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“Creativity is seeing what everyone else has seen, and thinking what no one else has though.”
Albert Einstein
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Resumo

Os jogos tornaram-se uma das principais plataformas de entretenimento dos dias atuais, rep-
resentando mais de 2,5 bilides de jogadores em todo o mundo que, apenas em 2019, gastaram
cerca de 150 bilides de doélares em jogos.

De todos o0s jogos, os jogos para dispositivos moveis tornaram-se particularmente populares,
com jogos como o Candy Crush a atingir 258 milhdes de utilizadores ativos por més e Call of
Duty Mobile a ser descarregado 100 milhdes de vezes na primeira semana de langamento.

Com a crescente relevancia dos jogos para dispositivos moveis, hd uma necessidade de en-
tender como os jogadores interagem e como as comunidades de jogos estdo estruturadas. As co-
munidades nos jogos podem ser consideradas redes sociais de individuos, neste caso, jogadores,
que interagem entre si a diversos niveis.

Nesta tese, tentamos entender como as comunidades estdo estruturadas e evoluem através
de uma rede de interagdes presentes frequentemente nos jogos para dispositivos moveis.

Testamos a nossa metodologia com conjuntos de dados de um jogo real para dispositivos
moveis com 20 milhdes de utilizadores ativos didrios, recolhidos durante 60 dias em 3 paises
diferentes.

A principal contribui¢do desta tese ¢ uma analise de diferentes métodos de descoberta de co-
munidades com este conjunto de dados reais. Fornecemos também um sistema de recomendacao
de amizades baseado em comunidades, que pode ser executado neste tipo de redes e atingir até

79 % de precisao em comunidades em crescimento.

Keywords: Jogos para dispositivos moveis, Descoberta de comunidades, Ciclo de vida de

comunidades, Sistema de recomendacao
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Abstract

Gaming has become one of the leading entertainment platforms of current days, representing
more than 2.5 billion gamers around the world that, just in 2019, spent around 150 billion dollars
on games.

Across gaming, mobile gaming has become quite popular, with games such as the Candy
Crush franchise achieving 258 monthly active users and Call of Duty Mobile being downloaded
100 million times in the first week.

With the increasing relevance of mobile gaming, there is a necessity to understand how
players interact, and gaming communities structure themselves. Communities in games can be
considered as social networks of individuals, in this case, players, that interact with each other
at diverse levels.

In this thesis we try to understand how communities are structured and evolve through a
network of common mobile gaming interactions.

We test our methodology with datasets from a real mobile game with 20 daily active users
collected across 60 days in 3 different countries.

The main contribution of this thesis is an analysis of different community discovery methods
with this a real mobile game datasets. We also provide a community based friendship recom-
mendation system that can run on top such networks and deliver up to 79% precision on growing

communities.

Keywords: Mobile gaming, Community discovery, Community life-cycle, Recommenda-
tion System
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CHAPTER 1

Introduction

Gaming has become one of the leading entertainment platforms of current days, representing
more than 2.5 billion gamers around the world that, just in 2019, spent around 150 billion dollars
on games. From this global market, 45% players play on mobile devices (smartphone and tablet)
[1].

Mobile gaming has become quite popular, with games such as the Candy Crush franchise
achieving 258 monthly active users (MAU) [2] and Call of Duty Mobile being downloaded 100

million times in the first week [3].

1.1. Framework

The social components of most mobile games are essential features in current digital gaming
because social networking sites (Facebook, Twitter) are successfully integrated and used over
many gaming platforms. Several user acquisition specialists identify communities as the core of
user acquisition and user retention [4] [5], which are essential for the prosperity of the industry.

Gaming communities can be considered as social networks of individuals, in this case, play-

ers, that interact with each other at diverse levels [6].

1.2. Motivation

With the increasing relevance of mobile gaming, there is a necessity to understand how players
interact, and gaming communities structure themselves. This knowledge can genuinely help
the gaming industry boost engagement and understand the impact of new features on players
interaction.

This thesis was developed in partnership with Miniclip. Miniclip is a mobile gaming com-
pany that is a global leader in the sports category, with around 200 million monthly active players
all around the world. The company saw this thesis as an opportunity to explore communities in
their biggest game. All the data provided by the company for this thesis was collected and used
anonymously and will not be available publicly.

1.3. Objectives

This thesis’ objective is to find the best methodology to discover communities in mobile games.

To find such methodology, several questions arise:

e How can we develop a methodology that is easily reproducible across other mobile
games?

e How can we evaluate performance and quality in a real use case without user feedback?

e How should we deal with temporal data?

e How does community evolution behave in a mobile scenario?



1.4. Contributions

The main contribution of this thesis is the comparison and test of different proven community

discovery methodologies with real mobile gaming data. This also includes data that changes

over time and has scale that can challenge most methodologies.

We also present a research hypothesis about how we can use community knowledge to pre-

dict user friendships.

1.5. Document Structure

This document is divided into 6 chapters that describe the whole thesis from its inception until

the conclusion and possible future work.

Introduction - Presents the framework, motivation, objectives and contributions of this
thesis.

Graphs and Dynamic Networks - Briefly describes graphs and dynamic networks used
through the methodology.

Literature Review - Presents communities, their characteristics, life cycles and instabil-
ity. Describes each type of methodologies used for Dynamic Community Discovery,
proposed optimisations and performance comparison.

Methodology - Describes the methodology used on this thesis. From creating a dy-
namic network to performing community discovery and life cycle analysis. It also
describes the research hypothesis around friendship recommendation.

Results - Presents the results of different community discovery methodologies and anal-
ysis the research hypothesis.

Conclusions and future research - This chapter concludes the presented work, present-
ing its potential benefit. It also extends the methodology and proposes new possibilities

of further investigation.



CHAPTER 2

Graphs and Dynamic Networks

This chapter contains a brief overview of graphs and dynamic networks which, for the re-
mainder of this thesis, will be used interchangeably.

2.1. Graphs
H Symbol Description H
G Graph representation of datasets
V Set of nodes for graph G
E Set of edges for graph G
N Number of nodes, or V‘
M Number of edges, or E]
€ j Edge between node 1 and node j
W j Weight on edge ¢; ;
w; Weight of node i (sum of weights of incident edges)
A 0-1 Adjacency matrix of the unweighted graph
Ay Real-value adjacency matrix of the weighted graph
a; j Entry in matrix A
Al Principal eigenvalue of unweighted graph
AL, w Principal eigenvalue of weighted graph

Table 1. List of notations from [7]

We can represent a network as a graph with the terms defined in table 1. A static, unweighted
graph G consists of a set of nodes V and a set of edges such that £ C V' x V. We represent
the number of elements of V and E as N and E. A graph may be directed or undirected — for
instance, a text message from one entity to another is represented as a directed edge to keep in-
formation about origin and destination of the message whereas a friendship between two persons
is represented as undirected edge since it is a reciprocal relationship [7].

