IScte

INSTITUTO
UNIVERSITARIO
DE LISBOA

Avaliador Pedagogico da Qualidade de Cadigo

Francisco Miguel da Anunciagao Alfredo

Mestrado em Engenharia de Telecomunicag¢des e Informatica

Orientador:
Doutor André Leal Santos, Professor Auxiliar,

ISCTE - UL

Co-Orientador:
Doutor Nuno Miguel de Figueiredo Garrido, Professor Auxiliar,

ISCTE - IUL

Outubro, 2020

iscte

Avaliador Pedagogico da Qualidade de Cadigo

Francisco Miguel da Anunciagao Alfredo

Mestrado em Engenharia de Telecomunicag¢des e Informatica

Orientador:
Doutor André Leal Santos, Professor Auxiliar,

ISCTE - UL

Co-Orientador:
Doutor Nuno Miguel de Figueiredo Garrido, Professor Auxiliar,

ISCTE - IUL

Outubro, 2020

Acknowledgments

First, | would like to thank my family, and girlfriend, for all the unconditional support and for always
encouraging me to push a little bit further when it came to my academic life, without that, | am not

sure if | would ever reach this point, specially while working and studying at the same time.

A big thank you for all the friends and colleagues that offered their time to help me test and

improve the tool.

A huge thank you to both my advisers, André Santos and Nuno Garrido. Thank you, Professor
André, for all the support regarding all the aspects that were involved in the development of our tool,
and thesis. For always being available, and willing, to help me when | found some roadblocks or was
facing some issues with the code, | really appreciated it. Thank you, Professor Nuno, for all the advices
and really constructive criticism that you gave me during our weekly conversations, it really made and

impact on the way that | was thinking and really helped me improve the tool and this thesis.

I would also like to thank Professor Alcides Fonseca, who was a member of the board during the
presentation of my thesis and which gave me a very constructive feedback regarding some aspects of

my work, that helped me improve it.

To everyone else that was involved in any way and that helped me during this process, thank you.

Abstract

When it comes to learning how to program, during introductory programming courses, students tend
to form misconceptions regarding certain code aspects, that they aren’t aware of. These
misconceptions can result in code quality issues, which don’t affect a program execution, but are
considered bad practices and should be avoided. Most often, they will stay unaware of such issues
until an intervention is made, by a third-party agent, such as a professor. There are already a few tools
that focus on this type of issues, by highlighting the code quality issues and supplying a quick fix for
them. This approach, while effective, isn’t ideal for beginners, since providing a solution without
explaining the problem, won’t make the student understand why the code that was written is

considered a bad practice.

With this being said, a pedagogical tool was developed. This tool uses static analysis in order to
apply some code quality issues detectors to the student’s codebase, and focus on highlighting the
issues, while explaining why they are considered to be wrong and therefore, why they should be

avoided.

After the development of the tool was done, a study where a batch of projects from the previous
year’s course were subjected to the tool, in order to find out how often can these code quality issues
be found in the student’s codebase, and which code issues are the most popular amongst

unexperienced programming beginners.

Keywords: Introductory programming, code quality issues, pedagogical tool.

Resumo

Durante a aprendizagem de programacao, os alunos tém tendéncia a formar ideias erradas sobre os
papeis de certas estruturas de cédigo, envolvidas nos programas que os mesmos escrevem. Embora
estas estruturas ndo contribuam para o mau funcionamento dos programas que sdo escritos, contém
muitas vezes alguns problemas de qualidade de cédigo, considerados mas praticas no mundo da
programacdo. Devido a inexperiéncia por parte dos alunos, estes nem se apercebem que adotaram
tais mds praticas, tornando-se necessaria a intervengdao de um terceiro agente, como um professor,
para que as mesmas sejam combatidas. Existem algumas ferramentas que abordam este problema,
sendo estas focadas na vertente profissional, apenas identificando e oferecendo uma resolugdo rapida
para estes problemas, sem tentar fazer com que o sujeito perceba o porqué de ter cometido tal erro,

sendo que esta solugdo ndo é ideal para os principiantes da programagao.

Posto isto, foi desenvolvida uma ferramenta pedagoégica, que usa andlise estatica de maneira a
aplicar alguns detetores de problemas de qualidade de cédigo, no cédigo que é escrito pelos alunos,
de maneira a identificar e alertar os principiantes para estes problemas, fornecendo uma explica¢ao

pedagodgica sobre o porqué de tal ma pratica ser considerada prejudicial a aprendizagem.

Apos a ferramenta ter sido desenvolvida, realizou-se um estudo onde um conjunto de projetos
de semestres passados foram recolhidos e processados pela ferramenta, de maneira a descobrir o
quao frequente é possivel encontrar estes problemas no cédigo escrito pelos alunos, e que tipos de

erros sao mais comuns entre os alunos.

Palavras-chave: Introdugdo a programagdo, problemas de qualidade de cédigo, ferramenta

pedagogica.

Vi

Contents

ACKNOWLEDGMENTS

ABSTRACT

RESUMO

LIST OF FIGURES

LIST OF TABLES

1.

INTRODUCTION

1.1 MOTIVATION

1.2 APPROACH

1.3 RESEARCH QUESTIONS
1.4 OBJECTIVES

1.5 RESEARCH METHOD
RELATED WORK

2.1 DIFFICULTIES WITH LEARNING HOW TO PROGRAM
2.2 SOFTWARE QUALITY IN THE BEGINNER PHASE OF THE LEARNING PROCESS
2.3 CODE QUALITY INSPECTION
2.4 EXISTING PEDAGOGICAL TOOLS
2.4.1 Scratch, Blockly and Greenfoot
2.4.2 VLT-O0OP
2.4.3 BlueJ Environment
2.4.4 BlueJ-UML extension tool
2.5 PROFESSIONAL TOOLS FOR ADDRESSING CODE QUALITY
2.5.1 Eclipse IDE
2.5.2 INTELLI IDEA
2.5.3 Symbolic Execution Debugger
2.5.4 Code Linters
2.5.5 Sonarlint
2.4.6 PMD

2.6 SUMMARY
CONTROL FLOW GRAPH

3.1 DEFINITION
3.2 PADDLE LIBRARY FOR CODE ANALYSIS

3.3 CFG BUILDING ALGORITHM

vii

(8] w N NN

© VW N un

10
12
12
14
15
16
17
18
19
20
20
21

23

23
24
25

6.

3.3.1 ALGORITHM EXPLANATION
3.3.2 CONTROL FLOW GRAPH GENERATION EXAMPLE

3.3 CONTROL FLOW GRAPH APIs
CODE QUALITY ISSUES

4.1 CONTROL STRUCTURES
4.1.1 Empty blocks
4.1.2 Non-explicit else with empty if
4.1.3 Boolean Condition Verbose
4.1.4 Boolean Return Value Check
4.1.5 Tautology
4.1.6 Condition Double-Check
4.2 ASSIGNMENT & EXPRESSIONS
4.2.1 Useless Self Assignment
4.2.2 Useless Assignment Value
4.2.3 Magic Numbers
4.2.4 Duplicate expressions in if/else
4.3 USELESS EXECUTION
4.3.1 Unused Function Return Value
4.3.2 Duplicate Function Call
4.4 UNREACHABLE CODE
4.4.1 Faulty Return Statement

4.4.2 Contradiction
EXPERIMENTS & RESULTS

5.1 EVALUATION PREPARATION STEPS

5.3 APPLYING THE TOOL TO THE PARSED STUDENT PROJECTS

5.5 USABILITY TESTS WITH STUDENTS

CONCLUSIONS AND FUTURE WORK

REFERENCES

viii

26
29
31

33

34
35
36
37
39
40
41
42
42
43
44
45
46
46
48
48
49
50

51

51
51
55

57

59

List of figures

Figure 2.1. BIOCKly €ditOr VIEW [2]. .eooueiiieiiiieeiee ittt et st st 10
Figure 2.2. Greenfoot development environment view [11]......cccocuieiiiiiiniiinieiiienic e 11
Figure 2.3. The OOP-based Data Model in VLT-OO0P t0ool [5].....ccccoiieeiiiiiiiecieeeciee e 12
Figure 2.4. BluelJ Interface while manipulation and creating objects [13].......ccccoceerverieininnienns 13
Figure 2.5. Comparison done between BlueJ-UML and Bluel regarding a class details [8].......... 14
Figure 2.6. Updating details while on UML VIEWPOINT.......c.cooiiiiiiiiiiiiie e 15
Figure 2.7. Eclipse IDE user interface displaying different plug-ins [16]........c.cccooeeniinieininnieene 17
Figure 2.8. Symbolic execution tree eXample.cccooviieiiiiiiiieeiie e 19
Figure 2.9. SonarLint warning example [22].ooiiiiiiiieetee ettt 20
Figures 3.1.a & 3.1.b. Code method example..........ccooiiiiiiiiiiiii e 23
Figure 3.2. Next and Alternative attributes example.ccooiieriiiiii e, 26
Figure 3.3. Example method that checks for the existence of a given number...........c.cccocceeie. 29
Figure 3.4. Completed Control Flow Graph StruCture.cccccevviieiiieeiieieee e 31
Figure 3.5. Control FIOW Graph API's.coiiiiiiiiieee ettt sttt 32
Figure 4.1. Empty code block eXample.oooiiiiiiiiie e 35
Figure 4.2. Empty if block issue highlight and explanation example.ccoccoriiniiniiiniiniienne 36
Figure 4.3. Non-expliCit €1Se eXample.c.uii i e e e 36
Figure 4.4. If Condition Misconception highlight and explanation example.ccccccocceerienienne 37
Figure 4.5. Boolean verbose eXample..........cooiiiiiiiiiie e 37
Figure 4.6. Boolean condition verbose highlight and explanation example...........cccocceeviiienneen. 38
Figure 4.7. Boolean return check eXample. ..o 39
Figure 4.8. Boolean return check eXample.ooieiiiiiiiiiiee e 39
Figure 4.9. Tautology @Xample. ..co..eiiiiiiiiieee e e 40
Figure 4.10. Tautology highlight and explanation.ccc.cceeiiiiiiiie e, 40
Figure 4.11. Double-check @Xample.cuiiiiiiiiiiiie e s 41
Figure 4.12. Condition Double-check highlight and explanation.cccccceriiiniiiiicnnceeneen. 42
Figure 4.13. Useless Self-asSiGNMENt.oeiveiiiiiiicciieeeeee ettt e 42
Figure 4.14. Self-assignment @XamMPIE.c.uiiiieeiiiiie et e e e e ae e e e aaaee s 43
Figure 4.15. Useless value asSiNMENT.oiiiiiiiiiieiieciiiee et ee e e et e e ae e e e e eava e e e e saaaeee s 43
Figure 4.16. Useless Assignment Value highlight and explanation example.ccccccovveeeinnneenn. 44
Figure 4.17. Magic NUMbEr @XaMPIE. ..ccoccuviiieeeiiiee et e e e e e aaaeee s 44
Figure 4.18. Magic NUMDEr @XamMPIE. ...cciccuiiiiieeiiiie et e e e et ae e e e aaaeee s 45
Figure 4.19. Unused Value EXamMPIE.......ccccuiiieieiiiiiee ettt eete e e aae e e e e are e e e entaae e e e s naaeee s 46

Figure 4.20. Duplicate call @Xample.coooiiiiiiiiiiie et 48

Figure 4.21. Duplicate call highlight and explanation..........ccccc.ceeiiiiiiiini e, 48
Figure 4.22. Unreachable code example. ..o e 49
Figure 4.23. Unreachable code highlight.cocoiiiiiiiiii e, 50
Figure 4.24. Contradiction @XamPle.coc.uiiiiiiiiiiie ettt s 50

List of tables

Table 2.1.
dataset [5]......

Table 3.1.
Table 3.2.
Table 3.3.
Table 4.1.
Table 5.1.
Table 5.2.
Table 5.3.
Table 5.4.

Frequency and Median Time-to-Fix for the most common mistakes found in a 2-year

.. 6
LYo Lo LT Y o 24
Statement NOAE APIS. ...ttt sr e e s e e snnee e 31
BranCh NOGE APIS......oo ettt et e et e s e s e e e 32
Code quality issues and desCriptions.cooveiiiieeiiiiiiie e 33
Presence of quality issues in student projects.cceeeeeveeneeiiieieeneeeeee e 52
Percentage of found issues, per project grade.ccceveerverneeiiiieiieneeeee e 53
Percentage of found issues, per semester final grade.ccccoeeeviveeevceeccee e, 53
Percentages of each issue found across all the projects........ccecceereerieenieniecnieineene 54

Xi

Xii

1. Introduction

1.1 Motivation

When it comes to learning how to program, there are a lot of challenges that one can and most
certainly will face during the beginner phases. Most of these problems are due to the lack of
knowledge about the fundamentals and lack of problem-solving skills, and it can become difficult and
frustrating to face them, especially while being on an early stage of the learning process. On the
contrary, beginners are also capable of solving problems that they are subjected to but, without
proper orientation from a more experienced programmer, such as a teacher, they may use solutions
that while allowing them to achieve the correct result, may sometimes not be the best ones, both

syntactically and semantically speaking, which may result in poor code quality.

Since worrying about the behaviour of the program and how to implement it can already be a
very demanding task for a beginner, subjects like code styling and good code practises regarding code
quality, can often be left behind by the student. This can be an issue because a working program does
not emit output when it comes to the quality of the source code, which leads to the beginner moving
forward, which may lead the beginner to acquire bad coding practices right from a very early stage,

practices that tend to get even worse over time and that should be fought right from the beginning.

