IScCe

INSTITUTO
UNIVERSITARIO
DE LISBOA

Digital platform for psychological assessment supported by sensors and efficiency

algorithms

Francisco Mateus Valente de Matos Silva

Master's in Computer Engineering

Supervisor:

PhD. Pedro Joaquim Amaro Sebastido, Professor,

ISCTE-IUL

November, 2020

Resumo

A tecnologia esta a evoluir, criando um impacto nas nossas vidas e na telessaude. A telessatide
engloba a prestacdo de servigos e informagdes de satide usando uma abordagem tecnoldgica.
Varios estudos documentam os beneficios de métodos baseados na web para fornecer ajuda
médica. No entanto, poucos estudos de saude e ajuda psicologica combinam esse método com
sensores vestiveis. Este estudo tem como objetivo criar uma plataforma online para utilizadores
receberem ajuda e informagdes sobre autocuidado, usando sensores vestiveis. Além disso,
investigadores a desenvolver um projeto semelhante t€ém uma base s6lida como referéncia. Esta
dissertacdo fornece descri¢des e analises da arquitetura do software e hardware. Exibe e explica
um algoritmo eficiente e dindmico de frequéncia cardiaca que calcula continuamente os valores
desejados dos sensores. Apresenta diagramas que ilustram o processo de implementacao online
do site e os meios que o servidor da web utiliza para lidar com os dados dos sensores. O objetivo
¢ criar um projeto funcional que usa hardware compativel com Arduino. Os sensores de
frequéncia cardiaca enviam os seus valores para uma plataforma online. Uma placa de
microcontrolador usa um algoritmo para calcular os valores de frequéncia cardiaca do sensor e
envia-os para um servidor web. A plataforma visualiza os dados do sensor, resume-os num
relatério e cria alertas para o utilizador. Os resultados mostraram uma estrutura solida do
projeto e da comunicacao do hardware e software. O servidor da web exibe os dados do sensor

de frequéncia cardiaca na plataforma online, apresentando observagdes e avaliagoes.

Palavras-chave: Telessatde, Saude baseada na Web, Sensores Vestiveis, Arduino,

Placa de Microcontrolador, Frequéncia Cardiaca BPM.

Abstract

Technology is evolving, creating an impact on our everyday lives and Telehealth. Telehealth
encapsulates the provision of healthcare services and information via a technological approach.
Several studies document the benefits of using web-based methods to provide healthcare help.
Nonetheless, few health and psychological help studies combine this method with wearable
sensors. This study aims to create an online platform for users to receive self-care help and
information using wearable sensors. In addition, researchers developing a similar project obtain
a solid foundation as a reference. This dissertation provides descriptions and analyses of the
software and hardware architecture. Exhibits and explains a heart rate dynamic and efficient
algorithm that continuously calculates the desired sensors’ values. Presents diagrams that
illustrate the website deployment process and the web server means of handling the sensors’
data. The goal is to create a working project using Arduino compatible hardware. Heart rate
sensors send their data values to an online platform. A microcontroller board uses an algorithm
to calculate the sensor heart rate values and outputs it to a web server. The platform visualizes
the sensor’s data, summarizes it in a report, and creates alerts for the user. Results showed a
solid project structure and communication from the hardware and software. The web server
displays the conveyed heart rate sensor’s data on the online platform, presenting observations

and evaluations.

Keywords: Telehealth, Web-Based Healthcare, Wearable Sensors, Arduino,
Microcontroller Board, Heart Rate BPM.

Acknowledgments

First, [want to thank my mother, Maria da Concei¢do Mateus, and my father, Francisco
José Silva. Thank you for all the support and help you gave me, both for my education and
personal life. Because of you, I have all the opportunities and motivation to follow my goals

and achieve them.

I also want to thank my brother, Nuno Mateus Silva. For always answering my
questions and doubts about everything. You always provide advice and direction towards my

goals.

I would also like to thank my professor and supervisor, Ph.D. Pedro Sebastido. Thank

you for all the orientation and encouragement given during the dissertation development.

To all my close friends, Rui Matos, Jos¢ Simdes, Francisco Santos, Maria Coelho,
Miguel Almeida, and Mariana Carvalho. Thank you for putting up with me and always keeping
me company. To Jorge Santos (Mankey), I hope this made you proud.

Finally, I want to thank ISCTE-IUL for providing me this education and all the support
and help I needed.

vii

Contents

RESUIMO. ... i e e e et e e e e e iii
ADSEFACE. .. v
ACKNOWIEAGIMENTS.\t e vii
LSt Of FRGUI@S.......oooiiiie e e e e et e e e e e e e e eaeeeas xiii
LASt Of TaDIesooiiiiie e et ettt e e e e e e e e e e XVvii
LISt Of ACTOIMYINISooooiiiiiiiiiiiiiiie ettt e e e ettt e e e et e e e e sebeee e e esbaaeeeeeeees XiX
Chapter 1 : INtroduction.............ooooiiiiiiiiiiiiii e e e e e e e e e e e 1
1.1: Motivation and SCOPE..........cvvveiiiiiiiiieiiieee e e e e e et e e e e e e e 1
1.2: Relevance and ObjJeCtives...............ouiiiiiiiiiiiiiiiiiiiiieeeeeeeeiee e 1
1.3: ContribDUIONS ... 2
1.4: Thesis Structure OVerVIeWcooiiiiiiiiiiiiiiieiie e 3
Chapter 2 : State of the ATtooeiiiiiiie e e e e e e 5
2.1: Technology Impact on the Healthcare Industry.................ccccoviiiiiiieiennniiiiiiieee. 5
2.2: Telehealth............ooooiii e 6
2.3: Hardware Used and Alternatives...............cccccooiiiiiiiiiiiiiiiiiiecee e 9
2300 APAUINO. ...ttt e e e e et e e e e e e e 9
2.3.2: Heart Rate SEMSOTS.ccoooiiiiiiiiiiiii e 10
2.3.3: Microcontroller Board and I/O Extension Shield.. 12
2.4: Software Used and AIernatives...............cccceevreiiiiiiiiiiiiiiiee e 14
241 Arduino IDE ... e 14
2.4.2: Men Stack TYPeE......oooiiiiiiiiiee et e e e e e e e a e e 15
2.4.3: DAtabDaseoooniiiiiiiiiii e e e 17
2.4.4: Domain NAICoooiiiiiiiiiiiiiiiiiieee ettt e e e e e e e reeeeeeeeeas 18
204.5: HETOKUooiiiiiiiiiii et 18
2.5: Related WOrkK ... 19

Chapter 3 : Hardware Architecture................ccooiiiiiiiiiiiiieeeeeeeee e 23

3.1: Hardware Architecturecooiiiiiiiiiiiii e 23
3.2: Heart Rate SEeNSOTScoooviiiiiiiiiiiiiiiiii et e 24
3.2.1: PPG Heart Rate Techniquecooooiiiiiiiiiiiiiiiiiiieeeeeeeeeee e 24
3.2.2: Gravity Heart Rate Sensorcoooiiiiiiiiiiiiieeeeeeeees 26
3.2.3: VMA340 Heart Rate SenSOrccoooiuiiiiiiiiiiiiiiiiicceeeee e 27
3.3: Arduino Compatible Hardwareccccocoiiiiiiiiiiiiiieceeeee e 28
3.3.1: DFRduino UNO R3 Microcontroller Board..................cccccccciiniiiiinnnins 28
3.3.2: 1/O Expansion Shieldcccoiiiiiiiiiiee e 30
3.3.3: Connecting to the Heart Rate Sensors.................cooeviiiiiiiiiiiiiieeeiiiiieeeee, 30
Chapter 4 : SOTEWATEoooiiiiiiiiiieee e e e e e e e e e e e bbb aaaeeeeeeeeenanes 33
4.1: Software ArchiteCtureccccoiiiiiiiiiiiiiii e 33
4.2: Arduino IDE ... e 34
4.2.1: Serial Port (COM PoOTt)oooiiiiiiiiiiiiiiiiiee et e e 34
4.2.2: Heart Rate BPM Algorithmcccccooiiiiiiiiiieee e 35
4.3: WEDSIEE SCIVETooiiiiiiiiiiiiiiiiiie et e e e e e e e e 35
4.3.1: Web Server Connection to the Sensorccccccoooiiiiiiiiiiiiiie, 36
4.3.2: Visualizing the Sensor’s Dataccccciiiiiiiiiiee e 38
4.3.3: Programming Languages, Essential Classes and Files 40
4.4: DAtADASE.......coooiiiiiiiiiiiii e 42
4i4. 1 IMIOMBOOSE. ...ttt ettt e ettt e e ettt e e et e e e e e e e e e e e 42
4.4.2: MONZODB ALIASoooiiiiiiiiii e 43
4.5: Website Deployment...............cooooiiiiiiiiiiiiiiiiieeieieeee e e e e e 44
4.5.1: Online Server Hosting “Heroku”cccoooiiiiiiiiiiiiiiiiiieeeeeee, 44
4.5.2: DNS Connection to the Remote Servercccccccciiiiiiiiiiiniiiieienieeees 46
Chapter 5 : ReSUIES...........ooiiiiiiii e e e e e e e e 49
S.1 TESES ettt e e e e e e e 49

5.1.1: CoMMECtION TOSES ..coueiiiniiiieiii ettt ettt e et e eaesetateseaeseanseenraes 49

5.1.2: Sensors Data Transmission Testsccoccoocciiiiiiiiii e 51
5.1.3: Heart Rate Sensors Testsccccoiiiiiiiiiiiiiiiiiiiiceeeceeeee e 52
5.1.4: Local and Remote Server Testscccccccoiiiiiiiiiniiiiiiiiceieeeeeeeee s 53

5.2: ReSults ANALYSiSooooiiiiiiiiiiiiiiiiiiiiiiii s 55
Chapter 6 : Conclusion and Future Workccccooiiiiiii e, 57
6.1: Main ConCluSION..............oiiiiiiiiiiii e e e e e e 57
6.2: Future WOorK oo 59
APPEIAIX ..o e et e e e e e e e e bttt e e e e e e e e bbbt raaaeeeens 61
BibDLHOGIapRYoooiiiiiii e e e e e e e aeaaae s 67

Xi

List of Figures

Figure 1.1: Hardware and Software Overall Architecturecocceevviieiniiiinieeniicciiene 2
Figure 2.1: Telemedicine and Telehealth Hierarchy...........c.ccoooiiiiiiiiiiiiiiniiieeecceeee 6
Figure 2.2: PPG and ECG Raw Data CompariSOnccueeeiiiiiieiinniiiiee e 8
Figure 2.3: Arduino Microcontroller Boards (Left to Right: Lilypad, Arduino Mega, Arduino
Lo (LY 5111) TSP ST PP PRR 9
Figure 2.4: Raspberry Pi Single-Board Computer (Left) and Logo (Right)ccecuveennee. 10
Figure 2.5: Gravity ECG Sensor (Left) and Arduino PPG Pulse Sensor (Right)................... 11
Figure 2.6: MEN Stack TYPe....coouueeiiiiiiiiiie ettt 15
Figure 2.7: Smartwatches Fitbit Versa 2 (Left), Apple Watch (Center) and Garmin Forerunner
(RIGIL) et sttt et e 21
Figure 2.8: VitalPatch BIOSENSOT ...cccoiuiiiiiiiiiiiiie e 21
Figure 3.1: Hardware ATChIt@CtUIEccooiiiiiiiiiiiiiiie e 23
Figure 3.2: Hardware COMPONENLSceeiiiiiiiiiiiiiiiee ettt e st e e e e e 24
Figure 3.3: Photoplethysmography (PPG) Techniquecccooeviiiiiiiiiiieieeeeeiiieeeeeeen 25
Figure 3.4: PPG Data EXample.........ccoooiiiiiiiiiiii et e e e e 25
Figure 3.5: Gravity Heart Rate SenSOoT...........uuiiiiiiiiiiiiiiiiiiiiiiee e 26
Figure 3.6: Gravity Sensor Archit@Cturecoovveiiriiiiniiiiiniieciieeeeeeeeeee e 26
Figure 3.7: VMA340 Heart Rate SeNSOTc.c.utiiiiiiiiiiiiniiie it 27
Figure 3.8: VMA340 Sensor ArChiteCtUIEeiiuieiiiiieiriiieeiiiee ettt 28
Figure 3.9: DFRdAuino UNO (V3.0) R3 ..ooiiiiiiiiee et 29
Figure 3.10: Gravity I/O Expansion Shield V7.1 (Left) and Inserted on the DFRduino Board
(RIGIL) ettt et sttt 30
Figure 3.11: Gravity Sensor CONNECIONc..uuieruiieriiiieeriiieeeriieeeriieeesiieeeitee e e e sbeeesieeas 31
Figure 3.12: Gravity Sensor Connection SChematic...........ccceovvveiriiiiniiiieniieeeieeeeieee e 31
Figure 3.13: VMA340 Sensor CONNECTIONciiiieieeeeiiiiiiieeeeeeeeeeeeiiiieeeeeeeeeeeeeienrnaeeeeaaeens 32
Figure 3.14: VMA340 Sensor Connection Schematic...........ccoocueeeviiiiniieinnieeiniieeniieenee. 32
Figure 4.1: Software ArchiteCture........eviviiiiiiiiiiiieceiceeieeeee e 33
Figure 4.2: Serial Port Recognition and Arduino IDE Interfaceccccccevvveviniiiiniiennnnen. 35

Figure 4.3: Flowchart of the Web Server Handling the Sensor Datac..cccceevvveiniieennen. 36

Figure 4.4: Serialport Object Creation and EVentsccccceeeviiiiniiiiniiiieniieeeiecenieee e, 37
Figure 4.5: Sensor’s Data ViSualization............coooueiiiiiiiiiiieiiiiiiiiiceeiceeeee e 38
Figure 4.6: CHent-Side SOCKEL........cccuiiiiiiiiiiiie e 39
Figure 4.7: Sensor’s Heart Rate Data Visualizationccocceeeiviiiiniiiieniiceiiieeneeee, 40
Figure 4.8: EJS EXaMPIEcoooiiiiiiiiiiiie e 41
Figure 4.9: “USer” SCheMA.......cccuiiiiiiieiiiee ettt 42
Figure 4.10: Mongo0Se CONNECLIONcceruuiiiriiieeriieeiiieeeeiiee ettt et e stteeeite et e e esaeeas 43
Figure 4.11: Collection Containing a Document for a “Francisco™ Usercccceeevuveennen. 44
Figure 4.12: Flowchart of the Node.js Web Server Deploymentccceeeeuviieeeniiiieeeenne. 45
Figure 4.13: Heroku CLI Commands Used for the Deployment.............cccccecviieeernniierennne. 46
Figure 4.14: Project Domain Names and their DNS Target...........ccccceeviiieniieiiniieeniieenen. 47
Figure 4.15: DATABASEURL Config Varccccceoiiiiiiiiiiiiiieeieeceeeee e 47
Figure 5.1: Microcontroller Board Recognition Test............cooiiiiiiiiiiiiiiiiiiiiiiieiicecee 50
Figure 5.2: Sketch Upload Testcoouuiiiiiiiiiiiiieee e 50
Figure 5.3: VMA340 (Left) and Gravity (Right) LED Lights Test.........cccovviiiiiiiiieennee. 50
Figure 5.4: Sensor's Raw Data Serial Plotter (Left) and Serial Monitor (Right) Tests........... 51
Figure 5.5: Sensor’s Calculated Data on the Serial Plotter (Left) and Serial Monitor (Right)
S ettt ettt e e e e e ettt e e e e e e ettt e et eeee s 51
Figure 5.6: Heart Rate BPM Person A TeSt......ooiiiiiiiiiiiiiiiiiiieeeeeeeeiee e 52
Figure 5.7: Heart Rate BPM Person B Testcoccviiiiiiiiiiiiiiiiiiiceeceeccc e 52
Figure 5.8: Heart Rate BPM Person C Testcoccueiiiiiiiiiiiiiiiiiciiicciiceeeeeeeeeseee s 53
Figure 5.9: Sensor’s Data Transmission to Web Server Test..........ccoovvvviiiviiiiiieeniiiiee e, 53
Figure 5.10: Sensor’s Data Visualization Test on the Local Servercccccovvvveeviiinennnnn. 54