Graphs can also be weighted, where there may be many edges occurring between two nodes
(e.g. different text messages) or specific edge weights (e.g. monetary amounts for transactions).
In a weighted graph G, let ¢; ; be the edge between node 1 and node j. We will refer to these two
nodes as the ‘neighbouring nodes’ or ‘incident nodes’ of edge e; ; . Let WW; ; be the weight on
edge ¢; ; . The total weight w; of node i is defined as the sum of weights of all its edges.

We can also classify graphs as unipartite or multipartite [7]. A multipartite or k-partite graph
is a graph whose nodes are partitioned into different types, and a unipartite graph only has one
type of nodes. The graph representing a citation network were the only nodes are authors can be
considered as unipartitie [8]. In the opposite, the movie-actor graph of IMDB [9] that consists

of nodes that represent movies or actors is considered as a multipartite.



We can represent a graph visually or with an adjacency matrix A, where nodes are in rows
and columns, and numbers in the matrix register the existence of edges. For unweighted graphs,
all entries are 0 or 1; for weighted graphs, the adjacency matrix contains the values of the weights
(figure 1).
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Figure 1. Illustrations of example graphs. On the left is a unipartite, directed,
weighted graph and the corresponding adjacency matrix. On the right is an undi-
rected, bipartite graph and the corresponding adjacency matrix. [7]

Another graph-related concept that we will need is the diameter. For a given (static) graph,
its diameter is defined as the maximum distance between either two nodes, where distance is
the minimum number of jumps (i.e., edges that must be crossed) on the path from one node to
another, ignoring directionality.

Calculating graph diameter is O(n?), therefore, we choose to estimate graph’s diameters by
sampling nodes. For s = {1,2, ..., S}, we pick two nodes at random and calculate the distance
(using breadth-first search). We then record the 90 percentile value of distances, so we take
the .9S largest recorded value. The distance operation is O(dk), where d is the graph diameter
and k the maximum degree of any node on average this is a much smaller cost. Intuitively, the
diameter represents how much of a “small world” the graph is— how quickly one can get from

one “end” of the graph to another.



2.2. Dynamic Networks

A dynamic network is defined as a network of interactions or relationships, where the nodes
consist of entities, and the edges consist of the relationships or interactions between these entities
[10].

Also known as complex networks [11], dynamic networks have been subject of analysis by
many researchers. The research extends from statistical analysis [7], community discovery [11]
[12] [13], social tagging [14] and security anomaly detection [15].

With real-time data travelling through the internet and relationships between it evolving, we
cannot consider networks only as static objects. As such we must consider dynamic networks as
temporal networks that evolve with time. The static view of such a network is simply a snapshot
of the network’s state in a specific moment. Due to the online nature of web and, more recently,
mobile applications, all the networks considered in this work are dynamic networks even when

we work with snapshots at given moments [16].

2.2.1. Models

Time plays a crucial role in shaping network topologies. One of the most crucial issues to address
in order to think about time-evolving networks is related to the mathematical formalism used to
represent them.

In figure 2 from [12] the authors classify dynamic networks based on their model complexity
and temporal impact, with four different conceptual solutions that progressively introduce the
time dimension in the network modelling process.

Model complexity

»

. . Temporal
[ Static ] l Edge Weighted } [ Snapshots ] [ Networks ]

-
<«

Temporal impact

Figure 2. Network Representations [12]

On the one side, we can view the atemporal scenario (a single network capturing a static
impression of a dynamic event). We can gradually introduce dynamics by using labels that
weights nodes and edges, therefore catching an aggregate network. Following the same princi-
ple, weights model the number of occurrences of a given node/edge in an observation window,
with this addition, we can make numerous time-dependent analyses that were impossible in the
previous scenarios, such as tie strength estimation.

However, the strategy previously used suffers a severe limitation; it does not capture net-
work dynamics. Taking this into consideration, many methods model dynamics with temporally
ordered series of network snapshots. This mild modelling enables the tracking of perturbations
occurring on the network topology. Nonetheless, with the improvement of the model definition,
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the complexity of analysis also increases. When executing time-aware mining jobs on network

snapshots, two concerns arise:

e How to keep track of multiple stages of the network life;
e How to harmonize the analytical results obtained in a snapshot with the outcome of the

subsequent ones.

The constraining issue that affects dynamic network partition, as well as aggregation, is to
define a threshold for temporal granularity. Since the identification of such a threshold is not
easy, it is undoubtedly, context-dependent and deeply impactful for analytical results. Recent
scientific research proposes to model network dynamics without any aggregation, keeping all
temporal details. Such an approach usually details dynamic networks in their elementary bricks:
temporally ordered, timestamped, interactions or relations. In the next subsection, we will de-
scribe such approach, specifically temporal networks modelling. Temporal networks allow for
a full and fine-grained characterization of network dynamics.

Last but not least, we cannot forget that different problems, as well as accessible data, im-
pose different modelling choices. Static networks, as well as weighted ones, are regularly used
to identify stable patterns and to describe the current state of a network while snapshots and
interactions are agents for the study of the increasing dynamic scenarios. With fine-grained
temporal data, it is achievable to create all the other models and consequent aggregations.

In this thesis, we will focus on community detection methods that deal with temporal net-
works. As such for an in-depth overview of community detection methodology that focuses

more on static scenarios refer to [11] [17].

2.2.1.1. Temporal Networks

Temporal networks [12] or Evolving Networks [18] represent the natural evolution over time of
dynamic networks. Such phenomena is many times related with the volatility of real-time data.
Following the definition presented in [18] we can divide temporal networks into the follow-

ing two categories:

e Slowly Evolving Networks - A network that evolves slowly over time and snapshot
analysis can be used very effectively. In these situations, snapshots of the network at
two distinct times t1 and t2 are used for analysis, and therefore offline analysis can be
performed directly.

e Streaming Networks - A network that is created by transient interactions and due to that
nature requires real-time analytical methods. Also titled as graph streams, this kind of
networks are much more challenging due to the computation requirements needed for
the analysis.

2.2.1.2. Network Snapshots

Regularly, network history partitions into a series of snapshots, each one of them matching
either to the state of the network at a time ¢ (relation network) or to the aggregation of observed

interactions during a period (interaction network) [12].



2.2.2. Memory

A modelling decision that profoundly influences the analysis conducted on dynamic networks
regards the system memory. When the analyzed data represents an interaction network (for in-
stance, SMS or phone calls), not made of long-lasting relations, most methods require to convert
it into a relation network.

Such conversion can generate snapshots or temporal networks. We need to take into consid-

eration the two following scenarios:

e Perfect memory network
e Limited memory network.