There have been studies trying to figure out why these quality issues tend to remain unsolved.
Most of them came to the conclusion that students are not concerned with topics such as
maintainability, performance, and testability, and with this being, they tend to be satisfied once they

reach the desired result [1].

A way of facing this situation is to seek counsel from more experienced individuals when it comes
to programming, or to do some research on the matter. But most of the time, this can end up being
very time consuming, and it’s not the most practical thing to do. In a lot of cases, it might not even

help the beginner to reach a conclusion and improve its coding/thinking skills.

While there are lots of tools whose purpose is to search for these kind of issues and to aid
developers in their work, most of them don’t inform the programmer on why the issues that are found
are considered to have problems within them. Without the proper feedback about the written code,
beginners that may have learned bad practices, most certainly won’t avoid using them without the

proper guidance, like mentioned before.

1.2 Approach

After researching about what are the causes of the general bad code quality found among
programming beginner's projects, the proposed solution to fight this issue is a pedagogical tool that
could help beginners improve their programming knowledge and skills, by raising awareness to code
that exhibits quality issues after the execution of the program is complete. This tool would start by
parsing the source code written by a beginner, analyzing the parsed code and then recognize if there
are blocks or expressions, that should concern the beginner about the quality of the code, and if so,
warn the beginner about such concerns, the reason why it is considered an issue, and a possible
solution/explanation so that the beginner learns from it and avoids doing such mistakes in future

developments.

This tool will detect problems such as empty code blocks that are left in the code, problems with
the assignment of values to variables, problems with conditions such has if blocks and loop blocks
guards. It belongs to the domain of the tools/plugins, that are installed and used in an Integrated
Development Environment (IDE), with the purpose of supplying an individual with a set of devices,
which have the main objective of promoting good code quality, by discouraging the usage of bad
practices and suggesting better ones. This will eventually lead to a better structured and bug-free code

base.

1.3 Research Questions

The research questions for this thesis are:

1. Which are the most common mistakes and bad practices performed by programming
beginners?

2. What are the subjects that beginners tend to find most difficulties?

3. What is the best way to raise awareness regarding bad code practices, in the first stages of

the learning process?

1.4 Objectives

The main objectives of this thesis consist of:

1. Understanding which are the most frequent bad practices and misconceptions regarding the
learning process of basic programming structures, that are shared by the greater percentage

of beginners that are new to programming.

2. Developing a strategy, by developing a pedagogical tool, in order to address these issues, so

that beginners could overtake the obstacles on the way and write better code, in the most

autonomous way possible.

1.5 Research Method

The research in this dissertation follows the Design Science Research methodology. This meaning that

it will be composed of six different phases. These six phases are:

1.

Identification of the problem, where the research problem is defined, and the solution
justified. In this case, the problem is the lack of good solutions regarding code quality, in
beginner’s programming project, and the solution is a pedagogical tool that shall help in
such matters.

Definition of objectives for the solution. The objective of the proposed tool is to help
beginners to be aware of the mistakes and bad practices that are used, regarding code
quality.

Design and development of the methodology to build such a tool. It shall process the
beginner source code and match it with a library that contains the mistakes and bad
practices that are being targeted, so that the origins of the issue can be explained to the
beginner.

Demonstration by giving the tool to a beginner, so that it can be tested.

Evaluation by comparing the main objectives to the results obtained in the previous
phase.

Communication of the problem, the solution, it’s utility and effectiveness, via this
dissertation, by comparing it to previous tools that target similar aspects in code

development.

When the fifth phase is reached, if there is something wrong with the developed solution,

steps 2, 3, 4, and 5 and repeat until everything is as expected. To conclude, this method tries to find

user insights on the problem first, and then focuses on finding a solution to such problem, by first

researching what has been done that can be taken into consideration, and then by following the steps

described above in order to achieve the best solution possible [2].

2. Related Work

2.1 Difficulties with learning how to program

Engaging in the learning of a new skill, such as programming, can be a challenging topic to an individual
that never had any type of contact with the fundamentals of this subject, and even less with the
thinking process that goes behind it. One may face several difficulties and roadblocks when it comes
to learning how to program, whether being code quality related issues, like syntactic errors or the bad
usage of code structures, semantic issues that can manifest themselves as the absence of being able
to think about a problem in an abstract way or overthinking a solution for a problem that required a

much simpler one.

Most of the times, beginners can’t acknowledge that these issues are present in their minds,
resulting in a poor understanding of basic programming concepts and how or when to use them. This
will eventually lead to the development of misconceptions that are much more difficult to rectify

further down the line of the learning process [3].

Before starting to analyse which of these difficulties are shared among most beginners, a better
explanation will be given, regarding the meaning and definition of a misconception. When it comes to
learning, a misconception consists on a set of poorly formed ideas that are based on a thinking process
that isn’t completely right. This means that one may have a formed set of ideas or conclusions
regarding a subject, that when combined, do not lead to a well-formed and correct knowledge, or
opinion [4]. Regarding the process of learning how to program, a misconception can be better defined
as the incapability of fully understanding some of the programming fundamentals, their practical use
cases, and the meaning of it. Misconceptions can manifest themselves on every stage of programming
learning process, whether it being on the stage where the beginner starts to learn about a language
syntactic features, the learning of general concepts within the domain of programming, or the usage
of strategic knowledge obtained from previous stages, when it comes to finding a solution to a

problem, using programming as the mean to achieve the solution.

The first enumerated stage, learning a language syntax, requires that one must understand and
be able to apply the specified set of rules while writing a piece of code, like opening a set of curly
brackets when defining a new method- The second stage, regarding the learning of programming
concepts, takes place when the beginner has learned the topics within the first stage and knows how
to apply them while being aware of what the written code actually stands for. A good example of this,
is when a beginner writes a method that includes a loop, while knowing that the loop will execute the

code inside of it until the guard condition no longer holds, and this being the reason why the loop was

implemented. Another example is the difficulty on learning the abstract concepts behind an object
oriented programming language, such as Java, and the relations that exist among the elements and
concepts [5]. The last stage consists on using what was learned from the previous two, to attack or

resolve an existing problem [4].

The misconception is formed when, in one of the two first stages, or in both, wrong
ideas/conclusions are formed, about what is being learned, whether it being the poor understating of
the syntax of a programming language, or of the wrong/disturbed conceptualization of what will
happen when a piece of code is running. Having misconceptions regarding these two stages, can then
affect how one might think on the solution to a problem. With this being, it is justifiable that beginners
should receive help so that they can prevent the acquirement of such misconceptions or fix the
existing ones. A more detailed enumeration and analysis of found difficulties and misconceptions, will

be done hereinafter.

. Time-to-fix
Mistake Category Frequency
(sec)
Unbalanced parentheses, curl
P Y| syntax 1861627 17
or square brackets
Non void method without
Semantic 817 140 38
return statement
Confusing ‘=" with ‘==’ Syntax 405 748 113
Nonvoid r.nethod return value is Semantic 274 963 1000
ignored
| ki tati thod as if it
nvoking nonsta |c'me od as if i Semantic 202 017 48
were static
Class impl ts interface but
a5 fmplements Interface B 1 Semantic 186 643 107
not all the required methods
Including typ'es of pa.1rameters in Syntax 117 295 23
method invocation
Incorrect u§a'ge of the semicolon Syntax 108 717 387
after conditions and loops

Table 2.1. Frequency and Median Time-to-Fix for the most common mistakes found in a 2-year dataset [5].

Some of the difficulties/errors that were found the most in previous studies, are displayed in the
table above, and syntactically wise, the most frequent ones are the mismatched/missing parentheses
when surrounding a condition, the mismatched/missing brackets when declaring a new method , the
lack/misposition of quotation marks like semi-colons after a statement or a condition ending, followed
by the confusion between the comparator ‘==’, with the assignment symbol ‘=" , writing quantity
comparators in the wrong order, like ‘=>‘ or ‘=<’ instead of ‘>=" and ‘<=’, and so on [3]. The occurrence
of this mistakes may be justified by the lack of practice in the early stages of the process of learning a

new programming language, such as Java, or to the hard time that some beginners face while learning

the basics of the language syntax. On the other hand, they tend to be the first ones to be identified,
due to their relative recognition simplicity, and the fastest ones to be fixed, like seen in the table
above, where the syntactic mistakes tend to take much less time to fix, in comparison to the semantic

ones.

Regarding the semantics behind a piece of code, it can be said that this is where beginners tend
to struggle a lot more. This kind of mistake tends to appear on the second stage of the learning
process, where the beginner starts trying to understand/make sense of what the code that is written
represents and what it will do while it is running. The lack of experience and knowledge, both syntactic
and conceptual, often leads the beginner to start writing code without thinking in a proper and well-
formed solution that should combine the thinking process behind solving a problem, with the
semantics and syntactic features that a language may provide to write an algorithm that will serve as

solution to the referred problem.

There is a very usual situation, where a beginner gets stuck in a position where the lack of coding
knowledge, agility or problem-solving skills are the preventing causes behind the inability to obtaining
the solution to a certain problem. Most of the times, the beginner seeks help from available literature,
or more experienced individuals, and with this kind of help, normally, the beginner can surpass the
difficulties that were found, while learning from them, and getting closer to obtain a solution to the
problem. There are also times when the beginner is able to think about a solution, implement it, and
reach the desired result. This can be a sign that the beginner is starting to learn and evolve when it
comes to using programming as a mean to resolve problems, but it is very common to see that, while
the correct result has been reached, the way that it was done isn’t always as good as it could or should
be, syntactic or semantic wise. When this happens, the beginner tends to think that the
implementation of the algorithm that was written is correct, and in most cases, lacks the criticism skills
to question whether it could have been done better, or not. This type of situation helps feeding the
misconceptions that one may possess and will most likely result in the usage of bad thinking and

coding practices, in future developments.

2.2 Software quality in the beginner phase of the learning process

Now that some of the primary difficulties have been discussed, the next step is to figure out what is
the best way to combat the misconceptions that may be formed in a beginner’s mind. There are
studies that have tried to answer this very question, but most of them tend to end up in the same
conclusion, which is that it is still unclear whether it is a good idea to promote software quality right
from the beginning of the learning process, or if it is better to wait until a certain amount of coding

knowledge and maturity has been reached by them [6]. The issue with doing it when beginners have

little to no knowledge, is that they already have so much to focus on, such as understanding the basic
structures and concepts and learning how to use them, that inflicting that kind of concerns may result
in bigger confusions and doubts on a beginner’s mind. Contrarily, if beginners are left alone, without
addressing their code quality issues, bigger undisciplined coding practices may resolve from such
issues, which will most certainly contribute to the formation of syntactic and semantic

misconceptions.

A study was conducted where multiple beginners code samples were searched for code smells,
which are known coding patterns which are indicative of implementation and code quality problems
[6], and analysed in order to find if students would lose bad coding habits acquired from the early
stages of learning how to program, as their knowledge and coding experience progressed. Beginners
in all levels of programming proficiency tend to retain bad coding quality issues present in their coding
developments, independently of the level of coding knowledge and expertise that they were in. It was
also showed that being exposed to some kind of software quality concepts, while in context with the
target issue that has been found, would result in the acquirement of awareness, regarding the issue,
and practical skills which allowed the beginners to proficiently developed better solutions in their
future developments while still learning about better software design and implementation practices

[6].

On another performed study of commonly occurring quality issues in beginner Java code, there
was found that students, even when subjected to code quality analysis tools, tend to hardly, or never,
resolve the quality related issues [3]. These support the theory that an increase in programming
proficiency and autonomy, does not always lead into proper programming practices, since in most
cases, the bad ones tend to persist. These facts support the need to have a proper way of correcting
beginners. When these quality issues occur, there should be an educational intervention with is the
ability to explain how certain practices are improper, or simply wrong, have the beginner understand
why this is and what must be done and learned so that it is fixed and does not happen in future

developments.

This can be obtained, as stated before, with the help of a more experienced individual when it
comes to programming, like a professor. The issue with this is that it doesn’t promote the beginner’s
autonomy. There are tools that are developed with the intent of giving warnings regarding bad coding

practices, and how to fix them, which will be discussed in the next section.

2.3 Code quality inspection

One way to better detect code quality related issues, is by performing an inspection on the source
code present in solutions implemented by a beginner. It can be used for improving the software
quality as it involves the examination of the code, which can lead to the recognition of problematic
blocks that may result from misconceptions and, consequently, be associated with bad code quality

practices [7].

The recognition of these patterns is done by comparing the different blocks of code that are
present in the parsed source code, with code smells, which are patterns that are generally associated
with the implementation of bad practices [7]. These serve mainly as indicators of sections that should
be targeted for refactoring, are can be of great use for the development of the proposed pedagogical
tool, in the way that it allows the finding of the bad practices done by beginners, which will then be

targeted in a future explanation, in order to help the student to recognize and solve them.

The main code smells that will be targeted in order to promote the better quality of code written

by students, are the ones that are most commonly found in introductory courses. These are:

1. Empty code structures. These refer to blocks of code such as empty selections (if
statement).

2. Code duplication. The same block of code that are found in multiple methods or
classes.

3. Long methods. When written methods tend to become too long to understand at first
glance.

4. Unnecessary verifications. When beginners implement too much verifications
regarding variables values, for example, that could simply be removed or replaced by

simpler statements.

