Ykl*Decimal (math.sin(i)))
sva.lon, sva.lat, sva.alt = pyproj.transform(ecef,
sva.Y, sva.Z, radians=False)
PR
print ("------ SAT POS CALCULUS ------ ")
print ("E: Js" } E)
print ("sVk: Js" } sVk)
print ("cVk: Js" J cVk)
print ("true_anomaly: Js" J true_anomaly)
print ("arg_latitude: [s" ) arg_latitude)
print ("delta_u: Js" J delta_u)
print ("u: Js" }§ u)
print ("delta_i: Js" J delta_i)
print ("i: Js" } i)
print ("r: Js" J r)
print ("omega: [s" J omega)
print ("Xkl: Js" } Xkl)
print ("Ykl: Js" J Ykl)
print ("sva.X: Js" J sva.X)
print ("sva.Y: Js" J sva.YV)
print ("sva.Z: Js" J sva.Z)

print ("tcorr: Js" J swva.tcorr)

#CONVERTION TO LAT/LON
print ("------------ ")
print ("svId: Js" J sva.td)

1la,

sva.X,

65
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502 print (sva.lon,sva.lat,sva.alt)

503 print ("X: Js" J sva.X)

504 print ("Y: Js" J sva.Y)

505 print ("Z: Js" J sva.Z)

506 print ("Pseudorange: Js" J sva.pr)
507 print ("Rcv Tow: Js" J (sva.rcvTow))
508  primt (M------------ ")

509 700

510 print ("X: %s" % sva.X)

511 print("Y: %s" % sva.Y)

512 print("Z: %s" % sva.Z)

513 #print_sv (sva)

514 #clockDelay (X,Y,Z,sva)

515

516 def clockDelay(X,Y,Z,sva):

517 rg = math.sqrt (((X-ecefx)**2)+((Y-ecefy) **2)+((Z-ecefz) **2))
518 delta_clock = (sva.pr-rg)/c

519 print("------------ ")

520  print("delta_clock: Y%s" % (delta_clock))
521 print("------------ ")

522

523 def print_sv(svt):

524 print ("Sv id: %s" % (svt.id))

525 print ("Pseudo range: %s" % (svt.pr))
526 print ("Rcv Tow: %s" % (svt.rcvTow))
527  print("Crs: %s" % (svt.Crs))

528 print("delta_n: ¥%s" % (svt.delta_n))
529 print ("MO: Y%s" % (svt.MO))

530 print ("Cuc: %s" % (svt.Cuc))

531 print("e: ¥%s" % (svt.e))

532 print ("Cus: %s" % (svt.Cus))

533 print("sqrt_A: %s" % (svt.sqrt_A))
534  print("toe: %s" % (svt.toe))

535 print("cic: %s" % (svt.Cic))

536 print("cis: %s" % (svt.Cis))

537 print ("omegaO: %s" % (svt.omega0))
538 print ("i0: %s" % (svt.i0))

539 print("crc: %s" % (svt.Crc))
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print ("omega:

print ("omega_dot:

%s" % (svt.omega))

%hs" % (svt.omega_dot))

’008b?)

’008b?)

’008b ) [:6]

’008b?)

’008b )

print ("idot: %s" % (svt.idot))
print("af0: %s" % (svt.af0))
print("afi: %s" % (svt.afl))
print("af2: %s" % (svt.af2))
print("tgd: %s" % (svt.tgd))
print ("toc: %s" % (svt.toc))
def handle_efsfl(sfl,svp):
tocr = sf1[20:22]
toc = struct.unpack(’=H’,tocr) [0]
svp.toc = toc*x(2%x*4)
afOrir = sf1[30:31]
afOrl = format (int (afOrlr.encode(’hex’) ,16),
afOr2r = sf1[29:30]
afOr2 = format (int (afOr2r.encode(’hex’) ,16),
afOr3r = sf1[28:29]
afO0r3 = format (int (afOr3r.encode(’hex’) ,16),
afirir = sf1[24:25]
aflrl = format(int(aflirlr.encode(’hex’) ,16),
aflr2r = sf1[25:26]
aflr2 = format(int(aflr2r.encode(’hex’),16),
afOaux = afOrl + afOr2 + aflOr3
aflaux = aflr2 + afiril
af2r1 = sf1[26:27]
af2aux = format (int(af2rl.encode(’hex’) ,16),’008b’)
tgdr = sf1[16:17]

tgdr2 =

format (int (tgdr.encode(’hex’) ,16),°008b’)
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afo
afl
af2
tgd

SVp
SVp .
SVp.