In a perfect memory network, nodes and edges can only join the network, meaning that
nodes/edges cannot disappear (e.g. a citation graph). In a limited memory network, nodes and
edges vanish over time (e.g. social network relations). It is common to use the disappearance
to model the decay of interactions in the network. We call this Time To Live (TTL), it is the
artificially defined duration of an edge. There are several methodologies to find the correct TTL:

e Fixed Size Static Time Window: the TTL is equal for all network entities, and there is
a finite set of possible periods whose start and end dates are defined in advance. This
strategy produces network snapshots.

e Fixed Size Sliding Time Window: the TTL is equal for all network entities, but it
starts independently for each one of them at the moment of their first appearance (i.e.,
an email graph in which each email is considered to have the same social persistence
starting from the time it is made);

e Dynamic Size Time Window: the TTL is equal for all the network entities at a given
time but depends on the current network status (i.e., a system for which it is interesting
to capture bursts of interactions having different frequency);

e Global/Local Decay Function: the TTL of each node/edge is defined independently,
usually as a function of the global/local network activity (i.e., fitting the inter-arrival
time distribution of nodes or edges for the whole network as well as for the individual
node pair).

The assumptions made on the persistence of network entities (e.g., the strategy identified to

fix their TTL) play a crucial role in the results provided by time-aware mining algorithms.






CHAPTER 3

Literature Review

This chapter contains a brief overview of communities and their characteristics. We also

describe the present methodologies for community discovery.

3.1. Communities

A community is another fundamental constituent in dynamic networks. There are several dif-
ferent definitions of community in the literature, but the most common is as follows: Definition:
(Community) Given an undirected graph G = (V,E), a community C is a sub graph C' = (V¢, Ec¢)
where Ve — V, Ec — F, and the edges in a community C are more densely connected with
each other than the rest of the graph G.

3.1.1. Attributes

Communities can have several attributes that help to characterize community structure, such
as overlap with other communities, weighted membership when members belong to different
communities with different degrees of connection to each of them, roles of specific members
and hierarchy within the members of a community.

As previously mentioned, a community is a set of vertices, and the membership of each
vertex in a network was implicitly assumed to be the result of a boolean decision. In the context
of mobile games, the concept of community and community membership may be more complex.
For example, in some of the above community definitions, e.g., most of the local ones [19] [20],
the one based on Clique Percolation [21], and others [22] [23], it is possible for communities to
overlap (Fig 3a). Community overlap is essential in mobile games’ networks since it is common
for gamers to participate in multiple communities like family, friends and co-workers.

Also, there are additional attributes that vertices of a network may own about communities.
For example, different vertices may participate with varying degrees in a community depending
on their centrality within it (Fig 3b). Furthermore, vertices may have discrete roles: for example,
[24] define two roles (hubs and outliers) for vertices that are unassigned to any community.
Hubs are connected to multiple communities and act as links, thus enabling interactions among
communities. Outliers connect to a single community through a single link, therefore they are
regularly viewed as noise.

Roles also represent a relevant attribute of vertices when relating to their community [25].
The most relevant roles are “loners”, “big fish”, “bridges” and “ambassadors”. A depiction of
these roles can be seen in figure 3c.

It is also possible to impose hierarchical (Fig 3d) or multi-scale structures on communities.
Community organization operates at many different levels in a variety of communities. For
instance, a group of players may belong to a community focused on a particular game activity

9



(e.g. nine-ball pool players in mobile pool games), and at the same time, the members of this
group can also be members of a broader community (pool games).

! Bridge / Hub ..}
Ry - Loner / Outlier

(b) Weighted membership (c) Roles

(d) Hierarchy

Figure 3. Community Attributes [26]

3.1.2. Life-Cycle

The persistence over time of communities that undergo continuous changes is a significant prob-
lem to tackle. Most efforts focused on community tracking agree on the set of simple actions
that involve entities of a dynamic network: node/edge rise and vanish. Surely, such local and
atomic operations can make perturbations in the network topology capable of affecting the out-
comes delivered by community discovery algorithms. As a consequence of this set of actions,
given a community C observed at different moments in time, it is mandatory to characterize the
transformations it undergoes. The first categorization of the transformations that affect com-
munities was introduced in [27], which lists six of them (Birth, Death, Growth, Contraction,
Merge, Split). A seventh operation, “Continue”, is sometimes added to these. In [28], the au-
thors present an eight operation (Resurgence).

10
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Figure 4. Community Events [12]
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These transformations, represented in figure 4 from [12], are the following:

e Birth: the first appearance of a new community composed of any number of nodes;

e Death: the vanishing of a community: all nodes belonging to the vanished community
lose this membership;

e Growth: new nodes increase the size of a community;

e Contraction: some nodes are rejected by a community thus reducing its size;

e Merge: two communities or more merge into a single one;

e Split: a community, as a consequence of node/edge vanishing, splits into two or more
components;

e Continue: a community remains unchanged,

e Resurgence: a community vanishes for a period, then comes back without perturbations
as if it has never stopped existing. This event can be seen as a fake death-birth pair

involving the same node-set over a lagged period (example: seasonal behaviours).

3.1.3. Instability and Temporal Smoothing

One of the main issues encountered by dynamic community discovery methodologies is the
instability of solutions. Such a problem comes from the very essence of communities. It is
widely accepted that there is not a single valid breakdown in communities of a dynamic network
issued from field data but, instead, several possible ones. Besides, most algorithms generate
partitionings in which a vertice is assigned unambiguously to one and only one community.
Indeed, we are aware that such a scenario represents a simplification: vertices often belong to

many communities, and the belonging to each of them is not necessarily binary [12].

3.2. Community Discovery Methods
3.2.1. Classification

The literature contains several methods to detect communities for each community definition
available. On this section, we will review the most prestigious groups of such methods according
to [26] and associate them with the definitions presented in the previous section.

Before advancing with the analysis of the methods, we will first describe the relationship
between the problem of community discovery with that of graph partitioning and graph cluster-
ing. Graph partitioning is a well-specified problem: divide the vertices of a graph into n groups
of given sizes such that the number of edges lying between the groups (cut size) is minimum.

Community discovery is different from graph partitioning in two primary aspects. In the
first place, community discovery requires neither the number of groups nor their sizes as input in
order to extract them. Furthermore, the result of community discovery may not be a partition, i.e.
a set of vertex sets, whose union is the set of all graph vertices and whose pairwise intersections
always result in the empty set. As became apparent in the previous section, communities in a
network may present overlapping, and there may be vertices in a network that do not belong to
any community.