It is important to emphasize that the code smells that will be used to detect the bad practices
present in beginners code may not only be enumerated ones above [7]. These will serve has a starting

point and if the objective is achieved, after the testing phase, other ones will be included.

2.4 Existing pedagogical tools

Many teachers found that teaching programming languages such as object-oriented ones, like Java, is
more difficult than teaching a traditional procedural programming language, due to the pedagogy
behind object-oriented programs, and the requirement that it has regarding abstract thinking.
Beginners must be able to model the physical imagined items, into virtual ones, and define the

complex interactions and relationships that are present between each other, and this is not easy to

perform while there is a lack of programming knowledge and experience, that is the case for most of

the beginners [8].

There is a lack of appropriate pedagogical tools that can fully, or almost fully, combat the
programming paradigms with its own abstract ways. There has still been some development and
progress regarding the development of tools that have the purpose of reducing the load of abstraction
that one must present in order to better learn and understand the topics enumerated above. Some

of these tools will be enumerated hereinafter.

2.4.1 Scratch, Blockly and Greenfoot
There are tools which main focus is to help the beginner better understand the fundamentals of
programming, and how to write code with them. These tools are separated in two categories which

are the graphical, and the textual ones.

Regarding the graphic domain, many visualization tools, such as Scratch [9], Blockly [10], and
Greenfoot [11], have been developed with the purpose of helping the beginner better learn and

understand the language in question.

l Logic Language: JavaScript ¥
| Loops
var Count;
| wath
I Text Count = 1;
I Lists . while (Count <= 3) {
L = Count = Count + 1;
I color i Hello Worid! 2] '
v window.alert('Hello World!');
I Variables
I Functions

Figure 2.1. Blockly editor view [2].

The first two examples, lay on a block-based solution, that is fully graphical, and enables the
beginner to visualize the basics of structured programming in a more and concepts as 2d graphics and
create relations between them, without the need to have the required syntactic and semantic
knowledge, by simply dragging them next to each other, creating a sequence of events [5]. This
approach removes some of the load when it comes to understanding the abstraction behind these
concepts, when using a text-based programming environment, and can serve as a good starting point
to someone who just started learning how to program, even though it has been developed with a

younger audience in mind.

10

Regarding Greenfoot, it helps teaching object orientation, in java, and offers visualization and
interaction tools that are built into the coding environment [11]. It mainly focuses contextualization
of object-oriented programming, by allowing the creation of actors that live in worlds, which represent
objects that are used to build games, simulations and other graphical programs. These are all
programmed using Java textual code, and the platform provides a combination of programming

experience, while using the traditional text-based language with visual execution.

800 ScoreBoard

Complle Cut| Copy| Paste| Find..| Close Source Code : [Elshm

hmport greenfoot.*;

import java.owt.Color;
impart jowa.owt.Font;
impart jova.util.Calendar;

public closs ScoreBoard extends Actor {
public stotic fimal floot fontSii. = 12.0f;
public stotic finol int width = 109;
public stotic final int height = 40;

public ScoreBoard()
{
)

public ~oreBoard(String meg)

{ ¥
), a(=i9);

)

public vold shom{String mig)
{
Greenfootlmoge imcge = new GreenfootImoge(width, height);

izage, setolor{nem Color(255, 255, 255, 128));
imoge. fillRect(@, 0, width, height); \
image. setColor{new Color(d, @, 0, 128));

{mage. FilIRect(S, 5, width - 10, height - 10);
Fomt font = image.getFont();

font = font.deriveFont({fontSize);
image. setFont{font);

image, setColor(Color WHITE),

” ""'"l | Comole

Figure 2.2. Greenfoot development environment view [11].

Greenfoot purpose is to help teachers teaching what most beginners find the hardest, which is
the abstraction that is behind the main concepts of object oriented programming, such as the
class/object relationship, the methods inside them, the parameters that a method shall receive, and
why, and the objects interaction. All of this is better explained with the visualization provided by the

Greenfoot’s integrated development environment (IDE) [11].

11

2.4.2 VLT-OOP

Another designed and developed tool that aims to help better understand the main concepts of
object-oriented programming is VLT-OOP. It does this by allowing both the development and
visualization of the interactions and relations present between structures, to be done through a
graphical 2D application [5]. In VLT-OOP, a Class denotes an abstract definition of an Object, so that it
can implemented and visualized. Each of these objects possesses its customizable attributes, actions
and rules, which can be added and defined using the user interface. They can also be created based
on parent objects, and use their parent’s attributes, actions and rules, to create more detailed and
complex ones. This procedure corresponds to the Inheritance concept. Polymorphism can also be
found, by creating rules with associated actions that can be used to specify and define different and
more complicated methods. It shares the same goal with the previous tools, while also representing,

in a deeper way, what the actual structures and concepts of a programming language are [5].

Inheritance

Attribute

create -
Action

Class

Rules

[A |[eree m Atribute
» Object «

il

Action_ 1\ Action
.
Rules o Rules
Child Class o Already inside
[Awbute § | Attribute
" 1 | create i
| P | : —— Rules”
| Attribute 1 ‘ | Attribute 3]
Child C|abs_[3 | Action_ ¢ | | Action_ S5]
[Rules ¢ | | Rules /5] Already inside

Figure 2.3. The OOP-based Data Model in VLT-OOP tool [5].

2.4.3 BlueJ Environment

BluelJ is a programming environment that is broadly used for teaching object-oriented languages, such
as Java, on an introductory level, using an objects-first approach. It deeply relies on a Modelling
Unified Language (UML) based graphic interface that supplies beginners with an instant view of a
project’s class diagrams. It has the purpose of allowing the beginner to analyse and learn about the

attributes, methods or API’s, that a certain class contains and provides.

The user can interact directly with classes and objects in order to observe the outcome of this

interactions, such as method invocation. This can be greatly advantageous due to it allowing the

12

beginners to define, manipulate and observe the outcome of the cognitive structures or “mental
models” that are envisioned by them [12]. This feature serves has a great advantage when it comes
to looking to a piece of code in an abstract way, but it has also been found that the transition from
manipulating the programming structures via graphic interface, to doing it by writing textual Java

code, can represent a challenge in most cases.

®ene Blue): people
New Class...| b
T Database
4 _E ——
Compile |
H <<absfracts>
et =| Person
sttt { I Student |
new Staff(name, yearOfBirth, roomNumber) :
naw Stafl()
Open Editor
——
S - Compile
|8 i I =
Ramove

Figure 2.4. BlueJ Interface while manipulation and creating objects [13].

For a beginner programmer, it can be a difficult task to write the first lines of code, which means
that the transition should always be followed closely, in order to maximize the changes of the beginner

succeeding in writing new code [12].

In general, it is an easy to use and helpful tool that allows beginners to be visualize and better
understand how object-oriented programming structures function, but it is also recognized by some
educators, that it is not a mandatory tool and that some of its approaches are not the best ones, such
as using object-orientation as an topic for programming introduction, or the poor feedback to quality

issues [14][15][16].

BlueJ also does not provide any type of recognition regarding code patterns that indicate code

quality issues.

13

2.4.4 BlueJ-UML extension tool

It implements attribute, method and constructor information in a UML styled class diagram. It
represents the original BlueJ UML feature, but with a stronger association, aggregation and
composition dependency, while strengthening the interactions between beginner and BlueJ in a way
that it allows the manipulation on class diagram through the UML notations to the original source

code.

Since beginners, when lacking basic programming knowledge, tend to struggle with the notations
that are present in UML, this extension aims to provide a highly interactive platform, where learning
these annotations through practise is incentivized. It also tries to fight against another difficulty, which
is the connection between UML and the source code that forms them. This happens because many
tools tend to omit the connection between these two aspects, due the complexity of it. BlueJ does in
fact supply a connection between these two aspects, while being weak one, and with this being, it is

not considered enough, by some teachers, to teach about system design [8].

Bl E
Chauk Axwound
]
Bluel-LIML . :
[Clach: i
mifLlE Bilinci il
-BiF il ~darre | Wrifg
+Chckil . M ing +ACCIOMINGrT Mg, bal il
e LT R | saihurdwlimudt 04 soadl
¢ mEdidgayil wpad sdrpodiamost ol il
(e ikidancell o
|

Figure 2.5. Comparison done between BlueJ-UML and BlueJ regarding a class details [8].

BlueJ poor information regarding class correlations, is done by representing a use-dependency,
and may represent a difficulty that is too abstract for beginners to understand. Therefore, there was
the need for introduction of better association, aggregation and composition dependencies. Bluel-
UML reflects these dependencies from the source code and allows students to interact with the class

diagram while updating the source code as well [8].

With this being, this extension tool offers a bi-directional reflection from source code to class
diagram. This means that it highlights the connection between what it visible in the graphical section,
and the textual source code that was written. It reflects the updates done in any of the sides, on both

of the sides, source code and UML visualization.

14

Clock 1 [e
: ———— @ Edit B
—minute ; int

-haur © int

+Clock({h: int, m: int)
+addMinute() ; void

Edit uml signature:

+addTwoHour(} : void|

Cancel OK

Figure 2.6. Updating details while on UML viewpoint.

The results obtain with this pedagogical extension of the BlueJ environment showed that it was

well introduced in Software Engineering courses and largely used by programming beginners [8].

All the tools above help the beginner to better understand programming basics in order to resolve
problems, but they don’t help much when it comes to indicating issues related to the quality of the
provided solutions. They don’t emphasize the importance of having the habit to write better good
quality code, which means that beginners, without the help of a teacher, most certainly won’t realize

the bigger amount of issues present in their code, regarding code quality.

2.5 Professional tools for addressing code quality

Using tools which purpose is to assist facilitate the craft of writing code, has been a must for almost
every experienced software developer. They point out bad coding practices regarding mostly syntax
issues, suggest better ones, help preventing errors, and by doing this, they allow the improvement of
the developer productivity. Since the beginning of software engineering, the number of available
development tools has been subjected to extreme growth, being that every developer, independently
of the used platform, has at disposal, a wide variety of possible tool combinations to choose from.
Each one of these tools can offer a different set of features, such as different UML modelling, code
management solutions, database editors, and much more [17]. Therefore, their primary objective is
to make the developer life easier, by removing some of the margin for error. A set of these tools will

be described hereinafter.

15

2.5.1 Eclipse IDE

At its essence, Eclipse is a platform where applications can be built, and code can be written, but it
was developed with much more in mind. It is an Integrated Development Tool (Eclipse IDE) and
represents a platform where developers can build their software projects. It consists on a toolset that
provides a wide variety of plug-ins, while being also designed to be extensible using additional plug-
ins and is considered a software ecosystem. A common user interface (Ul) for working with tools is
provided, while the platform handles all the logistics regarding the execution of the right modules of
code. One of main purposes behind Eclipse is to allow and facilitate the development of an application,
by allowing each team to easily focus on a specific part of the project, without worrying too much

whether it will be compatible with the rest of the team’s work [18].

As displayed in figure 2.7, eclipse contains multiple plug-ins/extensions, such as the main ones:
package explorer, outline, code documentation... that are represented as components in the user
interface. Beside these ones, there is a marketplace full of external plug-ins, that can be installed to
better suit the development, and its requirements. Every single one of these plug-ins helps the
developer keeping the project organized, well-structured, allows the detailed visualization of every
programming element involved on the development, and aim to assist the developer writing good
quality code. For instance, two major features that eclipse and many other IDE’s offer, are syntax and
error highlighting. These two often help the developer catching eventual compilation errors that may
occur once the code is compiled. These kind of features are also major time-savers, in the meaning
that the time saved by warning instantly after the errors are produced, instead of needing to save,
compile, and then get the error warnings, the developer can abstract from those concerns and utilize
that time to focus on the actual piece of code that is being developed, and whether it makes sense
and will work, or not. The pedagogical tool that this theses addresses, was built as a plug-In for the

Eclipse IDE.

16

B Froject Explorer - Pig-ins

Figure 2.7. Eclipse IDE user interface displaying different plug-ins [16].

2.5.2 IntelliJ IDEA

IntelliJ represents another type of IDE, largely used for Java development. In a lot of ways, it is similar
to eclipse, but it offers and more professional experience, and with this being, it is targeted at medium
to advanced developers. It has become one of the most, if not the most used IDE, when it comes to
developing software. This reason for this is that it offers assistance features that facilitate code
navigation and refactor much easier, resulting in the capability of developing programs and
applications that are very well designed. There is also autocomplete, that takes what into context,
what the developer starts writing, and automatically suggests the full expression that would have to
be written, which comes very handy. There are code inspections, that detect and correct anomalous
code in the project, before compiling it, which can find various problems, such as code that will never
be executed (dead code), bugs, spelling problems, and by doing this, contributes to the overall
improvement of the code structure [19]. It also has a lot of features regarding code quality, such as
syntax error highlighting, that is very useful for reasons that have already been explained in the Eclipse
section above. In general, it is very similar to eclipse in a lot of ways and offers some other features
that are appreciated by some developers. Some may say that IntelliJ is better than Eclipse because it

lets you write and change code very quickly and easily, and suggest a lot of things based on the context

17

that the developer is on, but in the end, it comes to personal taste, whether one chooses to use

Eclipse, IntelliJ, or some other IDE.

Intelli) represents another type of IDE, largely used for Java development. In a lot of ways, it is
similar to eclipse, but it offers and more professional experience, and with this being, it is targeted at

medium to advanced developers.

