
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Modelling Daily Volatility with External Regressors  
 
 
 
 
 

Gonçalo Miguel Costa Duro 
 
 
 
 
 

Master in Finance 
 
 
 
 
 

Supervisor:  
Professor Doutor José Joaquim Dias Curto, Associate Professor,  
ISCTE – Instituto Universitário de Lisboa  

 

  
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
November, 2020 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Department of Finance  
 
 
 
 
 

Modelling Daily Volatility with External Regressors  
 
 
 
 
 

Gonçalo Miguel Costa Duro 
 
 
 
 
 

Master in Finance 
 
 
 
 
 

Supervisor:  
Professor Doutor José Joaquim Dias Curto, Associate Professor,  
ISCTE – Instituto Universitário de Lisboa  

 

  
 
 
 
 
 
 
 

 

 
November, 2020



 

i 

Acknowledgements 

 

Esta tese reflete todo o esforço e dedicação, não só meu, mas de todos os que me rodeiam. 

Quero começar por agradecer aos meus pais por me terem proporcionado a melhor 

educação e me terem apoiado em todo o meu percurso académico e pessoal. 

Ao meu irmão, Tomás, pela importância que tem na minha vida. 

À minha namorada, Beatriz, por toda a paciência e por ter estado presente em todos os 

momentos. Foi um grande apoio para a concretização deste trabalho. 

Ao meu professor, José Dias Curto, por todo o tempo despendido e disponibilidade 

demonstrada. Sem as suas críticas e ideias esta tese não era a mesma, obrigado. 

E, agradecer a todos aos meus amigos que me continuam a acompanhar ao longo de toda 

esta jornada.  

 

A todos vocês, um grande obrigado. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iii 

Abstract  

The main objective of this thesis is to show the importance of including log differences of 

trading volume and close-to-open negative returns (negative log differences between the 

closing price of the day before and the opening price) both lagged one time in modelling 

volatility for the DAX 30, S&P 500 and the Nikkei 225. In order to accomplish this, we use the 

ARMA (1,1)-EGARCH (1,1), -TGARCH (1,1), -GJR-GARCH (1,1) and -GARCH (1,1), the 

latter without external regressors. Our models use different error distributions: the student-t, the 

GED, the skewed student-t and the skew GED distribution. Our sample uses the returns from 

02/01/1998 to 29/05/2020 divided into crisis and non-crisis periods. For the out-of-sample 

analyses we use the last twenty trading days to compare the models estimated with the volatility 

proxy: the squared returns.  

The models that stand out from the others are ARMA (1,1)-EGARCH (1,1) and ARMA 

(1,1)-TGARCH (1,1) which seem to be the ones that best model and forecast volatility. Despite 

not reaching a conclusion about the best distribution, we can conclude that the skew version of 

the distributions performs better in-sample than out-of-sample. 

The results show that the log differences of trading volume are an important variable to 

include in and out-of-sample. Although the close-to-open negative returns are only significant 

in some periods of analysis and only in ARMA (1,1)-EGARCH (1,1), when they are significant, 

they yield the best in-sample results.  

 

Keywords: ARMA-GARCH, trading volume, close-to-open negative returns 

JEL classification: C32, G17 
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Resumo  

O principal objetivo desta tese é demostrar a importância de incluir as diferenças logarítmicas 

do volume de trocas e os retornos negativos entre fecho-e-abertura (diferenças logarítmicas 

entre o preço de fecho do dia anterior e o preço de abertura), ambos com um momento de 

desfasamento, na modelização da volatilidade para os seguintes índices DAX 30, S&P 500 e 

Nikkei 225. Para este estudo utilizamos o ARMA(1,1)-EGARCH (1,1), -TGARCH (1,1), -GJR-

GARCH (1,1) e -GARCH (1,1) este último sem as variáveis adicionais. Escolhemos ainda as 

seguintes distribuições: student-t, GED, student-t assimétrica e GED assimétrica. O período de 

análise usa os retornos deste 02/01/1998 até 29/05/2020, divididos em tempos de crise e não 

crise. Para a análise da previsão dos últimos vinte dias comparamos o que o modelo estima com 

a proxy da volatilidade calculada (o quadrado dos retornos).  

Os modelos que se destacam são ARMA (1,1)-EGARCH (1,1) e o ARMA(1,1) -TGARCH 

(1,1) que apresentam os melhores resultados para modelar e estimar a volatilidade. Analisando 

os resultados, concluímos que a versão assimétrica das distribuições tem um melhor 

desempenho dentro da amostra. 

Os resultados mostram que as diferenças logarítmicas do volume de trocas é uma variável 

importante a incluir. Os retornos negativos entre fecho-e-abertura, são apenas significativos em 

alguns períodos de análise e apenas para o modelo ARMA (1,1) -EGARCH (1,1), mas quando 

são significativos apresentam os melhores resultados dentro da amostra.  

 

Palavras-Chave: ARMA-GARCH, volume de trocas, retornos negativos fecho-abertura 

Classificação JEL: C32, G17 
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1. Introduction 

Volatility is one of the most complex subjects in finance. Changes in prices can be caused by 

so many factors that although research into finding a way to forecast this began a long time ago, 

a state-of-the-art model has yet to be arrived at. What is a certainty in one study is not in another.  

Volatility in stock markets can be studied for indexes, stocks, commodities, options, 

exchange rates, etc. However, since there are different characteristics for modelling volatility 

for each type of financial instrument, a common practice is to study groups of stock markets 

with the same designation.  Our interest here, lies in studying equity indexes, more specifically, 

we will be modelling the volatility of three main equity indexes: the DAX 30, S&P 500, and 

the Nikkei 225.     

In Engle (1982) we can find the beginning of the ARCH-type models (autoregressive 

Conditional Heteroskedasticity), with volatility being forecast by past squared errors. However, 

volatility can also be explained by its past, so Bollerslev (1986) introduced the well known 

generalized ARCH (GARCH) which takes this further step.  

Markets react differently to good news than to bad news, with bad news having higher 

volatility increases, hence the asymmetric volatility response is also a key behaviour. Nelson 

(1991), Glosten, Jagannathan and Runkle (1993) and Zakoian (1994) proposed models that 

include this leverage effect, EGARCH, GJRGARCH and TGARCH respectively. These models 

are not the only ones to include this effect but they are the ones that are relevant for this 

dissertation. 

Our aim being to model and forecast volatility, we will use the ARMA-GARCH mixture 

type models. This kind of mixture allows us to take into consideration, the characteristics of 

price returns and, at the same time, the characteristics of volatility. So, we use four models: 

ARMA (1,1)-GARCH (1,1), ARMA (1,1)-EGARCH (1,1), ARMA (1,1)-GJR-GARCH (1,1) 

and finally the ARMA (1,1)-TGARCH (1,1). 

The literature is not unanimous with regard to choosing the best distribution for modelling 

volatility in all moments. Different studies suggest different distributions. For example, 

Wilhelmsson (2006) considered student-t distribution, while Gao et al. (2012) choose the GED, 

still more studies can be found with different distributions. So, for computing the volatility for 

these indexes, we chose to use the student-t, the GED and the skew versions of both. 