SVp .

= twos_comp (int (afOaux,2) ,22)

= twos_comp (int (aflaux,2) ,16)

= twos_comp (int (af2aux,2) ,8)

.tgd

afo
afl
af?2

twos_comp (int (tgdr2,2) ,8)

(tgd*(2*%*(-31)))
(afO*x(2%*x(-31)))
(af1*(2%*%(-43)))
(af2*(2**(-55)))

def handle_efsf2(sf2,svp):

68

ioder =

iode
crsr
crs

SVp .

s
st

sf

£f2[2:3]
ruct.unpack(’=b’,ioder) [0]
2[:2]

= struct.unpack(’=h’,crsr) [0]

Crs

delta_nr

delt

a_n

(crs * (2*x*x(-5)))
= sf2[5:7]

struct.unpack(’=h’,delta_nr) [0]

svp.delta_n = (delta_n * (2x*(-43)) * math.pi)

MOr
MO =
SVp .
Cucr
Cuc
sSVp .
er =
e =
sSVp.
Cusr
Cus
sSVp .
sqart

sqrt

= sf2[8:11] + sf2[4:5]

struct.unpack (’=L’>,MO0r) [0]

MO

sf

(MO * (2%%(-31)) * math.pi)
2[13:15]

= struct.unpack(’=h’,Cucr) [0]

Cuc

Cuc*(2*xx(-29))

sf2[16:19] + sf2[12:13]

struct.unpack(’=1’,er) [0]

e =

e

sf

*(2xx(-33))
2[21:23]

= struct.unpack(’=h’,Cusr) [0]

Cus
_Ar
_A

Cus *(2*x*x(-29))
sf2[24:27] + sf2[20:21]

struct.unpack(’=L’,sqrt_Ar) [0]

Svp.sqrt_A = sqrt_A *x (2**(-19))

toer
toe

SVp .

st

2[29:31]

= struct.unpack(’=H’,toer) [0]

toe

toe *(2*xx(4))
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616
617 def twos_comp(val, bits):
618 if(val & (1 << (bits-1))) !=0:

619 val = val-(1<<bits)
620 return val
621

622 def handle_efsf3(sf3,svr):

623 cicr = sf3[1:3]

624 cic = struct.unpack(’=h’,cicr) [0]

625 svr.Cic = cic*x(2*x*(-29))

626 omegaOr = sf3[4:7] + sf3[:1]

627 omega0 = struct.unpack(’=1’,omegalr) [0]

628 svr.omega0 = omegaOx(2**x(-31))*math.pi

629 cisr = s£f3[9:11]

630 cis = struct.unpack(’=h’,cisr) [0]

631 svr.Cis = cis*x(2*x*(-29))

632 i0r = sf3[12:15] + sf3[8:9]

633 i0 = struct.unpack(’=1’,i0r) [0]

634 svr.i0 = i0*(2%*(-31))*math.pi

635 crcr = sf3[17:19]

636 crc = struct.unpack(’=h’,crcr) [0]

637 svr.Crc = crc*x(2*x*(-5))

638 omegar = sf3[20:23] + sf3[16:17]

639 omega = struct.unpack(’=1’,omegar) [0]

640 svr.omega = omega*(2%*(-31))*math.pi

641 omega_dotr = sf3[26:27] + sf3[25:26] + sf3[24:25]
642 omega_dot = twos_comp(int (omega_dotr.encode(’hex’) ,16) ,24)
643 svr.omega_dot = omega_dot*(2%*(-43))+*math.pi

644

645 idotauxlr = sf3[28:29]

646 idotauxl = format (int(idotauxlr.encode(’hex’) ,16),°008b’)[:6]
647

648 idotaux2r = s£f3[29:30]

649 idotaux2 = format (int (idotaux2r.encode(’hex’) ,16),°008b’)
650

651 idotr = idotaux2 + idotauxl1

652

653 idot = twos_comp (int (idotr,2) ,14)
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654 svr.idot = idot#*(2**(-43))*math.pi
655

656 getcontext () .prec=15

657 while True:

658 port.reset_input_buffer ()

659 currentTime = time.time ()