2.5.3 Symbolic Execution Debugger

The Symbolic Execution Debugger (SED), is an extension that was built for the debugging platform of
the Eclipse IDE and represents a graphical visualization of the program’s execution flow and state
inspections. It is based on the symbolic execution concept, that represents a way of analyzing code by
figuring out which input parameters will trigger the execution of each part of a program. The symbolic
execution can start at any program point, and the given parameter will restrict the execution of the
program, to the path that is of interest to be analysed. It is suited to assist in code reviews, that can

the state of the code quality.

The tool is the result of mixing interactive debugging, that allows a running program to be stopped
and its current states, and values, checked or altered [20], with the symbolic execution functionalities
and capabilities [21]. It goes beyond what traditional debuggers, like the ones present in Eclipse and

IntelliJ, can do, and offer developers a better way to debug written code.

The tool starts by creating a symbolic execution tree, that represents the execution flow that is

followed, depending of the parameters that are supplied, as shown in the figure below.

This allows the debugging to be made by controlling the execution, this meaning that a program
can start at a point of interest, while being visualised in the symbolic execution tree, avoiding the
build-up of large data structures, in more complex cases. This way, the execution can be controlled
and comprehended in a better and more efficient form. This allows the developer to actually see If a
failure is occurring in the chosen execution path, and the debugging process becomes much more

intuitive, and eventual bugs or code related issues can be rapidly found, and resolved [21].

18

(@ <start>)

(= <call UtiLmin{x,y}>)

o =

(% I (xsy))
'-_"'i‘f_:’ x) $-| ya=x
A _
E returm x; f_E returny;)

e l e 1 =
| 12 =retum x as result of Uil min{x.y)= P 1= <return y as result of UtLmingx.y)=)
o -

(@ =<end>) @ cend:-__;i

Figure 2.8. Symbolic execution tree example.

2.5.4 Code Linters

There is also a specific type of programming tools, that focus on automatically spot code issues on
written programs or applications. They are of extreme use, when it comes to alerting the developer
for some errors or mistakes, that otherwise could go unnoticed for a long period of time. It is a type
of tool that can be installed in many IDE’s, such as Eclipse and IntelliJ, and perform a static analysis of
the written code, this meaning that it actually compiles the code, in order to check and search for
syntax error, typing mistakes, etc. This analysis is done based on the language that the code is written
on. This kind of tool has a great value associated to it and should always be included in the
development process, since it can help the developer finding possible mistakes, and acquiring good
code quality habits, regarding mostly syntactic aspects. Several studies have shown that developers

use linters for several reasons, such as:

1. Error prevention, where linters help catching possible errors in the code base, from a syntactic
point of view, such as mistyped variables names, that were missed by the developer, before
becoming a runtime bug. The great advantage in this is that it can catch these mistakes from
an early stage of the development process, guaranteeing that they do not spread, as the
application grows.

2. Ambiguous code, that helps to refactor code that, otherwise, could be seen as hard to read,
this meaning that is promotes better coding practices, that allow other developers that look
at the written code, to better understand what it represents.

3. Maintaining code consistency, where linters help the developer maintaining a consistent code
base style. This consistency is beneficial in a lot of reasons, one being that it improves the

reading and comprehension of the code across a project.

With this being said, it is possible to say that a good code linter represents a powerful asset while

building an application, because it will surely help the developer keeping an eye open for possible

19

mistakes that may happen, and help on fixing those mistakes, and replacing them with better coding

habits, so that they tend to happen less.

2.5.5 Sonarlint

SonarlLint is one of the most famous linters. It also makes it possible to get instant feedback on code
quality issues during development. It does this by offering features such as bug detection, that by
statically analysing the written code, tries to match it with thousands of rules, across different
programming languages, and by doing this, it is able to recognize when some code breaks one of those

specified rules. These rules are extended over three categories [22]:
Bugs — Detecting syntax mistakes that could lead to unwanted behaviour and performance issues.
Vulnerability — A security issue which can mean a possible opening for an attacker.
Code Smell — Clean coding violation which may lead to maintainability issues.

A simple example of what SonarLint can do, is warning the developer for the risk of existing a null

value, that could result in an exception thrown, like demonstrated in the figure below.

dialog.setTitle(TConstant.SERVERNAME + " Configuration™);

© A "NullP Exception" could be thrown; “dialog” is nullable here.

=
Figure 2.9. SonarlLint warning example [22].

There is a big community that supports and uses SonarlLint as tool in their developments.

2.4.6 PMD

PMD is a source code analyser, that focuses on finding common programming flaws in written code,
like unused variables, empty catch blocks, unnecessary objects, and many more, with the ultimate
goal of assuring good code quality. It runs by scanning the source code for patterns, that are compared
to a set of rules and can indicate problematic or flawed coding practices. It can catch solutions that
are too complex and can compromise the application performance and maintenance, so it can be seen

as a code reviewer.

The process begins by parsing the source code, which consists of two steps: lexing, which
produces a stream of tokens, and parsing, which produces an abstract syntax tree (AST), that is a
memory representation of the elements present in the source code. After this is done, PMD can
concentrate itself on analysing and validating the syntax present in the code, searching for fields,
methods and variables and their usage within the scope of the source file. By doing this, it can

determine whether these fields, methods and variables are, in a matter of fact, used. Then, the

20

variables are checked for definitions, assighnments and reassignments, in order to allow the detection
of issues. After the AST has been successfully initialized, the set of rules can be applied to it, and
executed. Each one of these rules has the possibility of reporting violations, resulting in a report that
will later be presented to the developer. PMD also allows a developer to elaborate and new rules to
it, using a rule designer user interface. Another interesting feature is the illustration of metrics

regarding the results obtained from the code analysis [23].

2.6 Summary

During the first part of the literature section, there was an enumeration and analysis regarding which
are the most common mistakes made by beginners, and what leads into the formation of
misconceptions on their minds. Followed by that, it was found that the best way to avoid and combat
the misconceptions, is by supporting beginners with an educational intervention that focuses on how

beginners can fix them, or avoid introducing them in the first place [6].

In the second part, after enumerating all of the tools above, it was possible to conclude that there
are already some offers when it comes to handling code analysis, with the purpose of warning about
code issues, bad coding practices, and advising better ones, but all of this tools are based on an
syntactic analysis approach, and they tend to warn about syntax related issues, without approaching
in depth, the semantics of the problem and the origins that led the developer to commit such

mistakes. This is the part that can be crucial to a beginner.

This kind of guidance that beginners need, regarding the quality aspects of their code, is what is
meant to be obtained with the proposed pedagogical tool. It should serve has a backbone in which
students can rely to serve has an explainer and a guider that will help them to understand where
issues are, the reason behind those issues, and how to solve them. All these combined efforts have

the common goal of helping the beginner writing better code.

With this being, the future steps in the building process of the proposed pedagogical tool can be

made with the previous conclusions in mind.

21

22

3. Control Flow Graph

The first stage of developing the pedagogical tool was to implement an algorithm that constructs
an in-memory structure containing graph-oriented information regarding the execution flow of a

program. This structure will later be used to implement most of the pedagogical tool detectors.

3.1 Definition

A Control Flow Graph (CFG) is a representation of the possible execution steps of a method. It consists
on a directed graph, whose nodes represent instructions, connected by edges that represent
instruction subsequence. An edge from instruction x to instruction y means that y will execute
immediately after x. A CFG is a structure containing information regarding all the possible paths and
that may be executed during the runtime of the method, which can be useful in order to better
understand the types of events present in the execution of the program. It can help a beginner that
may be facing some difficulties on understanding the semantics behind a piece of code, by removing

the syntactic complexity of raw code. The CFG structure will be used further down the line, during the

o

development of the pedagogical tool.

int max (int[] v) { next
int m = v[0]; m = v[0]
int 1 = 1; next
while (i < v.length) { fi=
if (v[i] > m) { 7?@&
m = v[i]; i
|<v.[ength-x branch
i=1 4+ 1; 3.\f[|]>m
} "---:-,b_ranch
return m;
}

return m

next

Figures 3.1.a & 3.1.b. Code method example.

Figure 3.1.b shows the visualization of a Control Flow Graph, that represents Figure 3.1.a
method’s execution flow. The different statements and expressions present in the method, are

represented by nodes, which are the rectangles in figure 3.1.b. The nodes that have a dashed contour

23

are called branch nodes, which are nodes where a decision is made, such as the node which contains
the while loop condition, from the method on Figure 3.1.a. These nodes can either represent the guard
of either a selection, or a loop. The other type of nodes represents the basic statements and
expressions such as the assignment of a variable’s value, such as on the start of Figure’s 3.1.a method
(ex:inti=0), function calls, etc, and are called statement nodes. The arrows between nodes represent
the graph edges, meaning that they indicate the node that shall follow, after the one that is being
visited. The dashed arrows are the representation of flow when the expression of a branch node
evaluates to true. By establishing this kind of connections between the statement and branch nodes,
it becomes possible to build a graphical visualization, such as the one above, which can be useful while
trying to comprehend a method’s codebase, since it displays, step by step, the method’s execution

path.

3.2 Paddle library for code analysis

Building such a structure was made possible by using the Paddle[24] library that creates an Abstract
Syntax Tree (AST) of the codebase, which consists on a memory representation of the method
codebase. Paddle allows traversing the AST by means of an infrastructure based on the visitor pattern,
which was applied to the generated AST, and as a result, a variety of visitors, that are triggered by
multiple types of events, were made available. These visitors gave, for example, information regarding
the start and end of a loop or if selection blocks execution. With them, it was possible to know when
any of the multiple types of blocks were executed. They also provide arguments which can be accessed
in order to obtain information, such as a variable’s value, regarding the operation that was made. With
that, it becomes possible to build an algorithm that makes use of all these listeners, and which builds

the Control Flow Graph. A few examples of this listeners are:

Visitor API Description
visit(IVariableAssignment) When any variable is assigned a new value.
visit(ISelection) When a selection condition, such as an if block, is entered.
visit(ILoop) When a loop block condition is reached.
visit(IMethodCall) When a method or procedure invocation is performed.
visit(ISelectionAlternative) When a selection’s elseif/else block, is entered.
visit(IReturn) When a return statement is performed.
visit(IContinue) When a continue statement is performed, on a loop.
visit(IBreak) When a break statement is performed, on a loop.
endVisit(ISelection) Selection block visit ends
endVisit(IEIseBlock) Selection’s else block visit ends.
endVisit(ILoop) When a loop visit ends.

Table 3.1. Paddle API's

24

3.3 CFG Building Algorithm

The general idea of the algorithm is that the Control Flow Graph is built on the fly with one depth-first
traversal of the syntax tree This means that from the moment that the visitor starts running through
the code, every time that a code block visit happens, it is seen as a trigger that shall apply modifications
to the list of nodes that form the CFG. For example, when a new value is assigned to a variable, an
IVariableAssignment visit will be triggered, which shall add a new node to the list which represents

the value’s assignment to the variable.

In order to create the flow, the nodes must be connected in a way that each and every node, with
exception of the start and end nodes, must have information regarding which nodes point to them
(incoming nodes) and to which nodes they should be pointing to, (outgoing nodes) or branch nodes.

These connections are symbolized by the arrows in Figure 10.b.
Nodes can be of two types:

- Branch nodes — Represent either if/else or loop blocks, where there are two possible
outcomes regarding the method’s execution path.
- Statement nodes — Represent every other type of statements, such as variable assignments,

method returns, loop breaks, continue statements, etc.
The common attributes shared between the two types of nodes are:

- Next node, that represents the node that will follow in the method execution flow.

- Incoming nodes, which is the list of nodes that have the current node set as their next node.
Besides this, branch nodes also contain:

1. An alternative node attribute, which represents the direction that is pursued when an if or a
loop condition is true. In the contrary case, meaning that the condition is evaluated as false,

the execution shall follow the next node.

25

next

Y

Figure 3.2. Next and Alternative attributes example.

Every time that a method’s statement, or block, is reached, its correspondent visitor operation is
called and the information regarding that statement becomes available. This information is then used
to create a new CFG node, which is then added to the main structure node list. After the node is
created, it is necessary to update the preceding nodes, which should set the new node as their next

node.

This process is repeated for every statement and every block present in the program, with the
exceptions of the first node that is created, that shall be set has the CFG’s entry node next, and when
a return statement is reached, that shall, right after its creation, set its own next as the CFG’s exit
node. The result will be a Control Flow Graph that has a node list containing all the nodes
corresponding each statement present in the visited method, which hold references to the

su bseq uent statements.

3.3.1 Algorithm Explanation
When a statement occurs, such as a variable’s assignment, there are a few steps that take place in
order to add the statement to the CFG structure. The actions performed in order to do so, are the

following:

1. Assignment statement visitor is triggered.

2. Create a new statement or branch node and add it to CFG nodes list.

3. Checkthe previous nodes which have pending connections, such as missing next or alternative
attributes, and if the required conditions are met, update these fields with the value of the
new statement node that was just created.

4. Set the attribute that indicates the last node that was visited as the value of the new

statement or branch node.

26

Regarding the third step, where all the logic needs to be applied in order to create the correct
connections between the nodes in the CFG node list, a more in-depth explanation needs to be given,

in order to better understand the logic behind building a CFG structure.

On the third step, there are a few conditions that must be checked, regarding which nodes shall
set the new node that was created, as their next node. Depending on the type of visitor that is

triggered, the actions performed may vary.

