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Resumo

Os modelos de regressão de quantis surgem como uma metodologia Value-at-Risk (VaR)

alternativa que não requer nenhum pressuposto especí�co quanto à distribuição dos re-

tornos. Esta dissertação descreve e testa um modelo recente, proposto por Zheng et al.

(2018), para estimação do VaR através da regressão de quantis e introduz uma transfor-

mação não trivial que permite o uso de modelos Generalized Autoregressive Conditional

Heteroskedasticity (GARCH). O estudo desenvolvido por este investigador apresenta resul-

tados promissores relativamente ao uso desta abordagem de estimação do quantil condi-

cional para um modelo GARCH(1,1). Testamos este novo modelo comparando-o com

um grupo de benchmarks compostos por metodologias VaR tradicionais e outros mode-

los VaR de regressão de quantis. De modo a avaliar o desempenho deste novo modelo

VaR, geramos retornos através de simulações de Monte Carlo que seguem um processo

GARCH(1,1) idêntico ao que foi utilizado por Zheng et al. (2018). Depois, mudamos

os parâmetros do processo gerador de retornos para, na nossa opinião, suposições mais

realistas quanto à volatilidade diária no longo prazo. Con�rmamos a superioridade do

desempenho deste novo modelo quando os parâmetros do processo gerador de retornos

é o mesmo do que o que foi de�nido por Zheng et al. (2018), no entanto, o mesmo não

acontece quando utilizamos parâmetros mais realistas. Os novos resultados mostram que

a parametrização de Zheng et al. (2018) penaliza bastante o desempenho dos benchmarks.

Palavras-chave: Regressão de Quantis, Value-at-Risk, GARCH, Simulações de Monte

Carlo

Classi�cação JEL: C32, G32.
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Abstract

Quantile regression models emerges as an alternative Value-at-Risk (VaR) methodology

that does not require any speci�c distribution assumption. This dissertation describes

and tests a recent quantile regression VaR model that introduces a nontrivial transfor-

mation enabling the use of Generalized Autoregressive Conditional Heteroskedasticity

(GARCH) volatility models, proposed by Zheng et al. (2018). His study has shown that

this approach to the conditional quantile estimation for a GARCH(1,1) model provides

promising results. We test this new model against a group of benchmarks composed by

traditional VaR methods and other quantile regression VaR models. In order to evaluate

the performance of this new VaR model, we generate returns by Monte Carlo simulations

following a GARCH(1,1) process similar to what was carried out by Zheng et al. (2018).

After, we change the returns process parameters to, in our opinion, more realistic assump-

tions on the daily persistent volatility. We con�rm the superior performance of the new

proposed model when the return generating process is simulated with Zheng et al. (2018)

parameters, however, the same does not happen when a more reasonable parametrization

is simulated. New results show that the benchmark group is heavily penalized by Zheng

et al. (2018) parametrization.

Keywords: Quantile Regression, Value-at-Risk, GARCH, Monte Carlo Simulations

JEL Classi�cation: C32, G32.
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1 Introduction

Value-at-Risk (VaR) tells us how much the loss in a portfolio can be, over a given time

horizon, for a given con�dence level. It is a well established tool that allows us to simplify

a very complex concept, the risk of a portfolio, into a monetary amount. This is one of the

reasons that made VaR so popular. VaR has been widely used by �nancial institutions and

regulators for many years and during that time several VaR models were developed. There

is not a single model that can be de�ned as being the state-of-the-art since all VaR models

have their strengths and weaknesses. Traditional VaR models can be classi�ed into three

main groups: Parametric VaR, Historical VaR and Monte Carlo VaR models. Parametric

VaR models assume that portfolio returns follow a given distribution, usually the Normal

or the Student's-T distribution, which is quite a strong assumption to make. Historical

VaR models makes the weaker assumption that the empirical distribution observed in

a given sample, whatever it may be, will remain the same in the future. Monte Carlo

VaR models work with a chosen functional form for the stochastic process that generates

returns and, with that, it is possible to estimate VaR based on simulations of series of

portfolio returns. This can become computationally intense and requires expertise to

correctly de�ne the returns' generating process. Thus, the demand for a robust model

that is able to produce accurate forecasts not only in normal market conditions but,

specially, on turbulent times like the massive volatility increase that we experienced with

the novel coronavirus world pandemic crisis, motivates the study of new types of models.