Community discovery is almost inter-changeably used with graph clustering [17] [29]. In
both problems, the goal is to identify groups of vertices on a graph that connect strongly with

12



each other than with the rest of the network. Nevertheless, differentiation among the two prob-
lems regards the requirement for knowing the number of communities/clusters that a method is
expected to identify. Community discovery methods usually do not need the number of com-
munities to be provided, but instead, the number of communities is one of the method outputs.
In contrast, there are diverse graph clustering techniques that require the number of clusters as
input. Due to the large scale and evolving nature of mobile gaming, it is nearly unthinkable to

know or even to estimate the number of communities in a mobile game network.
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Figure 5. Classification of community discovery and graph clustering methods [26]

3.2.1.1. Cohesive Subgraph Discovery

For cohesive subgraph discovery, the structural properties that the subgraph must satisfy in order
to be considered a community must be defined a priory. Once a subgraph structure is specified,
methods involve the enumeration of such structures in the network under study.

The local community definitions presented in [26] are examples of such cohesive structures
and therefore algorithmic schemes for enumerating such structures, such as the Bron—Kerbosch
algorithm [30] and the efficient k-core decomposition algorithm of [8], belong to this class of
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community discovery methods. Also, methods such as the Clique Percolation Method [21]
and the SCAN algorithm [24], which point to the discovery of subgraph structures with well-
specified properties, fall under the same class of methods.

3.2.1.2. Vertex Clustering

The methods presented in this subsection originate from conventional data clustering research.
The usual way of casting a graph vertex clustering problem to one that we can solve with tradi-
tional data clustering methods is through setting graph vertices in a vector space, where we can
determine pairwise distances between vertices.

An alternative but yet popular method is to use the spectrum of the graph for mapping graph
vertices to points in a low-dimensional space, where the cluster structure is more profound [31]
[32].

Other vertex similarity measures such as the structural equivalence [33] and the neighbour-
hood overlap have been used to compute similarities between graph vertices [34].

Last but not least, Walktrap is a unique method that derives an optimal vertex clustering
structure. The method uses random-walk based similarity between vertices and communities

together with modularity in a hierarchical agglomerative clustering scheme [35].

3.2.1.3. Community Quality Optimization

A vast number of methods for community discovery work through the optimization of measures
related to community quality. The first ones to quantify the community quality with network
division into clusters were the normalized cut [36] and conductance [37]. The measure of mod-
ularity incited a whole new surge of research. There are many maximization techniques in the
literature for modularity. This category includes all of them, starting from the most straightfor-
ward methods such as the seminal greedy optimization technique of Newman (2004) and faster
versions of it such as max-heap based agglomeration [38] and iterative heuristic schemes [39]
[40], until the more sophisticated, such as, extremal optimization [41], simulated annealing [42]
and spectral optimization (Newman 2006).

Methods aiming at the optimization of local measures of community quality, such as local
and subgraph modularity [19][43], also belong to this category. Lastly, this category incorpo-
rates methods that exploit the "hills” and “valleys™ in the distribution of network-based node or
edge functions, e.g. the ModuLand framework proposed by [44] and the “’reachability” measure
by [23].

3.2.1.4. Divisive

Divisive methods rely on the identification of network elements (edges and vertices) that are
between communities. For example, the seminal algorithm by [45] progressively removes the
edges of a network based on an edge betweenness measure until communities emerge as de-
tached components of the graph. Edge betweenness was measured in several ways, for instance,
edge, random-walk, and current-flow betweenness [45], as well as information centrality [46]
and the edge clustering coefficient [47]. Vertex removal methods [48] adopt the same principle;
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such methods remove vertices in order to expose community structure. Lastly, min-cut/max-
flow methods [49] [50] adopt a different divisive viewpoint: they try to identify graph cuts (i.e.
sets of edges that separate the graph in pieces) that have a minimum size.

3.2.1.5. Model-based

Model-based methods either consider a dynamic process taking place on the network, which
reveals its communities or an underlying model of statistical nature that can generate the divi-
sion of the network into communities. Examples of dynamic methods are label propagation [51]
[52] [22], synchronization of Kuramoto oscillators [53], diffusion flow, also known as Markov
Cluster Algorithm [54], and the famous SPIN model by [55]. Also, community discovery can
be cast as a statistical inference problem (Hastings 2006), assuming some underlying proba-
bilistic model, such as the planted partition model, that generates the community structure and
estimates the parameters of this model. Other model-based approaches rely on the principle that
a low encoding cost determines a functional clustering, so they perform community discovery
by finding the cluster structure that results in the lowest possible cluster encoding cost [56].

3.2.2. Performance

Several studies have been done in comparing the performance of the different community dis-
covery methods. In [26] the author identifies computational complexity and memory require-
ments as two key factors when considering different methods. In table 2, we can see the authors
comparison of all methods complexity based on two different scenarios. From table 2 the author
concludes that vertex clustering and divisive approaches present complexities higher than qua-
dratic to the number of network vertices, which renders them improper for large scale networks
such as social networks.

The author also develops an experimental study that compares eight methods using synthetic
benchmark graphs from [57]. The study measured execution time, Normalized Mutual Infor-
mation (NMI) and peak memory consumption for each method. The author concluded that the
fastest methods were label propagation [51] (0.5s) and community folding [39] (0.6s) with the
lowest ones being MCL [54] (75s) and SPIN [55] (19min). Community folding [39] was also
the method with least memory consumption. All methods suffered considerable losses in NMI
with the increasing number of nodes but community folding [39], walktrap [35] and SPIN [55]
were the most resilient.

From table 2 we selected three methods to perform community discovery in our methodol-
ogy. Since mobile games tend to have a high number of players [2] we chose methods that were
expected to have good performance in populations of more than 100,000 players. The selected
methods were Label propagation [51] [52], Community folding [39] and Spectral optimization
[13].
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Method Complex-A  Complex-B Scale
Cohesive substructure detection

Algorithm 457 [58] O(3"/3) O(3"/3) S

k-core detection [59] O(n?) O(n) L

SCAN [24] O(n?) O(n) L

Vertex clustering

Embedding in space + k-means O(C n?) O(C'n?) M
Walktrap [35] O(n?) O(n?logn) M
Laplacian eigenvectors [31] O(Cn?) O(Cn?) M
Community quality optimization

[38] O(n*dlogn) O(nlog*n) M
Extremal optimization [53] O(n*logn)  O(n*logn) M
Spectral optimization [13] O(n*logn)  O(n*logn) M
Community folding [39] O(n?) O(n) L

Divisive

[45] O(n®) O(n?) S

Information centrality [46] o(n") O(n*) S

Edge clustering coefficient [47] O(n%) O(n?) M
Max flow + Gomory-Hu tree [50]  O(n*logn)  O(n®logn) S

Model Based

MCL [54] O(n?) O(n?) M
Minimum encoding cost [56] O(n?) O(n) L

Label propagation [51] [52] O(n?) O(n) L

Infomap [60] O(n*logn) O(nlogn) L

Table 2. Two bounds are provided, one for general graphs irrespective of den-
sity (Complexity-A)and one computed under the assumption that the graph is
sparse (Complexity-B). Furthermore, the scale of graphs for which each method
is appropriate is provided: S stands for small scale (< 10* nodes), M stands for
medium scale (< 10° nodes), and L for large scale (10—10° nodes) [26]
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CHAPTER 4

Research Methodology

This chapter presents the methodology used to analyse mobile gaming interactions. Firstly we
will describe the ETL process used to collect data and build a network of interactions of a real
mobile game. Secondly we will demonstrate how we discovered and classified communities
based on their life-cycle events. Lastly we will present our hypotheses for this research through
friendship recommendation.