These conditions make use of a series of stacks and variables that are kept in memory, which hold
information about the nodes that represent statements and code blocks, that have already been
visited, such as if/else, loops, loop breaks, and continue statements. The element that sits on top of
each stack, corresponds to the most recently visited statement, or condition block, of that type. For
example, every time that an if/visitor is triggered, the stack which contains this kind of block, is
updated with the new branch node that was created. Once the block is left, the variable which
represents the last visited if/else block node is assigned with this node’s value. This way, it becomes
possible to access information about statement or branch nodes that have already been left and which
correspond to key elements in the execution flow, that need to be accounted in the conditions
involved in creating the connections between nodes. These stacks and variables hold a lot of
information regarding the type of code structure that they store, such as the condition of an if, the
code instructions inside it’s block, if it has an else block and if so, the instructions inside such block, a

lot more. Same thing for all the other types of statements and blocks that were mentioned.

The main purpose of keeping these structures in memory, is the role that they have when it comes
to the conditions that need to exist during the creation of new connections between nodes, otherwise,
it wouldn’t be possible to know if one node should in fact set another node as its next attribute, or if

it should be a different node that should take that place.

During the process of establishing a new next or alternative connection between two or more

nodes, there are some steps which represent the conditions that need to be fulfilled.

The following steps represent the actions and conditions that have to be handled upon visiting a

code statement, such as a variable assignment, a method invocation, etc:

1. Create a new statement node and add it to the CFG structure.

2. Checkif the last selection node or last selection loop variables have a valid value, which means
that there are nodes that correspond to an if/else or a loop block, which have already been
left, and that still have the next attribute pending for a value. If there is one of these nodes,

or both, that pass that condition, set the new statement node as their next node.

27

3. Check if the last break node variable has a valid value and check if the new statement node
corresponds to a statement that is outside the loop block where the break was called. If both
of these conditions are true, set the last break node next attribute as the newly created
statement node.

4. Check if the last node that was added to the CFG is a branch node and if it is, and if it does
not contain a defined alternative node, define the new statement node as it’s alternative
node. If the last node isn’t a branch node, do the same condition and check if has a defined
next node, and if it does not, set the created node as its next node attribute.

5. Set the CFG’s last node attribute with the new statement node value.

In the case of the visit being on an if/else or loop block, the necessary steps are very similar to the

ones described above, with the differences that:

- Instep 1, The created node should be a branch node, instead of a statement one.

- The new branch node needs to be added into the selection or loop node stack.

- Upon finishing the visit to the new branch node correspondent code block, the new node
needs to be removed from its stack and assigned to the variable that represents the last

selection or loop node to be visited.

Also, upon finishing a block visit, of any kind, every node that was created from statements that
were inside that block, and that remained with a pending next attribute, were called orphans, and
were stores in a list so that they could be assigned a next value, once the visit to that block was over.
The reason behind the existence of these list of orphans is that, for example, a statement node that is
inside an if block, can’t set its next as the statement node that can be found in that if’s else block. It
has to wait once the if/else block is left, to set its next attribute as some other node that is outside
that block. Once the visit to such block is over, the next node, either being a statement or branch
node, can check if the list of orphans isn’t empty, and if so, set the itself as the next node for all the

nodes that are present in that list of orphans.

Besides the statements and blocks mentioned above, there are also the continue statement and
the return statements. In both of these cases, both steps 1, 4 and 5 needs to be performed. The only
difference between the visit to a break statement and a continue statement, is that when dealing with
the node that corresponds to the continue, the next attribute is set to be the loop branch node that
is in, which can be consulted by querying the loop branch node stack, which is kept in memory. When

it comes to the return statement, the first step, after creating its statement node, is to set its next as

28

the CFG exit node, and once that is done, the orphan list is checked and if there are any nodes that

are missing a next node, the new return statement node is set as that value.

After covering all the conditions that are mentioned above, it becomes possible to create a

dynamic algorithm, that should generate a CFG based on any code method that shall be supplied.

3.3.2 Control Flow Graph Generation Example

static boolean containsNumber (int[] vector, int number) {
boolean contains = false;
int i = 0;
while (i < vector.length) {
if (vector[i] == number)

contains = true;

}

return contains;

Figure 3.3. Example method that checks for the existence of a given number.

In order to better understand the building process that is involved on the construction of a Control

Flow Graph, the method serves as an example from where a CFG can be generated from. The steps

involved would be:

1. The first step would be to add the start node into the CFG’s nodes list.

2. Upon triggering the variable assignment visitor, create a new statement node that

corresponding to the “contains = false” assignment.
3. Since the last node in the list is the start node, the first connection between nodes can be

created, by setting its next as the “contains = false” statement node.

next

:
[contains = false;

4. Do the same thing as the previous step, with the difference that the created node shall be a
branch node that represents the loop condition, instead of a statement one.

5. Set the new branch node as the second line’s statement node next.

29

|Goniains = false;l

next

6. Create branch node that represents the if block condition.

7. Checkthatthe last nodein the listis a branch one and set the new selection node as its branch.

B
'
.

| < vector.length!

Evector[i] == numberi

8. Create the statements contains=true node.

9. Repeatstep 7.

ivector[i] == numberi
§ -----*.__branch

contains = true;

10. The end of the loop triggers a visitor which means the information regarding the last loop that
was visited, is stored.
11. Use the information from step 10 to set the loop’s condition node as the next node for the

last statement node in the list.

i< vector.length:

vector(i] == numberi

~-=-..__branch

contains = true;

next

30

12. Create the statements return contains node.

13. Since the loop doesn’t have a next node, set the return statement node as its next node.

14. Set the exit node as the return statement node next.

The final result is:

-

next

|con1ains = false;

next

next

return
contains;

‘... branch

e e e e "

Figure 3.4. Completed Control Flow Graph structure.

3.3 Control Flow Graph APIs

The nodes that are present in the CFG structure, have the following APIs available:

Node API

Description

getElement()

Statement of code that it represents.

getNext()

Next node in the graph, to where the
execution flow shall follow, when the condition
is true.

getincoming()

List containing the nodes that have the
current node set as their next node.

Informs whether the current node is the

isEntry() entry point (first node) in the CFG.
isExit() Informs whether the current node is the
exit point (last node) in the CFG.

isEquivalentTo(Node)

Compares the current node with the
supplied one and informs if whether they
represent the same node in the CFG, or not.

Table 3.2. Statement Node APIs.

31

In addition to the above operations, a branch node also has the following ones:

Branch Node API

Description

getAlternative()

Next node in the graph, to where the
execution flow shall follow, when the condition
is true.

Table 3.3. Branch Node APIs.

The complete Control Flow Graph structure provides five API’s that can be used by someone who

needs access to its nodes, in different ways. These are:

CFG API Description
Returns a collection that contains the Control
getNodes() Flow Graph nodes.
Returns a collection of nodes which are that
correspond to segments of the method code that
deadNodes() p 8 .
are considered unreachable code, which means they

will never be executed.

pathsBetweenNodes(start,
end)

Returns a list containing all the possible paths
that exist between the provided source and
destination nodes.

getSubCFG(start, end)

Returns a new Control Flow Graph that is a
subset of the original one. This sub-CFG contains the
nodes between the provided source and destination

nodes.

usedBetweenNodes (start,
end, variable)

Returns whether a variable value has been used
or changed between a source and a destination
node.

Figure 3.5. Control Flow Graph API's.

Overall, a graphical Control Flow Graph like the one displayed above (fig. 10), can be of great use

while explaining to the beginner the causes of a code quality related issue like for example, it can

visually target and indicate where the issue that was found is, or the path that was travelled by the

execution, because of that issue.

32

4. Code Quality Issues

This section will focus on explaining the process of building the core of the tool. After developing the
Control Flow Graph structure, mentioned in the previous chapter, the next step in order to start
building the tool was to choose a set of code quality related issues that are considered bad practices
regarding the quality aspect, and then working towards a first prototype, that should be able to
recognize such issues in the students codebase and warn them when such occurrences happen, while
providing an explanation on why they should be avoided, and sometimes, providing a suggestion on

how to fix such issues. The initial list of issues which were chosen to be implemented in the tool were:

Issue name Description
EMPTY SELECTION When an if block is left empty.
MAGIC NUMBERS Numeric literal that is used without an explanation.

Unnecessary check of a boolean value before a
FAULTY RETURN BOOLEAN CHECK

return statement.

FAULTY BOOLEAN CHECK Unnecessary condition syntax.
UNREACHABLE CODE Block of code that can’t ever be executed.
USELESS RETURN Return that serves no use in the execution context.
DUPLICATE SELECTION GUARD Double-check of a condition.
FAULTY METHOD CALL Unused method value.

If block left empty while code is written in the else
NON-EXPLICIT ELSE

block.

TAUTOLOGY Condition that is always classified as true
CONTRADICTION Condition that is always classified as false
DUPLICATE CODE Duplicated lines of code between if/else if blocks

USELESS CODE Instructions that don’t change program execution.

Table 4.1. Code quality issues and descriptions.

The tool core consists on the collection of code quality issues that were chosen to be featured.
The process of adding a new issue to the list was to first being able to recognize when it occurs in the
beginner’s code base, followed by the creation of a structure that contains information about that bad
practice in particular, and then generating a suited explanation that is displayed to the student. Each

of these cases, that tool core consists of, will be explained in four steps:

1. Explaining the probable cause, like a misconception, that originated the issue.

2. Describing the steps involved in recognizing their occurrences.

33

3. Giving a real code example of the its occurrence and highlight, using the developed tool.

4. Displaying the warning and explanation that the tool generates.

The recognition of an issue occurrence in the codebase, consists on a process that made use
of the same tool API's that were used to develop the Control Flow Graph structure, which is based on
the visitor programming pattern. The Control Flow Graph itself was built in order to help recognizing
some of the quality issues, and its usage will be explained in detail in each issue section, further ahead.
But independently of the recognition process, after recognizing each issue, a new structure is created,
containing information regarding the issue occurrence. A quality issue structure contains the following

attributes:

- Category —The type that describes the quality issue.

- Classification — How sever the bad practise is. An issue can either be classified as LIGHT,
AVERAGE or SERIOUS.

- Explanation — The reason why it is considered a bad practise and eventual tips on how to fix
it.

- Element — The object that represents the place in the code base where the occurrence was
found.

- Decorations — Visual effects used to highlight the issue occurrences.

Every time that an occurrence is caught, a new quality issue, containing the structure above, is

created and added to the tool’s issue collection, in order to be displayed to the beginner.

After the recognition phase is over, the quality issues that were caught are then displayed in an
User Interface containing highlights such as code marks that may vary in colour, depending on the
classification that was attributed to each issue, where the serious issue are marked as red, the average
ones as magenta, and the light ones as blue. There are also textual hints that may warn or provide tips
to fix the issues, and more detailed explanations that aim to make the beginner understand why the

caught issue is considered a bad practise.

The first set of quality issues that were implemented into the tool, were the ones corresponding
to empty code blocks. This means that every time that a beginner left empty blocks, such as if
selections or loops, in the codebase, a new empty block issue would be recognized, generated,

and added to the tool.

4.1 Control Structures

The first category of issues that were chosen to be detected were the ones involving condition blocks.

These issues focus on highlighting some of the misconceptions that a beginner may have formed form

34

regarding the building process of a condition block, such as an if, or a loop, and how such practises

can negatively affect the codebase readability and maintainability.

4.1.1 Empty blocks

The simplest cases of condition related issues are the code blocks such as an empty if, else or loop,
that are left empty, without holding any actions inside of them. This means that every time that an
empty block is left on the code base, the beginner would be notified with a highlight on such block

and an explanation on why such cases shouldn’t happen.

boolean greaterThan (int a, int b) {
if (a > b) {
return true;
}
if (a < b) {
}

Figure 4.1. Empty code block example.

An empty condition block is one of the most basic quality issues that can be caught. It holds a
condition that is checked, but doesn’t add anything relevant to the code execution, since it has no
actual actions inside that are executed every time that the condition is verified. A beginner leaving
such blocks can be a fruit of simply forgetting to remove such block, because it is not necessary after
all, or to add relevant logic to it. With this being, empty blocks are highlighted to the beginner in order

to raise awareness about this kind of possibilities.

The process of catching such occurrences made use of one of the visitor API’s, which corresponds
to the one that gets called when a selection, such as an if block, is reached. The APl parameter
represents the selection block that is being visited and contains multiple API’s that supply information
regarding its condition, the block itself that contains the executed code when the condition is true,
and many others. One of these API’s, isEmpty (), returns a Boolean value that informs about the

selection block is empty, or not. This last APl is the one which was used in order to recognize when an

35

empty selection is left on the codebase. The next figure shows an example of such occurrence and its

highlight and explanation.

class EmptyBlocks { if block
Unnecessary boolean condition

boolean greaterThen (int a, int b) {
if Ca>b) {
return true ;
} The highlighted if block has no actions inside.
— - If the condition is true, nothing will happen.
- Empty code blocks don't add actions to the program execution.

} Suggestion:

Either Add some logic to the if block, or remove it.

Figure 4.2. Empty if block issue highlight and explanation example.

The highlight has the colour red, due to the issue being classified as serious. The provided
explanation aims to warn the user about that an empty if block leads to no actions performed, even if
the condition is truthful, and with this being, the block should either be filled with some actions, or

removed in order to avoid leaving such empty blocks in the codebase.

