
University Institute of Lisbon

Department of Information Science and Technology

Assessing spoofing of GPS systems

Rui Filipe Pereira Dias

A Dissertation presented in partial fulfillment of the Requirements
for the Degree of

Master in Telecommunications and Computer Engineering

Supervisor

Ph. D. Francisco Cercas, Full Professor
ISCTE-IUL

Co-Supervisor

Ph. D. José Sanguino, Assistant Professor
IST-UL

September, 2019

Resumo

Ultimamente tem havido bastante desenvolvimento de viaturas que se deslo-
cam automaticamente por sinais de radionavegação, como por exemplo drones ou,
futuramente, carros autopilotados. No entanto, também é cada vez mais fácil
forjar sinais de radionavegação, o que pode vir a ser um problema.

Com o crescimento desta ameaça também tem de haver uma preocupação em
preveni-la e o objetivo desta dissertação é estudar formas de mitigar este problema.
Para tal, foi usado um receptor de GNSS (Global Navigation Satellite System),
u-blox evk-m8t, capaz de devolver dados brutos retirados da leitura dos sinais sem
qualquer tipo de processamento. De maneira a analisar os dados foi usado um
raspberry pi.

Este problema não é linear, visto que cada spoofer tem a sua especifidade, é
necessário prestar atenção às transições comparando dados antigos com recentes.

Como cada cenário é diferente, as variações vão ser observadas de modo a
tentar encontrar um padrão de variações. Estas variações serão testadas numa
rede neuronal de modo a encontrar sinais falsificados.

Falsificação de sinais como um todo apresenta variações especificas que não
deviam lá estar, a variação instável do relógio é o fator mais influenciável.

Este trabalho conseguiu concluir que é possível implementar um algoritmo de
calibração que consegue detetar padrões em sinais ilegítimos e distingui-los de
sinais legítimos. Os sinais falsificados normalmente são mais incongruentes no que
toca a variações de propriedades de sinal e no seu funcionamento como um todo,
como por exemplo a posição que seria calculada retirando um satélite da equação.
Estes sinais também apresentam variações não previstas no atraso de relógio.

Palavras-chave: Radionavegação, defesa contra spoofing, falsificação, GNSS.

iii

Abstract

Lately, plenty of self navigation vehicles have been developed, as drones, or in
the future, self driving cars. However, it has become easier to forge radionavigation
signals, which can be a problem.

With the growing risk of this threat, there has to be way to solve it and this
thesis goal is to study various ways to mitigate this problem. For this effect,
an u-blox evk-m8t GNSS (Global Navigation Satellite System) receiver was used,
which is capable of returning raw unprocessed data from radio navigation signals.
A raspberry pi was also used to analyze the data.

This is not a linear problem, since each spoofer is unique, it is necessary to pay
attention to transitions, comparing old with new data.

Since each scenario is a different scenario, the variations will be observed in
order to try to find a variation pattern. These variations will be tested in a neural
network in order to find if it is viable to detect forged signals this way.

Spoofing as a whole also has specific variations that should not be there, the
unstable clock variation is the most influenceable factor.

This work managed to conclude that it is possible to implement a calibration
algorithm that is able to detect patterns in forged signals and distinguish them
from legitimate signals. Forged signals, normally, are more incoherent in variations
of signal properties and its functioning as a whole, for example, the position that
would be calculated by removing a satellite from the equation. These signals also
present unpredicted variations in the clock delay.

Keywords: radionavigation, anti spoofing; spoofing, GNSS.

v

Acknowledgements

I would like to acknowledge my supervisors, Francisco Cercas and José San-
guino, for all the support and guidance in this thesis. I would also like to acknowl-
edge professor Luís Nunes and João Ponte for being always helpful and accessible.

vii

Contents

Resumo iii

Abstract v

Acknowledgements vii

List of Figures xi

List of Tables xiii

Abbreviations xiv

1 Introduction 1
1.1 Motivation and context . 1
1.2 Goals and research questions . 2
1.3 Contributions . 3
1.4 Dissertation Structure . 3

2 Literature Review 5
2.1 GPS system overview . 5

2.1.1 GPS signal . 5
2.1.2 Pseudorange detection . 7
2.1.3 Navigation Data . 7
2.1.4 Satellite position calculation 8
2.1.5 Sagnac effect . 10
2.1.6 Position fix . 11
2.1.7 Least Squares . 12

2.2 Neural Networks . 14
2.3 Related work . 15

3 Anti-spoofing techniques 19
3.1 Hardware used . 19

3.1.1 U-Blox EVK-M8T . 19
3.1.2 Raspberry Pi . 20
3.1.3 Ettus N210 . 20

3.2 Software used . 21

ix

Contents

3.2.1 u-center . 21
3.2.2 gnss-sdr-sim . 21
3.2.3 Neuroph studio . 22

3.3 Information transmission . 22
3.4 Raspberry pi implementation . 25
3.5 Flags to detect spoofed satellites . 28

3.5.1 Doppler shift . 28
3.5.2 C/N0 . 28
3.5.3 Ephemeris integrity . 29
3.5.4 RAIM . 29
3.5.5 Expected range . 31
3.5.6 Excluding below the horizon satellites 31

3.6 Flags to detect spoofing . 32
3.6.1 Predicting the clock bias . 32
3.6.2 Position variation . 33
3.6.3 Overall . 33

3.7 Using Neural Networks . 33
3.7.1 Detecting spoofed satellites 33
3.7.2 Detecting spoofing . 34

4 Implementation results 35
4.1 Observation . 35

4.1.1 C/N0 variation . 35
4.1.2 Doppler shift . 36
4.1.3 RAIM . 37
4.1.4 Ephemerides variation . 37
4.1.5 Expected range . 37
4.1.6 Clock variation . 38
4.1.7 Distance between position fixes 40
4.1.8 Difference between position fix and expected position 41
4.1.9 Conclusion . 42

4.2 Using Neural Networks . 43
4.2.1 Detecting spoofed satellites 44

5 Conclusion 47
5.1 Future work . 48

Appendices 51

A Code 51

Bibliography 77

x

List of Figures

2.1 An example of trilateration [1] . 6
2.2 Legacy GPS satellite signal structure [2] 7
2.3 C/A code correlation [3] . 8
2.4 Orbital parameters [2] . 9
2.5 Satellite time correction [2] . 10
2.6 Sagnac effect [4] . 11
2.7 Structure of a Neural Network . 14
2.8 Sigmoid function . 15

3.1 Block diagram . 19
3.2 U-Blox EVK-M8T [5] . 20
3.3 Raspberry Pi 1 Model A [6] . 20
3.4 Ettus N210 [7] . 21
3.5 U-center . 22
3.6 Neuroph Studio . 23
3.7 UBX-RXM-RAWX Message structure [8] 23
3.8 Poll UBX-AID-EPH structure [8] 23
3.9 UBX-AID-EPH message structure [8] 24
3.10 Subframe two message structure [2] 25
3.11 Fluxogram of the system developed 26
3.12 Developed position calculator . 27
3.13 Ephemris integrity . 29
3.14 RAIM . 30
3.15 Expected range, C/N0 variation and Doppler shift 31

4.1 Clock bias fix . 38
4.2 Clock bias prediction . 39
4.3 Clock bias fix in spoofing environment 40
4.4 Clock bias prediction in spoofing environment 40
4.5 Distance shift between position fixes 41
4.6 Difference between position fix and expected position 42
4.7 Difference between position fix and expected position in a spoofing

environment . 42
4.8 Neural Network to detect spoofed satellites 44
4.9 Test scenario one results . 45

xi

List of Tables

4.1 C/N0 variation . 36

4.2 Doppler shift . 36

4.3 RAIM posititon drift . 37

4.4 Ephemerides variation . 37

4.5 Expected range variation . 38

4.6 Clock variation offset from range 40

4.7 Distance between position fixes . 41

4.8 Difference between position fix and expected position 43

4.9 Conclusion on spoofed satellites detection 43

4.10 Conclusion on detecting spoofing 43

4.11 Neural Network data first scenario 45

xiii

Abbreviations

AI Artificial Intelligence

BPSK Binary Phase Shift Keying

BSSID Basic Service Set Identifier

C/A Coarse Aquisition

CDMA Code Division Multiplexing Access

C/N0 Carrier to Noise density ratio

DSSS Direct Spread Spectrum

ECEF Earth-centered, Earth-fixed

GLONASS Global’naya Navigatsionnay Sputnikovaya Sistema

GNSS Global Navigation Satellite System

GPS Global Positioning System

GSM Global System for Mobile Communications

IMU Inertial Measurement Unit

ISCTE Instituto Superior de Ciências do Trabalho e da Empresa

IST Instituto Superior Técnico

MEO Medium Earth Orbit

NORAD North American Aerospace Defense Command

PRN Pseudorandom Noise

RAIM Receiver Autonomous Integrity Monitoring

RX Reception

SSID Service Set Identifier

TOW Time of the week

SDR Software Defined Radio

Wi-Fi Wireless Fidelity

xv

Chapter 1

Introduction

1.1 Motivation and context

Presently there are plenty of systems controlled by wireless communications, which,

in turn, use radio navigation through satellite as way to determine its position to

reach a predetermined location. With the evolution of technology and software

defined radios it is easy to hack a wireless system, therefore, there’s a need to

know how to defend against these threats.

Most wireless systems nowadays, like cell phones or even ships, use GPS to

determine its position. This is done by using trilateration of four or more satel-

lites [1]. However, GPS (Global Positioning System) signals have low power and

use DSSS (Direct Spread Spectrum) which is based on CDMA (Code Division

Multiplexing Access), so it is possible for a remote system to forge these signals

with a higher power. This problem could cause a ship to change its course [9], or

a cell phone to show a wrong location.

An attacker can forge these signals by using SDR (software defined radios)

which are programmable internally or by using software, like GNU radio, which

processes the signal in the computer and uses the SDR as transceiver [10].

1

Chapter 1. Introduction

This project’s objective is to avoid a malicious signal emitter from changing

the system’s predetermined mission. There are many ways in which this can be

done, naming some, amplitude discrimination, in which signals with higher power

than usual are rejected, angle of arrival, in which an array of antennas is set and

if a signal is received with a different phase difference from the expected a forging

is detected [11]. Due to the time it takes to determine one’s location through

only GPS, Apple also maintains a database of hotspots and cell towers to quickly

determine its location [12], therefore it is also an effective way to determine the

forging of GPS signals.

1.2 Goals and research questions

This thesis goal is to study effective ways to detect spoofing of radio navigation

signals.

To accomplish this, a GPS receiver needs to be implemented based on an

already existing one. To achieve this goal, different GNSS receivers will be tested

in order to conclude which is the most effective one.

The first phase would be studying how GPS signals work and how to use

them. The second phase would be testing various GNSS receivers. Finally, the

third phase, would be implementing an anti-spoof solution in the GNSS receiver.

Concluding, this thesis final product will be an anti-spoof GPS system and, if

possible, it will use other GNSS systems.

That being said, this thesis looks to answer some questions:

• Is it possible to make a spoofing free system?

• Is it possible to use it in an efficient way?

• Will it be useful in the marketplace?

• What is the most effective way to do it?

2

Chapter 1. Introduction

1.3 Contributions

This dissertation presents the following contributions:

• It reviews the existing approaches;

• It does a study on how effective each measure is;

• It makes a system that analyzes all of the existing approaches and through

artificial intelligence it decides whether the signal is legitimate or not;

• It introduces new spoofing countermeasures like predicting the clock varia-

tion and fixing a position with this prediction.

The work conducted in this dissertation resulted in one publication:

• R. Dias, F. Cercas, J. Sanguino, J. Ponte, "Assessing spoofing of GPS sys-

tems", ConfTele 2019 - 11th Conference on Telecommunications, June, 2019

1.4 Dissertation Structure

This dissertation is composed of five chapters. The first chapter introduces the

dissertation theme, motivation and research questions, contributions and a short

summary of the dissertation structure.

The second chapter is a revision of theoretical aspects and related work relevant

to this dissertation.

The third chapter is about the implementation of the anti-spoofing techniques

and how the system was constructed.

The fourth chapter contains the experimentation results of the techniques men-

tioned in the previous chapter and its analysis.

In the fifth chapter the conclusions of the work are presented, as well as sug-

gestions for future work.

3

Chapter 2

Literature Review

In this chapter the theoretical basis for this thesis is introduced, namely how GPS

systems work.