Figure 5.11: User Register Form (Left) and its Designated MongoDB Document (Right).... 54

Figure 5.12: Psytechy.com and Psytechy.pt Domain Name Validation Testscc....... 55
Figure 5.13: Remote Server “thesis test” Login Test........cccceeeireiiiiieiiiiiiieeiieee e 55
Figure A.1: Setup FUNCtion ..o e, 61
Figure A.2: Example of Raw Data froma PPG Sensor ..., 62
Figure A.3: Project sensor's raw data gathered from Arduino IDE ... 63
Figure A.4: Flowchart of the Loop Function Algorithm 63

Xiv

Figure A.5: Heart Rate Sensor's BPM Algorithm Code

XV

List of Tables

Table 2.1: Telemedicine Tools and Services for Clinicians and Patientsccoecveennenn. 7
Table 2.2: ECG Advantages and Disadvantagesccccveeeeriiiieeeininiieeenrinieeeeeieeeeesnnneeees 8
Table 2.3: Raspberry Pi Advantages and Disadvantages...........ccceeeeevviiieeeriveeeeesinieee e 10
Table 2.4: Gravity and VMA340 Sensors SpecifiCationsceeeeeuvervirieeeeeeessiiiiiieeeeeennn. 11
Table 2.5: Microcontroller Board Alternatives and their Specificationscccccvvvveeeen.... 13
Table 2.6: I/0 Expansion Shield Alternatives and their Specifications...........cccccueeevvveennnnen. 14
Table 2.7: MongoDB NoSQL Database and SQL Database Main Differences..................... 17

Xvii

List of Acronyms

AWS

BPM

BPS

BT

CAD

CHD

CLI

CM

CSS

CVD

DaaS

DB

DNR

DNS

ECG

EJS

EKG

GIT

GND

GNSS

GPIO

HR

Amazon Web Services
Beats Per Minute

Bits Per Second
Bluetooth

Coronary Artery Disease
Coronary Heart Disease
Command Line Interface
Centimeters

Cascading Style Sheets
Cardiovascular Disease(s)
Database as a Service
Database

Domain Name Registrar
Domain Name System
Electrocardiography
Embedded JavaScript
Electrocardiography
GitHub

Ground

Global Navigation Satellite System
General Purpose Input / Output

Heart Rate

XiX

HRV Heart Rate Variability

HTML Hypertext Markup Language

1/0 Input / Output

12C Inter-Integrated Circuit

JEEN Infrastructure as a Service

IAPMEI Instituto de Apoio As Pequenas e Médias Empresas e ao Investimento
ICAST International Conference on Applied Science and Technology
ICSP In Circuit Serial Programming

ICU Intensive Care Unit

IDE Integrated Development Environment

IP Internet Protocol

IT Information Technology

JS JavaScript

JSON JavaScript Object Notation

LED Light-Emitting Diode

MDPI Multidisciplinary Digital Publishing Institute
MM Millimeters

NPM Node Package Manager

ODM Object Data Modeling

ORM Object-Relational Mapping

(0N} Operating System

PaaS Platform as a Service

PC Personal Computer

PCB Printed Circuit Board

XX

PHC
PHP
PPG
PWM
RAM
SaaS
SD (card)
SPI1
SQL
TLD
URL
USB
VCC
WASET

Wi-Fi

Primary Health Care
Hypertext Preprocessor
Photoplethysmography
Pulse Width Modulation
Random Access Memory
Software as a Service
Secure Digital (card)
Serial Peripheral Interface
Structured Query Language
Top Level Domain
Uniform Resource Locator
Universal Serial Bus

Voltage Common Collector

World Academy of Science Engineering and Technology

Wireless Fidelity

XXi

Chapter 1 : Introduction

1.1: Motivation and Scope
Technology is growing fast, influencing the Telehealth service industry this dissertation covers.

This new healthcare concept can provide monitoring and self-care help to users worldwide.

Many studies analyze and create prototype projects using technological approaches to
Telehealth research. Results show a positive impact of these services in the healthcare industry.
Although they provide many benefits and advantages, they do not replace the more traditional

methods. Instead, both of them can help and support each other.

Research shows the benefits and advantages of Telehealth. However, there is a small
gap in developing projects using wearable sensors, such as heart rate sensors, in a web-based
context. Few studies on Telehealth combine wearable sensors' applicability to web-based

methods' usefulness. The development of this dissertation's project aims to fill that gap.

1.2: Relevance and Objectives
The proposed research is essential and relevant to the future development of similar projects.
Findings and results gathered through the hardware and software implementations act as guides

and examples to help other works take conclusions from it.

Apart from helping similar projects, this dissertation's primary goal is to deliver a
platform for users to receive health and psychological help using heart rate and heart rate

variability data.

This dissertation's project architecture comprises two major phases, the hardware phase,
and the software phase, demonstrated in Figure 1.1. The hardware phase establishes the
microcontroller board and sensors' connection and communication. The software phase
uploads the heart rate BPM algorithm sketch to the board, and it outputs the sensors' data to the

web server, which then handles it.

Hardware Software

Gravity sensor VMA340 sensor

Arduino IDE MongoDB Atlas

ARDUINO

Heart rate BPM

o 2 Se ; sketch upload
Sensor raw data Sensor raw data T Import and export data

Expansion . .
Shield DFRduino

v s te Web Serv
Microcontroller board ’ Local Web Server Remote:Web Server

Project pushed to
a remolte server

Output heart rate BPM

Run online website

Run local website

Remote Website
Local Website

Figure 1.1: Hardware and Software Overall Architecture

This project aims to use wearable sensors to process and send data to a web server,
which then visualizes that same data and delivers informational reports and alerts based on it.
The wearable sensors used are heart rate sensors based on the PPG technique. The sensors send
their raw data to a microcontroller board, whose duty is to calculate the heart rate BPM data
and output it to the web server. The web server hosts the online website and updates the sensor
calculated data on a webpage. The website then handles that sensor's data to provide

informational reports and alerts for the user.

The final goal is to synchronize all the hardware and software components and have
working communications without issues and errors. Accomplishing this will result in a solid
foundation and development of the project. This foundation will serve as a basis for
experimenting with new sensors and other hardware, extra website features, and an excellent

guide to create a similar project and improve upon it.

1.3: Contributions
This dissertation served as a basis of integration for two financed projects, “Psyfechy” and

“WAYLA”. Both projects apply and transfer the technologies and methodologies used for this

dissertation. IAPMEI funded the projects’ creation and development. The dissertation was
submitted to a journal of applied natural sciences and an international conference on applied

science and technology (ICAST).

e Psytechy — This project is the online platform on which this dissertation bases on. I
developed the IT infrastructure and was responsible for implementing the necessary
technology. R. Sebastido coordinated and led the project and contributed with
psychology knowledge to apply on the platform. B. Ribeiro marketed and managed the
project.

o WAYLA — This project implements wearable sensors and analysis technologies to create
reports that help marketing companies understand user experience on their products and
services. R. Matos and I developed and built the project.

e Multidisciplinary Digital Publishing Institute (MDPI) Applied Sciences journal on all
aspects of applied natural sciences published semi-monthly online [1].

o [International Conference on Applied Science and Technology (ICAST). Hosted by the
World Academy of Science Engineering and Technology (WASET) [2].

1.4: Thesis Structure Overview

Following this introduction, chapter 2 addresses the literature review. This chapter has
descriptions of essential themes and topics in the dissertation, such as Telehealth, wearable
sensors, hardware components, and software frameworks. The chapter explores possible

alternatives and defines most of the project’s requirements.

Chapter 3 handles the hardware architecture and development phase of the project. The
chapter then addresses the hardware used and the connections and communications between
them. Finishing the hardware phase without errors and issues enables the next development

phase.

Chapter 4 covers the software phase developed after the hardware implementations.
This chapter describes the sketch program’s algorithm responsible for calculating the heart rate
BPM data. Receiving that data on the web server and handling it on the website. Most of the

dissertation objectives result from this chapter.

Chapter 5 shares the testing done for the most critical aspects of the project and that
contribute to the dissertation’s goals. The chapter analyzes the testing results, improvements

and interprets the best results from the tests.

Finally, chapter 6 handles the dissertation conclusion, whether the project delivered on
all the main objectives. The chapter also describes potential future work on some of the

project’s aspects that need progression.

Chapter 2 : State of the Art

This review first focuses on Telehealth and the various telehealth methods used, in combination
with some examples. The chapter then explores heart rate sensors and how heart rate can
determine and contribute to someone’s health assessment. Finally, the chapter describes the
Hardware and Software components used for this dissertation’s project, their alternatives, and

related work observations.

2.1: Technology Impact on the Healthcare Industry

Since the initial growth of information technology (IT), multiple studies have analyzed its
impact in various industries, such as healthcare. Studies, such as [3]-[5], determined a positive
outcome in IT investment in the healthcare industry, based on performance, efficiency, quality,

reducing response times, and other aspects.

The article [6] investigated five medical conditions to determine if medical advances'
technological benefits exceed the costs. The study estimates four conditions to have much more
effective use of technological change than the price; those conditions were heart attacks, low-
birthweight infants, depression, and cataracts. The fifth condition studied was breast cancer,

which resulted in an equal cost of benefits and costs.

This dissertation focuses on IT applications and methods for psychological illnesses
(depression) and cardiovascular diseases (CVD) (coronary artery disease (CAD)), which are a

safe investment and an area that will improve from using IT.

Heart rate [7] has always been a popular topic, and with the rise of technology, new
methods and applications are finding ways of handling it. Heart rate is the number of times a
heart beats per minute (BPM). Usually, a regular resting heart rate is between 60 and 100 BPM,

although this reading can depend on many variables.

Heart rate variability (HRV) [8] is the variation of beat-to-beat intervals. A normal heart
has a high HRV, while diminished HRV may pronounce cardiac disease. HRV also decreases
with exercise-induced tachycardia. HRV is a well-investigated area, and there have been many
studies done exploring its usability, methods, and results [9]-[11]. For example, one aspect of
heart rate variability is to measure fitness, the speed at which one's heart rate drops upon the

termination of vigorous exercise [12]. The pace at which a person's heart rate normalizes is

faster for a more athletic person. Descending twenty beats in a minute is common for a healthy

individual.

Several studies have found psychological illnesses and CVDs that correlate with heart
rate and HRV. During psychological stress, there is a significant reduction in the timing and
frequency of HRV and a massive increase in heart rate [13]. The article [14] brings up the links
between stress, anxiety, depression, and coronary heart disease (CHD) with heart rate and
HRV. The standing HRV is lower in panic disorder patients [15]. Further linking the
relationship between depression and CVD, depressed patients tend to have higher heart rates

and lower HRV, and also both higher heart rates and lower HRV increase CVD risk [16], [17].

2.2: Telehealth

This dissertation focuses on Telehealth applications and methods.

Telehealth's definition is the use of medical information exchanged from one site to
another through electronic communication to improve a patient's health. Telehealth administers
health care remotely through several telecommunication tools, including telephones,
smartphones, web services, and mobile wireless devices. Telehealth applications are

increasing, and it can transform the delivery of health care for millions of persons.

Another area that is usually mentioned alongside Telehealth is Telemedicine [18].
Telehealth encapsulates all Telemedicine services and tools (Figure 2.1), while the other does
not. In other words, Telemedicine is a subdivision of Telehealth. Telemedicine is concerned
with remote clinical services, while Telehealth is involved with remote and non-remote clinical

services.
Telemedicine Telehealth |

Figure 2.1: Telemedicine and Telehealth Hierarchy

Table 2.1 describes some of the tools and services provided by Telemedicine.

Table 2.1: Telemedicine Tools and Services for Clinicians and Patients

Telemedicine Tools Telemedicine Services

o _ . Radiology, Dermatology, ICU care,
Clinician to | Communication through video)
Emergency Trauma, and Surgical peer
Clinician and email
mentoring

o)) Wound care, Counseling, Care for chronic
Clinician to Video, Phone, Email, Internet, o o
conditions, Medication management,

Patient Remote wireless monitoring .
Mental health, Post-discharge follow-up
Patient to . ‘ o . o
Mobil Video, Email, Smartphones, Monitoring of diet, Monitoring of
obile
Health Wearable monitors, Mobile apps, physical activity, Health education,
ealt
Web portals, Games Cognitive fitness, Medication adherence
Technology

According to [19], three linked trends are currently shaping Telehealth. The first is
presenting convenience and ultimately reducing cost. The second is the augmentation of
Telehealth to also addressing episodic and chronic conditions. The third is the migration of

Telehealth to the home and mobile devices.

In the healthcare domain, Telehealth enables the use of sensors within or on the human
body, known as wearable sensors [20], [21]. Wearable sensors such as ECG, PPG, and activity
monitors are specific types of medical sensors placed on the human body allowing non-
invasive, unobtrusive, 24/7 data collection for health monitoring. The increasing number of
ambient devices installed in homes surrounding the human body provide telehealth
interventions to citizens seeking affordable healthcare while remaining in touch with medical
practitioners remotely. Some wearable sensors are clothing embedded sensors, headbands, skin

patches, wrist-worn, cuffs, and finger-worn. Article [22] describes these wearable sensors.

This project uses two heart rate sensors. Both use Photoplethysmography (PPG) [23] in
order to obtain the heart rate data desired. Section 3.1.2 explains the PPG technique/method

used by the sensors to gather heart rate data.

Another alternative popular to PPG is Electrocardiography (ECG or EKG) [24]. The
technology involving ECG has continuously advanced throughout the years. Nowadays,

experts generally record an ECG by placing electrodes on a patient's chest or another suitable

area that checks the heart's rhythm and electrical activity. Wires connect the electrodes to a
device that receives and handles that data, which in this project's case would be an ECG sensor
connected to the microcontroller board. Each time the heart beats, the device records an
electrical impulse as a "wave", which it then uses to calculate the patient's appropriate heart

rate.

Table 2.2 lists the main advantages and disadvantages [25] of using an ECG compared

to a PPG.

Table 2.2: ECG Advantages and Disadvantages

ECG Advantages ECG Disadvantages
- More accurate HR
- More accurate HRV - Less comfortable
- Better power consumption - Not practical in most situations
- A better understanding of overall - More complex to use

heart performance

A PPG sensor is used instead of an ECG one because a more comfortable and easier to
apply sensor makes more sense in the project's context. Figure 2.2 shows the difference
between the PPG and ECG heart rates, where the “PP” and “RR” variables represent the time

intervals between heart beats.

PP
RR

-

PPG /‘\\

ECG

Y

Time (s)

Figure 2.2: PPG and ECG Raw Data Comparison

2.3: Hardware Used and Alternatives

The hardware used for this dissertation’s project consists of Gravity and VMA340 Arduino
compatible heart rate sensors, Arduino compatible DFRduino UNO (v3.0) R3 microcontroller
board, I/O expansion shield compatible with the DFRduino board, a USB type B cable, and

finally a personal computer. Chapter 3 further explains all the hardware.