4.1.2 Non-explicit else with empty if

It was considered to be a non-explicit else, when an if/else block is caught in the codebase, where the
if section was left empty, and the code is written in the else block. This type of issue is most likely due
to the beginner not knowing that an if condition can consist of a negation, or due to thinking that a
condition can only be evaluated as true. This means that when the beginner thinks that the only way
to write code that gets executed when the condition is false, is by writing it on the else block. This
results in an empty block of code, that could be avoided by applying the negation operation to the

condition and writing the code directly in the if block.

void addIfDoesNotExist (int[] a, int b, boolean exists) {
if (exists) {
}
else {

ala.length - 1] = b;

Figure 4.3. Non-explicit else example.

36

The recognition was possible by applying the same procedure as the previous cases. By using the
API that returns information about the if block’s in the code, it is possible to find out the if condition
contains an else block. Combining this with the API that informs whether the if block is empty, which

can also be applied to the else block, it is possible to recognize the described code quality issue.

The generated result is:

void addIfDoesNotExist (int[] a, int b, |

Couln't you use
the 'l"' operator?

} Issue:
The code was written in the else block and the if section was left empty.

- This means that only the else block contains code that may be
executed.

- The empty if should be avoided, because empty code blocks don't
contribute to the program and affect code readibility.

- Conditions don't always need to be true.

Suggestion:

Try using the negation (!) operator in the if condition and write the code
directly inside the if block.

Figure 4.4. If Condition Misconception highlight and explanation example.

Like it can be seen in the figure above, the highlight is marked as magenta, which means that this
issue is considered to be average. Both the highlight and explanation aim to make the beginner
understand that empty blocks should be avoided because they don’t add actions to the program
execution, that conditions don’t always need to be true, and to raise awareness about the negation

operator, that could be used in this case in order to avoid having an empty if block.

4.1.3 Boolean Condition Verbose

When It comes to writing condition, the most common way to form a negated one is by adding the
negation operator (!) behind the condition itself. But students very often apply the comparison
between the Boolean variable and a literal value (true or false). This is more of a styling matter, but it
can really affect the readability of a condition and for this reason, it was considered to be a quality

issue, even though it was classified as a light error.

if (exists == true) {

return true;

Figure 4.5. Boolean verbose example.

37

The reason why a one would practise such issue could be that, like said in the previous issue, the
student might not be aware about the existence of the negation operation and readability benefits

that it holds and won’t use it because of this.

In order to recognize such case, the APl used was the one triggered by the occurrence of a binary
expression, that consists two parts that are combined by an operator. Once again, the targets were
the conditions guards, which operational type would first be checked, by using an API that returned
the operation type, in order to figure out if the conditions made use of relational operators, such as
the equals one (==), or the not equals (!=). If this is the case and both the operation parts types were
Boolean variables, then the operations parts values would be matched with the Boolean values true

or false, and if any of the parts matches these values, a new issue match is found.

After generating a new issue structure and adding it to the tool, the result is:

boolean doesExist (int[] a, int b) { [faanecessany bocleascondition
Boolean condition verbose

int i ;

i=0;

boolean exists ;
exists = false ;
while (1 <a-length) {

if(b==alil){

exists = true ; Issue:

The condition could make use of the '!' operator.

- It represents the comparision between a boolean variable and one

} {Maybe use of it's binary possible values (true or false).
the ! operator? - It is more of a styling mather, but this can negatively affect the
code readibility, due to the condition's length.
} Suggestion:
else { Try using the negation (!) operator in order to improve readibility.

return false ;

Figure 4.6. Boolean condition verbose highlight and explanation example.

Like seen in the figure above, this time, the highlight colour is blue, due to the issue being
classified as light. The explanation warns the user about the points mentioned above, which are that
even though this case is more of a code styling matter, it can also affect the readability of the code,
and because of that, it was considered a quality issue. It is also suggested to the beginner the usage

of the negation operator instead.

38

4.1.4 Boolean Return Value Check

Continuing in the Boolean type related issues, another example of a code quality issue that involves a
Boolean valued variable and that is often seen from beginners code solutions, is when a student writes
a method which return type is Boolean, and in order to return the value of a Boolean variable from
that method, first checks if the variable’s value is true or false, and then uses returns true or return

false statements accordingly.

if (exists) {
return true;
} else {

return false;

Figure 4.7. Boolean return check example.

This unnecessary check may be due to the beginner thinking that the return statements from a
Boolean method must always be as the previously mentioned, and maybe not realizing that a Boolean

variable can be directly returned instead.

The recognition of this issue was made possible using the CFG’s node list. By iterating through the
nodes, if one of the node statements represents a return statement, then its return type is checked in
order to verify if it is Boolean. If the last check is positive, then the block of code which contains the
return is obtained via an APl from the visitors IReturnStatement interface. If the obtained block of
code is an if block, then its condition type is checked in order to see if it consists of a boolean variable.
If this is verified, and if the if block includes the return true or return false statements, it is then
possible to confirm the presence of the described quality issue. A highlight and explanation example

to this issue is:

Issue:

The condition is unnecessary!

- There is no need to check the value of a boolean variable
Shouldn't you before returning true or false.
return the variable? - The condition itself already represents the value meant to be

returned.

Suggestion:

Return the boolean variable instead of checking it's value and
then returning true or false.

Figure 4.8. Boolean return check example.

39

This case was classified as average, therefore the magenta colour on the highlight and the
explanations reinforces the idea that a boolean method does not have to return true or false
statements and can instead directly return a Boolean variable. It suggests that the user returns the

variable instead of using the unnecessary if else condition.

4.1.5 Tautology

boolean isFirstElement (int[] a, int b) {
boolean isFirst = true;
if (isFirst) {
if (a[0] == b) {

return true;

}

return false;

Figure 4.9. Tautology example.

Some conditions developed by beginners, are written in a way that, independently of the variables
values that they may include, they’ll always have the same result, which is true. This kind of mistake
may happen simply because of distraction while writing a condition, or because of the student not
being aware of the values of variables that are included in the condition. This means that some
combinations of these variables and values used by the student, such as using a simple true value,
may result in conditions that are always evaluated as true, and therefore, form this kind of issue. Since
this kind of issue will result in a code block that is always ran, it can generate bugs in the program and
because of that, it was classified as being a serious one, since it can affect the expected result of a

program.

e E)

if (8 =

return true 5 The condition { represents a tautology case.
} - This means that this condition will allways be avaliated as true.
return false ; - The program will always execute the code inside this condition, which

means that it is not necessary, or wrong.

Suggestion: Change this condition so that it isn't always true.

Figure 4.10. Tautology highlight and explanation.

This issue was recognized using the CFG nodes. The nodes were iterated in order to find
conditions in a method. When a condition block was found and the literal Boolean value true was

found by itself, or within a disjunction (| |), inside the condition’s guard, a tautology cause was found.

40

When instead of having the literal value true, the condition had a Boolean variable, that variable’s last
modification, or declaration, were analysed in order to check if the assigned value was the Boolean
value true and if the that variable wasn’t changed or used between the last assighment and the

condition. This last check made use of the CFG usedOrChangedBetweenNodes() API.

4.1.6 Condition Double-Check

There are some beginners who don’t understand that when a condition, or a part of it, is duplicated
inside itself, without the variables involved being changed between the conditions, it is considered a
case of double-checking. Such thing is totally unnecessary when the entire condition, or a part of a
conjunction is duplicated as another condition inside the code block, since in order for the code
execution to reach the second condition, it has already been checked and evaluated as true, therefore

considering it to be double-checking.

while (i < array.length) {
if (i < array.length && array[i] > m) {

m = arrayl[il];

i++;

Figure 4.11. Double-check example.

Some students may not be aware that condition will stay evaluated as true, as long as the variables
involved in it don’t change values, and this may cause them to double-check a condition inside itself.
It can also be a simple act of distraction. Either way, it is important to point out such issue to the
student, since in can make the code confusing by affecting its readability. Because of this, the issue

was classified as average.

This issue was recognized using the Control Flow Graph. By iterating its node list, it was possible
to recognize when a node corresponded to a condition, and then store it in a list of conditions. Then,
every time than a condition was found, it was compared with all the previously stored conditions, in

order to confirm two things:

1. If it was placed inside the condition it was being compared with.

41

2. If the whole condition or any of its parts was matched against any of the parts of the parent
condition.
3. If any of the variables included in the matched parts didn’t change between the parent

condition and its duplication inside itself.

If all three of the points above were checked, then it was possible to confirm that the condition

was duplicated inside itself and that it was a case of double checking.

while ([i <array-Le

if (\‘i th W& array[1] >m The condition z th was found duplicated inside the code block.

- Neither of the variables used in the conditions had their values changed in
} between.

- Double checking a condition which parts don't change in between checks,
i=1 . will have the same result.

- Since the result is the same, it doesn't need to be duplicated.

returnm ; Solution:

Remove the second check since it isn't necessary.
Figure 4.12. Condition Double-check highlight and explanation.

The user is warned that double checking a condition, or part of it, inside itself, while neither of
the variables changed value, is not necessary since the code inside the duplicated condition would be
executed anyway, and since that is the case, the duplicated condition becomes useless. Therefore, it
is suggested to the beginner that the duplicated condition should be removed, in order to avoid

unnecessary complexity and damaging the method readability, since the outcome would be the same.

4.2 Assignment & Expressions

4.2.1 Useless Self Assignment

A very common occurrence found in students code is a variable’s value assignment, to itself. This may
be due to the misconception that assigning a variable’s value to itself, will actually change its value,
when in reality, it won’t. This can also be the result of a typo, where the beginner miss-wrote the name

of a variable with a similar name to the one which is being assigned a new value.

void max (int[] array) {

int m = array[0];
int 1 = 1;
i = 1i;

Figure 4.13. Useless self-assignment.

42

The visitor which was used to recognize this issue was the one that is triggered on a variable’s
assignment happens. When an assignment happens, the string literals of the variable being assigned
and the new value, are compared, and if they are the same, means that the variable and the value are
equals, which means that the variable is being assigned with the same value that it already had. An

example of this is shown below.

bl
Jix: T
SRR [What does this actually do?]

i > The assignment means that the variable was assigned with
while C L<aredy 1ength) { the value that it already had.

Issue:

if (i<array.length&& array[i]

- It is an useless assignment because it has no impact in the

m = array [1i] ; program.
} Suggestion:
1

i=1+1; : :
- Remove this useless assignment.

Figure 4.14. Self-assignment example.

4.2.2 Useless Assignment Value

While trying to create a new variable, many beginners have the misconception that in order to assign
a value to the variable, it always needs to be initialized. For example, if the result of a method that
returns an array of integers, returnintArray(), would to be assigned to a variable, int[] foo, it could
simply be represented as int[] foo = returnintArray(), but many beginners think that the array variable
foo needs to be initialized like foo = new int[10], for example, before assigning any value to it. This
results in a lot of situations where the beginners first initialize a variable with a default value, and only

after that, assigns the pretended value to the variable, like for example:

void max (int[] array) {
int m = 0;

m = array[0];

Figure 4.15. Useless value assignment.

This leads to the assignment of a value that will never be used. In the case above, the value new
int [10] won’t be used by the program, ever. With this being, it is possible to argue that the student
doesn’t realize that a variable doesn’t always need to be initialized before being assigned a value Since
this kind of issue means that a statement of code will never be used, which can also lead into bugs

that are difficult to detect, it was classified as a serious code quality issue.

43

In order to recognize when this issue occurs, the nodes list from the generated Control Flow Graph
were required. By iterating through the nodes, it is possible to recognize when the action that the
node represents is a variable’s assignment. With this being, it becomes possible to recognize when an
assignment is made to a variable that already existed before. After an assignment to an already
existing variable is done, the CFG’s APl that generates all the node paths between two nodes is used
between the selected assignments nodes. With these paths, it is possible to check for any statement
that makes usage of the analysed variable. If the variable isn’t used in any of the paths, then it is
possible to conclude that its initial value was never used and with this being, it can be considered

useless. The generated explanation was:

m= ﬁv sl IThis value won't be used!l

m=array[0] ;

Issue:

int i ;
i=1": The assignment m = 0 value was not used.
H
i=1 ’ - Variables don't need to be initialized before being assigned

G ERETVEN

while (1<drray-]‘ength) { - The value was not used before the second assignment, which

if (1< ar'r'ay-length && array [1] means that is as no impact.
- Unused values are useless to the program.

m-—arravlil -
Figure 4.16. Useless Assignment Value highlight and explanation example.

Hopefully, the idea that is transmitted to the student is that the initial assignment value is never
used. That is the key to understand why the occurrence was considered a quality issue. The
explanation also informs that a variable doesn’t need to be initialized, like the one in the picture,
before being assigned the desired value. Lastly, it suggested that the highlighted assignment should

be removed and the value directly assigned to the variable instead.

4.2.3 Magic Numbers
Using numeric literals in the middle of the code base is a very common practise amongst most
programmers, and specially beginners. This is considered a bad practise since assignment a value as a
numeric literal to a poorly named variable, for example, provides little to no context regarding what

the variable actually represents.

double triangleArea (int radius) {

return 3.14 * radius * radius;

Figure 4.17. Magic number example.

Since it doesn’t provide much context about the code that is being written, it will become more
difficult to the beginner or other programmers, to understand the code, once some time has passed

since it was written. It also becomes a problem when multiple occurrences of the same numeric value

44

are present in the codebase, since there will be a lot of places that will need to be refactored, if those

values need to be changed.

The beginner does this kind of mistake a lot because, while being on the early stages of the
programming learning process, readability and maintainability of the codebase are two concepts that

don’t receive a lot of attention by the student.