2.1 GPS system overview

2.1.1 GPS signal

GNSS - Global Navigation Satellite System is the general designation for radionav-

igation constellations which includes systems as GPS - Global Positioning System,

Beidou, GLONASS and Galileo.

GPS constellation has currently 31 satellites which have a MEO - Medium

Earth Orbit with a 12 hour orbit. This system has multiple bands, however the

main focus of this work will be on L1 band which is centered at 1575.42MHz. In

order to fix a position, trilateration is used. Knowing where multiple sources are

and how much time the signal takes to arrive, it is possible to set a range of the

distance travelled.

Figure 2.1 shows how trilateration would work. Knowing where Foghorn 1,

2 and 3 are, and knowing when they are going to transmit, it is possible to a

5

Chapter 2. Literature Review

draw circle of the range the signal has travelled, by crossing the three circles it

is possible to fix a position, in this scenario, it is A. However, this assumes the

receiver’s clock is synchronized with the Foghorn’s, and that is not the case, so

this problem would require at least four satellites to solve a four variable problem.

Figure 2.1: An example of trilateration [1]

GPS signals use DSSS - Direct Spread Spectrum which is based on CDMA -

Code Division Multiplexing Access. Each satellite has a specific PRN - Pseudo-

random noise code also known as C/A - Coarse Acquisition which is the civilian

access code. This code has a chiprate of 1Mb/s and is xored with data which has

a rate of 50b/s. The resulting signal is BPSK - Binary Phase Shift Keying modu-

lated in the L1 carrier, that means that the phase is 180 degrees when there is a

bit with a logic value of 1 or 0 degrees when the bit has the logic value of 0. This

signal is mixed with an P(Y) encrypted code xored with data carrier with a 90

degrees offset. The P(Y) code is only for military use. This process is illustrated

in Figure 2.2 [1].

6

Chapter 2. Literature Review

Figure 2.2: Legacy GPS satellite signal structure [2]

2.1.2 Pseudorange detection

In order to acquire a lock, the receiver has multiple channels that use signal replicas

of the respective PRN code. It does this to achieve a auto-correlation with the

incoming signal, when there is a lock there will be a positive or negative peak,

depending on the value of the navigation data bit [3]. The local replica rotates

until there is a peak, in order to find in which chirp bit it is and to know when the

first arrived. Having one milliseconds marks, it is possible to know the propagation

delay with the clock bias. Figure 2.3 illustrates this process.

2.1.3 Navigation Data

Like shown in Figure 2.2 the navigation data has a 50b/s bitrate, which is much

lower than the chiprate of the code. Navigation data needed to calculate the

satellite position is subdivided into three subframes. These subframes contain the

following polynomials values. Figure 2.4 shows the needed parameters [2].

7

Chapter 2. Literature Review

Figure 2.3: C/A code correlation [3]

2.1.4 Satellite position calculation

The data referenced in the previous section contains ephemeris parameters which

can be used to calculate a satellite’s position at a given time, in order to retrieve

accurate results the time of transmission should be used. However, the pseudor-

anges need to be corrected because the satellites are not in total synchronization

between them. Ignoring troposphere and ionosphere propagation delay, the time

of transmission would be:

t = rcvTow − pseudorange

c
(2.1)

Where rcvTow is the time of reception of the signal where the time of travel is

subtracted, since the pseudorange and rcvTow both contain the same clock bias,

8

Chapter 2. Literature Review

Figure 2.4: Orbital parameters [2]

it gets canceled. To apply the satellite’s clock correction the following term needs

to be calculated:

∆tsv = af0 + af1(t− toc) + af2(t− toc)2 + ∆tr (2.2)

Where af0, af1 and af2 are the polynomial coefficients retrieved in ephemeris

subframe one, toc is time of clock referenced in seconds and ∆tr is as follows:

∆tr = Fe
√
Asin(Ek) (2.3)

Where
√
A, e and Ek are orbital parameters given in the ephemeris. F is a

constant value. Ek is calculated through iteration having already a transmission

time, so for a first approximation the equation 2.1 can be used and then ∆tsv can

be calculated and the new Ek as well.

9

Chapter 2. Literature Review

Figure 2.5 shows how GPS time is corrected. As mentioned before, besides

the clock bias of the user, three more things influence the imprecision. The

Ephemerides contain the parameters needed in order to determine how much a

clock has drifted over a period of time and parameters to determine ionospheric

delays. Troposphere corrections require additional models which vary with the

weather [2].

Figure 2.5: Satellite time correction [2]

2.1.5 Sagnac effect

The developed position calculator also takes into account the Sagnac effect which

gives an error of around 20 meters. This effect works on the earth rotation, when

the receiver measures the pseudoranges, the signal that is arriving it is not a direct

one, since the earth has moved.

Figure 2.6 illustrates this phenomenon. On the left side the circle is not moving,

so the signal in both directions travels the same distance. On the right side, the

10

Chapter 2. Literature Review

Figure 2.6: Sagnac effect [4]

circle has moved, so the signal traveling in the counter clockwise direction travels a

smaller distance and the signal traveling in the clockwise direction travels a larger

distance [4].

2.1.6 Position fix

In order to fix a position, as mentioned before, four satellites are needed to solve

a four equation system. The pseudorange to a satellite can be written as:

p = ||s− r||+ c∆t (2.4)

Where p is the pseudorange, s is the position of the satellite, r the position of

the receiver, ||s-r|| is the distance between the satellite and the receiver, c is the

speed of light and ∆t is the receiver clock bias. The position of the satellite can be

calculated using the ephemeris parameters, so this equation has four variables, the

coordinates of the receiver, x,y,z and the clock bias. By, stacking four pseudorange

measurements, a matrix of equations can be assembled in order to fix a position.

11

Chapter 2. Literature Review

p1 =
√

(x1 − x)2 + (y1 − y)2 + (z1 − z)2 + c∆t

p2 =
√

(x2 − x)2 + (y2 − y)2 + (z2 − z)2 + c∆t

p3 =
√

(x3 − x)2 + (y3 − y)2 + (z3 − z)2 + c∆t

p4 =
√

(x4 − x)2 + (y4 − y)2 + (z4 − z)2 + c∆t

(2.5)

Where xn, yn and zn are the nth satellite’s coordinates in ECEF format [1].

2.1.7 Least Squares

Sometimes there are more than four satellites visible, and having only four vari-

ables, it is preferable to use as many measurements as possible. This problem can

be solved using the least squares algorithm that produces a solution approximation

to overdetermined systems in which there are more equations than variables.

Z = Hx (2.6)

Where Z is a matrix of n lines and one column, n is respective to the number

of observations. Matrix x has one column and four lines respective to the position

of the receiver and its clock bias. H is an n by four matrix. The x matrix can be

isolated.

H−1Z = x (2.7)

When there are four observations, H will be a four by four matrix and so will

its inverse, Z will be a four by one matrix. In this case there won’t be any problem

multiplying this matrices, because H is a square matrix and therefore it has an

inverse, however if there are more than four observations H is not going to have

an inverse matrix. However rewriting equation 2.6 the following way, removes this

problem.

12

Chapter 2. Literature Review

x = (HTH)−1HTZ (2.8)

Equation 2.8 allows multiple observations, however the equations of the posi-

tion fix need to be represented in this format. An observation can be written as

following.

pj = ||sj − r||+ c∆t (2.9)

Where pj is the pseudorange of the satellite j measured by the receiver, sj is

the position of the satellite j, r is the position of the receiver, c is the speed of

light and ∆t is the clock bias of the receiver.

The least squares method is iterative and through trial and error tries to find an

approximation to the solution. The position of the receiver, r, wants to be known,

so by linearizing the equation around r0 an approximation can be obtained. The

first estimation can be any set of values, however this is a linear system and is only

valid for the values near r0, so if the differences between r, the solution, and r0,

the estimation, are too big, then the solution is not considered valid or reliable.

If r is near r0, it means that there is a low error since the solution is close to the

point where the approximation was made.

pj − ej0
T
sj = −ej0

T
r + c∆t (2.10)

Where pj is the pseudorange of the satellite j measured by the receiver, ej0
T

is the transposed normalized vector between satellite j and the estimation of the

receiver r0, r is the position of the receiver, c is the speed of light and ∆t is the

clock bias. This equation can now be stacked and converted to the Z=Hx format

as follows [13].

13

Chapter 2. Literature Review


p1 − e10

T
s1

p2 − e20
T
s2

p3 − e30
T
s3

p4 − e40
T
s4

 =


−e10

T
1

−e20
T

1

−e30
T

1

−e40
T

1




x

y

z

c∆t

 (2.11)

2.2 Neural Networks

In this project neural networks were tested in order to achieve the desired result

since only the variance of parameters are measured, this algorithm would try to

find a pattern.

Figure 2.7: Structure of a Neural Network

In this scenario there is a neural network with three layers, input, hidden and

output, having three, four and one nodes respectively. Each node of the nth layer

value depends on the sum of the values from the nodes in the previous layers and

multiplied by calculated weights.

value = f(
∑
j

wjxj) (2.12)

14

Chapter 2. Literature Review

Where the value is respective to a node in the nth layer, wj is respective to

the weight of the node j of the nth-1 layer and xj is respective to its value. The

resulting sum goes into an activation function to introduce non-linearity between

the input and the output, the simplest activation function would be the step

function, that is, if the sum is above a given threshold then value would be equal

to one, otherwise it would be equal to zero. However, a lot of values would be lost

in this scenario, so the commonly used activation method is the Sigmoid function.

Figure 2.8: Sigmoid function

Where Z is the function input and y-axis is the output, so all values are between

zero and one [14].

f(z) =
1

1 + e−z
(2.13)

2.3 Related work

Todd E. Humphreys et al present anti-spoofing solutions in [4]. In this paper

anti-spoofing techniques are discussed and then presented in which way it can fail.

15

Chapter 2. Literature Review

This paper suggests six ways to prevent spoofing, amplitude discrimination, time-

of-arrival discrimination, navigation inertial measurement unit (IMU) cross-check,

polarization discrimination, angle of arrival discrimination and cryptographic dis-

crimination. The first and second method would only work against the most simple

spoofing systems. The third, fourth and fifth methods require additional hardware

however they are more effective.

At least 20 ships in the black sea got their course changed according to [2].

Fake signals were sent in a subtle way in order not to change the ship’s course

abruptly but smoothly. This website alerts to the danger of GPS spoofing and

how it is becoming easier, this way self-driving vehicles or autonomous ships could

be hijacked.

According to [5] Apple maintains a database of Wi-Fi hotspots and cell towers

around one’s location in order to calculate its position faster, because using just

GPS data could take minutes to get a fix. In this paper, fake SSIDs and BSSIDs

are generated in order to test this theory. After a while, the position is changed.

The work in [6] uses a two antenna array separated by 1.46 meters oriented

along the true North-South axis to detect spoofing. In this paper the expected

carrier phase differences are calculated for each satellite. If the measured delta

phase doesn’t match the profiled expected value a spoofing signal is identified.

The units used in this difference are L1 cycles.

The work in [7] suggests some ways to achieve the desired goal. The first one

is to monitor the absolute power of each carrier, that is, ignore signals with a

power higher than a given threshold. The third method suggests comparing L1

and L2 frequencies power. The fifth method suggests checking the Doppler shift,

by obtaining the receiver’s relative speed with respect to the satellite it can be

compared to the carrier frequency received.

f = f0
c+ vr
c+ vs

(2.14)

16

Chapter 2. Literature Review

Where f0 is the frequency emitted by the transmitter, in this case the satellite, vr

is the velocity of the receiver, vs is the velocity of the source and c is the velocity

of the signal. If the receiver is moving towards the source, vr is positive and if the

source is moving away from the receiver, vs is positive. In Fig. 1 this effect can

be observed. When the source of the waves, the ambulance, is moving towards the

observer each successive wave is moving closer to him, decreasing the wavelength

and increasing the frequency.

The ninth method suggests comparing known ephemeris data to the one re-

ceived in order to check for anomalies in the satellite’s position. This method

would require an internet connection to obtain such data from NORAD which

sometimes might not be practical. The tenth method suggests that data relating

to power and position should be monitored in order to find abrupt changes. How-

ever, a clever attacker might be able to fool the system, like mentioned before, a

ship’s course was gradually changed having a smooth transition and not raising

any flags.

The tenth method suggests that data relating to power and position should

be monitored in order to find abrupt changes. However, a clever attacker might

be able to fool the system, like I mentioned before, a ship’s course was gradually

changed having a smooth transition and not raising any flags.