2.3.1: Arduino

Arduino is a company that distributes open-source hardware and software. Arduino uses
development boards, or microcontroller boards (Figure 2.3), as prototyping platforms that
process inputs and outputs with other boards and other components that interact with it, such

as sensors, LEDs, and displays.

Figure 2.3: Arduino Microcontroller Boards (Left to Right: Lilypad, Arduino Mega, Arduino Pro
Mini)

When working with Arduino hardware, the most common approach is to use the
Arduino IDE software to upload sketches (programs) to operate on the Arduino microcontroller
board. The open-source concept helps to share community knowledge and contributes to its
overall growth and expansion. It also benefits people beginning to experiment with the Arduino
platform and developing new projects. Arduino is also the most popular open-source
electronics platform, contributing to its community growth and availability of online help and

tutorial projects. One of the most popular alternatives to Arduino is the Raspberry Pi (Figure

2.4).

RaspberryPi

Figure 2.4: Raspberry Pi Single-Board Computer (Left) and Logo (Right)

Raspberry Pi are affordable single-board computers that run the Raspberry Pi operating

system (OS) and provide a set of general-purpose input/output (GPIO) pins that allow

controlling electronic components for physical computing [26]. Table 2.3 describes the main

advantages and disadvantages [27] of using a Raspberry Pi when compared to an Arduino.

Table 2.3: Raspberry Pi Advantages and Disadvantages

Raspberry Pi Advantages

Raspberry Pi Disadvantages

- Has its own Operating System
- Can run multiple programs
- Appropriate for bigger and

complicated projects

- Suitable for experts on the subject

More difficult to install libraries
Harder to interface with other
components

More complex and problematic to
use

Challenging for beginners to pick up

This dissertation's project uses the Arduino platform instead of the Raspberry Pi. While

Raspberry Pi is considered better for handling multiple tasks and more complex projects, the

Arduino is considered a better alternative for repetitive tasks such as reading heart rate sensor

data. Its open-source community and immense popularity are a great benefit, enabling a more

painless experience for new projects.

2.3.2: Heart Rate Sensors

The heart rate sensors used for this project, Gravity [28] and VMA340 [29], are based on the

PPG technique and are fully compatible with the rest of the Arduino hardware. Both sensors

need to be operational with all the remaining hardware and software used; otherwise, the

sensors' data would not forward to the computer. Table 2.4 lists the two sensors specifications.

10

Table 2.4: Gravity and VMA340 Sensors Specifications

Sensor Name Operating | Operating HR Dimension and | Connections Output
Voltage Current | Method | Cable Length type
Gravity
GND, VCC,
28x24mm, Analog/
33to6V <10mA PPG Signal
29.5cm Digital
(compacted)
g | GND, VCC,
v Y| 16x18mm,)
l 3to5V 4mA at 5V | PPG Signal Analog
18cm
(separated)

The heart rate sensor's alternatives usually do not vary much, and most output similar
results. The main differences are in the sensor's compatibilities and methods to retrieve the
heart rate. The Arduino pulse sensor [30], shown in Figure 2.5, is a possible alternative that
would work in this project and is developed by Arduino. The project does not implement this
sensor because the Gravity one is more comfortable. The same company (DFRobot) developed
the microcontroller board, expansion shield, and sensor, and all of them are compatible. The
project implements the VMA340 sensor because it was easily obtained, and its results are
compared with the Gravity sensor. Another possible alternative that uses a different method to
receive the heart rate readings is the Gravity ECG sensor [31] (Figure 2.5), which uses the ECG
technique to read heart rate readings instead of the PPG technique used in this project.

Figure 2.5: Gravity ECG Sensor (Left) and Arduino PPG Pulse Sensor (Right)

11

2.3.3: Microcontroller Board and I/O Extension Shield
This project uses the microcontroller board DFRduino UNO (v3.0) R3 [32]. This board is fully
compatible with all the hardware and software that concern the project. The board is more

comfortable to implement and less complicated than some of its alternatives.

A single-board microcontroller [33], [34] is fundamentally a microcontroller built onto
a single printed circuit board. This microcontroller board comes with all the necessities needed
to process information and output a specific programmed task. The board has a microprocessor,
RAM, integrated circuits, and more. The board has digital and analog inputs and outputs (I/O)
pins used to connect to sensors, batteries, modules, and other hardware to establish connections.
These 1/O pins combine with breadboards and extension shields to extend the number of
possible outcomes and connections to other hardware. The board also implements a USB
interface. It uses the USB interface to upload programs from a personal computer and send the

desired heart rate data output to the personal computer.

Table 2.5 shows some of the alternatives that could be used and would make a good
option for this project. Arduino Lilypad [35], which is a wearable microcontroller board.
Arduino Nano [36], which is a smaller but complete microcontroller board. Finally, Arduino
UNO Wifi Rev2 [37], which enables Bluetooth (BT) and Wi-fi communications. The project
implements the DFRduino because there are many projects and overall knowledge available

online, and the alternatives can be implemented in the future.

12

Table 2.5: Microcontroller Board Alternatives and their Specifications

Board Name Microcontroller | Operating | Input Clock | Analog | Digital | Dimension
Voltage Voltage | Speed ports ports
DFRduino Uno R3
14 (6
ATmega328 5V 7-12V | 16MHz | 6 provide | 75x54x15mm
PWM)
50mm outer
14 (6
ATmegal68 or 27 - diameter,
2.7-5.5V 8MHz 6 provide)
ATmega328V 5.5V Thin 0.8mm
PWM)
PCB
22 (6 are
ATmega328 5V 7-12V | 16MHz | 8 18x45mm
PWM)
Arduino Uno Wifi
Rev2
14 (5
ATmega4809 5V 7-12V | 16MHz | 6 provide | 68.6x53.4mm
PWM)

Like DFRduino UNO R3, microcontroller boards can use printed circuit expansion

boards called I/O expansion shields, which plug into the usually supplied microcontroller board

pin headers. Table 2.6 shows three expansion shield examples and their specifications.

Expansion shields can provide many new applications and possibilities to the board, such as a

Global Navigation Satellite System (GNSS), Ethernet connection, breadboarding and more. In

this dissertation’s project case, the Gravity I/O extension shield [38] establishes the connection

between the DFRduino microcontroller board and the Gravity heart rate sensor.

13

Table 2.6: I/O Expansion Shield Alternatives and their Specifications

Expansion Shield Operating | Dimensions Features

Name Voltage

Gravity

Supports 12C, SPI, Xbee (pro), BT,
APC220, and SD card read/write.

33 0r5V | 55x53mm

Implements a fail-safe system designed
3.30r5V | 58x52mm ‘
for beginners and classrooms.

3.3V 56x54mm | Designed explicitly for Arduino Nano.

2.4: Software Used and Alternatives

This dissertation's project implements various software. The most relevant ones are Arduino
IDE, Node.js, Express framework, MongoDB (database), Mongoose, MongoDB Atlas, the
domain name registrars GoDaddy and Dominios.pt, and the PaaS Heroku used to deploy the
website online. This section describes the software used and presents some possible alternatives

for them. Later, chapter 4 explains in more detail the software implemented.

2.4.1 Arduino IDE
The Arduino Integrated Development Environment (IDE) [39] is the main text editing program
used for Arduino programming. Essentially, it translates and compiles sketches into code that

Arduino compatible hardware can understand. Arduino IDE enables the development of code

14

in C/C++, compiles it, and uploads a sketch program to the board's memory. The Arduino IDE
also allows access to an enormous Arduino library continuously growing thanks to an open-

source community.

When writing code in the Arduino IDE software, the program that runs that code is
called a "sketch". This sketch is the code that is uploaded to and runs on a microcontroller
board compatible with Arduino hardware. Many sketch examples [40] provided by Arduino or
the open-source community are ready to be uploaded to a board for all the different types of

sensors and possibilities available.

Some alternatives to apply instead of Arduino IDE are PlatformlO [41], Visual Studio
Code [42] and Eclipse Arduino IDE [43]. All of these would work with the Arduino hardware
and obtain similar results. The only difference would be the interface where the code is written
and the setup implementing all the hardware connections to the platform. The project
implements the Arduino IDE because the setup is much easier to implement, and there is an

abundance of online projects and examples to serve as guides.

2.4.2: Men Stack Type

A “Stack” type [44] is known as tools on which a web server or a web project build on. Other
stack type examples are LAMP, MEAN, MEN, MERN, Django, which all are acronyms for
the tools that the specific stack uses. All these stacks include in them a database, backend

framework, server, and a frontend framework.

The web server developed for the dissertation is of the stack type "MEN" (Figure 2.6),
which stands for MongoDB, Express, and Node.js. Instead of having a frontend framework
such as Angular or React (MEAN or MERN), the web server uses vanilla JavaScript.

Figure 2.6: MEN Stack Type

15

e MongoDB [45] is the database service used. MongoDB is a NoSQL database that
utilizes JSON-like documents with a schema. MongoDB is commonly used in
connection with Node.js because of its JSON-like documents for interacting with data
instead of the row/column model. Another benefit is the well-supported Node library
Mongoose [46], which is an easy way of interacting with Mongo through Node, and
that this Node.js project uses. Another service used and explained further ahead is the
SaaS application MongoDB Atlas [47], formerly known as mLab and also known as a
Database as a service (DaaS). MongoDB Atlas, simply put, offers a way to host
MongoDB databases on the cloud.

e [Express [48] is the backend framework used. Express is generally the standard server
framework for Node.js. The Express backend framework sits on the server and provides
a structure for building the app's functionality. It is also responsible for loading the
pages and what they can do behind the scenes, handling the sensor data, connecting to
the database, handling the users, and more.

e Node.js [49] is the software that serves the webserver. Node.js is the application
runtime that the MEN stack runs on, working as a server it accepts requests from users
and sends content to the browser. Node.js is mostly known because it permits
JavaScript, which traditionally uses a frontend language, for backend web
development. Thus, it allows for the unifying web-application development around a
single programming language (JavaScript) instead of using different languages for

server and client-side scripts.

Two of the most commonly used stacks [50], other than the MEN and MEAN/MERN
stack types, are LAMP and Django, which would have been good alternatives to the project.

Lamp (Linux, Apache, MySQL, PHP) [51] is trendy because it is open-source, easy to
modify, and has been around since 2000. Its disadvantages come from having programming

languages challenging to learn and the necessity to understand Linux and Apache servers.

Django [52] is a web application framework used with python. Python is one of the
most popular programming languages, so there is considerable support for it. When using
Django, it comes in a complete package that can slow down a project or restrain its potential

growth.

16

2.4.3: Database
A simple definition of a database is an organized collection of information or data easily

accessed, managed, and updated electronically from a computer system.

MongoDB [45] is a cross-platform document-oriented database program, as explained

above, and is the database used for this project.

Table 2.7 lists some of the main differences [53] between a MongoDB NoSQL database
and a SQL database.

Table 2.7: MongoDB NoSQL Database and SQL Database Main Differences

MongoDB NoSQOL SOL

Collections containing multiple ~ JSON
Tables with fixed rows and columns
documents

Fields or Attributes Columns

Documents (combines data in a single document) | Rows of data (can reference data in other tables)

Flexible Schemas Rigid Schemas
Models (take a Schema and create an instance of
Records
a document)
Horizontal Scaling (scale-out across servers) Vertical Scaling (scale-up with a larger server)

Does not require Object-relational mapping] _ _)
_ Requires Object-relational mapping (ORM)
(documents map directly to data structures)

Commonly requires Joins Rarely does not require Joins

Developed in the 2000s Developed in the 1970s

Mongoose [46] is an Object Data Modeling (ODM) library for MongoDB and Node.js.
Mongoose provides a straight-forward, schema-based solution to model the application data.
In terms of Node.js, MongoDB is the native driver for interacting with a MongoDB instance

database, and mongoose is an Object modeling tool for MongoDB.

MongoDB Atlas [47], formerly known as mLab (changed its name due to the
acquisition by MongoDB), is a fully-managed cloud MongoDB database. It handles all the
complexity of deploying, managing, and monitoring a cloud service provider (IaaS) partner,
such as AWS, Azure, and Google Cloud. Mongo Atlas is also described as a Database-as-a-
service (Daas) for MongoDB, and it is also a partner with the Platform-as-a-service (Paas)

Heroku, which deploys the Node.js project to the Internet.

17

2.4.4: Domain Name
A domain [54] is the name used to identify a website. A domain name is an address where
Internet users can access a website, rather than using IP addresses, which would be difficult for

people to remember.

Translating an [P address to a domain name is accomplished through the Domain Name
System (DNS) [55]. For example, it is possible to replace the IP address 207.97.195.109
with a domain name such as www.fishingbass.com, making it much easier to remember
the domain name than the IP address. Another example of a domain name used in URLs
to identify Web pages is the URL: https://www.youtube.com/watch?v=dQw4w9IWgXcQ,

where the domain name is youtube.com.

DNS [55] stands for Domain Name System, and its primary function is to translate
domain names into [P Addresses, which computers can understand and so that browsers can
load Internet resources. Each device connected to the Internet has a unique IP address, which
other machines use to find the device. A common analogy used when explaining DNS is that

it serves as the "internet phone-book".

Domain names use different Top-Level Domains (TLDs) [56], for example,
google.com, facebook.com, dgs.pt. The domain name must be registered before it can be
used, and every domain name is unique, which means no two websites can have the same

domain name.

Some platforms provide the rights to buy a domain name, known as domain name
registrars (DNR) [57]. The DNRs used in this project are GoDaddy [58] and Dominios.pt [59],
but other DNR's provide the same services and domains at different costs, such as domain.com,
Bluehost, HostGator, and more. As explained before, domain names need to be unique, so only

the unused ones are available.

2.4.5: Heroku
Heroku [60] is a container-based cloud PaaS used as a provider of online server hosting for
web projects based on Amazon Web Services (AWS), and it was the one used for this

dissertation's project.

It is one of the first cloud platforms to be developed, and it now supports several

programming languages: Java, Node.js, Scala, Python, PHP, Clojure, Ruby, and Go. Thus, it

18

has features for a developer to run, scale, build and manage applications across different
languages and still perform the same actions or outputs independent of the programming

language used to compile or interpret it.

There are many alternatives [61] to use instead of Heroku, and they are all great and
with unique benefits. Backd4app [62] is a popular parse hosting and serverless database
platform. Elastic Beanstalk (AWS) [63] is a DevOps tool used to deploy, scale web applications
and services and is supported by multiple languages. Google App Engine [64] is a PaaS hosted
and owned by google that also scales web applications and supports multiple languages. The

project uses Heroku mainly because there are many benefits when combined with Node.js.

2.5: Related Work

The following articles and projects demonstrate various examples where telehealth methods
are applied and their results. Web-based methods are good examples of the various applications
where the health industry can grow and improve with technology, such as internet self-report
questionnaires. Some examples of wearable sensors are then described, such as heart rate and
accelerometers sensors providing data that improve the user's health. Finally, smartphones and
smartwatches are devices from our everyday lives that are almost guaranteed to have Telehealth

applications.

Article [65] evaluated and compared traditional paper-and-pencil methods with internet
data collection methods, specifically self-report questionnaires from self-selected samples. A
set of 510 published traditional samples and new large internet samples (N=361,703) are
compared to determine the internet samples' data quality. The internet samples show more
diversity regarding gender, socioeconomic status, geographic region, and age. Results show
that internet methods have their advantages and contribute to various psychology and

Telehealth areas.