The process of catching such issue on the codebase was made possible by using one of the visitor
API’s, that is triggered every time that a literal value is found in a method’s code. The second step was
checking whether the literal value is a numeric value and if it occurs more than once in the method,
and if so, it is considered a magic number and a new code quality issue is added to the tool list. This
issue was classified as average, since it affects the readability of the code more than its maintainability,

which means that its occurrence doesn’t always lead into bugs.

double triangleArea (int radius) {

return 9 {1 What does this number
- | represent?

Issue:

The highlighted number | doesn't really tell what it stands for.

- It can be hard for another programmer to look at the number
3.14 and figure out what it represents.

- It can also lead to bugs because it's more difficult to change it
in every place that it is used.

Suggestion:

- Try replacing this the number 3.14 with a well named variable.
Figure 4.18. Magic number example.

It is explained to the user that this kind of issue affects the two aspects mentioned above, the
readability and maintainability of the code, and suggested that such numeric values should be
assigned to a constant with a well-formed name that provides the whoever reads the code with some
context about what it represents. All of its occurrences should then be switched with the created

constant.

4.2.4 Duplicate expressions in if/else

One of the most common bad practises found amongst inexperienced students, is the repetition of
the same code statement or expression, in all the code blocks of an if/elseif condition. Most of the
times, the beginner can’t formulate the conditions in a way that only one condition, with the use of

the logical operators, becomes enough, and with this being, ends up repeating one or more code

45

instructions, across different conditions. This represents a code quality issue, since duplicated code

should always be avoided.

The recognition of this issue was made possible by using one of the APIs provided by the if
condition visitor, which gives information regarding all the blocks of code present in a if/elseif
condition. This way, it became possible to check if there were any expressions or statements that
could be found across all the condition blocks, and if so, a new issue had been detected and was added

to the code quality issues list.

4.3 Useless Execution

Code that doesn’t impact the execution of a program in any way, is considered to be dead code. It is
often found in students programs codebases, and this kind of issue may lead into the generation of
bugs that can be hard to troubleshoot. It consists of code instructions which have no impact in the
program execution, because they’re values aren’t used or their execution don’t change any variable
such as class attributes or arguments, which result in a block of code that doesn’t change anything in

the program.

4.3.1 Unused Function Return Value

Many times, a beginner is seen calling a function which has a return value, without using or assigning
such value to a variable, and using that variable. This by itself isn’t a problem, since a method can
change object attributes, for example, but when the calling of such function doesn’t change anything
from outside its scope, the program execution won’t be affected. It is then possible to argue that the

function call can be considered useless to the program, since it doesn’t actually alter anything.

int[] naturals(int n) { int[] incrementNaturals (int[] n) {
int[] array = new int[n]; naturals (n);
int i = 0; int[] array = naturals(n);
while (i < n) { int i = 0;
array[i] = 1 + 1; while (i < array.length) {
i++; array[i] =1 + 1;
} i++;
return array; }
} return array;
}

Figure 4.19. Unused value example.

46

A student may end up with this kind of call due to thinking that the arguments which are provided
to the function will get modified by it and have its values changed and forget that those arguments
values will actually be copies of the original values. With this being, the arguments aren’t the ones
being modified by the function, but their generated copies are, and with this being, their values

regarding the outside of the function call will remain the same.

Many beginners tend to miss this issue and end up with programs which contain such method
calls, that are totally useless to the program and can cause bugs or undesired behaviours, since the
logic behind the method should most likely make use of the values returned by such calls. It becomes
relevant to warn programmers about this issue, since troubleshooting bugs caused by this kind of

issue, can become very time-consuming.

Recognizing this issue involved one of the visitor API’s, which is triggered every time that a
method call is found on a method. When this happens, the method is analysed using the argument
that the API provides, which contains information about the method that was called. The first check
is to make sure that the method has return type and if so, another API that informs about whether
the method causes changes outside of its scope, is used. If the method doesn’t change anything
outside of its scope, and it’s return value is not assigned or used, then it can be concluded that its
execution doesn’t add anything to the program, and therefore, is considered useless. An example of

such occurrence is showed below:

The explanation focuses of telling the beginner that the method’s return value was not used,
while the execution of such call doesn’t alter anything outside of it, not even the arguments. This
means that its call doesn’t change anything in the execution of the program and therefore, is useless.
It is suggested that the beginner decides whether it makes sense that the method doesn’t change
anything outside of its scope, like object attributes, etc... or to decide whether the method return type

shouldn’t be used.

47

4.3.2 Duplicate Function Call

This case is an extended version of the previous one, where the beginner also practises the duplication
of the method call, with the same value arguments. This duplicate function call will have the same

result value.

int[] getIncrementedNaturals (int n) {
int[] array = naturals(n);
incrementNaturals (array) ;
incrementNaturals (array) ;

return array;

Figure 4.20. Duplicate call example.

The recognition process was also an extended from the previous case, but with an additional
check, that was made possible by using the Control Flow Graph. The added verification consists on
checking the function call arguments for any kind of changes between the duplicate calls. The issue is
only confirmed if the arguments preserve the same values between the function calls, since otherwise

the method value would vary.

Such verification was made with the CFG feature that returns the possible paths between the
duplicate calls corresponding nodes, with which becomes possible to verify if any of the arguments

have been changed in those paths.

int [] nonVoidPureFunctionText (0;
int]:] natur‘al sAr ray ; The function 10) was called more than once.
natur‘alsAr'ray = new int [n] ’ - Its arguments values aren't changed between calls.
Es._‘s_‘-ii_;d;a.jw!j[.' tﬂr - - The method doesn't change any variable that affects the

| program execution flow.
naturals (10) ; - This means that both calls will result in the same.
" - There is no point on having two naturals(10) calls that return
return natur'alsAr'r'ay 2 the exact samz result. °

Suggestion:

Since both calls result in the same, you should remove one of
them.

Figure 4.21. Duplicate call highlight and explanation.

4.4 Unreachable Code

A block of code is considered unreachable if it never, under no circumstances, gets executed by the
program. There may a statement such as a return, or badly formed condition, such as a contradiction,

that prevents the program from reaching some code actions.

48

4.4.1 Faulty Return Statement

A return statement was considered to be faulty when it caused a method’s execution to end,

preventing code statements that where further down the flow from being executed.

This issue may be caused by the student not being totally aware about the meaning and
functionality of the return statement, or by a distraction where the beginner forgot to remove the
code instructions that came after the return statement. Either way, unreachable code lines can
damage the program’s performance, since it may cause bugs due to the non-execution of the
unreachable code instructions. It can also affect the code readability, since the codebase will have
code that is never ran, which can be considered useless and therefore, should be fixed or possibly

removed.

int[] naturals(int n) {
int[] array = new int[n];
int 1 = 0;
return array;
while (i < n) {
array[i] = 1 + 1;
i++;
}

return array;

Figure 4.22. Unreachable code example.

This issue was recognized using the deadNodes() APl from the method’s Control Flow Graph. By
using this API, it was possible to obtain the list of nodes which were found to isolated from the rest of

the CFG nodes, which means that no node points to them. This means that the list contains the nodes

CTTC T [}
This code won't
be executed!

Issue:

Thereis a that causes the function execution to
end.

- The function ends after the statement.

- This means that code after that won't be executed.

- The unreachable lines become useless because they will never
run.

Suggestion:

Change the place of the return array statement or add a proper
condition before calling it, in order to avoid chunks of unreachable
code.

49

that represent the method’s code instructions that are never executed. The first node of the list
contains the return statement that caused the unreachable code issue, and with this being, it was
possible to use this list to highlight the cause and the effect of this issue, which corresponds to the

return statement and the following unreachable code instructions.

Figure 4.23. Unreachable code highlight.

4.4.2 Contradiction

Representing the exact opposite of the tautology issue (4.1.5), there are the conditions which are

always evaluated as false. This kind of issue is the exact opposite of the contradiction one, and can be

boolean isFirstElement (int[] a, int b) {
boolean isFirst = false;
if (!isFirst) {
return false;
} else if (a[0] == b) {

return true;

Figure 4.24. Contradiction example.
r

be executed. The way to recognize this issue follows the same steps as the tautology one, but instead
of comparing the variable values with the literal value true, it they are compared with the literal value

false.

Since the condition, in the example above, will always be evaluated as false, the assignment will
always be performed. This represents a tautology case. The explanation is the exact opposite of the
tautology issue. Both these issue suggestions tell the student to evaluate if the condition is necessary

at all, or to change so that it won’t be always evaluated as true, or false.

50

5. Experiments & Results

In general, some of the issue types that are recognized by the tool, are also recognized by professional
tools, such as SonarlLint. But it is important to mention that there are also issues which were
implemented, such as the duplicated condition guard, which are not included in the list of issues that

are recognized by such professional tools.

Like it was mentioned, the bigger difference from the professional tools, and the focus of the
pedagogical tool, is warn and supply the students with an explanation that helps them figure out why
they committed the issue that they are being warned about, instead of giving them the quick fix,

without focusing on the core of the problem, like most of the professional tools tend to do.

Upon the development of the pedagogical tool described in the previous chapter, we carried an
evaluation under two perspectives. Mining existing code of students to investigate the occurrence of

code quality issues, and usability experiments with the tool with end users (students).

5.1 Evaluation preparation steps
The first step was to gather some of the introductory programming projects from the last edition at
our institution. All the data regarding the student identification was anonymized. After doing this, the

next step was to associate the projects to their grades.

The projects were gathered with the intent of being submitted to the code quality checker tool,
which contained the code quality issues detectors, used to find out whether the tool was able to to

check if the projects contained such issues, or not.

But before submitting the projects to the code quality checker, they had to be submitted to
another tool, that is part of the Paddle library used to build the code checker, which transformed them
into the input object that the checker requires. The output of the parsing would be a batch of modules.
Each of these represent the parsed value of a student project which was used has an input by the code
quality checker. Then, the code issues are loaded and searched in the provided projects, by specifying

the visitors described in the previous section.

5.3 Applying the tool to the parsed student projects

The linter object has an analyse function, which accepts a single project represented by a module, or
a batch/list of modules. This will make use of the specified visitors and apply them to the modules
that are supplied. The expected output is a list containing all the code quality issue that were found in

the modules that were supplied. With this list of quality issues, it was possible to find out which issues

51

are present in the projects that are being examined. By having these results across all the projects, it
becomes possible to find out the amount of times that each issue occurs per project, which are the

most recurring issues and their location in the student’s code.

The first test that was performed by following the previous described steps included projects of 153
students. After running the analysis on the batch of projects, we found 2077 code quality issues across
all the 153 modules. Table X presents the distribution of issues distribution regarding the number of

projects that contained at least an occurrence of an issue, and the total number of occurrences per

issue.
Issues # of projects # of Issues
EMPTY SELECTION 24 39
MAGIC NUMBERS 151 1368
FAULTY RETURN BOOLEAN CHECK 50 68
FAULTY BOOLEAN CHECK 58 101
UNREACHABLE CODE 0 0
USELESS RETURN 64 169
DUPLICATE SELECTION GUARD 7 9
FAULTY METHOD CALL 76 266
NON-EXPLICIT ELSE 9 18
TAUTOLOGY
CONTRADICTION 4 5
DUPLICATE CODE 12 15
USELESS CODE 9 11
TOTAL - 2077

Table 5.1. Presence of quality issues in student projects.

After gathering the results, the next step was to separate the projects by grade, since this kind of
information was available, in order to try to understand if there would be any noticeable changes
regarding the number of occurrences of certain types of issues, between the groups of projects,
separated by the grade that they were assigned with. A project can be graded with an evaluation that
varies between A and C (considering positive grades), with the grade A being the best and C the worst.
As it can be seen in table 5.1, the number of issues tends to be larger for projects with better grades,
since the average number of issues per case is bigger. This can be due to the students that had a better
grade writing a more substantial amount of code, than the students with a lower grade, since the
evaluation was based on the number of features that were included in the projects, which can be
translated as more or less code. The distribution of the percentages of found issues regarding the

grade of the project was:

52

Issue Type A B C
EMPTY SELECTION 2% 1% 3%
MAGIC NUMBERS 65% 66% 70%
FAULTY RETURN BOOLEAN CHECK 4% 2% 3%
FAULTY BOOLEAN CHECK 5% 3% 6%
UNREACHABLE CODE 0% 0% 0%
USELESS RETURN 7% 12% 9%
DUPLICATE SELECTION GUARD 0% 1% 0%
FAULTY METHOD CALL 13% 13% 9%
NON-EXPLICIT ELSE 1% 0% 0%
TAUTOLOGY 1% 0% 0%
CONTRADICTION 0% 0% 0%
DUPLICATE CODE 1% 0% 0%
USELESS CODE 1% 0% 0%

Table 5.2. Percentage of found issues, per project grade.

The results shown above represent the percentages, regarding each of the issues types, of the
total amount of issues that were found across all the projects with a certain grade. Like it can be see
seen in table 5.2, across all the three possible grades, the issue type magic number was the one that
was found the most, with a percentage ranging between 65 and 70 percent, across all grades of the

projects that were analysed. Followed by the faulty method call issue, ranging between 9 and 13

percent, and the useless return issue, which percentage ranged between 7 and 12 percent.