In the recent years quantile regression VaR models have gained popularity for their

�exibility. These models estimate the VaR by running a quantile regression of the port-

folio returns against some explanatory variables, which we are completely free to choose.

Quantile regression VaR models have the advantage of not making any explicit distribu-

tional assumption regarding portfolio returns. There is still a lot of research to be done,

but recent studies show that these models tend to perform better than the traditional

VaR models (Guo, 2013). Motivated by the promising results, the lack of studies around

this topic and the importance of a robust model to assess market risk, our main purpose

will be to evaluate the performance of a new quantile regression VaR model proposed by

Zheng et al. (2018), comparing it with other quantile regression speci�cations and with

traditional VaR models. The model proposed by Zheng et al. (2018) estimates the con-

ditional quantile of the portfolio returns with an hybrid quantile regression estimator for

a Generalized Autoregressive Conditional Heteroskedasticity (GARCH) process. The au-

thor introduces a transformation that allows the use of the Bollerslev (1986) GARCH(1,1)

model, but which can be extended to any other model of the conditional variance. This

transformation overcomes linearity technical di�culties on quantile regression estimation

of conditional heteroskedastic models. One of his experiments have concluded that this

model is superior to the well known RiskMetrics model.
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Similar to Zheng et al. (2018) methodology, we simulate returns using Monte Carlo

simulations with the author original GARCH simulated parameters and also with a dif-

ferent set of parameters that we believe to be more adjusted to model the daily mar-

ket returns volatility. Additionally, because we can not be sure that �nancial returns

follow heteroskedastic processes throughout all the time, we also simulate returns with

a Skewed Generalized T Student (SGT) distribution with 4 di�erent parametrizations.

These parametrizations represent a Normal distribution, a symmetric distribution with

heavy tails, a distribution with heavy tails and negative skewness and �nally a distribu-

tion with heavy tails and positive skewness. We simulate 4500 daily returns and de�ne a

test window of 10 years of 1-day VaR estimations. VaRs are estimated at the 99%, 97.5%

and 95% con�dence levels. We run 1000 simulations for each return generating process.

We evaluate the performance of all models by comparing the estimated VaR with the true

VaR that can be obtained from the knowledge of the return generating process. With

this procedure we avoid the use of backtesting methods that have some limitations and

would introduce noise into the analysis. Hence, we compare the models accuracy across

all simulations with the normalized root mean squared deviation (NRMSD).

We de�ne two quantile regression models as benchmarks. The �rst uses only a volatil-

ity estimate as explanatory variable whereas the second adds a constant term to the

former. Two di�erent volatility estimation methods are considered, the exponentially

weighted moving average (EWMA) and the equally weighted method over a rolling sam-

ple. For all these, two versions are also tested, one with reestimation of the quantile

regression parameters every 20 days and another that does not reestimate parameters.

Other benchmarks are considered from the traditional VaR models such as the Historical

VaR, the Historical Volatility Adjusted VaR, the RiskMetrics VaR model (Parametric

Normal with EWMA volatility estimates), the Parametric Normal with equally weighted

volatility estimates over a rolling sample, the Parametric SGT EWMA and Parametric

SGT with equally weighted volatility models. Finally, a di�erent version of the GARCH

quantile regression model is created by substituting the variance estimate by the true

simulated variance. This way we can better understand if knowing the true volatility

is a major improvement to the VaR estimates or even with that advantage the quantile

regression model struggles to e�ciently predict the conditional quantile.