The study [66] tests the efficacy of a web-based approach to providing a cognitive-
behavioral intervention for infertile women seeking reproductive medical technologies. Two
groups compare general and infertility-related psychological stress measures. One of the
groups used the web-based intervention, and the other used a wait-list control condition.
Results were mixed when it came to intervention efficacy but showed significant declines in

general stress for the web-based intervention group compared to the wait-list control group.

19

The study [67] investigated whether web-based assessment techniques were more
efficient than traditional paper-based methods for Test-retest reliabilities of alcohol measures.
Three conditions are randomly assigned to 255 participants, paper-based, web-based, and web-
based with interruption. Results showed that web-based methods are a suitable alternative to
the traditional paper-based methods with the added benefit of being cost-efficient, minimizing

data collection, and increasing survey accessibility.

Article [68] develops an android application to compare HR readings from a Motorola
Android phone to an ECG and Nonin 9560BT pulse oximeter [69]. The android application
uses the PPG method through the smartphone's video camera. All the devices tested showed
high correlation and consequentially validated the android smartphone as a valid measure for

HR readings, with a 95% accuracy to the ECG.

The article [70] contributes to Telehealth by testing the usability of an ECG sensor and
two Accelerometers to assist the elderly population. The ECG sensor is strapped to the user’s
chest and sends the HR readings through Bluetooth to a personal computer. The
Accelerometers recognize the user’s activities and behaviors, detecting any potential falls and

sending the information through Bluetooth to the same computer.

Paper [71] demonstrates a tablet PC's development and efficiency that enables a non-
invasive body sensor system for rural Telehealth applications. The system continuously
collects various readings. A body sensor unit gathers all these readings and transmits the

information to a Primary Health Center (PHC).

Chest straps with heart rate monitors and smartwatches with health applications are
popular wearable sensors that keep growing and expanding. Some companies have been able

to develop advanced ones that create a meaningful impact on our society.

Various smartwatches now provide the function of reading heart rates and other health
measures. Many of them have grown popular in the healthcare and sports industry and
significantly impacted both. These smartwatches usually use the PPG method of gathering HR
and HRYV values. Figure 2.7 shows some of the most popular smartwatches whose brands are

Fitbit [72], Apple Watch [73] and Garmin (smartwatch) [74].

20

Figure 2.7: Smartwatches Fitbit Versa 2 (Left), Apple Watch (Center) and Garmin Forerunner
(Right)

Chest straps with heart rate monitors, as the name implies, are worn just under the chest
in a comfortable way that enables the appropriate gathering of the monitor's data. These
wearable sensors usually employ a different method of reading HR and HRV values. This
method [75] consists of transmitting a radio signal from a monitor on the chest strap whenever
a heartbeat is detected. After, a receiver handles the transmitted data and displays the current

HR. Some chest strap examples are Garmin (chest strap) [76], Polar [77], and Wahoo [78].

Another impressive wearable sensor used in the healthcare industry is VitalPatch
(Figure 2.8) [79]. VitalPatch is a biosensor with an ECG and capable of measuring HR, HRV,

respiratory rate, body or skin temperature, body posture, fall detection, and activity motion.

Figure 2.8: VitalPatch Biosensor

21

Chapter 3 : Hardware Architecture

3.1: Hardware Architecture

The hardware phase requires an operational and working connection between all the hardware
components used. This connection is crucial to obtain the best results and the projected
functionality of the developed software derived from the sensor's data. Figure 3.1 details the

hardware architecture.

Hardware Architecture

r

Gravity sensor ‘ VMA340 sensor
¥ | S0,
@ Q_f ARDUINO

e . > L. - v
Heart ratc BPM
Sensor raw data Sensor raw data sketch upload

Arduino IDE

3

Expansion . " r .
e DFRd]
Shield St Local Web Server

Microcontroller board
Conneets the l

sensor and board

Output heart ratc BPM ..

Figure 3.1: Hardware Architecture

Fundamentally, an Arduino compatible heart rate sensor will receive data input
concerning the frequency of a heartbeat. That sensor will connect to an Arduino compatible
microcontroller board and an expansion shield if necessary. The microcontroller board will
calculate the desired heart rate BPM using an uploaded sketch (program) and output the result
to the computer through a USB cable.

The hardware components used and explained to a greater extent in this chapter are
shown in Figure 3.2. The Gravity (1) and VMA340 (2) Arduino compatible heart rate sensors
(with the cables), the Arduino compatible DFRduino UNO (v3.0) R3 microcontroller board
(3), the I/O expansion shield (4), a type B USB cable (5) and finally a personal computer (6).

23

Figure 3.2: Hardware Components

The software phase works with the calculated heart rate BPM and then stores it in a
database and visualizes it on the created website. This phase involves developing the sketch
program to upload to the microcontroller board, which is responsible for handling the sensor's
raw data and calculating the heart rate BPM to output. A website is built and deployed online
using a remote server hosting provider and a domain name registrar. Finally, the project uses a
cloud-based MongoDB database to handle both the remote and local server data. Chapter 4

further explores the software phase.

3.2: Heart Rate Sensors
This section explains the PPG heart rate reading method that the sensors use. After this, a brief

description of the Gravity and VM A340 heart rate sensors is provided.

3.2.1: PPG Heart Rate Technique
This dissertation's project employs two heart rate sensors. Later, the study compares the data
provided by both and explores the results. The heart rate sensors operate using the same

technique, Photoplethysmography (PPG).

Photoplethysmography [23], mostly known as PPG, uses infrared light to measure

blood pressure variations. This technique works because the infrared light emanates a light

24

signal in an area where arteries are visible, and whenever there is a heartbeat, the light signal
reflects, and blood flow is measured. The most visible arteries to the infrared light are typically

a fingertip (except the thumb), an earlobe, or wrists. Figure 3.3 demonstrates how the technique

works.
Emitter Detector Emitter Detector
- - ™ [|
CZ’?;" r ? A
b= Y .
b= A v %‘ KN
& =b hY
Y A 'l
Artery Pulse Wave Artery Pulse Wave

Figure 3.3: Photoplethysmography (PPG) Technique

Using this measurement technique, which corresponds to the cardiac rhythm in most

cases, access to the heart rate data from the PPG signal is possible.

The variation in volume instigated by the pressure pulse is spotted by illuminating the
skin with the infrared light and then determining the amount of light either conveyed or
reflected to a photodiode (semiconductor that converts light into an electrical current). Each
cardiac cycle appears as a peak, and through these peaks, it is possible to estimate the heart

rate. Figure 3.4 demonstrates an example of data gathered from the PPG technique.

Frequoncy = 1. Ha 401 sumplos por period. HIL= 90 BFM

Y = T sysislic Feik
Peak Imiefval

Dacrotic Notch

M agminude

Diastabic Peak

—— — — — — — —

Figure 3.4: PPG Data Example

Chapter 4 (Software) details a better explanation of the heart rate calculation. To

summarize, the heart rate stems from the time interval between each Systolic Peak (represented

as the "Peak Interval" variable in Figure 3.4).

25

3.2.2: Gravity Heart Rate Sensor
The Gravity heart rate sensor (Figure 3.5) [28], also known as SEN0203, is a small heart rate
monitor designed for Arduino compatible microcontroller boards and was created by DFRobot

(robotics and open-source hardware provider).

Figure 3.5: Gravity Heart Rate Sensor

The Gravity sensor is a pulse sensor that was built based on the previously mentioned
PPG technique. The sensor can be used with a small belt, making its usability more comfortable
and stable for readings; it can adjust and wrap on a finger or wrist, for example. The heart rate
sensor has two kinds of signal output modes: analog pulse mode and digital square wave mode.
These output modes can be changed using the dial switch implemented in the back of the
sensor. One feature that the Gravity sensor comes with is that the connection cables (GND,
VCC, and Signal) all come compacted together, which means there is a lot less room to work
with unless the sensor uses some jumper cables also. This sensor is compatible with Raspberry

P1i, Intel Edison, Joule, and Curie, utilizing a 3.3V Input Voltage.

I('—Z‘fmm—)l

Figure 3.6: Gravity Sensor Architecture

Figure 3.6 shows that the SW1 switch corresponds to the dial switch that changes the

output mode between analog pulse mode and digital square wave mode. If the dial switch mode

26

is not consistent with the mode used when writing the future Arduino code, the data will not
show. The sensor has dimensions of 24x28mm. It has three cable connections for Ground
(black), Voltage (red), and Signal (green), which all connect to an Arduino expansion shield

via a three-pin format that connects to the microcontroller board.

3.2.3: VM A340 Heart Rate Sensor
Velleman made the VMA340 heart rate sensor (Figure 3.7) [29] for Arduino compatible

hardware and software.

Figure 3.7: VMA340 Heart Rate Sensor

Much like the Gravity heart rate sensor, it is also small-sized and uses the same PPG
technique to monitor and receive heart rate data. It differentiates from the previous Gravity
sensor when it comes to the belt attached, which this sensor does not have, making it more
difficult and uncomfortable to use on the wrist and other possible places. This sensor also does
not have a dial switch to change from analog pulse mode and digital square wave mode, which
the Gravity sensor mentioned before has. The only available signal mode for this sensor is the
analog pulse mode. Some benefits the VMA340 sensor has when comparing to the Gravity
sensor are:

e The simplicity of the sensor and perhaps, better results when receiving heart rate data

(chapter 5 compares and analyses the results)

e The connection cables for the VMA340 sensor (GND, VCC, and Signal) are not
combined, making room for more combinations and possibilities when connecting to

the microcontroller board or other hardware.

Finally, the previous Gravity sensor is also much more popular than the VMA340

sensor. Therefore, it has more projects, documentation, and other support given from the open-

27

source community, which for the VMA340 sensor was somewhat challenging to obtain (due

to its unpopularity).

The VMA340 sensor has three cable connections, just like the Gravity sensor, the
Ground (black), Voltage (red), and Signal (white), shown in Figure 3.8. These cables all
connect directly and individually to the microcontroller board, while the Gravity sensor needs
the Arduino expansion shield's addition. Another difference is that the Signal cable is white
instead of green, and as explained before, the cables are not compacted together, which leaves

room for more possibilities.

Figure 3.8: VMA340 Sensor Architecture

3.3: Arduino Compatible Hardware
This section first explains the microcontroller board and 1/O expansion shield the project uses.

Then it analyzes and describes their connection to the heart rate sensors.

3.3.1: DFRduino UNO R3 Microcontroller Board
The development of this dissertation's project employs the DFRduino UNO (v3.0) R3 (Figure

3.9) [32] single-board microcontroller, compatible with Arduino software and hardware.

28

= Txem EEROBOT
= DFRduino
i UNOvso ra

/ N
7/ LT

- e g W wn

B =g ooy
B) = =i = ¥
e
SR
a :

Figure 3.9: DFRduino UNO (v3.0) R3

Arduino compatible boards, like the DFRduino used, can read inputs such as light on a
sensor, temperature of a room, a finger on a button; and then turn these inputs into desired
outputs, for example: activating a motor, turning on an LED light, publishing something online,
acquiring specific data, sending an alert message. The microcontrollers can be programmed to
perform specific actions using an Integrated Development Environment (IDE) software. The
software used to program the DFRduino microcontroller board was the Arduino IDE, which
uses C and C++ programming languages. Through the Arduino IDE software, a program
(sketch) is developed and then uploaded to the microcontroller board containing the code
necessary to perform its desired output. For this dissertation's project, the microcontroller board

aims to read the raw sensor data and calculate the heart rate BPM to output.

DFRobot built DFRduino UNO R3, and it is designed similarly to the more popular
Arduino Uno. It is also fully compatible with it. This board features the ATmegal6U2 chip,
which essentially links and connects the computer's USB port and the central processor's serial
port. Later, chapter 4 explains how vital this serial port and its connection are to establish a
link between the microcontroller board data and the Arduino IDE and Node.js web server

software.

Figure 3.9 shows the architecture of the DFRduino board. The board revolves around
the single-chip microcontroller ATmega328. It has 14 digital I/O pins, 6 analog inputs, an ICSP
(In Circuit Serial Programming) header, a reset button, a USB connection, and a power jack. It
encompasses everything required to support the ATmega328 microcontroller. It can be

connected to a computer via a USB cable or powered with an AC-to-DC adapter or a battery.

29

3.3.2: I/O Expansion Shield

The expansion shield used for this dissertation’s project was the Gravity.: I/O Expansion shield
V7.1 (Figure 3.10) [38], which was built by DFRobot to use on Arduino hardware and that is
fully compatible with the DFRduino UNO R3 board used.

BRI IRnRN s pustn

Figure 3.10: Gravity I/0 Expansion Shield V7.1 (Left) and Inserted on the DFRduino Board (Right)

The expansion shield used comes with a three-pin Input format for Ground (GND),
Voltage (VCC), and Signal that can be extremely useful in some applications. For example,
several recent Arduino compatible hardware come with this three-pin cable format (GND,
VCC, and Signal compacted together). This cable format can only be used with the same three-
pin input that the Arduino expansion shield provides unless jumper cables connect each pin
individually. Alternatively, the board also includes a practical and standard Xbee module that

is used mainly for wireless communication purposes.

There are many advantages of using an 10 Arduino expansion shield. However, the
primary purpose of using one for this dissertation's project was the Gravity heart rate sensor
that comes with the three connection cables compacted together (GND, VCC, and Signal),
which are compatible with the expansion shield three-pins input configuration. Another reason
was the future possibility of using Wi-Fi and Bluetooth communication to send the sensor data

to the computer, instead of doing it through a USB cable.

3.3.3: Connecting to the Heart Rate Sensors
All the hardware has been explained, so now all that is left to do is see how everything
combines itself to connect the computer to the microcontroller board with the heart rate sensor

data.

30

Concerning the Gravity heart rate sensor connection, as mentioned before, the sensor
has a three-pin cable format of Ground (GND), Voltage (VCC), and Signal that use the Arduino

expansion shield in order to connect to the DFRduino UNO R3 microcontroller board. Figure

3.11 shows the overall connection.

E \

Figure 3.11: Gravity Sensor Connection

The three-pin cable (GND, VCC, Signal) of the Gravity heart rate sensor, seen in Figure
3.12, connects to the same three-pin Input format of the Arduino expansion shield at the A0
pins (for the analog mode output). This expansion shield then connects on top of the DFRduino
microcontroller board that handles the sensor reading data and calculates the BPM heart rate

to output to the computer via a USB type B cable.

E®

od [

Figure 3.12: Gravity Sensor Connection Schematic

Concerning the VMA340 heart rate sensor connection, the Ground (GND), Voltage
(VCC), and Signal cables come separated. The cables input individually, which means there is
no immediate need to use the Arduino expansion shield. Figure 3.13 shows the overall
connection.

31

Figure 3.13: VMA340 Sensor Connection

It is possible to use just the DFRduino microcontroller board to handle the VMA340
sensor data. The Ground cable connects to one of the two GND inputs. The Voltage cable
connects to the 5V input. The Signal cable connects to the A0 analog pin input (can be any
analog input as long as it is referenced accordingly in the code program). After this, just like
the Gravity heart rate sensor, the microcontroller handles the sensor reading data. It calculates
the BPM heart rate to output through the USB type B cable connected to the computer. Figure

3.14 shows the cables connected to the board.

Figure 3.14: VMA340 Sensor Connection Schematic

32

Chapter 4 : Software

4.1: Software Architecture

Figure 4.1 displays the overall software architecture.