The work at [8] also suggests cryptographic authentication and it’s something

that’s already used in P(Y) code which is a military grade encrypted signal. Im-

plementing this in the civilian C(A) code would require changes to the GPS legacy

signal. Also most GPS devices developed until now would not be able to decrypt

the signal if changes were made. Although, if made properly, it would be a good

defence against spoofing, it’s not feasible, at least not for now.

The work at [9] suggests using a M-Estimator based extended Kalman filter

which is able to provide an accurate position in the presence of outlying errors

due to spoofing. It takes into account the user’s position, velocity, clock bias and

clock drift to make a prediction based on previous values and compare them to

17

Chapter 2. Literature Review

the current received ones. If the error is large, the weight matrix decreases, if the

error is small, the weight matrix is not influenced.

The work at [4] suggests using vestigial signal defense. A receiver copies the

incoming digitized front-end data into a buffer. After that, the receiver selects

one of the various GPS signals being tracked, then it removes the signal from the

buffered data. Once this signal has been removed from the buffered data, the

receiver performs acquisition for the signal with the same PRN identifier in the

buffered data. These steps are repeated over and over and the results are summed

until the signal meets a desired C/N0 threshold.

18

Chapter 3

Anti-spoofing techniques

3.1 Hardware used

The U-Blox EVK-M8T was connect via UART Serial, which is shown in the block

diagram below.

Figure 3.1: Block diagram

3.1.1 U-Blox EVK-M8T

In order to retrieve raw GPS data a GPS receiver is needed, the one used was

U-Blox EVK-M8T. This device returns all types of raw information, from sinal

properties like Doppler shift and carrier to receiver noise density ratio to signal

observations like pseudoranges and ephemerides.

19

Chapter 3. Anti-spoofing techniques

Figure 3.2: U-Blox EVK-M8T [5]

3.1.2 Raspberry Pi

Raspberry Pi is a microcomputer which allows processing of the data incoming to

it. In this scenario binary data was being received via the RX pin, in order to read

the incoming data, a binary parser was developed. This parser would deconstruct

the frames and store the respective variables.

Figure 3.3: Raspberry Pi 1 Model A [6]

3.1.3 Ettus N210

Ettus N210 is a software defined radio board which allows the transmission and

reception of sinals, aswell as signal processing, through internal programming or

using the computer as the processing unit and this device as the transceiver [7].

20

Chapter 3. Anti-spoofing techniques

In this scenario there was a need to have a spoofer in order to retrieve values

and find patterns. An open source spoofer was used, using this device as the trans-

mitter. The software used was gps-sdr-sim, which takes as input an ephemerides

file and a position, with that information it generates fake signals posing as a

genuine satellite [15].

Figure 3.4: Ettus N210 [7]

3.2 Software used

3.2.1 u-center

U-center is a visual interface software developed for Windows which allows the user

to analyze real time the data being returned from the u-blox device. It also allows

the user to configure the device settings, like which messages should it return,

which GNSS constellations should it be looking for, refresh rate and many other

parameters.

3.2.2 gnss-sdr-sim

Like mentioned before, a spoofer was needed to infer some kind of pattern and

distinguish it from the real signals. This program takes as input a position and

ephemerides. It generates a binary file based on the specifications needed, and

after that the spoofer can be executed through the ettus n210 board.

21

Chapter 3. Anti-spoofing techniques

Figure 3.5: U-center

3.2.3 Neuroph studio

In order to discover some kind of pattern, a neural network was tested. After

retrieving data from the u-blox device, using a developed python script running

in the raspberry pi, a neural network was trained. This program trains the algo-

rithm based on a previously given dataset, the number of neurons per layer are

adjustable, as well as the number of layers.

3.3 Information transmission

The required information is transmitted via UART from the u-blox device to the

raspberry pi. Figure 3.7 shows the structure of the UBX-RXM-RAWX message

which contains signal properties like pseudoranges and Doppler shift measure-

ments.

The developed program reads the buffer and checks if the header, class and

ID match with the given values. In this case, it was done in a way that allows

22

Chapter 3. Anti-spoofing techniques

Figure 3.6: Neuroph Studio

Figure 3.7: UBX-RXM-RAWX Message structure [8]

the reading of multiple measures from different satellites through the "numMeas"

field which indicates how many measurements there are in a message.

After receiving this information, the ephemeris of a satellite is polled by con-

structing the message in Figure 3.8.

Figure 3.8: Poll UBX-AID-EPH structure [8]

23

Chapter 3. Anti-spoofing techniques

The data is transmitted in little endian format, which consists in transmitting

the least significant bytes first in order to facilitate the storage in the receiver.

This way the least significant byte is stored in a lower register address and the

most significant byte is stored in a higher register address, the developed program

took this in consideration. Only the byte order is litle endian, the bit order is big

endian.

Figure 3.9 shows the structure of the UBX-AID-EPH, it has the three sub-

frames of navigation data that contain the parameters to calculate the satellite

position.

Figure 3.9: UBX-AID-EPH message structure [8]

Figure 3.10 shows the parameters that the subframe two has. Each subframe

is divided into ten words, however the u-blox device only returns words three

to ten. Each word has 24 bits without the parity bits, which are three bytes.

Figure 3.9 shows that each subframe transmitted by the u-blox will have 32 bytes.

From word three to ten, there are eight words which amount to 24 bytes, the rest

are delimiters between words with the 0x00 value. Since the bytes come in litle

endian order, the parameters will need some rearrangements, for example, looking

at Figure 3.9 at word three, IODE will not be the first byte but the last one.

24

Chapter 3. Anti-spoofing techniques

Figure 3.10: Subframe two message structure [2]

After unpacking the needed information, it is stored in the system by doing

the necessary conversions.

3.4 Raspberry pi implementation

Before implementing any anti-spoofing measures, there needs to be an understand-

ing on how the receiver is working. If it is just returning a position, there is no way

to know which corrections where made to it. So, in order to understand exactly

what is happening, a GPS position calculator was developed which would do its

calculations based on raw data and ephemerides. Clock drift data was used for

spoofing detection measures, not being needed to fix a position.

The fluxogram in Figure 3.11 explains the logic behind this implementation.

For every one minute that passes, there is a verification on the number of satellites

25

Chapter 3. Anti-spoofing techniques

Figure 3.11: Fluxogram of the system developed

and if it is possible to get a fix. It was done this way in order to give a chance for

the receiver to transmit as many data as possible. As mentioned before, the NAV-

CLOCK is not relevant to fix a position. When RXM-RAWX data, respective

to a satellite, is received, the raspberry pi immediately polls for the respective

ephemeris. RAWX data is received multiple times in order to check for variation

on signal properties like pseudoranges, Doppler effect and others. If the raspeberry

pi already has a given ephemeris, it won’t poll it again, not until it is reseted.

After the one minute mark, there is a counting process in order to find which

time of the week is in majority. In this scenario, pseudoranges are associated to a

26

Chapter 3. Anti-spoofing techniques

given received time of the week which indicates at which instant this measurement

was received. After calculating the position of the satellites and excluding the

ones which have data relative to different instants, there is a recount. If, after this

exclusion process, four satellites are still available, the program attempts the first

position fix, otherwise it returns to the reading activity.

Two position fixes are needed in order to exclude below the horizon satellites

which might be affecting the position calculation through multipath transmissions

and to fix the Sagnac effect. After that, there is a recount, if there are not at least

four satellites, the program returns to the reading activity in order to find more

satellites. Removing below the horizon satellites in this process not only excludes

multipath problems, but also spoofed signals which should not be visible.

After fixing the second position, epheremides are erased in the reset activity.

Figure 3.12: Developed position calculator

Sometimes two satellites will be near each other and the HTH matrix will be

singular, that is, non invertible. To solve this problem, this program adds noise

to the matrix until the determinant is different than zero, thus making the matrix

invertible. The other way to solve this is to remove one of the satellites in conflict.

A matrix is non invertible when the determinant is zero. This program iterates a

while loop until the determinant is different than zero adding a four by four matrix

of noise containing the value 0.00001. Both the HTH matrix and the noise matrix

are four by four.

27

Chapter 3. Anti-spoofing techniques

3.5 Flags to detect spoofed satellites

There is no straight forward way to detect spoofing or satellite’s that are not

real, it is all about paying attention to transitions and finding the odd variations.

In order to know exactly what is happening, the algorithm to fix a position was

programmed. It collects ephemerides and signal related information in order to

this. It also collects clock drift values in order to predict positions which is talked

about further ahead. This section presents techniques to detect forged signals from

specific signals.

3.5.1 Doppler shift

From equation 1.1, the following can be deduced.

∆f = f0
∆v

c
(3.1)

Where f0 is the GPS L1 band frequency, 1575.42 MHz, c is the speed of light.

By collecting pseudorange data in two instants, a satellite’s speed relative to the

receiver, ∆v can be infered, by subtracting the pseudoranges and dividing them

by the time difference. This value can be compared against the measured Doppler

shift in the integration stage. See Figure 3.15.

3.5.2 C/N0

Carrier to noise density ratio, also know as the ratio of carrier power and the

noise power per bandwith unit can also be used to determine strange variations.

Usually spoofed signals have high power, so if one signal has an abrupt transition,

it should be suspected. See Figure 3.15.

28

Chapter 3. Anti-spoofing techniques

3.5.3 Ephemeris integrity

In the receiver implemented, for each position fix, an ephemeris for each satellite

is polled. That way for every new calculations there are always new ephemeris.

By storing the old ephemerides and comparing them against the new ones when

calculating the satellite’s position, both positions can be compared, in order to

find abrupt changes.

Figure 3.13: Ephemris integrity

3.5.4 RAIM

Receiver autonomous integrity monitoring (RAIM) must be used when there are

at least five satellite’s visible [8]. This algorithm creates subsets of all possible

combinations between the set of visible satellites and performs a consistency check.

29

Chapter 3. Anti-spoofing techniques

After fixing a position with all the available satellites, RAIM can be used to

recalculate the receiver’s position without a given satellite, if there is one that is

far away from the overall position, then that satellite should be excluded [16].

Figure 3.14: RAIM

30

Chapter 3. Anti-spoofing techniques

3.5.5 Expected range

After fixing a position it is possible to retrieve a clock bias and know how it drifts

since the receiver returns that parameter. The orbits of GPS satellites usually are

around 20,000 Km, so by subtracting the clock bias times the speed of light to the

pseudorange, the expected range should be around that value.

The tested spoofer usually had very high pseudoranges, after all it wasn’t

synchronized to GPS time, which would imply a large clock bias for it to make

sense. So, if the clock bias is set and fixed to a small number, the expected range

should be near the observed one.

After the calculation of the receiver’s position, it is also possible to measure the

range between the receiver and the satellite and compare it with the pseudorange

of the satellite minus the clock bias times the speed of light.

Figure 3.15: Expected range, C/N0 variation and Doppler shift

3.5.6 Excluding below the horizon satellites

After fixing a position with the available satellites, it is possible to determine the

elevation of each one to the receivers position. If a satellite has an elevation below

zero, it means it shouldn’t be there.

The spoofer tested, gps-sdr-sim, didn’t take into account this effect so the

elevation can be calculated for each satellite in the new position or the old position

31

Chapter 3. Anti-spoofing techniques

depending on how long before it was. The satellites used for each calculation should

also be cross verified, in order to find some that suddenly disappeared or appeared

with different properties.

3.6 Flags to detect spoofing

3.6.1 Predicting the clock bias

The u-blox device returns clock drift parameters, so it is possible to know how it

will change overtime. After fixing a position, the clock bias is stored. When a new

fix is needed, the following equation is used:

∆t = ∆t0 + δ(TOW − TOW 0) (3.2)

Where ∆t is the expected new clock bias, ∆t0 is the clock bias calculated from

the previous position fix, TOW is the current GPS time of the week, TOW 0 is

the last position fix GPS time of the week and δ is the clock drift.

The clock drift is how much the clock bias gets delayed per second, multiplying

that for the time that passed it is possible to know how much it delayed. Using this

method only three measurements are needed which is the receiver’s position, since

the clock bias is already known. This position is compared against the normal

position fix.

Having the distance between both positions, it can be divided by the speed

of light and added or subtracted to the expected clock bias, generally the calcu-

lated clock bias is inside this range. Since the used spoofer, gps-sdr-sim, is not

synchronized with GPS time, the clock bias will change abruptly in unexpected

ways.

32

Chapter 3. Anti-spoofing techniques

3.6.2 Position variation

Usually spoofers change the position in a gradual way, so this method would not

be as effective. However it is something to always consider, it is not possible for

someone to travel large distances in one instant.