Issue Type 10to 13 14to 16 17 to 20
EMPTY SELECTION 1% 2% 2%
MAGIC NUMBERS 69% 61% 69%
FAULTY RETURN BOOLEAN CHECK 2% 5% 4%
FAULTY BOOLEAN CHECK 5% 6% 3%
UNREACHABLE CODE 0% 0% 0%
USELESS RETURN 11% 10% 5%
DUPLICATE SELECTION GUARD 0% 1% 0%
FAULTY METHOD CALL 10% 11% 14%
NON-EXPLICIT ELSE 0% 1% 1%
TAUTOLOGY 1% 0% 0%
CONTRADICTION 0% 1% 0%
DUPLICATE CODE 0% 1% 1%
USELESS CODE 1% 0% 0%

Table 5.3. Percentage of found issues, per semester final grade.

This time, the percentage of found issues was calculated by separating the students not by project
grades, but by final semester grades, since it was found to be a better indicative of how well a student

knowledge and skills really progressed during the semester, since students could possibly help each

53

other during the projects development, which should have affected the quantity of issues that were
found. The grades can spread from 0 to 20, with grades lower that 10 being meaning that the student

failed the course, but for the sake of the experiment, these ones were not included. The grades above

10 were separated into 3 groups, 10 to 13, 14 to 16 and 17 to 20.

What was found was that the results don’t vary that much from the previous distribution. Projects
from students with lower and higher final grades seem to have pretty much the same issues
occurrence percentage in almost all of the issue’s types, with the exception of the useless return issue,

where students with higher grades seem to be better aware of this bad practise and don’t tend to

perform it as much as the students with lower grades.

Another way to interpret these results, is by analysing the percentages regarding the total number

of each issue, like it was done above, but also by the percentages of each issue found across all the

projects. With this being said, the percentages are:

Issue Type # of projects (%)
EMPTY SELECTION 16%
MAGIC NUMBERS 99%
FAULTY RETURN BOOLEAN CHECK 33%
FAULTY BOOLEAN CHECK 38%
UNREACHABLE CODE 0%
USELESS RETURN 42%
DUPLICATE SELECTION GUARD 5%
FAULTY METHOD CALL 50%
NON-EXPLICIT ELSE 6%
TAUTOLOGY 5%
CONTRADICTION 3%
DUPLICATE CODE 8%
USELESS CODE 6%

Table 5.4. Percentages of each issue found across all the projects.

The results from the table above offer a much more promising view, when it comes to the number
of projects in which a certain issue type was found. By looking at the table, it is possible to confirm
that almost all the issue types that were being caught by the tool, were found across various projects,
from the all of projects that were analysed. This means that practically every project contained issues

regarding code quality, which means that the students can be warned and advised, in order to fix
those issues.

Regarding the spread of both the number of issues and the number of projects in which some
issues were found, the results were expected to vary according to grade, for instance, the A-graded

projects were expected to contain a smaller percentage of issues classified as light, and a bigger

54

percentage of issues classified as serious. But the contrary was found, that the percentages of issues,
regarding all the issues types, are very similar across all the three grades, and are independent from
the issue classification. One possible reason for this can be that the projects tend to be highly revised
and advised (by instructors), before being submitted for evaluation. This means that the students may
had already been advised by a professor, for example, on topics to improve in their codebases, and
with that being, considerably less issues were expected to be found, in comparison with projects that
did not go through such process, or with codebases from the introductory programming practical
classes, where the kind of issues that are targeted by the tool have a much bigger chance of being

found.

Itis also important to mention the outliers were found, regarding both the total number of issues,
found across all projects, and the number of projects that contain a certain issue type. In both cases,
the outliers are the magic numbers and the unreachable code issues. The first one was found to be
present in 99% of the projects, with this most likely being because of subject that the projects were
focused on, which resolved around manipulating the colour of images. Since the codebase had a lot
of methods that did this in various ways, there were found a lot of loose integers values, which
represented the values of red, green and blue and with this being, the tool recognized a lot of magic
numbers. On the other hand, the unreachable code issue wasn’t found in any project at all. A possible
reason for this is that since this issue, besides being considered a code quality issue, can also insert
some bugs on the program and even originate compilation errors, which will be noticed by the
students, since most IDE’s won’t let the program execute when this kind of errors are present in the

codebase.

5.5 Usability tests with students

After finishing the experiment that was described above, another small experiment was performed.
This second experiment involved some students that had to take a survey of 10 questions that
contained code method examples, with the objective of pointing out if there were any issues related
with the quality of the code that was displayed to them. The difficulty of finding these issues varied
from question to question, depending on the type of the issue that was being targeted. Some
questions didn’t have issues at all, which were meant to make the experiment a little bit harder. The
students had between 1 and 2 minutes to answer each question, and in case of need, were offered
with help from either the person that was conducting the experiment or from interface with the tool

that was developed.

This experiment only had 2 volunteers, which had already done the introductory programming

course, and which were more experiment when it came to programming knowledge, which was a

55

downside, since the tool is meant to be used by students that are in the early stages of learning how

to program.

As it was expected, the 2 students that answered to the survey, didn’t face much difficulties when
it came to figuring out which issues were present in each question, and only in very few cases, the tool
had to be used in order to help the student figure out what was wrong. Regardless, the students still
offered some feedback which helped improving the tool, such as suggestions that helped improve

some of the explanations that were given for some of the issues that were highlighted during the tests.

56

6. Conclusions and Future work

Based on the research that was carried out, the development of the pedagogical tool and the results

that were obtained, we conclude that:

- Professional quality checkers, in general, do not focus on pedagogical aspects, when it comes
to the explanations for the code quality issues that they detect and highlight, focusing mainly
in offering a quick fix.

- Using Control Flow Graph (CFG)s was the main structure what allowed the development of
most of the code quality issues detectors, and that can be used to implement additional
detectors.

- By using the Paddle library and the developed CFG, it became possible to detect some code
quality issues which even professional tools do not detect.

- Students tend to include several code qualities issues in their code bases, during the entire

course of introductory programming, not only the first few weeks.

The main focus of this thesis, was to build a tool that could successfully detect and highlight a list
of chosen code quality issues, while providing a pedagogical explanation, so that it becomes possible
for the student to realise and even understand why the detected issue is considered a bad practice.
Hopefully, in this way, the student will learn to avoid such bad practices, resulting in better code bases,

right from the beginning phase of learning how to program.

With this being said, after finishing the related work section of the thesis, it became possible to
realize that current available tools for IDEs, such as Eclipse, which is the one that is used at our
university, are not properly focused on the pedagogical side, instead, they provide little or no
explanation on why the detected issue is a problem, and often only provide a quick-fix for the problem
that was detected, resulting on the student not understanding why those issues represent problems

for the codebase.

The CFG was a core artifact in the development of the pedagogical tool. Without it, most of the
cases detection implementations would not be possible or would have become a lot harder to
implement. Its development required a considerable implementation effort, but the final result served
the exact purpose that it was meant to. Since the CFG structure provides a clear API, it can be easily
having other use cases. With this being, we decided to add it to the Paddle framework. It will most
likely become useful to future thesis, or projects, that shall be done by other colleagues, since it can

be very useful with respect to static analysis.

57

The majority of code quality issues detectors that were implemented, are also detected by the
professional tool SonarLint[22] that was mentioned in the related work section. We found that it was
important to include those issues in the developed tool, with the company of a well put explanation,
resulting in a highlight that was more pedagogical. On the other hand, with the developed CFG
structure and the Paddle tool visitors, it became possible to implement a series of detectors, such as
the duplicated guard condition one, which are not addressed by professional tools in their list of
detectable issues. This means that the developed tool features some detections that are exclusive to
it, as far as we investigated, while there are also several other of code quality issues which can be
implemented. We have focused on the issues that may relate to common programming
misconceptions that beginners have, rather than concerning with industry practices (e.g., code

conventions).

After analyzing the gathered projects with our detectors, the results showed that there are still a
lot of code quality issues that are found amongst a significant percentage of the projects. This means
that some issues tend to stick with the student long after they start to learn how to program, since
the projects are developed by the students in the final phase of the course. Therefore, the purpose of
our pedagogical tool is justified, since it can help the students to become aware of such quality issues
occurrences and help them to understand and eliminate those bad practises, right from the early

stages.

Moving forward, the next steps would be to arrange a lot more interviews with students, that the
ones that were performed on the end of the development stage of the pedagogical tool. With these
interviews, it could be possible to understand if there are any flaws with the explanations that the

pedagogical tool currently supplies.

After collecting all the feedback from the students, the next step would be to research and create
a new list of quality issues detectors, and continue developing the tool, so that it could detect a wider
range of code quality issues. After that, a second prototype would be developed, with the intent of
being used by the students, during the practical classes, where most of the code quality issues

occurrences are expected to be found.

58

References

(1]

(2]
(3]

(4]

(5]

6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

H. Keuning, B. Heeren, and J. Jeuring, ‘How teachers would help students to improve their
code’, Annu. Conf. Innov. Technol. Comput. Sci. Educ. ITiCSE, no. 1, pp. 119-125, 2019.

R. Pello, ‘Design science research - a short summary’, Medium, 2018.

H. Keuning, B. Heeren, and J. Jeuring, ‘Code quality issues in student programs’, Annu. Conf.
Innov. Technol. Comput. Sci. Educ. ITiCSE, vol. Part F1286, pp. 110-115, 2017.

Y. Qian and J. Lehman, ‘Students’ misconceptions and other difficulties in introductory
programming: A literature review’, ACM Trans. Comput. Educ., vol. 18, no. 1, pp. 1-24, 2017.

J. M. Su and F. Y. Hsu, ‘Building a Visualized Learning Tool to Facilitate the Concept Learning of
Object-Oriented Programming’, Proc. - 2017 6th IIAl Int. Congr. Adv. Appl. Informatics, IIAI-AAl
2017, pp. 516-520, 2017.

P. Techapalokul and E. Tilevich, ‘Novice Programmers and Software Quality: Trends and
Implications’, in Proceedings - 30th IEEE Conference on Software Engineering Education and
Training, CSEE and T 2017, 2017, vol. January, 2017.

E. Van Emden and L. Moonen, ‘Java quality assurance by detecting code smells’, Proc. - Work.
Conf. Reverse Eng. WCRE, vol. January, 2002, pp. 97-106, 2002.

J. Keung, Y. Xiao, Q. Mi, and V. C. S. Lee, ‘BlueJ-UML: Learning Object-Oriented Programming
Paradigm Using Interactive Programming Environment’, Proc. - 2018 Int. Symp. Educ. Technol.
ISET 2018, pp. 47-51, 2018.

J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, ‘The Scratch Programming
Language and Environment’, ACM Trans. Comput. Educ., vol. 10, no. 4, Nov. 2010.

J. Trower and J. Gray, ‘Blockly Language Creation and Applications: Visual Programming for
Media Computation and Bluetooth Robotics Control’, in Proceedings of the 46th ACM Technical
Symposium on Computer Science Education, 2015, p. 5.

M. Kolling, ‘The Greenfoot Programming Environment’, ACM Trans. Comput. Educ., vol. 10, no.
4, Nov. 2010.

M. J. W. Lee, S. Pradhan, and B. Dalgarno, ‘The Effectiveness of Screencasts and Cognitive Tools
as Scaffolding for Novice Object-Oriented Programmers’, J. Inf. Technol. Educ. Res., vol. 7, pp.
061-080, 2008.

M. Kolling, B. Quig, A. Patterson, and J. Rosenberg, ‘The BlueJ System and its Pedagogy’,
Comput. Sci. Educ., vol. 13, no. 4, pp. 249-268, 2003.

SOUSA, Hugo Silva. ‘lllustrating Debugger Execution Leveraging on Variable Roles’. Lisbon:
ISCTE-IUL, 2016. Masters dissertation. Available: https://hdl.handle.net/10071/14632.

A. L. Santos and H. S. Sousa, ‘Pandion): A Pedagogical Debugger Featuring lllustrations of
Variable Tracing and Look-Ahead’, in Proceedings of the 17th Koli Calling International
Conference on Computing Education Research, 2017, pp. 195-196.

A. L. Santos, ‘Enhancing Visualizations in Pedagogical Debuggers by Leveraging on Code
Analysis’, in Proceedings of the 18th Koli Calling International Conference on Computing
Education Research, 2018.

59

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

S. Draxler, G. Stevens, and A. Boden, ‘Keeping the development environment up to date - A
study of the situated practices of appropriating the eclipse IDE’, IEEE Trans. Softw. Eng., vol.
40, no. 11, pp. 1061-1074, 2014.

E. Foundation, ‘Eclipse Documentation’, 2019. .

JetBrains, ‘Code Inspections’, 2019. [Online]. Available:
https://www.jetbrains.com/help/idea/code-inspection.html. [Accessed: 04-Jan-2020].

IBM, ‘Interactive Debugging with Node.js’, 2018. .

M. Hentschel, R. Bubel, and R. Hahnle, ‘The Symbolic Execution Debugger (SED): a platform for
interactive symbolic execution, debugging, verification and more’, Int. J. Softw. Tools Technol.
Transf., vol. 21, no. 5, pp. 485-513, 2019.

A. Boroumand, ‘Java Code Linting with Sonarlint’, 2018. [Online]. Available:
https://www.codebyamir.com/blog/java-code-linting-with-sonarlint.

A. Dangel, ‘Code quality assurance with PMD — An extensible static code analyser for Java and
other languages.”, 2018. [Online]. Available: https://www.datarespons.com/code-quality-
assurance-with-pmd/.

A. Santos, ‘Paddle’. Available: https://github.com/andre-santos-pt/paddle.

60