Software Architecture

Arduino IDE MongoDB Atlas

ARDUINO

i

Import and export data

Heart rate BPM
sketch upload

DFRduino
Microcontroller board Output heart rate

BPM data to the platform 7 to host Node.js project
» I
HEROKU

Assign a domain name to the
online website IP address

Local Web Server

Push Node js project Heroku Provide remote server Remote Web Server

Run website locally Run website remotely

GoDaddy

Remote Website
Local Website s s

Figure 4.1: Software Architecture

This chapter describes how the sensor’s data is collected and calculated into heart rate
BPM using a sketch program uploaded to the microcontroller board through the Arduino IDE
software. The Arduino IDE sketch, described in this chapter, is used to calculate the heart rate
BPM of the two sensors used in the dissertation’s project (Gravity and VMA340 sensors). In
other words, the algorithm to calculate the heart rate BPM is equal for both sensors. The serial
port connection established for the Arduino IDE and the Node.js web server is also equal for

the two sensors.

After uploading the sketch, a “serialport” component created inside a Node.js web
server captures the already calculated BPM sensor data, and using a “socket.io” component,
the frontend framework (webpage) visualizes the sensor data. A cloud-based database named

MongoDB Atlas stores all the essential information relevant to the project, acting as an online

33

hosting MongoDB database. Finally, the website project is deployed online through a cloud

server hosting provider named Heroku and a domain name registrar named GoDaddy.

4.2: Arduino IDE

The software used to handle the project’s sensor data is the Arduino IDE [39], which is an
open-source platform compatible with the microcontroller board and heart rate sensors used in
the project. The Arduino Integrated Development Environment (IDE) is a text editing program
that essentially translates and compiles sketches into code that Arduino compatible

hardware can understand.

When writing code in the Arduino IDE software, the program that runs that code is
called a “sketch™. The sketch code is in C/C++ and has the file extension “.ino”. This sketch is
the code uploaded to and ran on the DFRduino microcontroller board and contains the
algorithm necessary to calculate the sensor’s heart rate BPM to output. Section 4.2.2 further

explains the sketch’s algorithm and code.

4.2.1: Serial Port (COM Port)

The microcontroller board used, DFRduino UNO R3, is compatible with Arduino hardware,
and therefore the Arduino IDE software can be applied to it. The DFRduino board features the
“ATmegal6U2” chip, which acts as a USB to serialport converter. Consequently, throughout
the project, when the USB cable establishes the connection between the personal computer and
the DFRduino board, the input is recognized as a serial port “COM”. The computer
automatically assigns a “COM?” serial port as the next available one in the system. In this

project’s case, the system attributed the “COM3” port to the microcontroller board.

Figure 4.2 shows a sketch example containing the two primary functions (setup and
loop) and the Arduino IDE software interface. The IDE recognizes the DFRduino
microcontroller board as an Arduino Uno, which shares the same compatibility and features,

and finally, the system attributes the COM3 port to the previous board.

34

) sketch_oct28a | Arduine 1.8.13 — X
File Edit Sketch Tools Help

Auto Format Ctrl+ T o]
| Archive Sketch
7 3)) |
sketch_oct28a Fix Encoding & Reload
void setupl) | Manage Libraries... Ctrl+Shift+1 ol
/4 PUE FSREL el Monitor Crl+ Shift« M
} Serial Plotter Ctrl+Shift+L

WiFi101 / WiFiNINA Firmware Updater

Board: "Arduino Uno” 2|
I Port: "COM3 (Arduino Uno)" : Serial ports
Get Board Info ~ COM3 (Arduino Uno)

ComM4a

Programmer: "AVRISP mkll"
COM3

Burn Bootloader

Figure 4.2: Serial Port Recognition and Arduino IDE Interface

The Arduino IDE automatically recognizes the DFRduino board and the COM serial
port assigned to it (it can also be chosen manually in the IDE settings). Accordingly, all the
future code developed inside the Arduino IDE is uploaded and applied to the DFRduino board
through the designated COM serial port.

After the sketch program uploads to the DFRduino board, the local Node.js web server
will then search and connect to the same serial port “COM3” to receive the sensor’s data,

already transformed into heart rate BPM through the uploaded sketch.

4.2.2: Heart Rate BPM Algorithm

The Appendix chapter explains and describes the context and development behind the heart
rate BPM algorithm used inside the sketch program uploaded to the microcontroller board.
This algorithm is responsible for calculating and outputting the desired sensors’ heart rate BPM

values.

4.3: Website Server
This section goes over the web server connection to the sensor through the “serialport™ library.
Details how the web server handles the sensors’ data and then visualizes it. Finally, it describes

the programming languages, essential classes, and files that the project uses.

35

4.3.1: Web Server Connection to the Sensor

“Serialport” [80] is a library for Node.js that allows communication over a computer’s serial
ports and enables the creation of a “Serialport™ object which will open a specified port, allowing
the reading and writing of data of that same port. This library establishes a link between the
Node.js web server and the DFRduino microcontroller board transmitting the two sensors' heart

rate BPM data.

Figure 4.3 contains a flowchart representing the overall flow of the sensor's data
connection to the Node.js web server and how the server handles that data. This flowchart
(Figure 4.3) comes to a stop on the node "A", which then continues in section 4.3.2, Figure 4.5.
The flowchart's continuation explains how the sensors' data communicates to the client-side of

the Node.js project, using sockets, and how the website visualizes that data.

Senzor Data Sketch uploaded to
l Board
—>

Microcontroller Board

Log the Connection

Serialport Object
Parameters

b A

Assign Baudrate
Log the Error

Modify Baudrate l
and/or COM port

A

Assign COM
P = | Node.js Serialport

l Object

No Yes
Connection is working » Listen to Events |——

Port Data Receiving
Event

Figure 4.3: Flowchart of the Web Server Handling the Sensor Data

Opening a serial port connection in Node.js requires the library' import at the beginning
of the Node.js project main file. The file name is "app.js", and a local variable instantiates the

library.

After this, the web server creates a Serialport object (called "mySerial"), containing the
port name (COM3) and the Baudrate (9600) parameters, as can be seen in Figure 4.4. The COM
port number is automatically attributed and appears when using the Arduino IDE or the

Windows device manager. Simultaneously, the Arduino IDE sketch uploaded to the DFRduino

36

board defines the baudrate. These values need to be equal to the Serialport object parameters,

or else the data will not be readable.

The new Serialport object can listen for events from the serial port. Signifying that when
the DFRduino board and the heart rate sensors are connected and running, specific actions will
generate events, and the Node.js web server will provide functions to deal with those events

called callback functions.

The events used for this project are opening a new serial port connection, receiving new
sensor data, and an error incident. Using the method "mySerial.on(...)", it is possible to create

a specific function that will get called when each event transpires.

Figure 4.4 shows the serialport object (mySerial) creation and the events he listens.
When the serial port opens, a function will get called to log the new connection event in the
console. When new data arrives, a parser will read the data from the serial port, log it in the
console and send it to a socket which displays it on a webpage. Finally, if an error occurs, a
function will get called to log the error in the console.
ar mySerial = ne

baudRate : 9668

15
I)a

mySerdial.on(op
console.log

1)

mySerial.pi

parser.on ction({data){
console. toString());
io.emit("ar

1y =

});

mySerial.on("err", f

console.log(err.mess

1)
Figure 4.4: Serialport Object Creation and Events

To conclude, the code showed in Figure 4.4 demonstrates and explains how the Node.js
web server can connect to the DFRduino microcontroller board that transmits the data sent
from the heart rate sensors. The web server creates a serial port object that listens to events,
such as receiving data from the sensor, and then invokes a function whenever it calls a specific

event.,

37

4.3.2: Visualizing the Sensor’s Data
Continuing the previous flowchart (Figure 4.3), Figure 4.5 explains what happens after the
Serialport object receives the new sensor data event (A) and how the web server handles that

data to visualize it on the web page.

Visualizing the Sensor's Data
Node.js Parzer
Parser Reads the i
A » i #{ Log the Sensor's Data
Sensor's Data .

o
=
w Make another

£ conmection attempt

- F 3

1=

o
w

> Connect to the Client o~ Connection is No o |Log the connection failure Emit Senzor's Data to
Socket 2 Successful = and error the Client Socket

A
3 i
w

< Connect to the Server Web page receives o| Visualize Sensor's
= Socket Sensor’s Data | Data in the Web page
=

Figure 4.5: Sensor’s Data Visualization

First, the web server creates a parser object to read the data lines that arrive from the
Serialport object. The purpose of using a parser is because the Serialport object listener function
generates a data event once every byte. In contrast, the parser object allows generating a data

event once every newline instead.

Using the Serialport object explained before, it is now possible to handle the data from
the heart rate sensors inside the web server. Nonetheless, the sensor's data connection between
the server-side and the client-side of the Node.js project is still not operational. Even though
the sensor's data reaches the web server, the client-side web page does not yet have the means
to obtain that same data. To solve this, the communication between them employs the

"Socket.IO" library.

“Socket.10” [81] is an available Node.js library that allows client-side web pages and

web servers to communicate using a bidirectional and event-based method. For the

38

bidirectional communication to be effective, both the Node.js web server and the client-side

web page need to implement the Socket.1O library.

First, the Node.js web server main file "app.js" includes the Socket.IO library. The web
server creates and setups a socket named "i0". The socket will listen for a "connection" event
and runs the provided function anytime it happens. For example, whenever a socket on the
client-side is connected, the server socket will call the "connection" event and run a function

to log that information in the console.

The web server uses the same method above to send the heart rate sensor's data to the
client-side web page, visualizing the data. The server-side handles this function and calls it
whenever the Serialport object handles the event of receiving new data from the sensor. Inside
that function, seen in section 4.3.1 and Figure 4.4, the socket uses the method
"io.emit("SensorData")" to send a message to the connected clients (the web page) containing
the heart rate sensor's data. As explained before, the Serialport object in the Node.js web server
connects to the same port containing the DFRduino board that consequentially connects to the
heart rate sensors. Figure 4.6 shows the client-side code where its socket is created and receives

the server-side sensor’s data.

socket. i ata’, function(datasensor){
myChart.data.labels.push(counter);
myChart.data.datasets.forEach{dataset =» {

dataset.data.push(datasensor.value);
})s
counter++;
myChart.update();

Figure 4.6: Client-Side Socket

A socket instance needs to be on the client-side of the Node.js project (Figure 4.6),
ready to receive the information sent from the server, in this case, the heart rate sensor data.
The client-side web page creates this socket instance, in this case, inside a JavaScript script of
an EJS file. After this, the socket on the client-side will be listening for the heart rate data from
the sensor, just like the socket on the server-side, and then using that data, the same script will
plot the values inside a graph and update it continuously to the web page. Figure 4.7 shows the

final visualization result of the heart rate sensor's data on the web page.

39

Psytechy Sobre nos Contactos Fazer Login Registar

Heart Rate Reading

Haart Rate (BEAD)

Time (s}

Figure 4.7: Sensor’s Heart Rate Data Visualization

The tested heart rate showed above (Figure 4.7) starts a bit low, averaging 50 BPM,
probably due to slight movement or noise in the sensor's readings, and then stabilizes around

the 60-75 BPM range.

4.3.3: Programming Languages, Essential Classes and Files
It is also vital to understand what programming languages, significant classes, documents, or
any other elements crucial to the dissertation's web development are in use. The main

programming languages used for the project’s web development are:

e (C and C++ for the Arduino IDE sketch code;

e JavaScript for the Node.js web server, or in other words, the backend framework;

e CSS for some of the styles used in frontend development;

e EIJS [82] (a combination of HTML and JavaScript) for the frontend framework used to

visualize the client-side web pages.

To obtain a better understanding of EJS (Embedded JavaScript), it is a modest
templating language that permits HTML markup generation with pure JavaScript. It enables
usage of both languages without any concern and both in the server-side or client-side of the
Node.js project. For example, in Figure 4.8, "div" is a container class that defines a division or

an HTML document section. This "div" contains an unordered list "ul" which comprises of list

40

items "li". All of this is HTML code, but there is also JavaScript code delimited by the "<%
%>" marks inside the "div" container, which performs backend operations on the client-side.
In Figure 4.8, the JavaScript merely finds out if a user is logged at that moment, and if there is
one, then it writes the username on the page. This JavaScript code would be much more
demanding and complex to write in a plain HTML file and might invoke more errors, but using

EJS files simplifies it.

~"»BPM Sensor

About us</:
“>Contacts</a

Figure 4.8: EJS Example

A tool that helped develop the project and is frequently used in combination with
Node.js is npm (Node Package Manager) [83]. Npm is an online repository that publishes open-
source Node.js projects. It and can also easily interact with the same repository to install and
organize packages, manage versions and more. For example, the modules/libraries “serialport™,

9% <6

“express”, “socket.io” and “mongoose” were installed using npm.

One of the most critical files for running the web server is the JavaScript file called
“app.js” (usually it is called “app.js” or “main.js”), which is used to run the main program and
contains all the most crucial steps of the Node.js web server. All Node.js projects contain a
similar file, and it usually is the first file to be created and the most modified one. The “app.js”
file used for this dissertation Node.js project contains, for example, the connection to the
database, requiring/importing of essential libraries, creation of a host to run the server on the

internet, connection to the serial port with the heart rate sensor data and more.

The “node_modules” [84] folder contains all the modules imported or required for the
project using the tool npm, described above. In Node.js, a module can be considered the same
as a JavaScript library. All the installations made through npm are inserted by default inside

the node_modules folder.

The “package.json” [85] is a JSON type file created at the beginning of the project with

npm. The package.json file exists at the root of the Node.js project and holds various metadata

41

relevant to the project. It provides information to npm to identify the project and manage the
project's dependencies, scripts, versions, and more. For example, inside this project's
package.json file, all the modules/libraries versions ("express:4.17", "serialport:7.1.5") can be

read.

4.4: Database
The database used for the Node.js project is a document-oriented database program named

MongoDB [45].

Classified as a NoSQL database program, MongoDB uses JSON-like documents with
optional schemas. The MongoDB database has many advantages when combined with the

Node.js software and is commonly used with it, as is the case with this project.

Like the other Node.js modules or libraries, the installation of MongoDB in our node

project uses the npm tool.

4.4.1: Mongoose
Mongoose [46] is an Object Data Modeling (ODM) Node.js library used for MongoDB

databases.

An example of a schema used in this project is the "user.js", which stores a user's login
information (name and password) inside a document data structure that is later used to gather
information. That information determines whether there is a particular username in the
MongoDB database to confirm a login attempt. Figure 4.9 shows the “user” schema, the

mongoose library import, and the export of that schema to mongoose.

ar mongoose = require(”n 5
passportlLocalMongoose equire(”pa

hema mongoose. Schema({

rSchema. plugin(passportLocalMon i
5 = mongoose.model ("U UserSchema) ;

Figure 4.9: “User” Schema

Using the mongoose module requires to have the MongoDB module first installed. Npm

handles both installations. Much like the other modules used in this project, the first thing

42

needed is to import the mongoose module/library into our “app.js” file. The "app.js" file, as
mentioned before, handles the database connection and creation. A cloud database instance of
MongoDB called MongoDB Atlas establishes the database online. The next sections explain

in more detail how it works and how Node.js connects with it.

4.4.2: MongoDB Atlas
MongoDB Atlas [47] is a fully managed cloud MongoDB database and was used to develop
this project.