3.6.3 Overall

Using the mentioned methods one can implement multiple variations. Using the

method of predicting the clock bias, it is useful to compare the position fixed using

this method and the normal position fix. Applying RAIM on both, removing a

given satellite per combination, it is possible to see which satellites are contributing

most to the position bias.

3.7 Using Neural Networks

Since this is not a very complex problem with large amounts of data and variables,

only ten nodes were used in the hidden layer with one node in the output that

returns a value between zero and one. Being one a spoofing detection. The inputs

will vary for each test scenario.

In order to optimize the functioning of this neural network, every data was

normalized to the range between zero and one. For every input the maximum and

minimum were retrieved and then the conversion was made.

NormalizedV alue =
value−minimum

maximum−minimum
(3.3)

3.7.1 Detecting spoofed satellites

For this problem five inputs were considered. Doppler shift variation, CN0 vari-

ation, RAIM position difference without the given satellite to the global solution,

33

Chapter 3. Anti-spoofing techniques

variation of the ephemeredis given position and difference between the range be-

tween the satellite and the receiver and the pseudorange minus the clock bias.

CN0 variation is respective to the variation between two readings of this parame-

ter. After fixing a position there’s also a way to know how much a specific satellite

is off the global position by using RAIM, and it is also possible to use the calcu-

lated clock bias and check if the pseudorange minus the clock bias times the speed

of light is the same as the distance between the receiver and the satellite. Saving

the ephemeredis from the previous position fix, it is also possible to compare the

satellite position they return against the new ephemerides.

Solving this problem requires a special attention to variations, looking for

changes that shouldn’t happen. By having the position fix time span only the

biggest variations are considered. Doppler shift variation is the difference between

the predicted one and the observed.

3.7.2 Detecting spoofing

In order to detect spoofing, one should check for the variation between the clock

prediction and the calculated one from the position fix. Variation in position from

one iteration to another is also important, however they must be close in time.

The variation between the position fix and the position fix with the expected clock

bias is also another input.

34

Chapter 4

Implementation results

4.1 Observation

It is easier to detect spoofing when there is a variation from a non spoofing en-

vironment to spoofing one, however it is also possible to find discrepancies in a

forged environment. In order to assess the results, the following formula will be

applied.

Deviation =
|Reference− V alue|

Reference
(4.1)

The Deviation of a given Value relative to a Reference value.

4.1.1 C/N 0 variation

The easiest way one would figure how to spot a forged signal would be to look at the

signal power, however that is not straightforward and only the simplest spoofers

would be detected with this method. The spoofer used allows an adjustment in

power, however a transition from a real signal to a spoofed one would be easily

detected.

35

Chapter 4. Implementation results

Real signals have a bigger C/N0 variation, since the sources are further away

and susceptible to all kind of phenomenons. A spoofer with a direct line to a

receiver, usually does not vary much. Table 4.1 shows the observed variations.

Table 4.1: C/N0 variation

Spoofed Signal(%) Real Signal(%)
Minimum 0 2.32
Maximum 2.27 43.75
Average 1.07 10.59

4.1.2 Doppler shift

U-blox receiver retrieves the measured Doppler frequency shift at the integration

stage, since this effect is generated through the movement between the receiver

and the transmitter, it can be predicted through the variation of the pseudoranges.

This variation should not be measured on a big time span, because of the clock

drift. For a time span of one second, the clock drift of this receiver is around 0.180

microseconds.

Real signals should be uniform and have close values between the predicted

and observed Doppler shift, since the variation of the pseudoranges is an indicator

on how the satellite is moving according to the receiver. For forged signals, it is an

harder task, since they are on a fixed position and have to simulate the variation

of the pseudoranges in order to match the transmitted frequency. Table 4.2 shows

the variation from the observed and expected Doppler frequency shift for real and

forged signals.

Table 4.2: Doppler shift

Spoofed Signal(%) Real Signal(%)
Minimum 6.47 0.066
Maximum 508436023.9 6.5
Average 120364027.4 1.61

36

Chapter 4. Implementation results

4.1.3 RAIM

After fixing a position, and having more than four satellites, it is possible to

compare how much a position fix drifts from the one with the exclusion of the

respective satellite. In an non spoof environment, the absence of a satellite should

not influence the calculation of the position in more than a couple hundred meters.

Table 4.3 shows how much in average the receiver changes its position if one

given satellite is removed.

Table 4.3: RAIM position drift

Spoofed Signal(m) Real Signal(m)
Minimum 8969.4 5.47
Maximum 254893.1 345.24
Average 85372.74 85.42

4.1.4 Ephemerides variation

It is always useful to save the last used ephemeris and compare the satellite position

using both the new and old ephemeris. Most spoofers won’t change the ephemeris,

so in this test scenario a conclusion can’t be inferred.

Table 4.4: Ephemerides variation

Spoofed Signal(m) Real Signal(m)
Minimum 0.06 0.11
Maximum 0.60 2.40
Average 0.22 0.61

4.1.5 Expected range

After fixing a position it is always useful to check the range at which the satellite

is from the receiver, since the position of the receiver and the satellite are known.

From the position fix the clock bias is also determined, so by subtracting the clock

bias times the speed of light from the pseudorange the expected range can be

37

Chapter 4. Implementation results

obtained. Both ranges can be compared. Table 4.5 shows the variation of the

expected range from the determined one using the positions of the receiver and

the satellite.

Table 4.5: Expected range variation

Spoofed Signal(%) Real Signal(%)
Minimum 0.067 0.017
Maximum 31.36 12.98
Average 15.74 6.96

4.1.6 Clock variation

The clock of a GPS receiver usually corrects its bias when it is near one millisec-

onds. So, unless the bias is near that value, it can be predicted through the clock

drift. When spoofing starts the clock bias will have a great value, so if it goes

from microseconds to seconds, it should be suspicious. Also, knowing how the

clock drifts, even if the spoofer is synchronized, if the clock bias is not near the

expected one, then spoofing should be suspected.

After the first fix, the clock bias can be determined, this can be observed in

the Figure 4.1.

Figure 4.1: Clock bias fix

38

Chapter 4. Implementation results

Knowing how the clock drifts it is possible to obtain an estimation. In this

scenario a lower and an upper range were set, based on the clock bias plus the drift

and the position difference, as shown in the following equation. In this work, the

position difference was considered as a deviation in the clock as well, this assumes

a static position.

∆tmin = ∆t0 + δ(TOW − TOW 0) + distanceT imeShift

∆tmax = ∆t0 + δ(TOW − TOW 0)− distanceT imeShift
(4.2)

Where ∆t0 is the previously calculated clock bias, δ(TOW − TOW 0) is the

clock drift times the time difference between calculations and distanceTimeShift

is the distance between both position fixes divided by the speed of light.

Figure 4.2: Clock bias prediction

In this scenario the calculated clock bias is inside the expected range, like

shown in Figure 4.2. Since the clock bias drifted the way it was supposed to, this

position fix can be considered legitimate.

Figure 4.3 shows a spoofing scenario, where the receiver was given enough

iterations to adjust its clock bias to these signals. A random location was chosen

for this test.

Figure 4.4 shows the prediction range of the clock bias and the calculated

value. It is possible to observe the clock bias is not close to the estimated range,

in contrary to the previous scenario in which it in the estimated range. The bias

was off range by 5.800730359 ∗ 10−6 seconds, which can amount to an error of,

39

Chapter 4. Implementation results

Figure 4.3: Clock bias fix in spoofing environment

roughly, 1739.015 meters. This approximation was done by multiplying the given

time for the speed of light. However the calculated positions are really close, so it

should be suspicious how one parameter predicts one thing and the other another

thing.

Figure 4.4: Clock bias prediction in spoofing environment

Table 4.6: Clock variation offset from range

Spoofed Signal(seconds) Real Signal(seconds)
Distance 5.800730359 ∗ 10−6 0

4.1.7 Distance between position fixes

This method is only useful when the receiver is assumed as static or in a slow

movement, since it is normal for some vehicles to change its position abruptly.

However if records of previous position fixes are kept, it is possible to determine

the position of the receiver, its average velocity and the direction in which it is

going towards to. Figure 4.5 shows the new position fix, which would make the

distance between both position fixes 26.153394 meters, which is an acceptable

value since this algorithm does not have all the corrections of the pseudoranges.

40

Chapter 4. Implementation results

Figure 4.5: Distance shift between position fixes

In the spoofing scenario, both fixes are shown in Figure 4.3 and Figure 4.4.

The distance between them is 10.723805 meters. This is a rudimentary position

calculator, so this conclusion might not be as accurate as intended, however the

precision of position is better in a spoofed scenario.

Table 4.7: Distance between position fixes

Spoofed Signal(meters) Real Signal(meters)
Distance 10.72380 26.153394

4.1.8 Difference between position fix and expected position

Using the clock prediction and only calculating the variables respective to the posi-

tion of the receiver, it is possible to compare it against the position fix determining

the four variables.

Figure 4.6 compares both algorithms. It can be observed that the clock bias

calculated was close to the one predicted. The distance between both positions is

46.21688 meters, so it is possible to infer that there was no tampering of the data.

Figure 4.7 shows this difference in a spoofing environment. The euclidean

distance between both positions is 2674.057778 meters, which indicates that this

position might not be legitimate.

41

Chapter 4. Implementation results

Figure 4.6: Difference between position fix and expected position

Figure 4.7: Difference between position fix and expected position in a spoofing
environment

4.1.9 Conclusion

These methods have a different approach than the usual ones, since they focus

more on how the values should vary and not so much on how they should be. Any

spoofer can change the values to what they want to, however it is harder to imitate

a behaviour. Table 4.9 shows how this parameters should change for a spoofed and

42

Chapter 4. Implementation results

Table 4.8: Difference between position fix and expected position

Spoofed Signal(meters) Real Signal(meters)
Distance 2674.05777 46.21688

a real signal, being lower a smoother variation and higher an abrupter variation.

Table 4.9: Conclusion on spoofed satellites detection

Spoofed Signal Real Signal
C/N0 Lower Higher
Doppler shift variation Higher Lower
RAIM variation Higher Lower
Ephemerides variation Lower Higher
Expected range variation Higher Lower

When it comes to detecting spoofing the Table 4.10 shows the respective con-

clusions. In a spoofing scenario it is expected for the clock variation to be further

away from the expected range, where the real signal should be inside it. Since the

spoofer acts closer to the receiver than the satellites, it is expected for variations in

position to be lower because there are less variables that can influence this factor

like different satellites used for a position fix or multipath propagation. The dif-

ference between position fix and expected position should follow the same pattern

as the clock variation from the expected range since both work on an expected

clock bias, therefore the spoofed signal should have a larger distance difference.

Table 4.10: Conclusion on on detecting spoofing

Spoofed Signal Real Signal
Clock variation from the expected range Higher Lower
Distance between position fixes Lower Higher
Difference between position fix and expected position Higher Lower

4.2 Using Neural Networks

In order to develop this model, data will be retrieved from scenarios where there

is only spoofing and scenarios where there is no spoofing.

43

Chapter 4. Implementation results

4.2.1 Detecting spoofed satellites

Figure 4.8 shows the implemented neural network for this scenario. In 1 is respec-

tive to the Doppler shift variation, In 2 is respective to C/N0 variation, In 3 to

RAIM position difference without the given satellite to the global solution, In 4

to the variation of the ephemeredis given position and In 5 to the difference be-

tween the range between the satellite and the receiver and the pseudorange minus

the clock bias. Out 1 is respective to the detection, logical value of one, or no

detection, logical value of zero, of a spoofed satellite signal.

Figure 4.8 already shows an example of data from a spoofed satellite. In1 is

not zero, since neuroph studio does an approximation, but close to zero which is

not frequent in spoofed signals. In2 has a value near zero, which is more usual

for a spoofed signal than for a real signal, unless the spoofer intentionally changes

the power of the signal. In3 and In5 are the highest values. In4, like mentioned

before, is lower in spoofed signals. Even though In1 was an exception to the rule,

the neural network was capable of detecting it was a forged signal.

Figure 4.8: Neural Network to detect spoofed satellites

In order to train the neural network, data is needed, from either spoofed signals

or real signals, so to facilitate the visualization of the solution, a neural network

44

Chapter 4. Implementation results

with 19 samples will be trained. This 19 samples will be split, 70 percent for

training and 30 percent for testing. In order to infer the accuracy of the model,

some samples must be used only for testing. For a final product more samples

would be needed.