660 if (currentTime -start > 60):

661 print ("Clock bias read: %s" % clock_biasread)
662 print ("Clock drift read: Y%s" % drift_clock)

663 lastRcvTow = MostTowCount ()

664 print ("Tow used: %s" % lastRcvTow)

665 for svcp in svList:

666 if (svcp.pos==1 and svcp.rcvTow==lastRcvTow):
667 print("--Sat Pos Y%s: New Eph--" % svcp.id)
668 sat_pos (svcp)

669 print("--------- ")

670 if hasattr(svcp,’0ldsfl’):

671 print ("--Sat Pos %s: 0ld Eph--" % svcp.id)
672 svAux = sv(svcp.id,svcp.pr,svcp.rcvTow)
673 handle_efsf1l(svcp.0ldsfl,svAux)

674 handle_efsf2(svcp.01dsf2,svAux)

675 handle_efsf3(svcp.01dsf3,svAux)

676 sat_pos (svAux)

677 variance_ef = math.sqrt((svcp.X-svAux.X)**2 + (svcp.Y-

svAux .Y) **x2 + (svcp.Z-svAux.Z) *%*2)

678 svcp.variance_ef = variance_ef
679 print ("--Distance: Y%s" ¥ variance_ef)
680 if (math.fabs(variance_ef) >3):
681 svcp.health=1

682 print("--------- ")

683 if (svep.rcvTow!=lastRcvTow) :

684 svcp.pos=0

685

686 tupSv = svPosCount ()

687 #checkHealth (tupSv/[1])

688 #tupSv = svPosCount ()

689

690 if (tupSv [0] >=4):
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691 lataux ,lonaux ,ecefx, ecefy, ecefz = getFix(tupSv[1],0)

692

693 checkElev (tupSv[1],lataux,lonaux)

694 fixSagnac (tupSv[1] ,ecefx, ecefy, ecefz)

695 tupSv = svPosCount ()

696 delta_clock_tow_old = delta_clock_tow

697 delta_clock_old = delta_clock

698 if (tupSv [0] >=4):

699 getFix (tupSv[1],1)

700 tupSv = svPosCount ()

701 raim (tupSv [0], tupSv [1])

702 for svreset in svList:

703 svreset.pos = 0

704 if (tupSv [0]>=3 and delta_clock_set==True and delta_clock_old
1=0) :

705 clock = (lastRcvTow-delta_clock_tow_old)*(drift_clock)+

delta_clock_old

706 getFix3SAT (tupSv[1], clock)

707 printSvData (tupSv [1])

708 for svreset in svList:

709 svreset.pos = 0

710 svreset.variance = 0

711 svreset.variancecnO = 0

712 svreset.delta_raim = 0

713 svreset.variance_ef = 0

714 svreset.variance_range = 0

715 start = currentTime

716 print ("--Delta_Clock stored: %s" % delta_clock)
717 print ("--Tow stored: %s" J delta_clock_tow)

718 rcv = port.read(2)

719 hexr = binascii.hexlify(rcv);

720 if len(hexr) !=4:

721 hexr = ’0000°

722 if (int (hexr ,16)==int (’B562° ,16)):

723 clid = binascii.hexlify(port.read(2))
724 if (int (clid ,16)==int (’0B31’,16)):
725 port.read(2)

726 sv_idr = port.read (4)
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sv_id = struct.unpack(’=L’,sv_idr) [0]
howr = port.read(4)
how = struct.unpack(’=L’,howr) [0]
if (how!=0):
sfl = port.read(32)
sf2 = port.read(32)
sf3 = port.read(32)
svm = checkSvList(sv_id)
if (svm[0]==True):

if hasattr(svm[1],’sf1?):

svm[1].01ldsfl = svm[1].sfl
svm[1].01dsf2 = svm[1].sf2
svm[1].01dsf3 = svm[1].sf3

svm[1].sf1 = sf1l

svm[1].sf2 = sf2

svm[1].sf3 = sf3

handle_efsfi1(sfl,svm[1])
handle_efsf2(sf2,svm[1])
handle_efsf3(sf3,svm[1])

svm[1] .pos = 1

print ("***xReceived eph %s" % svm[1].id)

elif (int(clid,16)==int (20215’ ,16)):