To connect to a MongoDB database hosted on the cloud using MongoDB Atlas from a
Node.js server, a MongoDB://URL is used, which the MongoDB Atlas platform provides for
us. The URL also contains the login information (name and password) used to connect to the

MongoDB Atlas, shown blurred in black in Figure 4.10.

The web server uses the method “mongoose.connect(“MongoDB://URL”)” on the main
file of the Node.js project “app.js”, the connection between the project and the MongoDB
database hosted on the cloud by MongoDB Atlas is established, and it is now possible to easily
store and manage the project data to it through the use of the mongoose library. Figure 4.10
shows the code used to establish that connection and a function called when the MongoDB

database is connected successfully or when there is an error.

}).then(() =

console.log("Connected to DB");
}).catch{err => {
console.log("ERROR:", err.message);

})s
Figure 4.10: Mongoose Connection

To send data to the database, a mongoose “Schema™ is created, as shown before with
the “user.js” schema (Figure 4.9). For this example, whenever a user is created through a
registration form in the website, a new user mongoose schema is created and stored in the
MongoDB database via mongoose, connecting to the cloud-host MongoDB Atlas. The
connection between the Node.js server and the MongoDB Atlas database is always online,

whenever there is no errors, and the server is kept running.

43

The MongoDB database collections can be seen online in MongoDB Atlas and can
always be managed there. An example of a document containing the login information for a

“Francisco” user can be seen at the bottom of Figure 4.11.

testusers

I
:-
i}
it
ki

INSERT DOCLUMENT

1-4 OF 4

Figure 4.11: Collection Containing a Document for a “Francisco” User

4.5: Website Deployment

To deploy the Node.js project to the internet and make it run online, some steps were realized.
Such as buying a domain name to use for the website and deploying the Node.js web server to
a PaaS named "Heroku", which provides an online server running continuously to host the

Node.js web server, which was running locally on the computer before.

4.5.1: Online Server Hosting “Heroku”

Heroku [60] has some advantages when combined with a Node.js web server and a MongoDB
database. GitHub was also used to establish the connection between the Node.js project and
the Heroku services, such as pushing and committing the project's files to Heroku's remote

SCTVEr.

Figure 4.12 contains a flowchart explaining how the Node.js web server was deployed

through the Heroku platform.

44

Succeszful Uzer
Anthentication

h 4

Y

Heroku Command ;
Inztall GitHub Line Interface »* CLiI;I;;uku
(CLI) =

£y

ENEE FEE: (=it Push Heroku Deploy new
emote : s :
Revositors Master Project to Online
; epository i
Commit Changesz Server
Create Local =
Git Repository to the Local Git — v F ¥
o Eepository
Local Git Heroku Remote
Repository Repository

Figure 4.12: Flowchart of the Node.js Web Server Deployment

First, a local git repository is initialized, and the project's code changes are committed
to it. The commits on the local git repository are then pushed to a Heroku git remote, which is
a version of the local repository that lives on the remote server. After pushing the project's code
to the Heroku git remote, it is then associated with the specific application that deploys the

online website.

Installing GitHub and the Heroku Command Line Interface (CLI) [86] is the first step
to establish the connection between the Node.js project and the hosting service Heroku. The

CLI allows to manage and scale the application, view its logs, and run it locally.

Most of the project's website deployment is made through GitHub commands on the
Heroku CLI. The first command, "heroku login", is to login into the Heroku CLI, which will
then request authentication using the user's username and password. This login is necessary in

order to continue the website deployment to Heroku.

After performing the login, a local git repository needs to be initialized if there is not
one already, and the application's code needs to be committed to it. It is essential to initialize
the local git repository in the website project's root directory; otherwise, it will not be possible

to push the code.

45

Next, a Heroku git remote is created, if there is not one already, and is associated with
the application that deploys the online website. Finally, by pushing the local git repository
commits to the Heroku git remote that lives on the remote server, the application deploys the
online website. Figure 4.13 explains most of the Heroku CLI commands necessary for the

Node.js web server deployment.

hercku login

pit init

git commit pst

heroku create

git push heroku master

Figure 4.13: Heroku CLI Commands Used for the Deployment

4.5.2: DNS Connection to the Remote Server
DNS [55] stands for Domain Name System and its purpose is to translate domain names into

IP Addresses.

A domain is a name used for a website. For the Node.js web server project used in this
dissertation, three domains were bought for a year, and two of them were renewed and are still
ongoing. The three domains bought were: psytechy.com, psytechy.org (no longer working),
and psytechy.pt. These domains were bought through the domain name registrar “GoDaddy”
[58] (for .com and .org) and “dominios.pt” [59] (for .pt).

After the deployment is done, Heroku will provide a random domain name by default
to access the online website, for example, "serene-example-4269.herokuapp.com". To change
this random domain name to a custom one ("psytechy.com") that was bought previously on the
domain name registrar GoDaddy, the DNS provided by GoDaddy needs to point to the DNS
provided by Heroku. Using the command, "heroku domains add", on the Heroku CLI or
checking the project's applications settings on the browser, it is possible to add custom domain
names (in this case, www.psytechy.com). Next, a DNS target will be shown that points to the
domain name registrar GoDaddy, as seen in Figure 4.14. This DNS target needs to be inputted

into the GoDaddy DNS to finalize the connection between the two services and conclude the

46

online hosted website's domain name setup. Figure 4.14 shows the domain names used in this

project and their designated DNS target.

You have multiple custom domains enabled Add domain

&y Eier domains

Domain Name

psytechy.com

psytechy.pt

www.psytechy.com

www.psytechy.org

www. psytechy.pt

DNS Target @

concentric-springs-gh695zk&abepris2xyuo... rd
amorphous-tundra-z3liTcjl4ogplkaZlkwsxe... Fd
mammalian-penguin-ubtuefuSq024j2ktlc... Vd
limitless-falcan-pjbdjrhexfkkk 5w SrssSrvf... Fd
opagque-badger-jg7dk0g85yngm3kp8xmh... Vd

Figure 4.14: Project Domain Names and their DNS Target

Heroku also contributes with optional config vars, shown in Figure 4.15, which are

variables established inside the project’s code but can be accessed and modified on the Heroku

browser settings manually, without changing the code internally. This functionality is used by

creating a config var named “DATABASEURL” (Figure 4.15) containing the value of the URL

provided by MongoDB Atlas needed to establish the connection from the Node.js web server

and the cloud MongoDB database (the same URL shown in section 4.4.2, on the

mongoose.connect(URL) method).

Vars

i)
Q

Nt

m

DATABASEURL

Hide Config Vars

mongodb+sru: / f“*s{ﬁc luster@-2ysij. R

VALUE Add

Figure 4.15: DATABASEURL Config Var

47

Chapter S : Results
This chapter describes the results obtained from the dissertation project’s development. First,
the tests implemented are explained and showed. Following the tests, an analysis of them was

conducted to determine any main points where improvement can be applied.

5.1: Tests
The entire project requires a stable and synchronized connection between all the hardware and

software used.

This connection is fundamental to transmit the heart rate sensor's data to the personal
computer and consequentially to the Node.js web server that carries out its visualization.
Therefore, both the project's connections and the sensors' data transmission were tested, and

the results are explored here.

The two heart rate sensors used are tested and compared, concerning the data quality
and accuracy of the heart rate readings gathered. Both sensors were tested equally, but some of
the VMA340 sensor tests are not shown for the sake of simplicity. Instead, the Gravity sensor

tests are used, containing similar results.

Next, the local server running the local website is tested on its features, such as

visualizing the sensor's data and registering new users on the database.

Finally, the remote server running the remote website is tested on its domains,

accessibility, and database communication.

5.1.1: Connection Tests
The first tests done were connection tests, ensuring the hardware components were being linked

together successfully and then connecting to the necessary software on the PC.

Recognition tests were employed through the Arduino IDE software (Figure 5.1) to test

the DFRduino microcontroller board's connection to the PC and the appropriate software.

49

@ heartsensor | Arduine 1,813 —] X
File Edit Sketch Tools Help

Aute Format CtrlsT
Archive Sketch
heartsensor Fix Encoding & Reload
int UpperThre| Manage Libraries... Ctrl+Shift+
< | Serial Monitor Chrb+Shift+M
Serial Plotter Ctrl+ShiftsL

WiFi101 / WiFiININA Firmware Updater

Board: "Arduino Una" dl
Port: "COM2 (Arduine Une)" | Serial ports
B |
Get Board Info ¥ COM3 (Arduine Una)

| coma
Programmer: "AVRISP mkdl" 1
COMS
Burn Bootloader

Figure 5.1: Microcontroller Board Recognition Test

A sketch test is also uploaded to the microcontroller board (Figure 5.2) further

validating its connection and future sketch uploads.

@ heartsensor | Arduino 1.8.13 =7 O x
File Edit Sketch Tools Help

[° 2 - Upload

heartsensor

int UpperThreshold = 518;
int LowerThreshold = 4590;

Figure 5.2: Sketch Upload Test

Next, the heart rate sensors were inputted onto the microcontroller board and the 1/O
extension board (if necessary). The sensors' connection was tested with the LED light (green)
implemented in the sensor, necessary for the PPG technique, and that turns on whenever the
sensor has a power connection. The microcontroller board has a LED red light that verifies its
connection to a power supply (PC). Figure 5.3 demonstrates the test, with the VMA340 sensor
on the left and the Gravity sensor on the right.

Figure 5.3: VMA340 (Left) and Gravity (Right) LED Lights Test

50

5.1.2: Sensors Data Transmission Tests
After finishing the hardware components connection tests, the heart rate sensors' data
communication and transmission need to be tested. It is crucial to verify that the hardware and

software involved is synchronized and working together, as expected.

The sensor's data transmission was first verified by uploading a sketch to the
microcontroller board that tested if both sensors could send their raw data whenever they
detected a pulse reading. The sensors raw data was then observed over the Arduino IDE Serial

monitor and Serial plotter, demonstrated in Figure 5.4.

© comz i o * @ coms - [m] X

Send
875.0

870.0 7L

B867.5 571

885.0 i t t t 1 &
30138 30235 30235 30435 30535 20835| [370

s600bad Send Noline ending || | =1 4/ toscroll [Show tmestamp R | [GecaBad | [Cosotmut

Figure 5.4: Sensor's Raw Data Serial Plotter (Left) and Serial Monitor (Right) Tests

After testing the sensors' data transmission to the Arduino IDE, the central sketch
program containing the heart rate BPM calculating algorithm is also tested for errors. It is then
uploaded to the microcontroller board. Just as before, the new heart rate BPM calculated data

sent from the sensors is tested on the Arduino IDE software, demonstrated in Figure 5.5.

@ com3 - 0 X ||@com - 0 X

200.0 | Send

150.0 7

73

100.0 4 72
72

72

72

50.0 72
72

; {
408 506

t t t
106 208 308

v

Sobad v Send Nelneendng || | 2 0 toscrol [show tmestamp Newine | [9600baud | | Clear output

Figure 5.5: Sensor’s Calculated Data on the Serial Plotter (Left) and Serial Monitor (Right) Tests

51

5.1.3: Heart Rate Sensors Tests
After transmitting the sensors' heart rate BPM calculated data, the next step was testing that

same heart rate data quality and accuracy, and then compare the results between the two

SENSors.

The two sensors calculated heart rate BPM is tested and gathered via the Arduino IDE
software serial monitor. Figures 5.6, 5.7, and 5.8 show the graphs containing the heart rate
BPM data gathered from both sensors for three minutes and around the same pulse counts
(156). The tests involved three people and were done while resting and after a one-minute
workout exercise. Person A is male, 23 years old, and is semi-athletic. Person B is female, 59

years old, and is not athletic. Person C is male, 30 years old, and is semi-athletic.

Resting and after-workout HR BPM readings of Person A

200
2 150
o
e
2100
£
3 50
T
0
I O = O W W O O O W WO oW oW WOV WO OV 0OV -+ O
NN N T NDN O ONMNOOOOOOOO OO d A N N OO M < S 1w
R B B B e R I e B I B B o |
Pulse Count
e Resting Average 74 e After-workout average 98
Figure 5.6: Heart Rate BPM Person A Test
Resting and after-workout HR BPM readings of Person B
160
140
%120
> 100
5 80
£ 60
3 40
T 20
0
T O = O = WO d O O O d O d W d W d O d OV " O w4 O 4 O «1 O « O
—EH N NN S NN O ONNOOOO OO OO d " N N OO & < 1w
D B B B I B B B I e

Pulse Count

e Resting Average 85 e After-workout average 115

Figure 5.7: Heart Rate BPM Person B Test

52

Resting and after-workout HR BPM readings of Person C

140
120
=
a 100
)
SSOM\WW\WM
©
~ 60
jud
S 40
T
20
0
T O = O +H O H O d O =" O v O 1 O d OV o O " O «+ O « O 1 O 41 O 1 O
I NN N NN O O NNOOO0OOOODO O O I S NN S NN
R T e e B e B R e B TR e I R R o B |
Pulse Count
e Resting Average 80 After-workout average 106

Figure 5.8: Heart Rate BPM Person C Test

5.1.4: Local and Remote Server Tests
The local and remote servers have a crucial role in this dissertation's project since they host the
local and remote websites. The websites visualize the sensors' data and enable access to their

information and results.

The local server hosting the local website was the first to be tested. The most important
feature of the local server was to visualize the sensors' data on the webpage. For this to happen,
the sensor's data was tested by outputting its contents to the Node.js web server console, shown

in Figure 5.9.

TERMINAL 1: powershell

c\Documents\projects\PsytechySite\Psytechy> node app.js
¢ server has started!

openned serial port

Connected to DB

74

75

75

75

75

76

Figure 5.9: Sensor’s Data Transmission to Web Server Test

After, the local Node.js web server (server-side) transmission of the sensor’s data to the
client-side web page was tested, resulting in its visualization as a graph that continuously

updates, shown in Figure 5.10.

53

« C Y @ localhost:3000/sensor

Technology to the mind

Heart Rate Reading

- oot Rate

Heart Rate (BPM)

& Time (s)

Figure 5.10: Sensor’s Data Visualization Test on the Local Server

Tests involving the MongoDB database were also conducted. The connection from the
local Node.js web server to the MongoDB Atlas cloud platform that hosts the project's
MongoDB database was tested. Following the database connection, a new user was registered
on the website to test the new user's schema information being sent to the cloud database.
Figure 5.11 shows the registration form and the MongoDB collection that obtained the newly
registered user document. Login is then submitted to the local server to test if the new

information was registered and requested.

Faga 0O seuy registo! {"username": "thesis test"} m Reset

thesis test 1-1 OF 1

Voltar atrds

Figure 5.11: User Register Form (Left) and its Designated MongoDB Document (Right)

After testing the local server, the remote server and the remote website were tested. The
first test was to verify the domain names being used, “psytechy.com” and “psytechy.pt”, shown

in Figure 5.12.

54

psytechy.com psytechy.pt

psytechy.com GEEIEE psytechy.pt

psytechy com

psytechy. pt
2019 2019

G GoDaddy.com, LLC

dominios.pt

Figure 5.12: Psytechy.com and Psytechy.pt Domain Name Validation Tests

Finally, the connection to the MongoDB Atlas cloud platform was tested by login with
a previously registered user from the local website (Figure 5.11, user "thesis test"), which
would imply that the database is accessed by both the local and remote servers. The login was

performed on the remote server, and Figure 5.13 shows its result.