Table 4.11: Neural Network data first scenario

In1 In2 In3 In4 In5 Out1
5.51515E-11 0.061776062 1.6096E-05 1 0 0
3.02558E-09 0.214285714 0.000352148 0.226124764 0.203199766 0
8.78705E-09 0.142857143 0.000129397 0.221975152 0.357443548 0
8.37785E-10 0.053156146 0.000140697 0.203346702 0.221049285 0
1.33194E-09 0.360902256 9.25617E-05 0.027666185 0.001572 0
0 0.057142857 0.001154503 0.231659561 0.150066639 0
1.25857E-08 0.207792208 0 0.226787736 0.300176768 0
4.59983E-10 0.061776062 5.92986E-05 0.197285185 0.270280084 0
1.8343E-09 0.147465438 7.2611E-05 0.022996656 0.337203507 0
2.66276E-09 0.152380952 0.000566526 0.236837984 0.092319348 0
4.55887E-09 0.065306122 9.77733E-05 0.232301038 0.227161397 0
2.0633E-09 0.623376623 6.28108E-05 0.19200164 0.304327038 0
1.33597E-09 1 0.001332994 0.022531179 0.41336838 0
0.080698679 0.050793651 0.148139239 0.022972461 0.001573843 1
1 0 0.215819986 0.038979065 0.04630737 1
0.102246424 0 1 0.231459005 0.768545467 1
0.237458039 0.043956044 0.035168316 0.030313963 0.807583303 1
1.27963E-08 0 0.213316776 0.082331323 1 1
6.27836E-08 0.051948052 0.397082776 0 0.386595343 1

Table 4.11 already has the data normalized to the interval between zero and

one, the value one is the maximum and zero, the minimum. Randomly 70 percent

will be used for training and 30 percent for testing.

Figure 4.9: Test scenario one results

Figure 4.9 shows the test results for the mentioned scenario. There is a very low

error, so this experiment was successful, some inputs were so low that the program

automatically rounded them to zero. As mentioned before, the dataset is too small

45

Chapter 4. Implementation results

in order to make a satisfying product, hence it is only for the simplification of the

solution.

46

Chapter 5

Conclusion

The objective of this work was to study effective anti-spoofing measures due to the

emerging self-driving vehicles that use GPS as a navigation system. The spoofer

tested was gps-sdr-sim and this spoofer had some particularities that might make

it distinguishable from real signals.

The biggest characteristic of this type of spoofers is that its clock is not syn-

chronized, so the clock bias obtained after a position fix will be big, making an

abrupt transition. The pseudoranges also will have big values. Even if there is

synchronization in the spoofer, it will not know the clock bias of the receiver. The

receiver, knowing how its clock drifts, can predict how much the clock bias is going

to be.

Some parameters have values that do not change that much, however it is still

a significant change that the neural network can predict. The objective of this

work was not to try to find which values the parameters should have, because

they are easily changed, but how the variation happens, how the spoofer thinks

per say. It is possible for a neural network to find a pattern in this data, as long

as it is well trained and labeled.

47

Chapter 5. Conclusion

5.1 Future work

Given these flags and the methods studied, a robust system can be built using

thousands of samples in different scenarios using different spoofers and without

spoofing. Implementing an AI algorithm capable of analyzing the data and re-

turning an answer quickly in order to deal with the forged signals and possibly

ignore them. There is not straightforward solution to this problem, however there

is a pattern among spoofers and real signals, that pattern can be trained with the

neural network. It is also worth to look at other GNSS systems in order to use

all available information to determine a position. The easiest way would be to

detect spoofing in GPS and change to another constellation, however it would be

interesting to make a system that uses satellites from diffrent constellations.

This work can also be continued with the help of sensors that indicate the

velocity, acceleration and direction of the receiver. Wi-Fi routers and GSM towers

can also be used as a reference for positioning. The receiver can calculate a pattern

for the way it is moving, by saving previous positions, it is possible to determine in

which direction it is going to and the velocity of it. An AI algorithm can determine

if a receiver was supposed to move in a certain direction with a certain velocity.

48

Appendices

49

Appendix A

Code

1 from __future__ import division

2 from decimal import *

3 import matplotlib.pyplot as plt

4 import matplotlib.image as mpimg

5 import math

6 import serial

7 import binascii

8 import struct

9 import pyproj

10 import numpy

11 import time

12 import itertools

13

14 port = serial.Serial("/dev/ttyAMA0", baudrate =9600 , timeout =3)

15

16 #poll_eph = "\xB5\x62\x0B\x31\x00\x00\x3C\xBF"

17

18 ecef = pyproj.Proj(proj=’geocent ’, ellps=’WGS84 ’, datum=’WGS84 ’)

19 lla = pyproj.Proj(proj=’latlong ’, ellps=’WGS84 ’, datum=’WGS84’)

20

21 tolerance = 1*(10** -12)

22 miu = 3.986005*(10**14)

23 omega_e = 7.2921151467*(10** -5)

24 c = 299792458

25 F = -4.442807633*(10**(-10))

51

Appendix A. Code

26 rt = 6371*(10**3)

27 l1freq = 1575.42*(10**(6))

28 lastRcvTow = 0

29

30 storedpx = 0

31 storedpy = 0

32 storedpz = 0

33

34 start = time.time()

35 delta_clock = 0

36 delta_clock_set = False

37 delta_clock_tow = 0

38

39 clock_variance = 0

40

41 drift_clock = 0

42 drift_clock_set = False

43

44 clock_biasread = 0

45

46 class sv:

47 def __init__(self , id , pr, rcvTow):

48 self.id = id

49 self.pr = pr

50 self.rcvTow = rcvTow

51

52 svList = []

53

54 def raim(lengthL , svPos):

55 if(lengthL >4):

56 print("---Raim started ---")

57 it = lengthL -1

58 for subset in itertools.combinations(svPos ,it):

59 for svCheck in svPos:

60 found = False

61 for svCheck2 in subset:

62 if(svCheck.id == svCheck2.id):

63 found = True

52

Appendix A. Code

64 if(found == False):

65 print("---Removed sv: %s" % svCheck.id)

66 sv_remv = svCheck

67 lat ,lon ,ecefrx , ecefry , ecefrz = getFix(subset ,0)

68 sv_remv.delta_raim = math.sqrt((storedpx -ecefrx)**2 + (

storedpy -ecefry)**2 + (storedpz -ecefrz)**2)

69 def printSvData(sat):

70 global delta_clock

71 for svcnt in sat:

72 print("**********************")

73 print("*sv_id: %s*" % svcnt.id)

74 print("*delta_doppler: %s*" % svcnt.variance)

75 print("*delta_cn0: %s*" % svcnt.variancecn0)

76 if hasattr(svcnt ,’delta_raim ’):

77 print("*delta_raim: %s*" % svcnt.delta_raim)

78 if hasattr(svcnt ,’variance_ef ’):

79 variance_ef = (1.5727 - svcnt.variance_ef)/1.5727

80 print("*delta_eph: %s*" % svcnt.variance_ef)

81 rangeFrompr = svcnt.pr - Decimal(c*delta_clock)

82 if hasattr(svcnt ,’varianceR ’):

83 variance_range = math.fabs((Decimal(svcnt.varianceR)-

rangeFrompr)/Decimal(svcnt.varianceR))

84 print("*variance_range: %s*" % variance_range)

85 print("**********************")

86

87 def fixSagnac(sv ,ecefx , ecefy , ecefz):

88 print("---Sagnac ---")

89 for svi in sv:

90 Delta_fim =0.000001

91

92

93 delta_x = Decimal(ecefx) - svi.X

94 delta_y = Decimal(ecefy) - svi.Y

95 delta_z = Decimal(ecefz) - svi.Z

96 dist_rcv = Decimal(math.sqrt((delta_x)**2+(delta_y)**2+(

delta_z)**2))

97 delta_t = dist_rcv/Decimal(c)

98

53

Appendix A. Code

99 Dist_fim=dist_rcv

100 Dist_inicio =0

101

102 while(math.fabs(Dist_fim -Dist_inicio)>Delta_fim):

103 Delta_rad=Decimal(omega_e -svi.omega_dot)*(delta_t)

104

105 Dist_inicio=Dist_fim

106 A = Decimal(pow(svi.sqrt_A ,2))

107 n = Decimal(math.sqrt(Decimal(miu)/(A**3))) + Decimal(svi.

delta_n)

108

109 sentTow = Decimal(svi.rcvTow -delta_clock) - Decimal(delta_t)

110 tk = sentTow - Decimal(svi.toe)

111

112 if(tk >302400):

113 tk = tk - 604800

114 elif(tk < -302400):

115 tk = tk + 604800

116

117 M = Decimal(svi.M0) + n*tk

118 delta_E = 1

119 E = M

120 while(math.fabs(delta_E)> tolerance):

121 delta_E = (M - (E-Decimal(svi.e*math.sin(E))))/(1- Decimal(

svi.e*math.cos(E)))

122 E = E+delta_E

123 sVk = Decimal(Decimal(math.sqrt(1-Decimal(pow(svi.e,2))))*

Decimal(math.sin(E)))/(1- Decimal(svi.e*math.cos(E)))

124 cVk = Decimal(Decimal(math.cos(E)-svi.e)/(1- Decimal(svi.e*

math.cos(E))))

125 true_anomaly = Decimal(math.atan2(sVk ,cVk))

126

127 if(true_anomaly <0):

128 true_anomaly = true_anomaly + Decimal (2* math.pi)

129

130 arg_latitude = true_anomaly + Decimal(svi.omega)

131

54

Appendix A. Code

132 delta_u = (Decimal(svi.Cuc) * Decimal(math.cos(2*

arg_latitude))+Decimal(svi.Cus)* Decimal(math.sin(2*

arg_latitude)))

133 u = Decimal(arg_latitude + delta_u)

134

135 delta_i = (Decimal(svi.Cic) * Decimal(math.cos(2*

arg_latitude)) +Decimal(svi.Cis) * Decimal(math.sin(2*

arg_latitude)))

136 i = Decimal(Decimal(svi.i0) + delta_i + tk*(Decimal(svi.idot

)))

137

138 delta_r = (Decimal(svi.Crs) * Decimal(math.sin(2*

arg_latitude)) + Decimal(svi.Crc) * Decimal(math.cos(2*

arg_latitude)))

139

140 r = A*(1- Decimal(svi.e*math.cos(E))) + delta_r

141

142 omega = Decimal(svi.omega0) + Decimal(svi.omega_dot -

omega_e)*tk - Decimal(omega_e*svi.toe)

143

144

145 Xkl=Decimal(r*Decimal(math.cos(u)))

146 Ykl=Decimal(r*Decimal(math.sin(u)))

147

148 X=Decimal(Xkl*Decimal(math.cos(omega))-Ykl*Decimal(math.cos(

i)*math.sin(omega)))

149 Y=Decimal(Xkl*Decimal(math.sin(omega))+Ykl*Decimal(math.cos(

i)*math.cos(omega)))

150 Z=Decimal(Ykl*Decimal(math.sin(i)))

151 XYZ = numpy.matrix ([[X],[Y],[Z]])

152

153 if(delta_t >0):

154 Mat_trans11=Decimal(math.cos(Decimal(omega_e -svi.omega_dot

)*(delta_t)))

155 Mat_trans12=Decimal(math.sin(Decimal(omega_e -svi.omega_dot

)*(delta_t)))

156 Mat_trans13 =0

55

Appendix A. Code

157 Mat_trans21=Decimal(-math.sin(Decimal(omega_e -svi.

omega_dot)*(delta_t)))

158 Mat_trans22=Decimal(math.cos(Decimal(omega_e -svi.omega_dot

)*(delta_t)))

159 Mat_trans23 =0

160 Mat_trans31 =0

161 Mat_trans32 =0

162 Mat_trans33 =1

163 Mat_trans = numpy.matrix ([[Mat_trans11 ,Mat_trans12 ,

Mat_trans13],[Mat_trans21 ,Mat_trans22 ,Mat_trans23],[Mat_trans31

,Mat_trans32 ,Mat_trans33]])

164 XYZ = Mat_trans.dot(XYZ)

165 delta_x = (svi.X) - XYZ.item (0,0)

166 delta_y = (svi.Y) - XYZ.item (1,0)

167 delta_z = (svi.Z) - XYZ.item (2,0)

168 dist_prev = math.sqrt((delta_x)**2+(delta_y)**2+(delta_z)

**2)

169

170 svi.X = (XYZ.item (0,0))

171 svi.Y = (XYZ.item (1,0))