The analysis of the NRMSD results from the simulation of the GARCH return gen-

erating process with the parametrization of Zheng et al. (2018) con�rms the superiority

of the quantile regression VaR model proposed by Zheng et al. (2018). However, using

a more reasonable GARCH parametrization for the return generating process shows that

this is no longer the case. As it turns out, the performance of the quantile regression VaR

model proposed by Zheng et al. (2018) is weaker than that of several benchmark models

under reasonable GARCH parametrizations for the return generating process, but is more

robust to di�erent parametrizations. The parametrization chosen by Zheng et al. (2018)

2



just happens to heavily penalize the performance of the benchmark models.

From the simulations of the SGT return generating process, the NRMSD results show

that the quantile regression VaR model proposed by Zheng et al. (2018) has, once more,

a robust performance but it is still not superior to the other quantile regression bench-

marks tested. Regarding the benchmark group, the quantile regression VaR model with a

constant and an EWMA estimate seems to perform similar to the quantile regression VaR

model proposed by Zheng et al. (2018), with slightly superior results. Also, the quantile

regression VaR model with the equally weighted volatility estimation method is robust to

di�erent simulations of the SGT return generating process. It is important to note that,

in this homoskedastic return generating process, adding a constant term to the quantile

regression VaR model with equally weighted volatility does not improve the performance

of this model. On the contrary, adding this constant term to the quantile regression spec-

i�cation with an EWMA volatility has a signi�cantly performance improvement, when

compared with the quantile regression VaR model with only an EWMA volatility esti-

mate as explanatory variable. Overall, the analysis of the NRMSD results show that the

reestimation of parameters has signi�cant improvement on reducing the NRMSD results

dispersion, specially when we consider the results from the simulation of the SGT return

generating process.

The remainder of this dissertation is organized as follows: in Section 2 we summarize

the existing literature regarding VaR models, including the Zheng et al. (2018) model;

Section 3 we present the details regarding the simulations carried, the evaluation criteria

and the di�erent models tested; Section 4 we analyze the main NRMSD results statistics;

Section 5 concludes.
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2 Literature Review

We can �nd some debate about VaR's accuracy, the necessary probabilistic assumptions

and the large variety of models (Beder, 1995). Despite that, VaR has been used by most

of the �nancial institutions to measure market risk. We can �nd di�erent examples of

its use to assess the portfolio's �nancial exposure and, additionally, as a tool to estab-

lish minimum capital requirements (Federal Deposit Insurance Corporation, 1999; Basel

Comittee, 2004; European Commission, 2014). In recent years, the Basel Accords on

banking regulation have been trying to improve VaR's accuracy (Chen, 2013).

The �rst application of Value-at-Risk was in the early 1990s, mainly due to the work

of J.P. Morgan's internal risk management department, where it was being developed

and used since the late 1980s (Holton, 2002). The h-day V aRh,α, for a con�dence level

of (100 − α)%, where Ft−1 represents the information available at time t − 1, can be

mathematically de�ned as:

Pr(rt < −V aRh,α|Ft−1), (1)

The RiskMetrics VaR model (Morgan J P and Reuters TM, 1996) assumes that returns

are normally distributed. Additionally, the forecast for the conditional variance is made

by using an exponentially decaying weighted average. This method is called EWMA

(Exponentially Weighted Moving Average) and its goal is to more accurately capture the

current market conditions in terms of return volatility. Towards that end, instead of

giving an equal weight to all return observations, it gives more weight to the most recent

ones. The major downside of this model is that it makes a distributional assumption

(normality), and also sets a simplifying assumption by de�ning the decay factor as a

prede�ned number, that may not be suitable for all portfolios. We �nd a broad number of

scienti�c evidence that �nancial returns do not follow a normal distribution (Guo, 2013).