The main goal of this dissertation is to prove that the inclusion of external regressors in the 

GARCH equation part (this means that the external variables only impact the conditional 

volatility and not the ARMA equation part) is significant and produces better results both with 

in-sample and out-of-sample analyses. For this purpose, the ARMA (1,1)-GARCH (1,1) will 
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not include these external regressors. Since it is a widely used model, with a robust performance 

like that studied by Wang et al. (2009), it will be a good benchmark.  

The external regressors chosen for this study are the log differences of daily trading volume 

and close-to-open negative returns (only the negative values for the log differences of the 

closing price of the day before and the opening price) both lagged one time. 

For this analysis we consider the period between 01/01/1998 to 29/05/2020. We use all the 

time periods and different divisions derived from separate All Sample in sub-periods. This 

historical data was divided into crisis and non-crisis subsamples. The objective here was to see 

whether the variables have different impacts in different time periods. With regard to the out-

of-sample analysis, we will use the last twenty trading days and compare the forecasted 

volatility given by the models estimated with the volatility proxy, the squared returns. The best 

models are those that are the least different from reality. 

The main contributions of this thesis are diverse. Our dissertation shows that the ARMA 

(1,1)-EGARCH (1,1) and ARMA (1,1)-TGARCH (1,1) are the best models. While for in-

sample, there is a predominance of the ARMA (1,1)-EGARCH (1,1), for out-of-sample, the 

predominance is for the ARMA (1,1)-TGARCH (1,1) model. As far as error distribution in this 

thesis is concerned, no conclusion was reached about which distribution is the best. However, 

by analysing the skewed version of the distributions used against the standard version in the 

same model (skewed GED versus GED and skewed student-t versus student-t), we conclude 

that, in general, no version stands out from another. However, dividing this between in and out-

of-sample, the results show that the skewed version is better in-sample and the standard one is 

better out-of-sample, especially for the non-crisis period.  

The final contribution of this thesis concerns the external regressors. In modelling daily 

volatility, the inclusion of the lagged log differences of trading volume is shown to be 

significant and helpful in explaining volatility. It appears to have a considerable positive impact 

on the volatility. Hence, when the trading volume increases, the volatility of the equity index 

increases as well. The lagged close-to-open negative returns are not always statistically 

significant and the only model where this variable is significant is in ARMA (1,1)-EGARCH 

(1,1). In general, this has a negative impact (except for one period of analyses), meaning that 

negative close-to-open returns increase the volatility.  

This research is organized as follows. Section 2 reviews the literature about the topic of 

modelling volatility, such as models, distributions and external regressors. Section 3 gives an 

explanation of the data used. Section 4 has all the methodology applied for modelling volatility. 

Section 5 has the results by in and out-of-sample analyses, the presentation of the best models 
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and their respective coefficients for external regressors. Finally, Section 6 is the conclusion of 

this thesis. 
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2. Review of literature 

As stimulating it is to analyze volatility, there is another great motivation to tackle this subject 

which is to be able to predict it. The volatility proxy, in order to compare the results, can be 

calculated in more than one way. We can use implied volatility, which is derived from financial 

options’ prices and is thus a future expectation of volatility, or we can have realized volatility, 

which is an estimation for daily volatility considering intraday volatility. There are, however, 

limitations with regard to obtaining this data (Majmudar & Benerjee, 2004). Because of the 

limitations in this study, we use the squared returns for volatility proxy. 

The characteristics of volatility that give it its complex behaviour are precisely why it is 

such a challenge to model. Large changes tend to be followed by further large changes; the 

same happens with small changes and this is designated as volatility clustering. Another feature 

is that periods of high volatility will be followed by a period of normal volatility, and normal 

volatility will be followed by periods of high volatility (mean reversion). In addition to the two 

above, there is also the leverage effect, with negative and positive shocks having different 

impacts on volatility. Lastly, the probability of the returns getting higher values is large. (Engle 

& Patton, 2001) (Poon & Granger, 2003). 

As previously mentioned, in order to model volatility we have to keep in mind its 

characteristics. Engle (1982), with the introduction of the ARCH-model (autoregressive 

Conditional Heteroskedasticity), assumed that conditional variance is a linear function of past 

squared errors with q number of lags.  

The ARCH-model is the simplest model in this thesis. The advantages of this model are 

that it is easy to estimate and allows the impact of volatility clustering. However, it is precisely  

because it is a simple model that there are some limitations. One limitation being that in this 

model, the only thing that affects the current volatility are past error terms, which is probably 

not true. Another problem is that large negative impacts tend to last different lengths of time 

from positive shocks and the model presented by Engle (1982) does not consider this impact.   

To overcome these limitations of the aforementioned model, Bollerslev (1986) explained 

the conditional variance by adding the past conditional variances (p) of the series to the ARCH 

model, producing the Generalised ARCH (GARCH).  

By adding the past conditional volatilities to past squared errors, this model is more flexible 

and can capture both dense tail returns and volatility clustering. The problem with this model, 

however, is that it is still unable to differentiate between bad news and good news, so negative 

impacts are not distinct from positive impacts. 
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Nelson (1991) proposed a model to accommodate this detail in financial time series. The 

exponential GARCH (EGARCH) model captures both the sign and the size of past residuals. 

Taking the leverage effect into consideration, the bad news will increase the volatility more 

than positive shocks will.  

The Glosten, Jagannathan and Runkle study (1993) modifies the GARCH (GJR-GARCH) 

model to include a dummy variable, making it possible to take into account the “leverage” 

effects in the financial markets. In the case of negative shocks, the dummy is one, and zero 

otherwise. 

Taking a different approach, the TGARCH (threshold GARCH) by Zakoian (1994) uses 

the conditional standard deviation instead of the conditional variance. The idea comes from a 

study by Davidian and Carroll (1987) on estimating variance function. Here, they conclude that 

absolute residuals are more efficient in estimating variance than squared residuals if the 

distribution of the same is non-normal.  

There are other GARCH models, but for a more complete list and details about types of 

univariate GARCH models read Teräsvirta (2009). A more recent model that is not present in 

the research is the Flexible Coefficient GARCH (FCGARCH) presented by Medeiros and 

Veiga (2009). In this last model, it is possible to include more than two limiting regimes besides 

the nonlinear combinations.  

There is a great variety of GARCH-type models but there is no mutual consensus regarding 

whether one model outperforms the others; some studies conclude it is the simplest GARCH 

(p,q) that does, while  others point to the extensions of GARCH  being better. 

For the simplest model, and using the data of seven emerging countries, Gokcan (2000) 

found that the GARCH (1,1) model outperformed the EGARCH (1,1) even when the returns 

have skewness distributions. The Balaban (2004) study indicates that the GARCH model 

outperforms other models in forecasting the US dollar – Deutsche mark exchange rate. Hansen 

and Lunde (2005) compared 330 ARCH-type models and concluded that the standard GARCH 

(1,1) is the best model for exchange rates, but for IBM stocks this model does not outperform 

the others. Another conclusion of this study is that the higher order in p and q rarely outperform 

the lowest 1, 1 combination.   

To conclude with regard to the GARCH extensions, Alberg et al. (2008) showed that the 

best model is the EGARCH, especially with the skewed student-t for Tel Aviv Stock Exchange 

indexes. Liu and Hung (2010) in their investigation into Standard and Poor’s 100, state that the 

GJR-GARCH (1,1) obtains the most accurate volatility forecast, and that modelling the 

asymmetrical component is very important. Lim and Sek (2013) showed that in comparison 
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with EGARCH, the GARCH and TGARCH models perform the best in the pre-crisis period, 

with the GARCH model working well during the crisis and the TGARCH model working well 

in the post-crisis period for the stock market in Malaysia. 