172 svi.Z = (XYZ.item (2,0))

173

174 delta_x = Decimal(ecefx) - (svi.X)

175 delta_y = Decimal(ecefy) - (svi.Y)

176 delta_z = Decimal(ecefz) - (svi.Z)

177 dist_rcv = Decimal(math.sqrt((delta_x)**2+(delta_y)**2+(

delta_z)**2))

178 delta_t = dist_rcv/Decimal(c)

179

180 Dist_fim=dist_rcv

181

182 def checkHealth(tupSv):

183 for svi in tupSv:

184 if(svi.health ==1):

185 print("Sv: %s, not healthy" % svi.id)

186 svi.pos = 0

187

188 def checkElev(sv ,lat ,lon):

56

Appendix A. Code

189 for svi in sv:

190 lat = math.radians(lat)

191 lon = math.radians(lon)

192 phi = math.radians(svi.lat)

193 teta_L = math.radians(svi.lon)

194 L = teta_L -lon

195 r = rt + svi.alt

196 p1 = (math.cos(phi)*math.cos(L)*math.cos(lat)+math.sin(lat)*

math.sin(phi))

197 p2 = r*math.sqrt(1-(p1**2))

198 p3 = math.sqrt((rt**2)+(r**2) -(2*rt*r*p1))

199 print("----Range for sat %s: %s----" % (svi.id,p3))

200 svi.varianceR = p3

201 E = math.acos(p2/p3)

202 E = math.degrees(E)

203 if(E<0):

204 svi.pos=0

205 print("-------------------")

206 print("->Sat: %s" % svi.id)

207 print("->Elev: %s" % E)

208 print("-------------------")

209

210 def svPosCount ():

211 toCalc = []

212 counter = 0

213 for svi in svList:

214 if(svi.pos ==1):

215 counter = counter +1

216 toCalc.append(svi)

217 print("|-----ARRAY COUNT ----|")

218 print("counter: %s" % counter)

219 for stest in toCalc:

220 print("svId: %s" % stest.id)

221 print("|--------------------|")

222 return (counter ,toCalc)

223

224 def MostTowCount ():

225 toCalc = []

57

Appendix A. Code

226 for svi in svList:

227 if(svi.pos ==1):

228 toCalc.append(svi)

229 print("|-----ARRAY COUNT TOW ----|")

230 print("| svi: %s tow: %s |" % (svi.id ,svi.rcvTow))

231 print("|--------------------|")

232 count = 0

233 Tow = 0

234 for tCsV in toCalc:

235 countaux =0

236 for tCsV2 in toCalc:

237 if(tCsV.rcvTow == tCsV2.rcvTow):

238 countaux= countaux +1

239 if(countaux >count):

240 count=countaux

241 Tow = tCsV.rcvTow

242 return Tow

243

244

245 def getFix3SAT(svPos , clock):

246 r0 = numpy.matrix ([[Decimal (0)],[Decimal (0)],[Decimal (0)]])

247 errorC = 1000

248 clock_d = clock * c

249 it = 0

250 while errorC >0.001 and it <=20:

251 r0 = numpy.matrix ([[Decimal(r0.item (0,0))],[Decimal(r0.item

(1,0))],[Decimal(r0.item (2,0))]])

252 Z = numpy.zeros(shape=(len(svPos) ,1))

253 linc = 0

254 H = numpy.zeros(shape=(len(svPos) ,3))

255 for svr in svPos:

256 vetor_sj_r = numpy.subtract ([[svr.X],[svr.Y],[svr.Z]],r0)

257 mv_sj_r = numpy.linalg.norm(vetor_sj_r)

258 unit_vetorT = (vetor_sj_r / mv_sj_r).T

259 Zd2 = unit_vetorT.dot ([[svr.X],[svr.Y],[svr.Z]])

260 Z2 = Decimal(svr.pr)- Decimal(clock_d) - Zd2

261 H2 = -unit_vetorT

262 H2 = numpy.asarray(H2).reshape (-1)

58

Appendix A. Code

263 Z[linc] = [Z2.item (0,0)]

264 H[linc] = H2

265 linc = linc+1

266 p1 = (H.T).dot(Z)

267 p2 = (H.T).dot(H)

268 while numpy.linalg.det(p2)==0:

269 noise = numpy.full ((3,3) ,0.00001)

270 p2 = p2 + noise

271 p3 = numpy.linalg.inv(p2)

272 x = p3.dot(p1)

273 errorC = math.sqrt((r0.item (0,0)-Decimal(x.item (0,0)))**2+(r0.

item (1,0)-Decimal(x.item (1,0)))**2+(r0.item (2,0)-Decimal(x.item

(2,0)))**2)

274 r0 = x[:,:]

275 it = it+1

276 lon , lat , alt = pyproj.transform(ecef , lla , x.item (0,0), x.item

(1,0), x.item (2,0), radians=False)

277 print(’-----POSFIX3SAT:-----’)

278 print("Latitude: %s" % lat)

279 print("Longitude: %s" % lon)

280 print("Altitude: %s" % alt)

281 print("Delta_clock: %s" % clock)

282 print(’-----------------’)

283

284 def getFix(svPos , sagnac):

285 global clock_variance

286 global delta_clock

287 global delta_clock_set

288 global delta_clock_tow

289 global storedpx

290 global storedpy

291 global storedpz

292 global drift_clock

293 global drift_clock_set

294 r0 = numpy.matrix ([[Decimal (0)],[Decimal (0)],[Decimal (0)]])

295 errorC = 1000

296 it = 0

297 while errorC >0.001 and it <=20:

59

Appendix A. Code

298 r0 = numpy.matrix ([[Decimal(r0.item (0,0))],[Decimal(r0.item

(1,0))],[Decimal(r0.item (2,0))]])

299 Z = numpy.zeros(shape=(len(svPos) ,1))

300 linc = 0

301 H = numpy.zeros(shape=(len(svPos) ,4))

302 for svr in svPos:

303 vetor_sj_r = numpy.subtract ([[svr.X],[svr.Y],[svr.Z]],r0)

304 mv_sj_r = numpy.linalg.norm(vetor_sj_r)

305 unit_vetorT = (vetor_sj_r / mv_sj_r).T

306 Zd2 = unit_vetorT.dot ([[svr.X],[svr.Y],[svr.Z]])

307 Z2 = Decimal(svr.pr) - Zd2

308 H2 = numpy.insert(-unit_vetorT , 3, 1, axis =1)

309 H2 = numpy.asarray(H2).reshape (-1)

310 Z[linc] = [Z2.item (0,0)]

311 H[linc] = H2

312 linc = linc+1

313 p1 = (H.T).dot(Z)

314 p2 = (H.T).dot(H)

315 while numpy.linalg.det(p2)==0:

316 noise = numpy.full ((4,4) ,0.00001)

317 p2 = p2 + noise

318 print("singular")

319 p3 = numpy.linalg.inv(p2)

320 x = p3.dot(p1)

321 errorC = math.sqrt((r0.item (0,0)-Decimal(x.item (0,0)))**2+(r0.

item (1,0)-Decimal(x.item (1,0)))**2+(r0.item (2,0)-Decimal(x.item

(2,0)))**2)

322 r0 = x[:-1,:]

323 it=it+1

324 lon , lat , alt = pyproj.transform(ecef , lla , x.item (0,0), x.item

(1,0), x.item (2,0), radians=False)

325 delta_clockaux = x.item (3,0)/c

326 if sagnac ==1:

327 if(delta_clock_set ==True):

328 #[-0.179 , -0.185] us/s drift relogio

329 distance_timeshift = math.sqrt((storedpx -x.item (0,0))**2 + (

storedpy -x.item (1,0))**2 + (storedpz -x.item (2,0))**2) / c

60

Appendix A. Code

330 delta_tc_min = (lastRcvTow -delta_clock_tow)*(drift_clock)+

delta_clock+distance_timeshift

331 delta_tc_max = (lastRcvTow -delta_clock_tow)*(drift_clock)+

delta_clock -distance_timeshift

332 print("Expected min delta_clock: %s" % delta_tc_min)

333 print("Expected max delta_clock: %s" % delta_tc_max)

334 if(math.fabs(delta_clockaux)>math.fabs(delta_tc_min) and

math.fabs(delta_clockaux)<math.fabs(delta_tc_max)):

335 print("Inside range: VALID")

336 clock_variance = 0

337 else:

338 print("Outside range: INVALID")

339 if(delta_clockaux >delta_tc_min):

340 clock_variance = (delta_clockaux -delta_tc_min)/(

delta_tc_min -delta_tc_max)

341 else:

342 clock_variance = (delta_tc_max -delta_clockaux)/(

delta_tc_min -delta_tc_max)

343 delta_clock = x.item (3,0)/c

344 delta_clock_tow = lastRcvTow

345 delta_clock_set = True

346 drift_clock_set = False

347 storedpx = x.item (0,0)

348 storedpy = x.item (1,0)

349 storedpz = x.item (2,0)

350 print(’-----POSFIX:-----’)

351 print("Latitude: %s" % lat)

352 print("Longitude: %s" % lon)

353 print("Altitude: %s" % alt)

354 print("Delta_clock: %s" % delta_clockaux)

355 print("Tow: %s" % lastRcvTow)

356 print(’-----------------’)

357

358 return(lat ,lon ,x.item (0,0), x.item (1,0), x.item (2,0))

359

360 def pollEphSv(svEphId):

361 CK_A = 0x00

362 CK_B = 0x00

61

Appendix A. Code

363

364 CK_A = CK_A + 0x0B

365 CK_B = CK_B + CK_A

366

367 CK_A = CK_A + 0x31

368 CK_B = CK_B + CK_A

369

370 CK_A = CK_A + 0x01

371 CK_B = CK_B + CK_A

372

373 CK_A = CK_A + 0x00

374 CK_B = CK_B + CK_A

375

376 CK_A = CK_A + svEphId

377 CK_B = CK_B + CK_A

378

379 sum1 = CK_A & 0xff

380 sum2 = CK_B & 0xff

381

382 x = ’B5’ + ’62’ + ’0B’ + ’31’ + ’01’ + ’00’ + format(svEphId ,’02

x’) + format(sum1 ,’02x’) + format(sum2 ,’02x’)

383 y = x.decode("hex")

384 return y

385

386 def checkSvList(id):

387 if(len(svList)==0):

388 return (False ,0)

389 else:

390 for svi in svList:

391 if(svi.id == id):

392 return (True ,svi)

393 return (False ,0)

394

395 def sat_pos(sva):

396 print("****")

397 A = pow(sva.sqrt_A ,2)

398 n = math.sqrt(miu/(A**3)) + sva.delta_n

399

62

Appendix A. Code

400 sentTow = Decimal(Decimal(sva.rcvTow) - Decimal(sva.pr/c))

401 delta_t = sentTow - sva.toe

402

403 if(delta_t >302400):

404 delta_t = delta_t - 604800

405 elif(delta_t < -302400):

406 delta_t = delta_t + 604800

407

408 M = Decimal(Decimal(sva.M0) + Decimal(n)*delta_t)

409 delta_E = 1

410 E = M

411 while(math.fabs(delta_E)> tolerance):

412 delta_E = Decimal(M - (E-Decimal(sva.e)*Decimal(math.sin(E))))

/(1- Decimal(sva.e)*Decimal(math.cos(E)))

413 E = E+delta_E

414

415 #SV time correction

416

417 delta_tsv = sentTow - sva.toc

418 if(delta_tsv >302400):

419 delta_tsv = delta_tsv - 604800

420 elif(delta_tsv < -302400):

421 delta_tsv = delta_tsv + 604800

422 delta_tr = Decimal(F*sva.e*sva.sqrt_A*math.sin(E))

423 delta_tsv = Decimal(Decimal(sva.af0) + Decimal(sva.af1)*

delta_tsv + Decimal(sva.af2)*(delta_tsv **2) + delta_tr -

Decimal(sva.tgd))

424

425 sva.tcorr = delta_tsv

426

427 #/// Fixing pseudorange ///

428 fixedpr = Decimal(Decimal(sva.pr) + (delta_tsv*Decimal(c)))

429 sva.pr = fixedpr

430

431

432

433 sentTow = Decimal(Decimal(sva.rcvTow) - Decimal(sva.pr/c))

434

63

Appendix A. Code

435 delta_t = sentTow - sva.toe

436

437 if(delta_t >302400):

438 delta_t = delta_t - 604800

439 elif(delta_t < -302400):