€ - C 1 A Nioseguro | psytechy.com/car

Psytechy Sobre nos Contactos Bem-vindo, thesis test Logout

Figure 5.13: Remote Server “thesis test” Login Test

5.2: Results Analysis
The results obtained from the connection and data transmission tests are both satisfying. They
serve as a good baseline for the rest of the tests and the dissertation project's overall

development.

The hardware connections and the transmission of the two sensors' data might not be
the most exciting results to analyze. However, they were entirely crucial and required for the
continuation of the project. The tests done to establish a working connection and
communication with all the hardware and software used had an overall good result and no

€ITOoTS.

Both heart rate sensors were tested on three people. The tests validated that the Gravity
and the VM A340 sensors gathered similar results and did not show any specific differences in
their readings. Therefore, only the Gravity tests are shown and analyzed for simplicity, space,

and time.

55

For person A, the results show a resting average reading of 74 BPM and an after-
workout average reading of 98 BPM. The resting results demonstrate some BPM variation in
the beginning and then stabilize around 75 BPM. The after-workout results were a lot more

diverse in the beginning and at the end. Although in the middle, they averaged 100 BPM.

The results showed a similar curve and more stability for persons B and C compared to
person A results. The readings stayed stable and had small variations most of the time. Person
B showed a resting average reading of 85 BPM and an after-workout average reading of 115
BPM. In comparison, Person C had a resting average reading of 80 BPM and an after-workout

average reading of 106 BPM.

Overall, the heart rate readings were successful. Both sensors had similar results and
did not represent any differences in their readings. Person A had significant variations and
shifts in the readings, which could be a consequence of noise in the sensor's gathering or small
movements when testing. Person B and C showed much more stable results. The averages of

both resting and after-workout readings seem accurate and realistic as desired.

The local web server and the local website showed positive results, and the features that
were tested carried out their desired outcomes. The most challenging hindrance in developing
the dissertation's project was transmitting the sensors' heart rate BPM to the local Node.js web
server, using the "serialport" component. The test results show that the obstacle is resolved,

and the sensor's data is visualized.

The remote web server hosting the remote website results show that the website is

always indeed accessible and verify that the domain names are being used in accordance.

Finally, the MongoDB Atlas cloud platform's database tests show that the database can
be accessed by both the local and remote web servers. The tests show a new user's activity
registering on the local website by connecting to the cloud database and posting it. After, the
same user's login is attempted through the remote website by connecting to the cloud database
and requesting/authenticating the login. Both the register and login activities are successful,

demonstrating positive results.

56

Chapter 6 : Conclusion and Future Work

6.1: Main Conclusion

This dissertation aimed to create a working online platform that could contribute to
psychological assessment and Telehealth help. Web-based methods are getting more attention,
and their advantages compared to traditional methods are starting to get more noticeable. A
gap was observed in the literature review. There is a lack of guides and research on developing
online platforms using wearable sensor data to provide remote healthcare, especially using
recent software applications and frameworks, such as Node.js. Telehealth applications have
been proved to be useful and a great option to offer healthcare help. Therefore this project was

developed to try and help contribute research in that area.

The project's main idea is based on the heart rate sensor's data, heart rate, and heart rate
variability values, which would be communicated to the local and remote servers hosting the
local and remote websites. The website then processed those values and delivered important
information concerning them, such as alerts or reports. The results did not reach that objective.
Instead, a solid foundation for the hardware and software communication and connection is
developed. This foundation then resulted in the transmission of the sensor's heart rate BPM

data to the Node.js web server that visualizes it on the website page.

The hardware components work well together, as was desired, and are all fully
compatible with each other. This compatibility was a critical requirement to achieve in order
to create a stable groundwork on which the software and the project's future development could

stand.

The heart rate PPG technique is explained in detail and how the heart rate sensors
communicate with the microcontroller board. The microcontroller board is an essential part of
the project's hardware and software communication. A sketch program is uploaded to the board,
calculating the sensor's desired heart rate BPM output and sending that data to the Node.js web

SCTVver.

There is room to grow and improve on the hardware components side of the project,
and now that the groundwork is established, new sensors and boards could be tested and

implemented in the future.

57

The project's software side communicates with the microcontroller board, which is
transmitting the calculated heart rate BPM data. All the software applications and frameworks
communicate accordingly, and the connections to the hardware components work without an

issue. The result is the visualization of the sensor's heart rate BPM on the website.

First, the sketch program written with the Arduino IDE software was uploaded to the
microcontroller board. The sketch uses an algorithm to calculate the desired heart rate BPM
using the sensor's raw data readings. After uploading the sketch, the microcontroller board's
connection to the Node.js web server was established. This connection was the most
challenging hurdle to overcome in the project's development and the most important. If the
Node.js web server did not connect to the microcontroller board and consequently receive the
sensor's data, then the whole purpose of the dissertation project's development would come to
a stop. This obstacle was eventually surpassed, and the outcome was the sensor’s heart rate
BPM visualization on the web page. The MongoDB Atlas cloud platform hosting the
MongoDB database is connected to both local and remote servers. The remote server hosted

by the PaaS Heroku has deployed the website online, using the bought domains (psytechy.com
and psytechy.pt).

Although the website receives the sensor's heart rate BPM data, it is only visualized on
the webpage. The initial expectation was for the platform to provide useful information in a

report or send alerts based on the sensor's data.

This dissertation provides some examples, scenarios, and steps to develop an online
platform that provides health and psychological help using wearable sensors. The gap identified
in the literature review was the lack of well-documented guides and results in developing a
platform such as the one in this dissertation, transmitting wearable sensor's data to a website,
especially using recent software applications and frameworks, such as Node.js and MongoDB

Atlas.

Hopefully, this dissertation's project and findings contribute to developing similar web-
based approach applications and platforms that use Telehealth or wearable sensors. As
mentioned in the literature review, there is a growing impact of Telehealth applications
contributing to the healthcare industry and our everyday lives. Multiple studies prove the area’s
usefulness, and new findings being researched and investigated by the hour. It is an area that
will impact the world's future, and as new technologies emerge, so will the possibilities for

Telehealth.

58

6.2: Future Work

There are multiple ways to advance the research and development of this dissertation's project.

Due to lack of time and the appearance of some obstacles in the project's development, some

expectations were not entirely fulfilled.

Although this dissertation delivers stable research findings and a decent description of

the development steps and events carried out, these are some of the areas where future work

can be applied:

Hardware components — The hardware used in this dissertation's project established a
stable foundation for the rest of the development. This foundation was a critical
requirement to make sure everything would be operational and synchronized.
Consequentially, the hardware used was more superficial, and it did not involve the risk
of a more complex and sophisticated alternative. Now that the dissertation's project is
completed and all the connections and communications between the hardware and
software are functional, new hardware components experiments can be conducted.
More complex microcontroller boards can be used, such as the “Arduino UNO Wifi
Rev2” [37], which would remove the need for a USB cable and instead establish the
communication to the computer through Bluetooth or Wi-Fi, resulting in a more
comfortable usage of the heart rate sensor. An Arduino Lilypad [35] board can be
experimented with for a more wearable solution approach or even using Raspberry Pi
[26] compatible hardware instead of Arduino. Experiments on different heart rate
sensors with an alternative heart rate reading technique of PPG can also be examined,
such as ECG [24] sensors or chest straps with heart rate monitors.

Mobile application — Just as the website, a mobile application would also be an optimal
way of divulging the sensor's data information and alerts. A notification system could
be employed, where the user is alerted whenever there is a potential emergency. The
smartphone might also have features that allow for activity monitoring or fall detection,
which could be implemented in the project and deliver useful healthcare information.
The mobile application would be connected to the same MongoDB Atlas cloud
database as the local and remote servers hosting the websites, and the sensor's data
shared through them all.

Website features — As mentioned before, one of the website expectations was not only
to be able to show the sensor's heart rate BPM data but to also provide more detailed

information about it, in the form of a report, and create alerts for the user, in case of an

59

60

emergency. Other features could also improve the website's functionality and
usefulness, such as more detailed psychological assessment and Telehealth services
information. Informational videos, interactive games, and questionnaires are possible
website features that would make the website more impactful and contribute to the

project's development.

Appendix

Heart Rate BPM Algorithm

All the Arduino IDE sketches come with two built-in default functions named setup and loop:

The setup: The “setup” function executes the statements inside it at the beginning of the
sketch/program. Doing this initializes variables, input and output pin modes, and other

libraries. After the execution is completed, the program will then go on to the loop function.

In the setup function (Figure A.1) the method “Serial.begin(9600)” is going to be called
in order to open up the serial port (COM3) and set its data rate, also known as “baudrate”, to
9600 bits per second (bps). With this, the heart rate sensors can now exchange messages with

the serial monitor at the established baudrate.

Figure A.1: Setup Function

Later, the local Node.js web server will try to connect and listen to the same serial port
(COM3) and it will also be necessary to assign the exact matching baudrate of 9600 bps or the
web server will not receive any data from the microcontroller board transmitting the sensor’s
data. Through that connection the heart rate sensor’s data will be handled in the web server and

then visualized online on a website.

The loop: The “loop” function will automatically execute after the setup function is
completed and it will repeat the statements inside itself indefinitely until the program is

stopped.

The code written inside the loop function reads the raw data sent through the sensor and
calculates the associated heart rate in BPM. After calculating the desired heart rate BPM the
function then outputs that result. The heart rate BPM in a PPG sensor is calculated by counting
the number of systolic peaks and the interval between them per minute. Figure A.2 shows an
example of raw data gathered from a PPG sensor and the mentioned systolic peaks necessary

to calculate the heart rate BPM output.

61

o
.
a
s
]
s

Sysiolc poak

5 0 f
r}‘
.05
a
1.5
0 1000 2000 3000 4000 5000 6000
Time (ms)

Figure A.2: Example of Raw Data from a PPG Sensor

Knowing the time interval (peak interval or Peak to Peak Interval) between systolic

peaks it is possible to calculate the frequency using the following formula A.1:

1
peak_interval

frequency = (A.1)

In order to get the desired result in BPM all that’s left to do is apply the formula A.2,

where the frequency is converted from milliseconds to seconds and then to minutes.
Heart Rate BPM = frequency * 60 * 1000 (A.2)

The raw data that is being sent from the heart rate sensors used in this project, before
being calculated into BPM, can be seen in Figure A.3 (using Arduino IDE). This data, although
imperfect, resembles the desired systolic peaks and their intervals which are needed in order to

calculate the sensors heart rate BPM.

62

@ com3

8700

865.0

8800

Beb U

850.0 T
1rrer 12387

9600 baud w

T
12487

T
12587

Send

t
12687

Figure A.3: Project Sensor's Raw Data Gathered from Arduino IDE

1
12787

Noline ending «

The loop function, as mentioned before, is going to be responsible for handling the

sensor data and calculating the heart rate BPM result to output. Figure A.4 depicts a flowchart

of the algorithm behind the loop function.

Senszor Data Reading

b

[Start }

| |Set IenoreReadings
to False

Reading is higher than
Upper Threshold

Reading is lower than
Lower Threshold

gnoreReadings
is True

Set IsnoreReadings
to True

Set first pulse time equal [
to the second pulse time |

Qutput the result

New Pulze reading
detected

First pulse detected

is True

F

-

T

Store the second Store the first pulse
pulze time time
Caleul “h H %
. te t rt
R:r:%;"fi u:in:?he Set First pulse detected
2 g .
times stored e

Figure A.4: Flowchart of the Loop Function Algorithm

These are the steps used in the loop function and demonstrated in the flowchart above

(Figure A.4), to calculate the heart rate BPM to output:

63

Stepl: To calculate and output the heart rate BPM values the loop function starts by

reading and storing the data sent through the sensor inside a variable “dataReading”.

Step2: If the “dataReading” value passes a certain “upperThreshold” (518) and the
“ignoreReading” Boolean is false, then it means a pulse was detected and the time when it was
detected is stored inside the variable “firstPeakInterval”. After this the Booleans

“ignoreReading™ and “firstPeakDetected” are both set to true.

Step3: While the “ignoreReading” Boolean is true the loop function will ignore the
readings until the “dataReading” value passes a “lowerThreshold” (490), which will set the

“ignoreReading” Boolean to false and enable the next pulse detection or peak reading.

Step4: Since the first peak was already detected (“firstPeakDetected” is true), the loop
function will repeat the step 2 and this time it will store the time when the peak or pulse was

detected inside the variable “secondPeakInterval”.

Step5: The frequency or heart rate is the result of 1 / secondPeaklInterval -
firstPeakInterval. Finally, the heart rate in BPM is the result of frequency * 60 (minutes) * 1000
(convert to seconds), after it is calculated the result is outputted. The firstPeakInterval value is

then set equal to the secondPeakInterval and a new secondPeakInterval will be assigned.

Step6: The loop function using the algorithm above will keep running and calculating

the heart rate BPM to output until the program is stopped.

Figure A.5 shows the sketch program containing the heart rate sensor’s BPM algorithm
code, developed in Arduino IDE.

64

int UpperThreshold = 512;
int LowerThreshold = 430;
void Iocopi) {
dataReading = analoglead(0);

/4 Heart beat reaches upperlhreshold meaning a2 pulse was detected.

if {dataReading > upperThreshold && ignoreReading = false) |
if (firstPeakbDetected = Izlse){
firstPeakInterwval = millis{);
firstPeakDetected = true;
I
else{
secondPeakInterval = millis{);
peakIncterval = secondPeakInterwval - firstPeakInterval;
firstPeakInterval = secondPeakInterval;
}
ignoreReading = trous;
}

£/ Heart beat leaves the upperThreshold and starts waiting for another peak/pulse.
if {dataReading < lowerThreshold) {
ignoreReading = falsejy

BEM = (1.0/peakInterval) * €0_.0 % 1000;

Serial .println{BPH) ;

Figure A.5: Heart Rate Sensor's BPM Algorithm Code

65

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Bibliography

“Applied Sciences | An Open Access Journal from MDPL”
https://www.mdpi.com/journal/applsci (accessed Nov. 30, 2020).

“International Conference on Applied Science and Technology ICAST in January 2021
in Bangkok.” https://waset.org/applied-science-and-technology-conference-in-january-

2021-in-bangkok (accessed Nov. 30, 2020).

S. Devaraj and R. Kohli, “Performance Impacts of Information Technology: Is Actual

Usage the Missing Link?,”” 2003.

“Information Technology Payoft in the Health-Care Industry: A Longitudinal Study °
SARV DEVARAJ AND RAHV KOHLI.”

M. Thouin, J. J. Hoffman, and E. W. Ford Thouin, “The Effect of Information
Technology (IT) Investments on Firm-Level Performance in the Healthcare Industry,”

2008.

D. M. Cutler and M. McClellan, “Is technological change in medicine worth it?,” Health
Aff., vol. 20, no. 5, pp. 11-29, Aug. 2001, doi: 10.1377/hlthaff.20.5.11.

“Heart rate - Wikipedia.” https://en.wikipedia.org/wiki/Heart rate (accessed Nov. 16,
2020).

F. S. Routledge, T. S. Campbell, J. A. McFetridge-Durdle, and S. L. Bacon,
“Improvements in heart rate variability with exercise therapy,” Canadian Journal of
Cardiology, vol. 26, no. 6. Pulsus Group Inc., pp. 303-312, 2010, doi: 10.1016/S0828-
282X(10)70395-0.

U. R. Acharya, K. P. Joseph, N. Kannathal, C. M. Lim, and J. S. Suri, “Heart rate
variability: A review,” Medical and Biological Engineering and Computing, vol. 44, no.