In addition to all the models presented, a mixture of ARMA (Box & Jenkins, 1976), and 

GARCH models was adopted to model volatility.  

Tang et all. (2003) shows that using the ARMA-GARCH model to predict the daily stock 

prices of the Cheung Kong Holding and the HSBC Holding produces very good results. Wang 

et al. (2009) confirmed the explanation power of the in and out-of-sample results of the ARMA-

GARCH model for the Dow Jones Industrial Average and S&P 500 indexes. Thorlie et al. 

(2014) confirmed the performance of the ARMA-GJR-GARCH in predicting the SLL/USD 

exchange rate.  

However, the difficulties involved in modelling and predicting volatility lie not only in 

finding a model that outperforms the others, but also in choosing a distribution. The use of a 

normal distribution fails to capture the main stylised characteristics of financial time series such 

as the presence of excess kurtosis and skewness, but there is no distribution, asymmetric or not, 

that constantly produces better results than the others. Different studies suggest different 

distributions. 

Verhoeven and McAleer (2004) conclude about the superior results given by the 

asymmetric distributions in GARCH models.  The work of Wilhelmsson (2006) shows that the 

GARCH model with the student-t distribution is the best for S&P 500 index future returns. 

Curto et al. (2006), using an AR-GARCH model for the US, German and Portuguese main 

stock market indexes point to the performance of the stable Pareto distribution and the student-

t distribution. Gao et al. (2012) point for GED distribution in a GARCH (1,1) for the Shanghai 

composite index and the Shenzhen Stock Exchange Component Index. Kosapattarapim et al. 

(2012), applying a GARCH (p,q) to three emerging South East Asian stock markets, suggest 

that models with non-normal error distributions tend to provide better out-of-sample results. In 

a more recent study, Kumar and Basavaraj (2016) demonstrate that the symmetric distribution 

performs better than asymmetric ones, especially the GED for the S&P 500. 

After models and distributions, it is now time to present the topic of external regressors to 

model volatility. From the models presented, the volatility can be explained by its past 

volatility, past innovations and leverage effects, but there are other variables than can improve 

the prediction of volatility. Trading volume and close-to-open negative returns are two of the 

possible choices to explain volatility.  
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There is a specific consensus that trading volume is connected with volatility, but 

agreement on the topic ends when the discussion turns to proving whether or not lagged trading 

volume affects volatility. There are two distinct theories about this relationship, based on the 

flow of information coming from the market.  

The Mixture of Distribution Hypothesis (MDH) presented in Clark (1973) and Harris 

(1986), states their perspective that since the news about new prices is received by all investors 

simultaneously, a new equilibrium is attained immediately and there is no lagged trading 

volume that helps to predict volatility. On the other hand, Copeland (1976) and Jennings et al. 

(1981) favour the Sequential Information Arrival Hypothesis (SIAH) where the information 

reaches traders sequentially and they react in different periods of time, leading to an imbalance. 

Only when all the traders have reacted to the same information can equilibrium be achieved. 

According to this theory, therefore, the lagged trading volume can help predict volatility. 

In favour of the MDH theory is Brooks (1998), whose results from using GARCH, 

EGARCH and GJR-GARCH models, suggest the existence of a bidirectional causality between 

trading volume and volatility. However, they conclude that the inclusion of the lagged trading 

volume to forecast volatility does not improve the results. Choi et al. (2012) conclude that for 

the Korean stock market, there is a positive relationship between trading volume and volatility 

in EGARCH (1,1) and GJR-GARCH (1,1) but the inclusion of the lagged trading volume is not 

statistically significant enough to explain volatility. 

For the SIAH theory, Darrat et al. (2003) use an EGARCH model to analyse all stocks in 

the Dow Jones Industrial Average (DJIA) and conclude that most of them support the SIAH 

theory, so lagged trading volume has a causal relationship with volatility. Chiang et al. (2010) 

reach the same conclusion. Using intraday data from the National Association of Securities 

Dealers Automated Quotations (NASDAQ), they found strong bidirectional nonlinear Granger 

causality between volatility and lagged trading volume. The results show that the inclusion of 

lagged values of trading volume improve the prediction of volatility in EGARCH (1,1) and 

GJR-GARCH (1,1) models. Kambouroudis and McMillan (2016) using six GARCH-type 

models and data from US, UK and France stock market indexes conclude that the inclusion of 

the lagged trading volume and VIX (volatility index) contribute towards forecasting volatility 

despite the low value coefficient. 

Not only will trading volume be included but also another variable, namely the close-to-

open negative returns, will be added in order to model conditional volatility. Although the 

literature for this topic is not as complete as the literature of trading volume, we decided to 

include this variable in our contribution to the literature. To understand the importance of using 
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close-to-open information before talking about their use in models, there are studies like that of 

Tsiakas (2008) that confirm the substantially predictive power of the inclusion of overnight 

information, and that separating the negative news from the good improves the performance of 

stochastic volatility for European and US stock indexes. And Ahoniemi and Lanne (2013) 

determined that a realised volatility estimator which includes overnight information is more 

precise in-sample for S&P 500 index, but for the individual stocks the best realized volatility 

estimator is the one without this additional information.  

So, although there are some studies that point to the importance of close-to-open 

information in modelling volatility, the literature about the application of close-to-open 

negative returns in GARCH-type models to explain volatility is not extensive. Here, we present 

some of the studies that include close-to-open returns as external regressors. Gallo and Pacini 

(1998), using GARCH and EGARCH models, found that the inclusion of close-to-open returns 

improves the predictability of the conditional volatility for some stock indexes except for the 

S&P 500. Martens (2002), using a GARCH model, concluded that modelling overnight returns 

is important in forecasting one-day-ahead volatility, but the effect disappears if the horizon is 

one week or one month. Chen et.al (2012), focusing on adding more explanatory variables to a 

GARCH model to increase the predictive power for volatility, concluded that the inclusion of 

pre-open coefficients is important for in and out-of-sample for the thirty stocks mostly traded 

on the NASDAQ. Additionally, they state that the inclusion of the overnight squared returns 

improves the forecast of the conditional volatility. 

The use of these external regressors is also important in other models. Here, there is a 

reference for one study that includes the same external regressors used in this thesis. Wang et 

al. (2015), using a HAR-RV model (Heterogeneous Autoregressive model of Realized 

Volatility), noted the importance of negative overnight returns and negative lunch returns in 

addition to trading volume to predict the volatility of Chinese stock markets, the Shanghai Stock 

Exchange Composite Index (SHCI) and the Shenzhen Composite Index (SZCI). 
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3. Data 

To analyse the behaviour of volatility in returns, this thesis uses the Close and Open prices 

adjusted to dividends and the trading volume of the DAX 30, S&P 500 and Nikkei 225. The 

period of this analysis is between 02/01/1998 and 29/05/2020. All the data in this study were 

collected from Bloomberg. S&P 500 have 5637, the DAX 30 have 5683 and the Nikkei 225 

have 5494 observations. 