Through this chapter, we will describe several networks scenarios, and we will always refer

to the vertices as players and the edges as relations.

4.1. Data Preparation

Having a reliable dynamic network is essential to make community discovery. To achieve that
we defined two social interactions between players that we wanted to observe and that we also
consider widely present in the mobile gaming industry. We did this to ensure that this method-
ology was reproducible and straightforward across all games.

The first relation is the most basic form of player interaction in mobile games which is
playing a match between two players. More than two players can participate in a single match,
but on this thesis, we will just consider matches of two players.

Mobile games are social games [61] so the second interaction we defined was friendship.
Friendship is the most common form of social relationships found in social networks and sub-
sequently in social games. It is common in mobile games to have a friends list where the player
can see what friends (other players) are online or even what activity are they doing in the game.

To be able to build a relational network of these interactions, we defined the following set
of events to observe:

e Match - A match played between two players.
e Add-friend - Friendship formed between two players.
e Remove-friend - Friendship broken between two players.

4.1.1. Collection

To collect events, we developed a REST web service (identified in figure 6 as T1) that integrated
with the game and received a request each time an event was observed during gameplay. T1 was
deployed in a scalable cluster with load balancing assure that we could handle large amounts of
players and data.
As shown in figure 6, after the web service received an event, the JSON payload of the
request was forwarded to a Apache Kafka [62] topic.
18



The topic in this process acted as a buffer mechanism that guaranteed that no events were
lost until they were consumed by T2. Since our REST web service (T1) was internet-facing, it
was important to delegate the file generation to other service (identified in figure 6 as T2). This
service was also deployed in a scalable cluster that was solely responsible by consuming events
from the topic and generating files into the data lake.

File size in modern data lakes should not be too small since it is prejudicial for performance.
For this thesis we’ve chosen to use JSON files with an average of 256Mb and GZIP compression.
Other file sizes or types are viable to use such as Parquet [63], ORC [63] or AVRO [64].

Figure 6. Data collection process

To assure that we did not have relevant data consistency issues, we defined schemas for each
event that were validated by the REST web service (T1). If any event sent by the device did not
meet the schema, it was discarded and not forwarded to the topic. Examples of the body of the

requests are presented in the following listings.

Listing 4.1. Match event example

{
“timestamp ”: 1598831892,
“user_id”: 1,
“opponent_id”: 2

}
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Listing 4.2. Add-friend event example

{
“timestamp ”: 1598831892,
“user_id”: 1,
“friend id”: 2
b
Listing 4.3. Remove-friend event example
{
“timestamp ”: 1598831892,
“user_id”: 1,
”friend id”: 2
h

4.1.2. Transformation

With files on the data lake, we began to build our dynamic network using the graph database
Neo4]J [65]. Through the process presented in figure 7, we can see that a worker (T3) was used
to pick up event data from the data lake and generate Cypher [66] statements to insert it into
Neo4J.

Figure 7. Data transformation process

For the worker to convert each event into Cypher statements we needed to make some data

modelling assumptions.
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4.1.3. Modelling

In this subsection we will present the assumptions used to improve the quality of the dynamic

network and provide a better foundation for community discovery.

4.1.3.1. Match

Each time two players played a match, we considered that as a relation between them such as

presented in figure 8.

match
User A User B

Figure 8. Unweighted match relation

This relation between players was undirected and could be unweighted. Although since
players could, and did, play more than one match between them through time, we made this
relation weighted, and each new match between the same players would increment the weight
by one. In figure 9, we can see that relation illustrated after three match events.

match : 3
User A User B

Figure 9. Weighted match relation

4.1.3.2. Friendship

Each time a player becomes an in-game friend of another player, we considered that as a relation
between them such as presented in figure 10.

friendship
User A User B

Figure 10. Friends relation
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The friendship between two players was an undirected and unweighted relation. The relation
was removed if the two players lost friendship, or by other words, generated a remove-friend
event.

4.1.3.3. Dynamic Network

With the assumptions previously presented, we built a dynamic network in Neo4J that had all
the events relational data. As presented in figure 11 players could have friendship and match
relations, or both.

friendship

User A User B

match : 3 fricndship, match : 3

User C

Figure 11. Network example

4.1.4. Snapshots

For the dynamic network created, we defined that data would be collected for 60 days. This
period of 60 days had five instants of observation separated by periods of 15 days, as illustrated
in figure 12.

| | | | N

d-30 d-15 d d+15 d+30
Days

Figure 12. Snapshots time division

With this distribution data would be partitioned into 5 snapshots correspondent to each in-
stant in time.
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4.2. Community Discovery

To apply community discovery methodology to our network, we needed to understand what
methods would work best. Mobile games tend to have a high number of players [2] so we
have selected three methods that, based on previous research [26], were expected to have better

performance in populations of more than 100,000 players, as shown in table 3.

Name Complexity Ref ‘
Label propagation O(n?) [51]
Community folding O(n?*)  [39]
Spectral optimization O(n%logn) [13]
Table 3. Methods selected

Label propagation, as the name implies, works by propagating labels across the network and
forming communities based on this. The method starts each node with a unique community
label and then at every iteration updates nodes labels with the label that the maximum number
of neighbours belong to. Ties are resolved arbitrarily. The methodology takes the assumption
that a single label can quickly become dominant in a densely connected group of nodes, but will
have trouble crossing a sparsely connected region. After a determined number of iterations the
nodes that end with the same label are considered part of the same community.

Community folding and spectral optimization are both modularity based methods. They
work with the target of achieving the highest possible modularity score. Modularity is a measure
of the structure of a graph, measuring the density of connections within a module or community.
Graphs with a high modularity score will have many connections within a community but only
few pointing outwards to other communities.

Community folding merges nodes into communities at each iteration taking into account
which merge will provide the highest modularity increase possible. Spectral optimization uses
the shortest-path betweenness score of all the edges in the network to remove the edge with the
highest score, recalculating the scores after removal. Both methods repeat these processes over
a determined number of iterations until they stop and the resulting communities are determined.