440 delta_t = delta_t + 604800

441

442 M = Decimal(Decimal(sva.M0) + Decimal(n)*delta_t)

443 delta_E = 1

444 E = M

445 while(math.fabs(delta_E)> tolerance):

446 delta_E = Decimal(M - (E-Decimal(sva.e)*Decimal(math.sin(E))))

/(1- Decimal(sva.e)*Decimal(math.cos(E)))

447 E = E+delta_E

448

449 sVk = Decimal(math.sqrt(1-pow(sva.e,2))*math.sin(E))/Decimal(1-

sva.e*math.cos(E))

450 cVk = Decimal(math.cos(E)-sva.e)/Decimal(1-sva.e*math.cos(E))

451 true_anomaly = Decimal(math.atan2(sVk ,cVk))

452

453 if(true_anomaly <0):

454 true_anomaly = true_anomaly + Decimal (2* math.pi)

455

456 arg_latitude = true_anomaly + Decimal(sva.omega)

457

458 delta_u = Decimal(sva.Cuc * math.cos (2* arg_latitude)+sva.Cus*

math.sin(2* arg_latitude))

459 u = arg_latitude + delta_u

460

461 delta_i = Decimal(sva.Cic * math.cos (2* arg_latitude) + sva.Cis *

math.sin(2* arg_latitude))

462 i = Decimal(sva.i0) + delta_i + delta_t*Decimal(sva.idot)

463

464 delta_r = Decimal(sva.Crs * math.sin (2* arg_latitude) + sva.Crc *

math.cos(2* arg_latitude))

465

466 r = Decimal(Decimal(A*(1-sva.e*math.cos(E))) + delta_r)

467

64

Appendix A. Code

468 omega = Decimal(sva.omega0) + Decimal(sva.omega_dot - omega_e)*

delta_t - Decimal(omega_e*sva.toe)

469

470

471 Xkl=Decimal(r*Decimal(math.cos(u)))

472 Ykl=Decimal(r*Decimal(math.sin(u)))

473

474 #POSITION ECEF FORMAT

475 sva.X=Decimal(Xkl*Decimal(math.cos(omega))-Ykl*Decimal(math.cos(

i)*math.sin(omega)))

476 sva.Y=Decimal(Xkl*Decimal(math.sin(omega))+Ykl*Decimal(math.cos(

i)*math.cos(omega)))

477 sva.Z=Decimal(Ykl*Decimal(math.sin(i)))

478 sva.lon , sva.lat , sva.alt = pyproj.transform(ecef , lla , sva.X,

sva.Y, sva.Z, radians=False)

479 ’’’

480 print("------SAT POS CALCULUS ------")

481 print("E: %s" % E)

482 print("sVk: %s" % sVk)

483 print("cVk: %s" % cVk)

484 print(" true_anomaly: %s" % true_anomaly)

485 print(" arg_latitude: %s" % arg_latitude)

486 print(" delta_u: %s" % delta_u)

487 print("u: %s" % u)

488 print(" delta_i: %s" % delta_i)

489 print("i: %s" % i)

490 print("r: %s" % r)

491 print(" omega: %s" % omega)

492 print("Xkl: %s" % Xkl)

493 print("Ykl: %s" % Ykl)

494 print("sva.X: %s" % sva.X)

495 print("sva.Y: %s" % sva.Y)

496 print("sva.Z: %s" % sva.Z)

497 print(" tcorr: %s" % sva.tcorr)

498 print("---------------------------")

499 #CONVERTION TO LAT/LON

500 print("------------")

501 print("svId: %s" % sva.id)

65

Appendix A. Code

502 print(sva.lon ,sva.lat ,sva.alt)

503 print("X: %s" % sva.X)

504 print("Y: %s" % sva.Y)

505 print("Z: %s" % sva.Z)

506 print(" Pseudorange: %s" % sva.pr)

507 print("Rcv Tow: %s" % (sva.rcvTow))

508 print("------------")

509 ’’’

510 print("X: %s" % sva.X)

511 print("Y: %s" % sva.Y)

512 print("Z: %s" % sva.Z)

513 #print_sv(sva)

514 #clockDelay(X,Y,Z,sva)

515

516 def clockDelay(X,Y,Z,sva):

517 rg = math.sqrt (((X-ecefx)**2) +((Y-ecefy)**2) +((Z-ecefz)**2))

518 delta_clock = (sva.pr-rg)/c

519 print("------------")

520 print("delta_clock: %s" % (delta_clock))

521 print("------------")

522

523 def print_sv(svt):

524 print("Sv id: %s" % (svt.id))

525 print("Pseudo range: %s" % (svt.pr))

526 print("Rcv Tow: %s" % (svt.rcvTow))

527 print("Crs: %s" % (svt.Crs))

528 print("delta_n: %s" % (svt.delta_n))

529 print("M0: %s" % (svt.M0))

530 print("Cuc: %s" % (svt.Cuc))

531 print("e: %s" % (svt.e))

532 print("Cus: %s" % (svt.Cus))

533 print("sqrt_A: %s" % (svt.sqrt_A))

534 print("toe: %s" % (svt.toe))

535 print("cic: %s" % (svt.Cic))

536 print("cis: %s" % (svt.Cis))

537 print("omega0: %s" % (svt.omega0))

538 print("i0: %s" % (svt.i0))

539 print("crc: %s" % (svt.Crc))

66

Appendix A. Code

540 print("omega: %s" % (svt.omega))

541 print("omega_dot: %s" % (svt.omega_dot))

542 print("idot: %s" % (svt.idot))

543 print("af0: %s" % (svt.af0))

544 print("af1: %s" % (svt.af1))

545 print("af2: %s" % (svt.af2))

546 print("tgd: %s" % (svt.tgd))

547 print("toc: %s" % (svt.toc))

548

549

550 def handle_efsf1(sf1 ,svp):

551 tocr = sf1 [20:22]

552 toc = struct.unpack(’=H’,tocr)[0]

553 svp.toc = toc *(2**4)

554

555 af0r1r = sf1 [30:31]

556 af0r1 = format(int(af0r1r.encode(’hex’) ,16),’008b’)

557

558 af0r2r = sf1 [29:30]

559 af0r2 = format(int(af0r2r.encode(’hex’) ,16),’008b’)

560

561 af0r3r = sf1 [28:29]

562 af0r3 = format(int(af0r3r.encode(’hex’) ,16),’008b’)[:6]

563

564 af1r1r = sf1 [24:25]

565 af1r1 = format(int(af1r1r.encode(’hex’) ,16),’008b’)

566

567 af1r2r = sf1 [25:26]

568 af1r2 = format(int(af1r2r.encode(’hex’) ,16),’008b’)

569

570 af0aux = af0r1 + af0r2 + af0r3

571 af1aux = af1r2 + af1r1

572

573 af2r1 = sf1 [26:27]

574 af2aux = format(int(af2r1.encode(’hex’) ,16),’008b’)

575

576 tgdr = sf1 [16:17]

577 tgdr2 = format(int(tgdr.encode(’hex’) ,16),’008b’)

67

Appendix A. Code

578

579 af0 = twos_comp(int(af0aux ,2) ,22)

580 af1 = twos_comp(int(af1aux ,2) ,16)

581 af2 = twos_comp(int(af2aux ,2) ,8)

582 tgd = twos_comp(int(tgdr2 ,2) ,8)

583

584 svp.tgd = (tgd *(2**(-31)))

585 svp.af0 = (af0 *(2**(-31)))

586 svp.af1 = (af1 *(2**(-43)))

587 svp.af2 = (af2 *(2**(-55)))

588

589 def handle_efsf2(sf2 ,svp):

590 ioder = sf2 [2:3]

591 iode = struct.unpack(’=b’,ioder)[0]

592 crsr = sf2 [:2]

593 crs = struct.unpack(’=h’,crsr)[0]

594 svp.Crs = (crs * (2**(-5)))

595 delta_nr = sf2 [5:7]

596 delta_n = struct.unpack(’=h’,delta_nr)[0]

597 svp.delta_n = (delta_n * (2**(-43)) * math.pi)

598 M0r = sf2 [8:11] + sf2 [4:5]

599 M0 = struct.unpack(’=L’,M0r)[0]

600 svp.M0 = (M0 * (2**(-31)) * math.pi)

601 Cucr = sf2 [13:15]

602 Cuc = struct.unpack(’=h’,Cucr)[0]

603 svp.Cuc = Cuc *(2**(-29))

604 er = sf2 [16:19] + sf2 [12:13]

605 e = struct.unpack(’=l’,er)[0]

606 svp.e = e*(2**(-33))

607 Cusr = sf2 [21:23]

608 Cus = struct.unpack(’=h’,Cusr)[0]

609 svp.Cus = Cus *(2**(-29))

610 sqrt_Ar = sf2 [24:27] + sf2 [20:21]

611 sqrt_A = struct.unpack(’=L’,sqrt_Ar)[0]

612 svp.sqrt_A = sqrt_A * (2**(-19))

613 toer = sf2 [29:31]

614 toe = struct.unpack(’=H’,toer)[0]

615 svp.toe = toe *(2**(4))

68

Appendix A. Code

616

617 def twos_comp(val , bits):

618 if(val & (1 << (bits -1))) !=0:

619 val = val -(1<<bits)

620 return val

621

622 def handle_efsf3(sf3 ,svr):

623 cicr = sf3 [1:3]

624 cic = struct.unpack(’=h’,cicr)[0]

625 svr.Cic = cic *(2**(-29))

626 omega0r = sf3 [4:7] + sf3 [:1]

627 omega0 = struct.unpack(’=l’,omega0r)[0]

628 svr.omega0 = omega0 *(2**(-31))*math.pi

629 cisr = sf3 [9:11]

630 cis = struct.unpack(’=h’,cisr)[0]

631 svr.Cis = cis *(2**(-29))

632 i0r = sf3 [12:15] + sf3 [8:9]

633 i0 = struct.unpack(’=l’,i0r)[0]

634 svr.i0 = i0*(2**(-31))*math.pi

635 crcr = sf3 [17:19]

636 crc = struct.unpack(’=h’,crcr)[0]

637 svr.Crc = crc *(2**(-5))

638 omegar = sf3 [20:23] + sf3 [16:17]

639 omega = struct.unpack(’=l’,omegar)[0]

640 svr.omega = omega *(2**(-31))*math.pi

641 omega_dotr = sf3 [26:27] + sf3 [25:26] + sf3 [24:25]

642 omega_dot = twos_comp(int(omega_dotr.encode(’hex’) ,16) ,24)

643 svr.omega_dot = omega_dot *(2**(-43))*math.pi

644

645 idotaux1r = sf3 [28:29]

646 idotaux1 = format(int(idotaux1r.encode(’hex’) ,16),’008b’)[:6]

647

648 idotaux2r = sf3 [29:30]

649 idotaux2 = format(int(idotaux2r.encode(’hex’) ,16),’008b’)

650

651 idotr = idotaux2 + idotaux1

652

653 idot = twos_comp(int(idotr ,2) ,14)

69

Appendix A. Code

654 svr.idot = idot *(2**(-43))*math.pi

655

656 getcontext ().prec =15

657 while True:

658 port.reset_input_buffer ()

659 currentTime = time.time()

660 if(currentTime -start > 60):

661 print("Clock bias read: %s" % clock_biasread)

662 print("Clock drift read: %s" % drift_clock)

663 lastRcvTow = MostTowCount ()

664 print("Tow used: %s" % lastRcvTow)

665 for svcp in svList:

666 if(svcp.pos==1 and svcp.rcvTow == lastRcvTow):

667 print("--Sat Pos %s: New Eph --" % svcp.id)

668 sat_pos(svcp)

669 print("---------")

670 if hasattr(svcp ,’Oldsf1 ’):

671 print("--Sat Pos %s: Old Eph --" % svcp.id)

672 svAux = sv(svcp.id,svcp.pr ,svcp.rcvTow)

673 handle_efsf1(svcp.Oldsf1 ,svAux)

674 handle_efsf2(svcp.Oldsf2 ,svAux)

675 handle_efsf3(svcp.Oldsf3 ,svAux)

676 sat_pos(svAux)

677 variance_ef = math.sqrt((svcp.X-svAux.X)**2 + (svcp.Y-

svAux.Y)**2 + (svcp.Z-svAux.Z)**2)

678 svcp.variance_ef = variance_ef

679 print("--Distance: %s" % variance_ef)

680 if(math.fabs(variance_ef) >3):

681 svcp.health =1

682 print("---------")

683 if(svcp.rcvTow != lastRcvTow):

684 svcp.pos=0

685

686 tupSv = svPosCount ()