To calculate the returns in this thesis, we use the Close price of the indexes, the volatility 

proxy is computed by squaring the returns represented, respectively:  

 

 𝑟 = 𝑙𝑜𝑔 ൬
𝑆𝑡
𝑆𝑡−1

൰ (1) 

 𝑣 = 𝑟2 (2) 

 

The external regressors used for improving the explanatory power to model and forecast 

volatility are the close-to-open negative returns (vxreg1) and log differences of trading volume 

(vxreg2) both lagged one time as represented below: 

  

 𝑣𝑥𝑟𝑒𝑔1 = min൭0; 𝑙𝑜𝑔 ൬
𝑂𝑡

𝑆𝑡−1
൰൱ (3) 

 𝑣𝑥𝑟𝑒𝑔2 = 𝑙𝑜𝑔 ൬
𝑉𝑡
𝑉𝑡−1

൰ (4) 

 

With 𝑆𝑡 being the Close Price, 𝑂𝑡 the Open price and 𝑉𝑡 the trading volume. 

In this study we divided the whole period into subsamples to group them by crisis and non-

crisis periods. The 1st period is between 1998 and 2002 inclusive, in order to catch the dot.com 

bubble. The 2nd period is from 2003 and 2006 and is a period without a crisis. The 3rd is from 

2007 and 2010 to include the financial crisis. The 4th period is from 2011 and 2019 and is a 

period without a crisis. Finally, the 5th period is for 2020 to include the impact of Covid-19.  
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Table 3.1 Summary of statistics and normality test for DAX 30 returns 

 

 

Table 3.2 Summary of statistics and normality test for S&P 500 returns 

 

 

Table 3.3 Summary of statistics and normality test for Nikkei 225 returns 

 

 

After analysing the tables, it is clear that the mean of the log returns for the total sample is 

positive, but the same is not true in different periods. In crisis periods, the mean is negative 

with the exception of the DAX in the 3rd period, and positive in non-crisis periods. 

The skewness is negative in almost all periods of analyses for the different index returns 

but is positive in the 3rd period for the DAX, in the 1st and 2nd periods for S&P 500 and the 1st 

and 5th periods for the Nikkei 225. The negative (positive) value means that the left (right) tail 

of the distribution is longer than the right (left) one, so the distribution is asymmetric. It is 

important to note that the values of the skewness are greater in absolute value for the negative 
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coefficient than it is for the positive coefficient. It was expected that in crisis periods the 

skewness would be negative, but that was not the case in the DAX 30 for the 3rd period, for 

S&P 500 in the 1st period and the 1st and 5th periods of the Nikkei 225. Looking at the Kurtosis, 

we can confirm the leptokurtic characteristic of the returns, this means that the distribution for 

all the three indexes have fatter tails and a higher peak around the mean when compared against 

a normal distribution. The highest value is in the 3rd period, the period of the financial crisis. 

The characteristics of the returns in general (asymmetric and leptokurtic) point to the non-

normality of the distributions; to test this hypothesis, we use the Jarque and Bera (1987) test: 

 𝐽𝐵 =
𝑛

6
൬𝑆2 +

1

4
ሺ𝐾 − 3ሻ2൰ (5) 

 

Where 𝑛 is the number of observations, 𝑆 is the skewness and 𝐾 is the kurtosis. The p-value 

lower than 0.05 indicates strong statistical evidence to reject the null hypothesis and so the 

conclusion about the returns for all periods and indexes is that they are not normal distributed. 
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4. Methodology  

This chapter is dedicated to explaining all the assumptions and decisions made for modelling 

the daily volatility of the returns of the three indexes (DAX 30, S&P 500, and Nikkei 225). To 

do this, we used the R program with the rugarch package. 

The models chosen were: ARMA (1,1)-GARCH (1,1), ARMA (1,1)-EGARCH (1,1), 

ARMA (1,1)-GJRGARCH (1,1), ARMA (1,1)-TGARCH (1,1). The (1,1) combination was 

chosen because in all these studies, Hansen and Lunde (2005), Wang et al. (2009) and Liu and 

Hung (2010) are demonstrated the power of explanation and prediction of the lowest 

combination of p and q. 

Firstly, we present the model that gave rise to all the others in the Engle (1982) study. So, 

let 𝜀𝑡 be the error term that is split into a stochastic part and a time dependent standard deviation. 

 𝜀𝑡 = 𝜎𝑡𝑧𝑡 (6) 

 

Where 𝑧𝑡 is independent and identically distributed (i.i.d.), and the conditional variance 

given by the ARCH model is: 

 𝜎𝑡|𝑡−1
2 = 𝑎0 +෍𝑎𝑖

𝑞

𝑖=1

𝜀𝑡−𝑖
2  (7) 

 

In this model 𝑎0 > 0 and 𝑎𝑖 ≥ 0, 𝑖 ∈ [1, 𝑞] in order for the conditional mean and variance 

to be positive. σ 𝑎𝑖
𝑞
𝑖=1 < 1 it is necessary to ensure this process is covariance stationary. 

Then Bollerslev (1986) modelled the conditional variance by adding the past conditional 

variances (p) of the series to the ARCH model producing the Generalised ARCH (GARCH). 

 𝜎𝑡|𝑡−1
2 = 𝑎0 +෍𝑎𝑖

𝑞

𝑖=1

𝜀𝑡−𝑖
2 +෍𝛽𝑖𝜎𝑡−𝑖

2

𝑝

𝑖=1

 (8) 

 

Being 𝑎0 > 0; 𝑎𝑖 ≥ 0 with 𝑖 ∈ [1, 𝑞]; 𝛽𝑖 > 0 with 𝑖 ∈ [1, 𝑝] to guarantee a positive 

conditional variance and σ 𝑎𝑖
𝑞
𝑖=1 +σ 𝛽𝑖 < 1𝑝

𝑖=1 to ensure a stationary covariance process. By 

adding the past volatilities, this model is more flexible and captures both dense tail returns and 

volatility clustering. 

Nelson (1991) proposed a model to finally accommodate leverage effects. The exponential 

GARCH (EGARCH) model captures both the sign and the size of past residuals. 
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 ln൫𝜎𝑡|𝑡−1
2 ൯ = 𝑎0 +෍𝑎𝑖

𝑞

𝑖=1

|𝜀𝑡−𝑖|

𝜎𝑡−𝑖
+෍𝑎𝑖

𝑞

𝑖=1

𝛾𝑖
𝜀𝑡−𝑖
𝜎𝑡−𝑖

+෍𝛽𝑖ln⁡ሺ𝜎𝑡−𝑖
2 ሻ

𝑝

𝑖=1

 (9) 

 

With 𝛾𝑖 < 0 the leverage effect shows that bad news, more than positive shocks, will 

increase volatility. Since it is a log-conditional variance there is no restriction in the other 

parameters for a positive conditional variance. 

Glosten, Jagannathan and Runkle (1993) also modified the GARCH model to include a 

dummy, thus making it possible to take into account the leverage effect, this being the 

conditional variance given by: 

 𝜎𝑡|𝑡−1
2 = 𝑎0 +෍ሺ𝑎𝑖

𝑞

𝑖=1

𝜀𝑡−𝑖
2 + 𝛾𝑖Ι𝑡−𝑖𝜀𝑡−𝑖

2 ሻ +෍𝛽𝑖𝜎𝑡−𝑖
2

𝑝

𝑖=1

 (10) 

 

The indicator function (Ι𝑡−𝑖) takes the value of one in the case of 𝜀𝑡 < 0 and 0 otherwise. 

If the gamma is positive and statistically significant, there is a negative asymmetric volatility 

response. 