The three methods were tested with the dynamic network and compared against each other
regarding number of communities found, execution time and similarity of resulting communi-
ties. To execute each method we used implementations available in Neo4J Graph Data Science
library.
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4.2.1. Graphs

To start we created Neo4J graphs with our network using the following Cypher command:

CALL gds.graph.create(
'match-graph',

'User',
{
MATCH: {
orientation: 'UNDIRECTED'
}
s
{

nodeProperties: 'previous_community',

relationshipProperties: 'weight'

The command would vary depending on what relation we wanted to use, match, friendship
or both. If we wanted to use both, we applied the following formula to weight, where f stands

for friendship relation, w stands for relation weight and m stands for number of matches.

AfIm=w = m * DABHfImn=w = m)ASfIm=w = 1)

These graphs would guarantee that all nodes had a seed property that would tell which was
the previous community detected for a player. This property will be used in another section to

describe how we tracked community events.

4.2.2. Execution

After the graph was created we used the following command to run the methods:

CALL gds.<method>.write(
'graph',
{

writeProperty: 'community'

)
YIELD communityCount, modularity
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This command would write the resulting community of each player as a property of the
node in Neo4J. The command would also output the number of communities, modularity and

execution time.

4.2.3. Jaccard Similarity

To understand if methods were achieving similar results we compared resulting communities
using Jaccard similarity score. This score is defined as the size of the intersection divided by
the size of the union of two sets. The two sets used were the user IDs of the same community
resulting from different methods. To achieve this we executed following Cypher command per
resulting community:

RETURN gds.alpha.similarity.jaccard([1,2,3], [1,2,4,5]) AS similarity

After the the similarity scores were obtained for all communities we would calculated the
average and use that as a similarity score between methods.

4.3. Community Life-cycle Analysis

As previously mentioned in another chapter, it’s difficult to track changes that communities
undergo over time. For this thesis, we defined the goal of observing two life-cycle events that

could classify communities as growing or contracting. These events were:

e Growth: new nodes increase the size of a community;

e Contraction: some nodes are rejected by a community thus reducing its size;

Communities classified as growing would be the ones withstanding the event of growth, and
on the opposite, communities with the contraction event would be classified as contracting.
To understand which events communities were experiencing we used a snapshot based com-

parison. We did this with an iterative process as shown in figure 13.
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Snapshot Snapshot
d d+15

Graph Graph
d 4 d+15

Figure 13. Life cycle analysis process: 1 - Generate graph; 2 - Community dis-
covery process; 3 - Generate graph 15 days after; 4 - Copy resulting communities
from previous iteration; 5 - Community discovery with seed property (previ-
ous_community)

To start we generated a graph from snapshot d where d represents an instant in time. We then
performed community discovery and identified each node community. Afterwards we generated
anew graph from the next snapshot d + 15 (15 days after) and copied the resulting communities
from the previous iteration into the property “previous_community” on this new graph. Finally
we performed community discovery on this new graph with the property ”previous _community”
as seed property. The Cypher command used for community discovery with seed property is the
following:

CALL gds.<method>.write(
'graph',
{
seedProperty: 'previous_community',

writeProperty: 'community'

)
YIELD communityCount, modularity

This life cycle analysis process was iterative and repeated through all snapshots. With the
results we could compare communities size across time and understand the events that they went
through, classifying them as growing or contracting.
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4.4. Research Hypotheses

Contributing positively to social engagement in a mobile game in a non-intrusive way is a stiff
challenge. Several factors can impact players engagement, and it is not easy to prove a cause-
effect relation. A widespread approach when releasing a new game feature is to do AB testing
[67]. Unfortunately AB testing involved time constraints that our schedule could not meet. As
such, we opted for a predictive analysis approach that could prove our hypotheses and, if valid,
any game could quickly implement as a full-fledged feature.

4.4.1. Friendship Recommendation

Friend recommendation engines usually recommended based on users similar lifestyles, habits,
interests or behaviours. Since players on the same game already share a similar interest or
behaviour, we thought that using the community discovery knowledge in that context could
provide a different perspective for this problem.

Taking into consideration that our network is now composed of communities of players
that are friends and/or play matches together, this thesis proposes friendship recommendations

among players that belong to the same community but are not friends already as shown in figure
14.

friendship

User B

match : 3

fri ish I . recommendation
nendship, match - 3
recommendation

° o . recommensdation @

Figure 14. Friendship recommendation example

This hypotheses takes inspiration from past applications of friend recommendation in social
graphs [68] [69] and uses community knowledge and game-specific data to improve on that.
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CHAPTER 5

Results

This chapter presents the results obtained with our methodology. The first section will cover
how real mobile game data was collected in collaboration with a mobile gaming company and
what samples were selected and used. Secondly we will present the results obtained with the
test of the different methodologies. Afterwards we will present the results of community life
cycle analysis using the methodology that presented the most promising results. Lastly we will
present the testing results of our hypotheses of friendship recommendation.

Across the chapter we’ll present statistics measurements such as community size, number of
relations or number of nodes. These measurements were obtained using simple querying Cypher

statements.

5.1. Data Collected

The data used for this thesis was collected from a live mobile game during 60 days with an av-
erage of, approximately, 20M daily active users (DAU). All players data was collected anony-
mously and will not be available in an appendix or through a repository.

We sampled data based on different countries, resulting on three datasets that could repre-
sent different size of populations in the game. The countries chosen were France, Nigeria and
Portugal, with the characteristics presented in table 4. In the table, we can see the number of

players that each country has, together with the number of match and friend relations.

Country Players Matches Friends

France 430479 2150708 456476

Nigeria 91348 337871 504462

Portugal 132829 754671 775121
Table 4. Countries statistics at d

In this game, France is the one of the biggest countries (430479 players), Nigeria is one of
the smallest (91348 players) and Portugal is the averaged sized country (132829 players). Even
with the highest player count, France presents the lower ratio of relations (matches and friends)
per player with a value of 6.05 in comparison to Portugal 8.83 and Nigeria 9.22.

5.2. Community Discovery

Our focus for this thesis was to be able to detect communities in large networks. However, due
to the ambiguity in the definition of a community, extracting communities and evaluating their
quality has proven to be very difficult. In order to find out which method was the most adequate
for our use-case, we tested the three methods against our three datasets as presented in table 5
and table 6. The test was on a 4 CPU and 16GB memory computer hosting only Neo4J.
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Method Communities

France Nigeria Portugal

Label propagation 29066 19221 15432
Community folding 29520 19434 15614
Spectral optimization 29257 19372 15568
Table 5. Number of communities found per methodology

Method Execution Time
France Nigeria Portugal
Label propagation 6 min 32 secs 2 min 11 secs 3 min 45 secs

Community folding 4 min 12 secs 1 min 35 secs 2 min 21 secs
Spectral optimization 5 min 23 secs 1 min 58 secs 3 min 13 secs
Table 6. Execution time per methodology

The number of communities found by the three methods was similar but the execution time
was not. In fact label propagation has proven to be the slowest and it scaled almost linearly as
node and relation size increased. Community folding was the fastest and it scaled well taking
just 4 minutes and 12 seconds to process France dataset.