687 #checkHealth(tupSv [1])

688 #tupSv = svPosCount ()

689

690 if(tupSv [0] >=4):

70

Appendix A. Code

691 lataux ,lonaux ,ecefx , ecefy , ecefz = getFix(tupSv [1],0)

692

693 checkElev(tupSv [1],lataux ,lonaux)

694 fixSagnac(tupSv [1],ecefx , ecefy , ecefz)

695 tupSv = svPosCount ()

696 delta_clock_tow_old = delta_clock_tow

697 delta_clock_old = delta_clock

698 if(tupSv [0] >=4):

699 getFix(tupSv [1],1)

700 tupSv = svPosCount ()

701 raim(tupSv [0], tupSv [1])

702 for svreset in svList:

703 svreset.pos = 0

704 if(tupSv [0]>=3 and delta_clock_set ==True and delta_clock_old

!=0):

705 clock = (lastRcvTow -delta_clock_tow_old)*(drift_clock)+

delta_clock_old

706 getFix3SAT(tupSv [1], clock)

707 printSvData(tupSv [1])

708 for svreset in svList:

709 svreset.pos = 0

710 svreset.variance = 0

711 svreset.variancecn0 = 0

712 svreset.delta_raim = 0

713 svreset.variance_ef = 0

714 svreset.variance_range = 0

715 start = currentTime

716 print("--Delta_Clock stored: %s" % delta_clock)

717 print("--Tow stored: %s" % delta_clock_tow)

718 rcv = port.read (2)

719 hexr = binascii.hexlify(rcv);

720 if len(hexr)!=4:

721 hexr = ’0000’

722 if(int(hexr ,16)==int(’B562’ ,16)):

723 clid = binascii.hexlify(port.read (2))

724 if(int(clid ,16)==int(’0B31’ ,16)):

725 port.read (2)

726 sv_idr = port.read (4)

71

Appendix A. Code

727 sv_id = struct.unpack(’=L’,sv_idr)[0]

728 howr = port.read (4)

729 how = struct.unpack(’=L’,howr)[0]

730 if(how !=0):

731 sf1 = port.read (32)

732 sf2 = port.read (32)

733 sf3 = port.read (32)

734 svm = checkSvList(sv_id)

735 if(svm [0]== True):

736 if hasattr(svm[1],’sf1’):

737 svm [1]. Oldsf1 = svm [1]. sf1

738 svm [1]. Oldsf2 = svm [1]. sf2

739 svm [1]. Oldsf3 = svm [1]. sf3

740 svm [1]. sf1 = sf1

741 svm [1]. sf2 = sf2

742 svm [1]. sf3 = sf3

743 handle_efsf1(sf1 ,svm [1])

744 handle_efsf2(sf2 ,svm [1])

745 handle_efsf3(sf3 ,svm [1])

746 svm [1]. pos = 1

747 print("**** Received eph %s" % svm [1].id)

748 elif(int(clid ,16)==int(’0215’ ,16)):

749 port.read (2)

750 rcvTowr = port.read (8)

751 rcvTow = struct.unpack(’=d’,rcvTowr)[0]

752 weekr = port.read (2)

753 week = struct.unpack(’=H’,weekr)

754 port.read (1)

755 ir = port.read (1)

756 i = struct.unpack(’=B’,ir)[0]

757 port.read (4)

758 for x in range (1,i):

759 prMesr = port.read (8)

760 prMes = struct.unpack(’=d’,prMesr)[0]

761 cpMesr = port.read (8)

762 cpMes = struct.unpack(’=d’,cpMesr)[0]

763 doMesr = port.read (4)

764 doMes = struct.unpack(’=f’,doMesr)[0]

72

Appendix A. Code

765 gIdr = port.read (1)

766 gId = struct.unpack(’=B’,gIdr)[0]

767 svIdr = port.read (1)

768 svId = struct.unpack(’=B’,svIdr)[0]

769 port.read (4)

770 cn0r = port.read (1)

771 cn0 = struct.unpack(’=B’,cn0r)[0]

772 port.read (3)

773 trkStatr = port.read (1)

774 trkStat = format(int(trkStatr.encode(’hex’) ,16),’008b’)

[4:]

775 if(gId ==0):

776 print("$$$$$$$Received: %s" % svId)

777 tupsv = checkSvList(svId)

778 if(tupsv [0]== False):

779 nSv = sv(svId ,prMes ,rcvTow)

780 nSv.bpr = prMes

781 nSv.pos = 0

782 nSv.cn0 = cn0

783 nSv.health = 0

784 nSv.variance = Decimal (0)

785 nSv.variancecn0 = Decimal (0)

786 svList.append(nSv)

787 port.write(pollEphSv(svId))

788 elif(tupsv [0]== True):

789 tupsv [1]. oldcn0 = tupsv [1]. cn0

790 tupsv [1]. cn0 = cn0

791

792 tupsv [1]. oldpr = tupsv [1]. bpr

793 tupsv [1].pr = prMes

794 tupsv [1]. bpr = prMes

795 tupsv [1]. oldrcvTow = tupsv [1]. rcvTow

796 tupsv [1]. rcvTow = rcvTow

797

798 delta_v = (Decimal(tupsv [1]. oldpr) - Decimal(tupsv [1].

pr))/(Decimal(tupsv [1]. rcvTow)-Decimal(tupsv [1]. oldrcvTow))

799 delta_f = (delta_v*Decimal(l1freq))/Decimal(c)

800 print("--Doppler Effect --")

73

Appendix A. Code

801 print("-RcvTow: %s" % tupsv [1]. rcvTow)

802 print("-OldRcvTow: %s" % tupsv [1]. oldrcvTow)

803 print("-Expected: %s Hz" % delta_f)

804 print("-Expected: %s m/s" % delta_v)

805 print("-Observed: %s Hz" % doMes)

806 variance = math.fabs (((Decimal(doMes)-delta_f)/Decimal

(doMes)))

807 print("-Error observed/expected: %s" % variance)

808 if variance >tupsv [1]. variance:

809 tupsv [1]. variance = variance

810 print("------------------")

811 print("--CN0 variation --")

812 print("-Old: %s" % tupsv [1]. oldcn0)

813 print("-New: %s" % tupsv [1]. cn0)

814 variancecn0 = math.fabs((tupsv [1]. oldcn0 -tupsv [1]. cn0)

/tupsv [1]. oldcn0)

815 print("-delta: %s" % variancecn0)

816 print("-------------------")

817 if variancecn0 >tupsv [1]. variancecn0:

818 tupsv [1]. variancecn0 = variancecn0

819 lastRcvTow = rcvTow

820 if(delta_clock_set ==True):

821 time_drift = (rcvTow - delta_clock_tow)*drift_clock

822 rangeD = Decimal(tupsv [1].pr) - Decimal(c*(

delta_clock+time_drift))

823 tupsv [1]. rangeD = rangeD

824 print("-Estimated range: %s" % rangeD)

825 print("-Tow: %s" % tupsv [1]. rcvTow)

826 print("-Pseudo range: %s" % tupsv [1].pr)

827 print("-------------------")

828 if(tupsv [1]. pos ==0):

829 print("****Sv %s ephem polled." % tupsv [1].id)

830 port.write(pollEphSv(svId))

831 port.read (1)

832 elif(int(clid ,16)==int(’0122’ ,16)):

833 if(delta_clock_set == False):

834 port.read (2)

835 port.read (4)

74

Appendix A. Code

836 c_bias = port.read (4)

837 clock_biasread = struct.unpack(’=l’,c_bias)[0]

838 clock_biasread = clock_biasread *(10** -9)

839 c_drift = port.read (4)

840 drift_clock = struct.unpack(’=l’,c_drift)[0]

841 drift_clock = drift_clock *(10** -9)

75

Bibliography

[1] Christopher J. Hegarty Elliott D. Kaplan. Understanding GPS. Principles

and applications, volume 59. Artech House, Norwood, Massachusetts, USA,

1997.

[2] LD Landau. Global Positioning System Directorate System Engineering &

Integration. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 1937.

[3] [online] available at: https://www.e-education.psu.edu/geog862/node/1756

[accessed 23 jun. 2019].

[4] Kevin Brown. Reflections on relativity. lulu.com, Morrisville, North Carolina

, United States, 2004.

[5] U-blox, (2019). [online] https://www.u-blox.com/sites/default/files/products/documents/

evk-m8t-userguide-(ubx-14041540).pdf [accessed: 24 jun. 2019].

[6] "raspberry pi 1 - sparkfun electronics", wikipedia.org, 2019. [online]. available:

https://pt.wikipedia.org/wiki/raspberry-pi [accessed: 14 jan. 2019].

[7] Ettus, (2019). [online] https://kb.ettus.com/n200/n210 [accessed: 24 jun.

2019].

[8] [online] available at: https://www.u-blox.com/sites/default/files/products/documents/u-

blox8-m8-receiverdescrprotspec-(ubx-13003221)-public.pdf [accessed: 24 jun.

2019].

[9] [online] available at: https://medium.com/signals-of-change/gps-spoofing-of-

ships-could-be-a-new-cyberweapon-5b389dcc72ae [accessed: 24 jun. 2019].

77

References

[10] Kai Borre and Dennis M Akos. A Software-Defined GPS and Galileo Receiver.

Birkhäuser, Basel, Switzerland, 2007.

[11] Todd E Humphreys, Brent M Ledvina, Virginia Tech, Mark L Psiaki, Brady

W O Hanlon, and Paul M Kintner. Assessing the Spoofing Threat : Devel-

opment of a Portable GPS Civilian Spoofer. Proceedings of the 21st Inter-

national Technical Meeting of the Satellite Division of The Institute of Nav-

igation (ION GNSS 2008) September 16 - 19, 2008 Savannah International

Convention Center Savannah, GA, pages 2314–2325, 2009.

[12] Kang Wang, Shuhua Chen, and Aimin Pan. Time and position spoofing with

open source projects. Black Hat, 148, 2015.

[13] Mohammad Reza Mosavi, Sadaf Azarshahi, Iman Emamgholipour, and

Ali Asghar Abedi. Least squares techniques for GPS receivers positioning

filter using pseudo-range and carrier phase measurements. Iranian Journal of

Electrical and Electronic Engineering, 10(1):18–26, 2014.

[14] Nielsen and Michael A. Neural Networks and Deep Learning. Determination

Press, 2015.

[15] [online] available at: https://github.com/osqzss/gps-sdr-sim [accessed 23 jun.

2019].

[16] P B Ober and D Harriman. On the Use of Multiconstellation-RAIM for

Aircraft Approaches. Proceedings of Ion, (September):26–29, 2006.

78

	Resumo
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation and context
	1.2 Goals and research questions
	1.3 Contributions
	1.4 Dissertation Structure

	2 Literature Review
	2.1 GPS system overview
	2.1.1 GPS signal
	2.1.2 Pseudorange detection
	2.1.3 Navigation Data
	2.1.4 Satellite position calculation
	2.1.5 Sagnac effect
	2.1.6 Position fix
	2.1.7 Least Squares

	2.2 Neural Networks
	2.3 Related work

	3 Anti-spoofing techniques
	3.1 Hardware used
	3.1.1 U-Blox EVK-M8T
	3.1.2 Raspberry Pi
	3.1.3 Ettus N210

	3.2 Software used
	3.2.1 u-center
	3.2.2 gnss-sdr-sim
	3.2.3 Neuroph studio

	3.3 Information transmission
	3.4 Raspberry pi implementation
	3.5 Flags to detect spoofed satellites
	3.5.1 Doppler shift
	3.5.2 C/N0
	3.5.3 Ephemeris integrity
	3.5.4 RAIM
	3.5.5 Expected range
	3.5.6 Excluding below the horizon satellites

	3.6 Flags to detect spoofing
	3.6.1 Predicting the clock bias
	3.6.2 Position variation
	3.6.3 Overall

	3.7 Using Neural Networks
	3.7.1 Detecting spoofed satellites
	3.7.2 Detecting spoofing

	4 Implementation results
	4.1 Observation
	4.1.1 C/N0 variation
	4.1.2 Doppler shift
	4.1.3 RAIM
	4.1.4 Ephemerides variation
	4.1.5 Expected range
	4.1.6 Clock variation
	4.1.7 Distance between position fixes
	4.1.8 Difference between position fix and expected position
	4.1.9 Conclusion

	4.2 Using Neural Networks
	4.2.1 Detecting spoofed satellites

	5 Conclusion
	5.1 Future work

	Appendices
	A Code
	Bibliography