The other model that is used in this thesis is the TGARCH (threshold GARCH) by Zakoian 

(1994). This model is different from the others, since it models the conditional standard 

deviation instead of the conditional variance: 

 𝜎𝑡|𝑡−1 = 𝑎0 +෍ሺ𝛼𝑖
+𝜀𝑡−𝑖

+

𝑞

𝑖=1

− 𝛼𝑖
−𝜀𝑡−𝑖

− ሻ +෍𝛽𝑗

𝑝

𝑗=1

𝜎𝑡−𝑗 (11) 

 

Where 𝜀𝑡
+ = max⁡ሺ𝜀𝑡, 0ሻ; 𝜀𝑡

− = min⁡ሺ𝜀𝑡, 0ሻ. The constraints in the model are  𝑎0 > 0; 𝛼𝑖
+ ≥

0; 𝛼𝑖
− ≥ 0; 𝛽𝑗 ≥ 0. 

For all the models represented above, this thesis uses a combination of the ARMA and 

GARCH models allowing the capture of more properties of the time series. The ARMA(p`, q`)-

GARCH(p,q) representation is: 

 𝑌𝑡 = 𝜇 +෍𝜙𝑖𝑌𝑡−𝑖

𝑝`

𝑖=1

+෍𝜃𝑖𝜀𝑡−𝑗

𝑞`

𝑗=1

+ 𝜀𝑡 (12) 

 𝜎𝑡|𝑡−1
2 = 𝑎0 +෍𝑎𝑖

𝑞

𝑖=1

𝜀𝑡−𝑖
2 +෍𝛽𝑖𝜎𝑡−𝑖

2

𝑝

𝑖=1

 (13) 
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Where 𝑌𝑡 is the dependent variable which, in this case, are the index returns of the stock 

prices. 𝜇 is the mean of the time series, 𝜙 the autoregressive coefficient and 𝜃𝑖 is the moving 

average coefficient. The conditional volatility (standard deviation in the case of TGARCH) is 

modelled in accordance with the combination in analysis, this being the 2nd part of the model 

representation equal to equations (8), (9), (10) and (11) for ARMA-GARCH, ARMA-

EGARCH, ARMA-GJR-GARCH and ARMA-TGARCH respectively. 

The models used in this thesis have additional regressors in order to pursue the objective 

of the same, to include external regressors to help predict and model the volatility of some 

financial assets. The use of this package allows this implementation to be done. The approach 

simply involves adding σ 𝜉𝑗𝜈𝑗𝑡
𝑚
𝑗=1  to the volatility of the models. The ARMA part stays the 

same, for example in the standard GARCH this will be, 

 𝜎𝑡|𝑡−1
2 = 𝑎0 +෍𝜉𝑗𝜈𝑗𝑡

𝑚

𝑗=1

+෍𝑎𝑖

𝑞

𝑖=1

𝜀𝑡−𝑖
2 +෍𝛽𝑖𝜎𝑡−𝑖

2

𝑝

𝑖=1

 (14) 

 

Where m is the possible number of external regressors 𝜈𝑗. 

It is important to remember that the external regressors used are the logarithmic differences 

of trading volume lagged one time, and the close-to-open negative returns lagged one time. By 

using lag versions of the data, we can forecast without needing to depend on data from the day 

we want to forecast. The choice to use only the negative returns and not the positive ones is 

because bad news has more impact on volatility than good news does. The variables are in line 

with Wang et al. (2015), and despite using a different approach, the results for the Chinese stock 

markets are very interesting.  

To compare improvements brought about by the inclusion of these external regressors, the 

ARMA-GARCH (1,1) does not include any of the two external regressors. In some studies, like 

that of Wang et al. (2009), this model proves to have good results in-sample and out-of-sample, 

so it is a good starting point for making comparisons against the other different models with the 

extra variables.  

As the review of the literature suggests, there is no distribution that consistently 

outperforms the others, so we chose to have four different distributions (student-t, skew student-

t, ged, skew ged), described in more detail below. These error distributions of returns can 

include some of the characteristics present in financial markets. The normal distribution was 

not used in line with the results explained in the data section.  

The density function of a random variable with student-t distribution is: 
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 𝑓ሺ𝑥ሻ =
Γ ቀ

𝜈 + 1
2 ቁ

ඥ𝛽𝜈𝜋Γ ቀ
𝜈
2ቁ

ቆ1 +
ሺ𝑥 − 𝛼ሻ2

𝛽𝜈
ቇ

−ቀ
𝜈+1
2

ቁ

 (15) 

 

Where 𝛼 is the location, 𝛽 the scale and 𝜈 the shape parameters. Γ is the Gamma function 

(factorial function extended to complex numbers). Since this distribution is symmetric and 

unimodal, the location parameter is also the mode, mean and median. This distribution has zero 

skewness and the excess kurtosis is 
6

ሺ𝜈−4ሻ
 for 𝜈 > 4 and the variance is: 

 𝑉𝑎𝑟ሺ𝑥ሻ =
𝛽𝜈

ሺ𝜈 − 2ሻ
 (16) 

 

In Novales and Jorcano (2019), there is the representation of the density functionof a 

random variable with skew student-t distribution (SSTD): 

𝑓ሺ𝑥|𝜉, 𝜈ሻ =
2

𝜉 +
1
𝜉

𝑠 ቊ𝑔[ሺ𝑠𝑥 + 𝑚ሻ|𝜈]𝐼ሺ−∞,0ሻ ቀ𝑥 +
𝑚

𝑠
ቁ + 𝑔 ቈ

ሺ𝑠𝑥 + 𝑚ሻ

𝜉
|𝜈቉ 𝐼ሺ0,∞ሻሺ𝑥

+
𝑚

𝑠
ሻቋ 

(17) 

 

With 𝑔ሺ∙ |𝜈ሻ being the symmetric student-t density, 𝜉 is the skewness parameter, 𝜈 is the 

degrees of freedom.𝐼𝑡 = ൝
1𝑖𝑓𝑥𝑡 ≥ −

𝑚

𝑠

−1𝑖𝑓𝑥𝑡 < −
𝑚

𝑠

  and 𝑚and𝑠2  are, respectively the mean and the 

variance of the skewed student-t distribution that compute correspondingly: 

 𝑀𝑒𝑎𝑛ሺ𝑥ሻ = 𝑀1ሺ𝜉 − 𝜉−1ሻ (18) 

 𝑉𝑎𝑟ሺ𝑥ሻ = ሺ𝑀2 −𝑀1
2ሻሺ𝜉2 − 𝜉−2ሻ + 2𝑀1

2 −𝑀2 (19) 

 

Where 𝑀𝑟 = ׬2 𝑠𝑟
∞

0
𝑔ሺ𝑠ሻ𝑑𝑠 is the absolute moment generating function. 