We compared the resulting communities for the Portugal dataset using Jaccard index as
shown in table 7 and the results were very similar, specially Community folding and Spectral

optimization.
Method 1 Method 2 Jaccard Similarity
Label propagation =~ Community folding 0.95
Label Propagation = Spectral optimization 0.96
Community folding Spectral optimization 0.98

Table 7. Similarity between resulting communities in Portugal

Based on the scaling capacity to millions of vertices and edges [11] of Community folding
and Spectral optimization, we excluded Label propagation, from further testing, since we wanted
to make sure that this methodology could be propagated to more significant games. Due to
our implementation of Community folding having some optimisations [40] the execution time
was lower than Spectral optimization, so we chose Community folding as the most adequate to
pursue the tests. All of the methods presented in table 7 have proven to be reliable options for
this methodology and are suggested as possible future work.

5.3. Community Life-cycle

Using the Community folding methodology we pursued our analysis of the communities life
cycles across the different datasets. To start off we evaluated the distribution of community sizes
across the three countries on the snapshot d0 as shown in table 8.

In table 8 we can observe that almost half of the communities present in our datasets were
composed of one or two players. The country with higher numbers of low size communities
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Size Communities
France Nigeria Portugal

1 10748 7849 6975
2 8600 5273 4192
3-5 5407 3687 2033
5-10 2303 1988 1470
10-50 1344 561 695
50-100 801 73 203
100-1000 305 3 44
+1000 12 0 2

Table 8. Communities size distribution at d

is Nigeria. These small communities are more exposed to death events since mobile retention
rates are low after 15 and 30 days.

We conducted our life-cycle classification on the three countries across all time spectrum
achieving the results presented in table 9. We excluded d — 30 since it served as the basis of our

iteration process previously described in other chapter.

Country Communities
d-15 d d+15 d+30
G C G C G C G C

France 3696 7179 3482 7296 4139 6362 4458 5873
Nigeria 2503 5082 4964 2842 2818 2973 3453 2612
Portugal 2341 1796 2675 1713 1593 2639 2792 1734
Table 9. Communities classification as growing (G) or contracting (C) over 60 days

In in table 9 we can observe that Portugal and Nigeria experienced an average growing
classification of 23% and France around 13%. Regarding contraction, France was the country
with the highest average (27%) while Portugal was the lowest (12%). During our analysis we
also observed that the number of communities was stable across our whole analysis as shown in
table 10.

Country Communities
d-30 d-15 d d+15 d+30
France 30291 29866 29520 29481 29947
Nigeria 18962 17987 19434 18269 19681
Portugal 14721 15026 15614 15342 15780
Table 10. Communities size over 60 days

5.4. Friendship Recommendation

Precision and recall are the most popular criteria used to evaluate a recommendation engine.

In this section, we performed several offline experiments since we could not use the recommen-
dations in a live game. To validate what was the acceptance of our recommendations we used
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the snapshot d in our data to make recommendations and after that, we compared snapshots d15
and d30 to observe what recommendations were right or wrong.

We started by looking at the impact that each relation had in the performance of the recom-
mendation. Lastly we compared results by looking at the performance by community sizes and

by communities classified as growing or contracting.

5.4.1. Relations

In this subsection we’ll start by evaluating the performance of the friendship relation by
itself, meaning that the graph used for this test only had friendship type relations. Secondly
we’ll repeat the same test just for the match type relations. Lastly we’ll combine both relations
just like in previous sections using the formula mentioned in section 4.2.1. Precision and recall
results presented in this subsection are cumulative, meaning that if a successfully predicted

friendship was observed at d 4+ 15 and not at d + 30 we still considered it as true positive.

5.4.1.1. Friend relation

The friend relation presented very conclusive results. This methodology struggles to achieve
decent recall values when the average communities size is small. In table 14, we can observe
that the number of friends in the highest population country is lower than the others. The number
of friend relations in France is so low that the average number of friends per player is between
1 and 2 while the other countries present an average of 5. As we can observe in table 12, this
reduced friends situation in France contributed positively to the precision of the algorithm but
not to the recall. Since the proposed methodology will only suggest friend recommendations to
players that are not friends yet, a network with a smaller average community size will result in
a reduced number of recommendations. With a reduced number of recommendations, we can
expect the recall to drop in accordance, but precision will not necessarily be affected.

On this test, modularity seems to help France in achieving higher results, but it is dubious
since the average community size is 1.

In general, the precision of this friend relation was two to three times higher than the match,
which clearly states that friends-of-friends matter the most in this methodology. The difference

in recall was not expressive, mostly due to the low number of resulting recommendations.

H Country Players Friends Communities Modularity Avg. Size H

France 430479 456476 259308 0.5177 1
Nigeria 91348 504462 23980 0.2882 1
Portugal 132829 775121 35513 0.2834 1

Table 11. Friend relation statistics

5.4.1.2. Match relation

The match relation was tough to analyse. The relation in itself does not achieve good precision
results but recall values are acceptable as shown on table 14. The average community size in
this relation is between 5 and 7 players depending on the country, as shown in table 13. That
average community size contributes to a high number of recommendations leading to closer
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H Country Precision (d+15) Recall (d+15) Precision (d+30) Recall (d+30) H

France 0.2022 0.0202 0.2343 0.0234
Nigeria 0.1234 0.0575 0.1312 0.0611
Portugal 0.1544 0.0907 0.1761 0.1034

Table 12. Friend relation precision and recall

H Country Players Matches Communities Modularity Avg. Size H

France 430479 2150708 97013 0.2831 5
Nigeria 91348 337871 45412 0.2342 4
Portugal 132829 754671 36267 0.35 7

Table 13. Match relation statistics

values between precision and recall. When the recall is the same as precision we can conclude
that the number of recommendations is the same as the true positives. Even with lower precision
values, the match relation revealed much better recall to precision ratio than the friend relation.

In multiplayer gaming, there is always solo players [70] that tend to have a reduced number
of friends. The match relation proves useful to be able to create recommendations for players
where a friend relation network would not result.