port.read (2)
rcvTowr = port.read(8)
rcvTow = struct.unpack(’=d’,rcvTowr) [0]
weekr = port.read(2)
week = struct.unpack(’=H’,weekr)
port.read (1)
ir = port.read (1)
i = struct.unpack(’=B’,ir) [0]
port.read (4)
for x in range (1,1i):
prMesr = port.read(8)
prMes = struct.unpack(’=d’,prMesr) [0]
cpMesr = port.read(8)
cpMes = struct.unpack(’=d’,cpMesr) [0]
doMesr = port.read(4)

doMes = struct.unpack(’=f’,doMesr) [0]
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T
778
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780
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784
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789
790
791
792
793
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796
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800
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gIldr = port.read (1)

gId = struct.unpack(’=B’,gIdr) [0]
svIdr = port.read (1)

svId = struct.unpack(’=B’,svIdr) [0]
port.read (4)

cnOr = port.read (1)

cn0 = struct.unpack(’=B’,cnOr) [0]

port.read(3)

trkStatr = port.read (1)
trkStat = format (int(trkStatr.encode(’hex’),16),°008b’)
[4:]
if (gId==0) :
print ("$$$8$$$Received: Ys" 7% svId)
tupsv = checkSvList (svId)
if (tupsv [0]==False):
nSv = sv(svId,prMes,rcvTow)
nSv.bpr = prMes
nSv.pos = 0
nSv.cn0 = cnO
nSv.health = 0
nSv.variance = Decimal (0)
nSv.variancecn0 = Decimal (0)

svList.append (nSv)
port.write(pollEphSv(svId))
elif (tupsv [0]==True) :

tupsv [1].0ldcn0 = tupsv[1].cnO

tupsv [1].¢cn0 = cnO

tupsv [1].o0ldpr = tupsv[1l].bpr

tupsv [1] .pr = prMes

tupsv [1] . bpr = prMes

tupsv [1].o0ldrcvTow =

tupsv [1] . rcvTow = rcvTow

delta_v = (Decimal (tupsv[1].oldpr)

tupsv [1].rcvTow

- Decimal (tupsv[1].

pr))/(Decimal (tupsv[1].rcvTow)-Decimal (tupsv[1].oldrcvTow))

delta_f =

print ("--Doppler Effect--")

(delta_v*Decimal (l1freq))/Decimal (c)
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print ("-RcvTow: ¥%s" % tupsv[1].rcvTow)

print ("-01dRcvTow: %s" % tupsv[1].oldrcvTow)

print ("-Expected: %s Hz" 7 delta_f)

print ("-Expected: %s m/s" ¥ delta_v)

print ("-0Observed: %s Hz" 7 doMes)

variance = math.fabs(((Decimal (doMes)-delta_f)/Decimal
(doMes)))

print ("-Error observed/expected: %s" % variance)

if variance>tupsv[1].variance:

tupsv [1].variance = variance
print (" ------------------ ")
print ("--CNO variation--")

print ("-01d: %s" % tupsv[1].o0ldcnO)

print ("-New: %s" % tupsv[1l].cnO)

variancecn0 = math.fabs((tupsv[1].o0ldcnO-tupsv[1].cn0)
/tupsv [1].01dcn0)

print ("-delta: %s" % variancecnO)

if variancecnO>tupsv[1].variancecnO:
tupsv [1].variancecn0 = variancecnO
lastRcvTow = rcvTow
if (delta_clock_set==True):
time_drift = (rcvTow - delta_clock_tow)*drift_clock
rangeD = Decimal (tupsv[1].pr) - Decimal (c*(
delta_clock+time_drift))
tupsv [1] . rangeD = rangeD
print("-Estimated range: %s" % rangeD)
print ("-Tow: %s" % tupsv([1l].rcvTow)

print ("-Pseudo range: %s" % tupsv[1l].pr)

if (tupsv[1].pos==0):
print ("*x**Sv s ephem polled." % tupsv([1l].id)
port.write (pollEphSv(svId))
port.read (1)
elif (int (clid,16)==int(’0122’,16)):
if (delta_clock_set==False):
port.read (2)

port.read (4)
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c_bias = port.read(4)

clock_biasread

clock_biasread

= struct.unpack(’=1’,c_bias) [0]

clock_biasread*(10**-9)

c_drift = port.read(4)

drift_clock

drift_clock

struct.unpack(’=1’,c_drift) [0]

drift_clock*(10*x*x-9)

1)
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