The density function of a random variable with GED distribution is: 

 𝑓ሺ𝑥ሻ =
𝜅𝑒−0.5 ฬ

𝑥 − 𝛼
𝛽

ฬ
𝜅

21+𝜅
−1
𝛽Γሺ𝜅−1ሻ

 
(20) 
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The 𝛼 and 𝛽 represents the same as before, and has the same characteristics as a symmetric 

and unimodal distribution. 𝜅 is now the shape in ged distribution. The variance and kurtosis 

are: 

 𝑉𝑎𝑟ሺ𝑥ሻ = 𝛽22
2
𝜅
Γሺ3𝜅−1ሻ

Γሺ𝜅−1ሻ
 (21) 

 
𝐾𝑢ሺ𝑥ሻ =

Γሺ5𝜅−1ሻΓሺ𝜅−1ሻ

Γሺ3𝜅−1ሻΓሺ3𝜅−1ሻ
 

(22) 

 

The density function of a random variable with skewed GED (SGED) distribution is also 

present in Novales and Jorcano (2019): 

𝑓ሺ𝑥|𝜉, 𝜈ሻ =
2

𝜉 +
1
𝜉

𝑠 ቊ𝑔[𝜉ሺ𝑠𝑥 + 𝑚ሻ|𝐾]𝐼ሺ−∞,0ሻ ቀ𝑥 +
𝑚

𝑠
ቁ

+ 𝑔 ቈ
ሺ𝑠𝑥 + 𝑚ሻ

𝜉
|𝐾቉ 𝐼ሺ0,∞ሻሺ𝑥 +

𝑚

𝑠
ሻቋ 

(23) 

 

With 𝑔ሺ∙ |𝐾ሻ is the symmetric GED distribution, 𝜉 is the skewness parameter, K is the 

shape parameter and 𝐼𝑡 follows the same rules as in the skew student-t. the parameter of 

𝑚⁡and⁡𝑠2  is also estimated in the same way as above. 

For the forecast analysis, a length of twenty trading days for all models is predicted and 

compared with the volatility proxy (the squared returns). The forecast uses what the model 

predicts to be the daily volatility based on the information observed in the sample. 

The norm in forecasting is to model the behaviour of the returns and then predict it using 

the observation in All Sample. Here, we take a different approach; we use the behaviour of the 

last one hundred observations to predict volatility of the next twenty trading days. There are 

cases where the window size is not big enough and does not converge to fit the data. In this 

case, we increased the window size by fifty observations up to the limit of three hundred. This 

limit represents around one year and two months, and serves the purpose of using the most 

recent past.  

The forecast process works from a moving window perspective, where each time we 

forecast one day the whole process is re-estimated and takes into account the forecasted values 

to forecast the next one. For example, if we have 1, 2, 3 … 99, 100 values and want to forecast 

the 101st value, we use all the 1, 2, 3 … 99, 100 for the forecast, and for the 102nd value we use 

2, 3, 4 … 100, 101, and so on.  
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To analyse the results, the evaluation measures chosen are the AIC (Akaike Information 

Criterion), BIC (Bayesian Information Criterion) for in-sample, and MSE (mean squared error) 

for in-sample and out-of-sample. This last measure is then multiplied by one million for a better 

understanding.  In all these measures, the lower the value is, the better the model. In the case 

of the MSE, the closer to reality are the predictions.  

 𝐵𝐼𝐶 = 𝜅 lnሺ𝑛ሻ − 2ln⁡ሺ𝐿
^

ሻ (24) 

 
𝐴𝐼𝐶 = 2𝜅 − 2ln⁡ሺ𝐿

^

ሻ 
(25) 

 
𝑀𝑆𝐸 = ൭

1

𝑛
෍⬚

𝑛

𝑖=1

ሺ𝑌𝑖 − 𝑌
^

𝑖ሻ
2൱ ∗ 1000000 

(26) 

 

Where 𝜅 is the number of parameters estimated, 𝐿
^

 represents the maximised value of the 

likelihood function of the estimated model, 𝑛 is the sample size and ሺ𝑌𝑖 − 𝑌
^

𝑖ሻ is the difference 

between the estimated and the observed. 
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5. Results 

 

5.1 In-Sample 

This chapter focuses on presenting the results of the in-sample analysis attained by modelling 

daily volatility of the returns for the DAX 30, S&P 500, and the Nikkei 225 with the ARMA-

GARCH type models. We will present the best models for in-sample analysis by using the three 

measures explained in the methodology: AIC, BIC and MSE. 

 

Table 5.1.1 Best in-sample models with the respective error distribution 

 

  As we can see by looking at table 5.1.1, the best in-sample models are the ARMA (1,1)-

EGARCH (1,1) and ARMA (1,1)-TGARCH (1,1) with different error distribution. These 

models outperform the ARMA (1,1)-GJR-GARCH (1,1) and the ARMA (1,1)-GARCH (1,1) 

without external regressors, this last being the worst model in almost all time periods and 

indexes.   

However, there is a clear dominance of the ARMA (1,1)-EGARCH (1,1) model, which is 

similar to the conclusion reached by Alberg et al. (2008). In the 2nd, 3rd and 4th periods, this 

model is chosen in all indexes, in other words for both non-crisis periods, 2nd and 4th, this model 

produces better results than the rest. But in the last period the ARMA (1,1)-TGARCH (1,1) is 

the preferable model. 

The table also shows the dominance of the skew error distributions version against the 

standard one. None outperforms the others but there are more models using the skewed GED 

than the skewed student-t distribution. It is also important to mention that in crisis periods (1st, 

3rd and 4th) there is no distribution that stands out from the others, yet in non-crisis periods (2nd 

and 4th) there is evidence of the power of the skewed GED error distribution. 

It is a fact that in these tables, there is no period where the model and the distribution is the 

same for all the indexes. All periods, except for All Sample and the 3rd, have two indexes using 
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the same model and distribution, for example in the 1st period the S&P 500 and  the Nikkei 225 

uses the same ARMA (1,1)-EGARCH (1,1) with the student-t distribution to attain the best 

results.  

To conclude, in the discussion of the models and distributions in-sample, using all the data 

available in annexes A, B and C, we compared the results attained by the skewed version against 

the standard distribution and concluded that with in-sample, the skewed distribution for both 

student-t and GED produce better results around 67% of the time. The approach here was to 

directly compare student-t and ged against their skewed version and see which one produces 

the lower value measures (AIC, BIC and MSE) with the same model, just for the in-sample 

universe. The superior results achieved by the skewed version of the distributions is also 

demonstrated in Verhoeven and McAleer (2004). 

As can be seen, all the models above have external regressors; we will now present the 

coefficient value for the lagged close-to-open returns with regard to the model chosen above.  

 

Table 5.1.2 Coefficients for lagged close-to-open negative returns of the best models in-

sample 

 

Here is an example to explain the interpretation of this table: the in All Sample for the DAX 

30, the coefficient of lagged close-to-open negative returns (vxreg1) in the ARMA (1,1)-

TGARCH (1-1) with the skewed student-t is 0.000003, and is not statistically significant at 5% 

level. 

The results, in accordance with the best models, show that in most cases the lagged close-

to-open negative returns are not statistically significant in explain the conditional volatility. The 

table shows that for crisis periods, it is only significant in the 1st period in the Nikkei 225, in 

the 3rd period  it is important for the DAX 30 and S&P 500, and in the last period it is not 

significant for any of the indexes. In most of the recent non-crisis period (4th), this regressor 

can help to model volatility for the DAX 30 and the Nikkei 225.  

This indicates that in the periods where this variable is statistically significant (for more 

details see annexes A, B and C) and has a negative coefficient, it produces the best results for 

Note: * statistically significant at 5% level 
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the ARMA (1,1)-EGARCH (1,1) compared to the others. It is important to note that this 

variable is only significant for the ARMA (1,1)-EGARCH (1,1) model.  