12. Springer, pp. 1031-1051, Dec. 17, 2006, doi: 10.1007/s11517-006-0119-0.

G. E. Billman, “Heart rate variability - A historical perspective,” Front. Physiol., vol. 2
NOV, 2011, doi: 10.3389/fphys.2011.00086.

M. Malik and A. J. Camm, “Heart rate variability,” Clin. Cardiol., vol. 13, no. 8, pp.
570-576, Aug. 1990, doi: 10.1002/¢clc.4960130811.

67

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

68

M. Javorka, 1. Zila, T. Balharek, and K. Javorka, “Heart rate recovery after exercise:
Relations to heart rate variability and coplexity,” Brazilian Journal of Medical and
Biological Research, vol. 35, no. 8. Associacao Brasileira de Divulgacao Cientifica, pp.

991-1000, Aug. 01, 2002, doi: 10.1590/S0100-879X2002000800018.

J. P. A. Delaney and D. A. Brodie, “Effects of short-term psychological stress on the
time and frequency domains of heart-rate variability,” Percept. Mot. Skills, vol. 91, no.

2, pp. 515-524, Oct. 2000, doi: 10.2466/pms.2000.91.2.515.

C. F. Sharpley, “Heart Rate Reactivity and Variability as Psychophysiological Links
Between Stress, Anxiety, Depression, and Cardiovascular Disease: Implications for
Health Psychology Interventions,” Aust. Psychol., vol. 37, no. 1, pp. 5662, Mar. 2002,
doi: 10.1080/00050060210001706686.

V. K. Yeragani et al., “Heart rate variability in patients with major depression,”

Psychiatry Res., vol. 37, no. 1, pp. 3546, 1991, doi: 10.1016/0165-1781(91)90104-W.

C. B. Taylor, “Depression, heart rate related variables and cardiovascular disease,” Int.
J. Psychophysiol., vol. 78, mno. 1, pp. 80-88, Oct. 2010, doi:
10.1016/j.1jpsycho.2010.04.006.

A. Diaz, M. G. Bourassa, M. C. Guertin, and J. C. Tardif, “Long-term prognostic value
of resting heart rate in patients with suspected or proven coronary artery disease,” Eur.

Heart J., vol. 26, no. 10, pp. 967-974, May 2005, doi: 10.1093/eurheartj/ehil 90.

F. Fatehi and R. Wootton, “Telemedicine, telehealth or e-health? A bibliometric analysis
of the trends in the use of these terms,” Journal of Telemedicine and Telecare, vol. 18,
no. 8. SAGE PublicationsSage UK: London, England, pp. 460—464, Dec. 01, 2012, doi:
10.1258/jtt.2012.GTH108.

E. R. Dorsey and E. J. Topol, “State of Telehealth,” N. Engl. J. Med., vol. 375, no. 2,
pp. 154-161, Jul. 2016, doi: 10.1056/nejmral601705.

D. Dias and J. P. S. Cunha, “Wearable health devices—vital sign monitoring, systems
and technologies,” Sensors (Switzerland), vol. 18, no. 8. MDPI AG, Aug. 01, 2018, doi:
10.3390/s18082414.

S. Majumder, T. Mondal, and M. J. Deen, “Wearable sensors for remote health
monitoring,” Sensors (Switzerland), vol. 17, no. 1. MDPI AG, Jan. 12, 2017, doi:

[22]

[23]

[24]

[25]

[28]

[29]

[30]

[31]

[32]

10.3390/s17010130.

E. S. Izmailova, J. A. Wagner, and E. D. Perakslis, “Wearable Devices in Clinical Trials:
Hype and Hypothesis,” Clin. Pharmacol. Ther., vol. 104, no. 1, pp. 42-52, Jul. 2018,
doi: 10.1002/cpt.966.

J. Allen, “Photoplethysmography and its application in clinical physiological
measurement,” Physiological Measurement, vol. 28, no. 3. IOP Publishing, p. R1, Mar.
01, 2007, doi: 10.1088/0967-3334/28/3/R01.

“(No Title).” http://www.doctor33.it/cont/download-center-files/17519/cap-
electrocardiography-x20968allp1.pdf (accessed Nov. 17, 2020).

G. Lu, F. Yang, J. A. Taylor, and J. F. Stein, “A comparison of photoplethysmography
and ECG recording to analyse heart rate variability in healthy subjects,” J. Med. Eng.
Technol., vol. 33, no. 8, pp. 634—641, Nov. 2009, doi: 10.3109/03091900903150998.

“What is a Raspberry Pi? | Opensource.com.”

https://opensource.com/resources/raspberry-pi (accessed Nov. 15, 2020).

“What are the differences between Raspberry Pi and Arduino?”
https://www.electronicshub.org/raspberry-pi-vs-arduino/ (accessed Nov. 15, 2020).

“Gravity: Heart Rate Monitor Sensor For Arduino - DFRobot.”
https://www.dfrobot.com/product-1540.html (accessed Nov. 15, 2020).

“VMA340: MODULO DE SENSOR DE PULSACAO / FREQUENCIA CARDIACA
PARA ARDUINO® - Velleman — Wholesaler and developer of electronics.”
https://www.velleman.eu/products/view/?1d=450580 (accessed Nov. 15, 2020).

“DIY Heart Rate Sensor - Arduino Project Hub.”
https://create.arduino.cc/projecthub/Ingeimaks/diy-heart-rate-sensor-a96e89 (accessed

Nov. 15, 2020).

“Gravity: Analog Heart Rate Monitor Sensor (ECG) For Arduino | Varios.”
https://www.ptrobotics.com/sensores-variados/5740-gravity-analog-heart-rate-

monitor-sensor-ecg-for-arduino.html (accessed Nov. 15, 2020).

“DFRduino UNO R3 - Compatible with Arduino Uno - DFRobot.”
https://www.dfrobot.com/product-838.html (accessed Nov. 15, 2020).

69

[33]

[34]

[35]

[36]

[37]

[38]

[40]

[41]

[42]

[43]

[44]

[45]

70

G. Gridling and B. Weiss, “Introduction to Microcontrollers,” 2007.

“Various Kinds Of Microcontroller Boards and Its Applications.”
https://www .elprocus.com/different-types-of-microcontroller-boards/ (accessed Nov.

18, 2020).

“Arduino - ArduinoBoardLilyPad.”
https://www.arduino.cc/en/Main/ArduinoBoardLilyPad/ (accessed Nov. 15, 2020).

“Arduino - ArduinoBoardNano.”
https://www.arduino.cc/en/pmwiki.php?n=Main/ArduinoBoardNano (accessed Nov.
15, 2020).

“ARDUINO UNO WiFi REV2 | Arduino Official Store.”

https://store.arduino.cc/arduino-uno-wifi-rev2 (accessed Nov. 15, 2020).

“DFRobot I0_Expansion_Shield for Arduino V7 SKU DFR0265.”
https://wiki.dfrobot.com/IO_Expansion_Shield for Arduino V7 _SKU_ DFR0265
(accessed Nov. 18, 2020).

“What is Arduino?” Accessed: Nov. 15, 2020. [Online]. Available:
https://www.sparkfun.com/arduino_guide.

“Built-In Examples | Arduino.” https://www.arduino.cc/en/Tutorial/BuiltinExamples
(accessed Nov. 15, 2020).

“A professional collaborative platform for embedded development - PlatformlO.”
https://platformio.org/ (accessed Nov. 15, 2020).

“Visual Studio Code - Code Editing. Redefined.” https://code.visualstudio.com/
(accessed Nov. 15, 2020).

“Arduino Playground - Eclipse.” https://playground.arduino.cc/Code/Eclipse/ (accessed
Nov. 15, 2020).

“Solution stack,” Comput. Deskt. Encycl., 2015, Accessed: Nov. 15, 2020. [Online].
Available: https://encyclopedia2.thefreedictionary.com/Solution+stack.

“MongoDB: The Definitive Guide: Powerful and Scalable Data Storage - Kristina
Chodorow - Google Livros.” https://books.google.pt/books?hl=pt-
PT&lr=&i1d=uGUKIiINkKRJOC&oi=ftnd&pg=PP1&dgq=mongodb&ots=haiyNfeWyt&si

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

g=tdgl DRWMPreOcsVITsY | EpMpMoo&redir_esc=y#v=onepage&q=mongodb&f=fa
Ise (accessed Nov. 15, 2020).

“mongoose - npm.” https://www.npmjs.com/package/mongoose (accessed Nov. 15,

2020).

“MongoDB Atlas — MongoDB Atlas.” https://docs.atlas.mongodb.com/ (accessed
Nov. 15, 2020).

“Express - Node.js web application framework.” https://expressjs.com/ (accessed Nov.

15, 2020).

S. Tilkov and S. Vinoski, “Node.js: Using JavaScript to build high-performance network
programs,” IEEE Internet Comput., vol. 14, no. 6, pp. 80-83, Nov. 2010, doi:
10.1109/MIC.2010.145.

“6 Web Development Stacks to Try in 2017 - WebiNerds.” https://webinerds.com/6-
web-development-stacks-try-2017/ (accessed Nov. 15, 2020).

A. Karanjit, “MEAN vs. LAMP Stack,” 2016. Accessed: Nov. 15, 2020. [Online].
Available: https://repository.stcloudstate.edu/csit_etds/11.

A. Holovaty and J. Kaplan-Moss, The Definitive Guide to Django Web Development
Done Right. 2008.

C. Gyorodi, R. Gyorodi, G. Pecherle, and A. Olah, “A comparative study: MongoDB
vs. MySQL,” Jul. 2015, doi: 10.1109/EMES.2015.7158433.

“Domain name - Wikipedia.” https://en.wikipedia.org/wiki/Domain_name (accessed

Nov. 15, 2020).

P. V. Mockapetris and K. J. Dunlap, “Development of the Domain Name System,” in
Symposium Proceedings on Communications Architectures and Protocols, SIGCOMM

1988, Aug. 1988, pp. 123-133, doi: 10.1145/52324.52338.

“What is top-level Domain | TLD meaning - Namecheap.”
https://www.namecheap.com/domains/what-is-a-tld-definition/ (accessed Nov. 15,

2020).

“Domain name registrar - Wikipedia.”

https://en.wikipedia.org/wiki/Domain_name_registrar (accessed Nov. 15, 2020).

71

[58]

[59]

[60]

[61]

[62]

[63]

[66]

[67]

[68]

[69]

72

“GoDaddy - Wikipedia.” https://en.wikipedia.org/wiki/GoDaddy (accessed Nov. 15,
2020).

“Dominios.pt, Alojamento Web e Cloud Server - Dominios.” https://www.dominios.pt/

(accessed Nov. 15, 2020).
“Heroku Dev Center.” https://devcenter.heroku.com/ (accessed Nov. 15, 2020).

“Heroku Alternatives — Top 5 Picks | by Brenda Clark | Medium.”
https://medium.com/@brenda.clark/heroku-alternatives-top-5-picks-9095cef91d91
(accessed Nov. 15, 2020).

“Low-code backend to build modern apps | Back4App.” https://www.back4app.com/
(accessed Nov. 15, 2020).

“AWS Elastic Beanstalk — Implantar Aplicativos da Web.”
https://aws.amazon.com/pt/elasticbeanstalk/ (accessed Nov. 15, 2020).

“Plataforma do App Engine para aplicativos | Google Cloud.”
https://cloud.google.com/appengine (accessed Nov. 15, 2020).

S. D. Gosling, S. Vazire, and O. P. John, “Should We Trust Web-Based Studies? A
Comparative Analysis of Six Preconceptions About Internet Questionnaires,” 2004, doi:

10.1037/0003-066X.59.2.93.

M. B. Sexton, M. R. Byrd, W. T. O’Donohue, and N. N. Jacobs, “Web-based treatment
for infertility-related psychological distress,” Arch. Womens. Ment. Health, vol. 13, no.
4, pp. 347-358, Aug. 2010, doi: 10.1007/s00737-009-0142-x.

G. Alan, “Psychology of Addictive Behaviors Test-Retest Reliability of Alcohol
Measures: Is There a Difference Between Internet-Based Assessment and Traditional
Methods?,” Miller, 2002. Accessed: Nov. 18, 2020. [Online]. Available:
http://gatewayl.ma.ovid.com/ovidweb.cgi.

M. J. Gregoski et al., “Development and validation of a smartphone heart rate
acquisition application for health promotion and wellness telehealth applications,” Int.

J. Telemed. Appl., 2012, doi: 10.1155/2012/696324.

“Nonin 9560 9560 Bluetooth Finger Pulse Oximeter: Amazon.co.uk: Business, Industry

& Science.” https://www.amazon.co.uk/Nonin-9560-Bluetooth-Finger-

[70]

[71]

[72]

[73]

[74]

[76]

[77]

[78]

[79]

[80]

[81]

Oximeter/dp/BO19F6MVKG (accessed Nov. 18, 2020).

H. Gjoreski, A. Rashkovska, S. Kozina, M. Lustrek, and M. Gams, “Telehealth using
ECG Sensor and Accelerometer,” 2014.

N. V. Panicker and A. S. Kumar, “Tablet PC Enabled Body Sensor System for Rural
Telehealth Applications,” Int. J. Telemed. Appl., vol. 2016, 2016, doi:
10.1155/2016/5747961.

“Fitbit heart rate monitoring explained.” https://www.wareable.com/fitbit/fitbit-heart-
rate-monitor-guide-330 (accessed Nov. 18, 2020).

“Apple Watch heart rate guide: How to use all of Apple’s HR features.”
https://www.wareable.com/apple/apple-watch-heart-rate-monitor-guide-340 (accessed

Nov. 18, 2020).

“Garmin heart rate guide: Features, devices and accuracy.”
https://www.wareable.com/garmin/garmin-heart-rate-monitor-guide-230 (accessed

Nov. 18, 2020).

“Heart rate monitor - Wikipedia.” https://en.wikipedia.org/wiki/Heart rate monitor

(accessed Nov. 18, 2020).

“Garmin HRM-Dual™ | Heart Rate Monitor with Chest Strap.”
https://buy.garmin.com/en-US/US/p/649059 (accessed Nov. 18, 2020).

“Polar H10 | Heart rate monitor chest strap | Polar Global.”
https://www.polar.com/en/products/accessories/H10_heart rate sensor (accessed Nov.

18, 2020).

“TICKR Heart Rate Monitor | Wahoo Fitness EU.”
https://eu.wahoofitness.com/devices/heart-rate-monitors/tickr/buy (accessed Nov. 18,

2020).

“VitalPatch - VitalConnect.” https://vitalconnect.com/solutions/vitalpatch/ (accessed

Nov. 18, 2020).

“SerialPort Usage - Node SerialPort.” https://serialport.io/docs/guide-usage (accessed
Nov. 25, 2020).

“Introduction | Socket.IO.” https://socket.io/docs/v3/index.html (accessed Nov. 25,

73

[82]

[83]

[84]

[85]

[86]

74

2020).
“EJS -- Embedded JavaScript templates.” https://ejs.co/ (accessed Nov. 25, 2020).

“npm (software) - Wikipedia.” https://en.wikipedia.org/wiki/Npm_(software) (accessed
Nov. 25, 2020).

“folders | npm Docs.” https://docs.npmjs.com/cli/v6/configuring-npm/folders (accessed
Nov. 25, 2020).

“Understanding the package.json file.” https://blog.ezekielekunola.com/understanding-
the-package.json-file (accessed Nov. 25, 2020).

“The Heroku CLI | Heroku Dev Center.” https://devcenter.heroku.com/articles/heroku-
cli (accessed Nov. 25, 2020).