H Country Precision (d+15) Recall (d+15) Precision (d+30) Recall (d+30) H

France 0.0326 0.0289 0.0389 0.0345
Nigeria 0.0776 0.0622 0.0902 0.0723
Portugal 0.0570 0.0423 0.0785 0.0583

Table 14. Match relation precision and recall

5.4.1.3. Combined relations

The combination of match and friend relations shows potential for this methodology. By them-
selves, none of the relations achieved a similar result. As shown in table 15, the average com-
munity size in combined relations is between 8 and 10, which the highest in these tests. This
shows that players play more games with friends of friends or unknown players than with their
friends.

Modularity also plays an important role; throughout the test, we have seen a direct relation
in modularity versus precision in 30 days, as shown in table 15 and table 16.

H Country Players Matches Friends Communities Modularity Avg. Size H

France 430479 2150708 456476 29520 0.3179 8
Nigeria 91348 337871 504462 19434 0.3130 8
Portugal 132829 754671 775121 15614 0.3379 10

Table 15. Combined relations statistics
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H Country Precision (d+15) Recall (d+15) Precision (d+30) Recall (d+30) H

France 0.2112 0.1711 0.2652 0.2148
Nigeria 0.2438 0.1988 0.2708 0.2208
Portugal 0.2784 0.2562 0.3011 0.2771

Table 16. Combined relations precision and recall

5.4.2. Community Size

In table 17 we can observe the distribution of the precision at d + 30 by community size.
The size with most precision is 10-50 followed by 50-100. The size with the lowest precision is
+1000.

Size Precision(d+30)
France Nigeria Portugal
1 0,0134 0,0103 0,0231
2 0,0145 0,0231 0,0213
3-5 0,0214 0,0507 0,0496
5-10 0,0322 0,0623 0,0545

10-50 0,0406 0,0721 0,0682
50-100 0,0582 0,0421 0,0532
100-1000 0,0604 0,0102 0,0231
+1000 0,0245 0,0000 0,0081
Table 17. Precision distribution over communities size at d + 30

5.4.3. Life Cycle

This subsection presents the results of measuring the precision of the recommendations con-
sidering just the growing and contracting communities. Precision results presented in this sub-
section are cumulative, meaning that if a successfully predicted friendship was observed at d+15
and not at d + 30 we still considered it as true positive. In table 18 we can observe that con-
tracting communities have much lower precision values than growing communities across all
countries. Portugal was the country with the highest precision at d+ 15 in growing communities
with 77,31%. All countries had an average increase of 3% from d + 15 to d + 30 in growing
communities with Portugal achieving 78,12% at d 4+ 30. Contracting communities had an av-
erage of 3% precision results on d + 15 and 5% on d + 30. The lowest result was Nigeria with
only 4,15% at d + 30.

Country Precision
d+15 d+30
G C G C
France  0,5828 0,0342 0,6433 0,0509
Nigeria 0,6521 0,0293 0,6801 0,0415
Portugal 0,7731 0,0711 0,7912 0,0937
Table 18. Precision at d + 15 and d + 30 for growing (G) or contracting (C) communities
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CHAPTER 6

Conclusions and future research

As mentioned in the introductory chapter of this thesis, social interaction plays a vital role in
the development of mobile games. Backed by scientifically validated community discovery
methodologies, it is possible to make a concrete contribution.

So how can we develop a methodology that is easily reproducible across other mobile games?
An easily reproducible methodology must use common mobile gaming interactions and aca-
demic valid methods. Friendships and matches are common in most mobile games just like
modularity optimisation methods are in community discovery literature. We also suggest in the
future work section other interactions widely present in the industry.

To evaluate performance and quality in real use cases, without user feedback, we concluded
that predictive analysis is a viable solution. The results presented in this thesis clearly show that
we can use dynamic networks and community knowledge to better understand players and their
social attributes.

To deal with temporal data we concluded that snapshots provide a good basis for analysis.
With snapshots, we could observe growth and contraction events in the community life-cycle
analysis and measure the performance evolution of our friendship prediction.

Small communities (2-5 players) were predominant in our mobile game representing an
average of 44,4% of the total communities. Even with that, solo players still represented a great
part of the population with an average of 40,4%.

Community evolution was very volatile in our mobile scenario. Growth and contraction
events occurred on 35,3% of the communities on average, with Nigeria achieving 42,1%. Con-
traction events represented almost two times the number of growth events on all our datasets.

Friendships were predictable with some precision at d + 30 (average of 27,5%) just by using
community knowledge. When we applied the proposed methodology just to growing and con-
tracting communities, we observed that contracting communities were not worthy of predicting
with results as low as 4,15% at d + 30. On the opposite, growing communities showed signif-
icantly higher results, with the Portugal dataset achieving 79,12% precision at d + 30. Results
over time were similar from d + 15 to d 4+ 30 which showed that the prediction was particularly
effective in the short term but limited in the long term.

Lastly, we concluded that this methodology can be boosted in the future by bringing other
relations to the equation since the results of the combination of relations were higher than each

relation by itself.
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6.1. Contributions

This thesis serves the academic community as a hypotheses for the application of community
discovery methodologies in mobile games. The comparison of different methodologies with a
real mobile gaming scenario is also relevant and useful.

Community detection methodologies keep evolving and have already proven to be capable
of handling large volumes of data. This thesis also demonstrates that through a simple rec-
ommendation system we can predict friendships until 79% in growing communities. If those
recommendations were presented to the user and possibly adopted that could help boost com-
munities growth. In games with 20 million DAU, increases in community size can mean a lot

of revenue and business value.

6.2. Limitations and Future Work

As mentioned previously, this thesis explored how communities behave in the mobile gaming
world. With that knowledge, we wanted to prove that a substantial contribution could be made.
That focus and time constraints limited decisions and left some interesting questions and paths to

be explored. To conclude this thesis, some recommendations to this effect are presented below.

e The results of relations by themselves have proven to be lacking when compared to the
combination of them. That result has lit our interest in exploring further interactions
and their possible combinations:

— Gifting - Gift sent from one player to another.
— Chat - Message sent from one player to another.
— Challenge - Challenge sent from one player to another.

e Relation weight was a field that we left unexplored. The formula used on this thesis was
simple; if the user had played more than one match with another, then the weight would
be the number of matches between them. A linear regression or some optimisation
algorithm would be very interesting to explore in order to increase the model precision
and recall.

e The community detection algorithm used in this thesis was Louvain. Other options
were considered but discarded due to scalability or performance. It would be interesting
to see if other algorithms could achieve more accurate results or even be more suited
in smaller populations.

e Due to time constraints, this thesis results were validated through a confirmation anal-
ysis perspective. However, it would be interesting to do proper AB testing of the rec-
ommendations and measure its impact on user retention and engagement.

e In the life cycle analysis it would be interesting to pursue the detection of other life
cycle events such as birth or death. It would also be very interesting to explore an
hypotheses that could relate birth or death of communities in mobile games.
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