The negative value of this coefficient means that the lagged close-to-open negative returns 

increase the conditional volatility of the indexes returns. The positive impact implies that the 

conditional volatility would be reduced by having close-to-open negative returns. A similar 

interpretation can be found in Wang et al. (2015), despite the fact that an ARMA-GARCH 

model was not used, the coefficient for the close-to-open negative returns is also negative. 

The positive coefficient it is not in line with the economic theory since bad news produces 

a higher shock, which means more volatility and not less.  But in this table, we can see that the 

models with the best results never have a positive coefficient for this variable that is statistically 

significant at a 5% significance level. 

After presenting and having discussed the inclusion of the close-to-open negative returns 

in the model, it is now time to focus our attention on the log differences of the trading volume. 

 

Table 5.1.3 Coefficients for lagged log differences of trading volume of the best models 

in-sample 

 

The interpretation of this table is the same as that of the table above. The coefficients 

represented here are the ones estimated in the best models for each period and index. 

For this regressor, the conclusions are different from the external regressor outlined before. 

For all indexes and periods, the lagged log difference of trading volume is statistically 

significant at a 5% level. So, the conclusion points in favor of Sequential Information Arrival 

Hypothesis (SIAH) that lagged differences of trading volume are important to model 

conditional volatility similar to Kambouroudis and McMillan (2015). 

The positive coefficient estimated for this regressor means that the increase in trading 

volume in one day will increase the conditional volatility for that index the next day, and if the 

trading volume decreases this will decrease its volatility. With this in mind, supposing that a 

stock is highly traded and has almost the same trading volume every day, the variation is low 

between days, so there is no extra value to add to conditional volatility for this stock. But if 

Note: * statistically significant at 5% level 



 

24 

there is an increase in the trading volume for this stock, this would mean an increase in the 

conditional volatility of the same.  

There is an interesting fact that is not visible here, but that can be seen in more detail in the 

Annexes (A, B, C). This fact is that the estimation for the impact of this variable in explaining 

volatility in the ARMA (1,1)-EGARCH (1,1) increases as time passes, making it more 

important over the years. This can reflect the increase in the high frequency trading (trading 

that uses algorithms to trade high volumes very quickly).  

 

5.2 Out-of-sample 

Now we will present the models that produce the best results for the twenty-day ahead forecast 

and compare it to the proxy for the volatility chosen, the squared returns. It is also important to 

remember that this comparison is only based on the MSE value being the lowest value the 

preferred one. 

 

Table 5.2.1 Best out-of-sample models with the respective error distribution 

 

For the out-of-sample, we do not see just ARMA (1,1)-EGARCH (1,1) and ARMA (1,1)-

TGARCH (1,1) in the table. The other two models, (GJR-GARCH and GARCH are present 

without external regressors). ARMA (1,1)-TGARCH (1,1) is the one that is preferred more 

often, contrary to the predominance of the ARMA (1,1)-EGARCH (1,1) in-sample. This also 

indicates that for forecast modelling, the conditional standard deviation produces better results 

just as in Lim and Sek (2013). 

However, the best model in the 2nd period for all the indexes is still the ARMA (1,1)-

EGARCH (1,1). It is also important to note that the ARMA (1,1)-GARCH (1,1) without 

external regressors does no perform badly in forecast volatility (for details explore Annexes A, 

B and C). 

Note: 1, 2, 4 represent 150, 200 and 300 observations used in window size 
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Looking at the distributions in the table, there is not one that clearly outperforms the others, 

and we cannot conclude that the skewed version is better than the standard version. For the 3rd 

period (crisis), the GED distribution is the best for all the three indexes presented in the table 

yet despite having different models, the distribution is the same. 

From a direct comparison of the two tables 5.1.1 and 5.2.1, we can see that there are only 

two cases where the models with the respective distributions are the same in the 2nd period for 

the Nikkei 225 using an ARMA (1,1)-EGARCH (1,1) with the GED distribution, and the DAX 

30 with the ARMA (1,1)-TGARCH (1,1) also using a GED error distribution. 

We can also see that for All Sample, the DAX 30 has the same model in and out-of-sample 

but different distributions, the same happens in the 2nd period for the DAX 30 and S&P 500, 

the 3rd period for S&P 500, the 4th period for the Nikkei 225 and the 5th period for S&P 500. 

This means that the distribution with the best results in-sample does not represent the best 

results out-of-sample using the same model. 

In the out-of-sample analysis, there is another conclusion that indicates the importance of 

the distribution. For the DAX 30 in the All Sample, the best model for forecasting is the ARMA 

(1,1)- TGARCH (1,1) with the GED, but the same model using a skewed student-t produces 

the worst results in this time period analysis. The same happens in the 3rd period for S&P 500, 

with the ARMA (1,1)-EGARCH (1,1) producing the best results using a GED. However, with 

the skewed student-t, the forecast is the worst for the period. In the Nikkei, this occurs in the 

2nd period where the GED has the best distribution and the skewed version of the GED produces 

the worst result. In the 4th period, the student-t is the best to use and the worst is the GED, and 

in the 5th period, the GED outperforms the skewed student-t. All these differences were 

observed in the ARMA (1,1) -EGARCH (1,1) model. 

To analyse whether the skewed version produces better results, we compared the results of 

the skewed version against the standard one (GED vs skewed GED and student-t against 

skewed student-t) in the same model. It can be concluded that out-of-sample, the skewed 

version performs better only 45% of the time. Comparing within the out-of-sample for crisis 

periods only, the skewed distribution is better 45% of the time and for non-crisis periods, the 

value drops to 39% (for more detail about results consult the annexes). This shows that the 

standard version of the GED and student-t are better for modelling the errors of the returns and 

produce better results in forecasting conditional volatility of the indexes similar to Kumar and 

Basavaraj (2016). 
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After analyzing the models and distributions, we now present the coefficients for the 

external variables. The first one that will be presented is the lagged close-to-open negative 

returns. 

Table 5.2.2 Coefficients for lagged close-to-open negative returns of the best models out-

of-sample 

 

The following is an example to recall the interpretation of the table: in the 3rd period, the 

model ARMA (1,1)-EGARCH (1,1) with the GED distribution estimated a coefficient for the 

lagged close-to-open negative returns of approximately -60.04. 

The table shows the same conclusion as the in-sample analyses, the lagged close-to-open 

negative returns are not statistically significant in general. However, in the 3rd period this 

variable is significant for S&P 500 and in the 4th period for the Nikkei, similar to the in-sample 

results. It is as yet not observable that when this variable is statistically significant, the model 

that accounts for this impact produces the best results. 

The negative coefficient of this variable means that having close-to-open negative returns 

would increase the conditional volatility. There is, however, an unexpected behaviour in the 5th 

period, where the impact is positive, meaning that having a close-to-open negative return on 

the day before this would lower the conditional volatility for the next day. 

This unexpected behaviour only produces the best results in this specific situation (Nikkei 

225, 5th Period). In general, when this coefficient is positive, the forecasted values produce the 

worst results (for detail see annexes A, B and C) 

After discussing the results for the lagged close-to-open negative returns, we will present 

the results for the lagged log differences of trading volume. 

 

Table 5.2.3 Coefficients for lagged log differences of trading volume of the best models       

out-of-sample 

Note: * statistically significant at 5% level 

Note: * statistically significant at 5% level 
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There is not much to be added to this variable. The results are in line with the in-sample 

analyses. For all the models here, these regressors are statistically significant with the exception 

of the Dax 30 in the 1st period because the ARMA (1,1)-GARCH (1,1) model does not consider 

this an external regressor. 

The impact is positive and increases over the years, meaning that an increase in the trading 

volume of the day before will increase the volatility on the next day. 

Since the only model that does not account for both external regressors is the ARMA (1,1)-

GARCH (1,1) which is the only choice for the 1st period of DAX 30, we can point to the 

importance of including this regressor in forecasting conditional volatility.  
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6. Conclusion  

Modelling volatility is not a relatively new topic but the importance of constructing a 

methodology that can track and forecast this behaviour in stock markets is a field that everyone 

wants to contribute towards. Improving our ability to predict how the markets behave will not 

only help investors but also help the policymakers maximise the effects of measures taken 

regarding the economy.  

The ARCH model gives rise to a new family of models, with the GARCH now being the 

most common model used in modelling conditional volatility. The ARMA-GARCH mixture of 

models is becoming popular; the advantage of this is that it captures both the properties of the 

returns (ARMA part) and volatility (GARCH part). Here we use this mixture to contribute to 

the discussion on this topic.  

We chose different indexes in order to observe the differences of diverse market locations. 

Despite the new technology and the literature such as Martens (2001) who concluded that the 

use of highly frequency data improves the daily forecast, we use the daily returns due to the 

still limited access. The indexes are the DAX 30, S&P 500 and the Nikkei 225. 

The objective was to include external regressors in order to improve the results for model 

volatility. To achieve this we analysed the coefficients and the significance of each external 

regressor and also compared the results arrived at through ARMA (1,1)-EGARCH (1,1), -

TGARCH (1,1), -GJRGARCH (1,1) with the results of ARMA (1,1)-GARCH (1,1) without 

external results.  Since there was no consensual distribution to use, we estimated volatility using 

student-t, GED and the skew versions of the same. The reason for including external regressors 

for modelling volatility was to see whether they are important and how they behave in both 

crisis and non-crisis periods. In line with the study of Wang et al. (2015) we chose close-to-

open negative returns and log differences of trading volume to add to the usual regressors of 

the GARCH part models.  

To evaluate and compare the forecast, the sample was divided into in-sample and out-of-

sample. Within the in-sample, the periods are divided into crisis and non-crisis. The out-sample 

is the last twenty observations of the full sample. To compare this model, the measures chosen 

are the AIC, BIC and MSE. 

Regarding the in-sample analysis, the results for different indexes are almost the same, and 

reveal that the better results are attained by the ARMA (1,1)-EGARCH (1,1) and by the ARMA 

(1,1)-TGARCH (1,1) with the the first being selected more often than the last. The ARMA 

(1,1)-GARCH (1,1) is the model that produces the worst in-sample results. 
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For the out-of-sample, the conclusion is similar. The ARMA (1,1)-EGARCH (1,1) and 

ARMA (1,1)-TGARCH (1,1) are the best models, with the ARMA (1,1)-TGARCH (1,1) being 

the one that produces the best results more often.  

Looking at the distributions, there is no clear distribution in this study that outperforms the 

others. Some patterns can be seen in S&P 500 in-sample with the skew GED distribution, but 

the same distribution is not always the best for the rest of the indexes. 

Comparing the skew version of the distribution against their standard representation 

(skewed GED vs GED, and the skewed student-t against student-t in the same model) it is 

possible to conclude that the skew version is better in-sample in both crisis and non-crisis 

periods. For out-of-sample the same does not happen, the standard version is by far the most 

preferred being even better in non-crisis periods. 

The importance of choosing the correct distribution for modelling volatility is also 

confirmed in this study where the same models with just a different distribution can produce 

the worst results especially for out-of-sample analysis. 

There are cases where a model with the same distribution performs better in and out-of-

sample. This happens in the Nikkei 225 for the 2nd period by ARMA (1,1)-EGARCH (1,1) with 

the GED distribution, and for ARMA (1,1)-TGARCH (1,1) also with the GED distribution in 

the 5th period for the DAX 30, but this is not a common result in this study. 

Finally, and to conclude with regard to the variables, despite the close-to-open negative 

returns lagged one time, they are not always statistically significant at a 5% significance level 

and can only be captured by the ARMA (1,1)-EGARCH (1,1) model. When this regressor is 

significant, it produces the best results for in-sample analyses, and in some cases for out-of-

sample. We can say that it is an important regressor for model volatility in-sample but the 

impact on out-of-sample is not the best since there are only three cases where the models with 

this variable outperform the others. 

 For the log differences of daily trading volume lagged one time, it is significant in all 

models, in all indexes and time periods. So, the better results attained by the models discussed 

above can be explained by the inclusion of this variable in comparison with the ARMA (1,1)-

GARCH (1,1).  The coefficient for this variable shows an increase in the behaviour of the 

impact to model volatility over the years (in the ARMA (1,1)-EGARCH (1,1) model) that can 

be explained by the increasing use of high frequency trading in financial markets.  

In future research, it would be interesting to see whether the same impacts occur with high 

frequency data, and whether the use of this type of data improves the forecast. Additionally, it 

would be interesting to include other variables like the volume of searches in Google and the 
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registration of new investors in platforms like the Robin-hood and eToro since this can increase 

the number of shares traded.  
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Annex A – DAX 30  

 

All Sample 

 

 

 

1st Period 

 

 

 

Note 1: contrary to the text for simplification * means not significant at 5% level 

Note 2: 1, 2,3, 4 represent 150, 200, 250 and 300 observations used in window size 
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2nd Period 

 

 

 

3rd Period 

 

Note 1: contrary to the text for simplification * means not significant at 5% level 

Note 2: 1, 2,3, 4 represent 150, 200, 250 and 300 observations used in window size 
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4th Period 

 

 

 

5th Period 

 

 

 

 

Note 1: contrary to the text for simplification * means not significant at 5% level 

Note 2: 1, 2,3, 4 represent 150, 200, 250 and 300 observations used in window size 
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Annex B – S&P 500 

 

All Sample 

 

 

 

1st Period 

 
Note 1: contrary to the text for simplification * means not significant at 5% level 

Note 2: 1, 2,3, 4 represent 150, 200, 250 and 300 observations used in window size 
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2nd Period 

 

 

 

3rd Period 

 

 

 Note 1: contrary to the text for simplification * means not significant at 5% level 

Note 2: 1, 2,3, 4 represent 150, 200, 250 and 300 observations used in window size 

 



 

43 

4th Period 

 

 

 

5th Period 

 

 

 
Note 1: contrary to the text for simplification * means not significant at 5% level 

Note 2: 1, 2,3, 4 represent 150, 200, 250 and 300 observations used in window size 
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Annex C – Nikkei 225 

 

All Sample 

 

 

 

1st Period 

 

 

Note 1: contrary to the text for simplification * means not significant at 5% level 
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2nd Period 

 

 

 

3rd Period 

 

 

Note 1: contrary to the text for simplification * means not significant at 5% level 

Note 2: 1, 2,3, 4 represent 150, 200, 250 and 300 observations used in window size 
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4th Period 

 

 

 

5th Period 

 

 

Note 1: contrary to the text for simplification * means not significant at 5% level 

Note 2: 1, 2,3, 4 represent 150, 200, 250 and 300 observations used in window size 

 