It is well documented that equity returns often exhibit a leptokurtic distribution, hence

with heavier tails than a normal distribution with the same variance. Also, the distribution

of �nancial returns is usually asymmetric with negative skew. This is fundamentally

explained by the fact that we can typically observe large extreme events often that what it

would be expected in a normal distribution and, also, the probability is more concentrated

on the left tail.

The RiskMetrics VaR model was the building block for other parametric methods.

The main developments were made on the volatility speci�cation, the use of alternative

distribution assumptions that can capture skewness and kurtosis of �nancial returns and

on higher-order conditional moments that vary over time (Abad, Benito, and López,

2014).

Another class of models are the non-parametric. The main one is the Historical VaR

model that describes the future returns distribution as an approximation of the past

empirical sample's distribution. V aRα is estimated as the α quantile. It relies a lot on
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the sample chosen, particularly on the sample size that has to be large enough to allow

statistical inference but cannot go outside of the volatility cluster (Dowd, 2007). Later,

using the same principles with a di�erent approach, the Historical VaR with Volatility

Adjustment was proposed by Hull and White (1998) in an attempt to overcome the

major di�culties of the previous model. The series of returns is re�ned with a technical

adjustment that re�ects the current market volatility and the α quantile is then estimated

based on that series of volatility-adjusted returns.

Monte Carlo VaR models are very �exible models that allow us to simulate future re-

turns based on past returns distribution, on prede�ned distributions or based on stochastic

processes. Then, we can estimate V aRα empirically, by using simulated distributions. It

is specially useful for non-linear portfolios (Ammann and Reich, 2001). This �exibility

has some drawbacks as it can be computationally intensive and we can be setting the

wrong choices of the simulation process (Abad, Benito, and López, 2014).

Quantile regression VaR models were introduced by Koenker and Bassett (1978) and

have attracted a lot of attention by researchers. If we consider the following linear model:

rt = β′xt + ut, (2)

Where ut are i.i.d. innovations with mean 0, xt is a vector of regressors and β is a

vector of unknown parameters, then the τ th quantile of rt can be estimated as:

Qτ (rt|xt) = x′tβ̂τ , (3)

where

β̂τ = arg min
β

∑
t

(rt − x′tβ)
(
τ − Irt−x′tβ<0

)
(4)

and Iz is and indicator function of event, assuming a value of 1 if z is true and 0 otherwise.

The process above consists on minimizing the tilted deviations.

This allowed a robust approach to estimate models for conditional quantiles likewise

linear regression methods for conditional mean. Portnoy (1991) studied the asymptotic

properties that allowed non-stationary models and Koul and Saleh (1995) extended the

work of Koenker and Bassett (1978) to autoregression models. Furthermore, an important

extension to ARCH models appeared in Koenker and Zhao (1996) and more recently an

extension to GARCHmodels in Xiao and Koenker (2009). Based on the fact that Value-at-

Risk is a quantile of future portfolio returns conditional on the information known today,

Robert F Engle and Manganelli (1999) proposed a new type of models that do not require

strong assumptions (e.g. normality and i.i.d. returns). The Conditional Autoregressive

Value-at-Risk (CAViaR) is based on the fact that volatility tends to cluster over time

and, following the same reasoning of Robert F Engle and Manganelli (1999), it means
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that the distribution of returns tend to be autocorrelated, hence the VaR should exhibit

a similar behavior. A Quantile Autoregression (QAR) model was studied by Koenker and

Xiao (2006). They considered a linear quantile autoregression model whose autoregressive

parameters may vary depending on the quantile chosen.

One of the most important tasks when estimating VaR is to forecast the volatil-

ity. Modeling volatility on �nancial markets have been an extensive �eld explored by

researchers (see Assaf, 2017). Two general approaches are usually taken, the implied

volatility methods that use options to extract the implied volatility and historical data.

The �rst approach has been widely studied, for example, by using volatility indices. Blair,

Poon, and Taylor (2001) have studied the accuracy of VIX forecasting the volatility of

S&P 100, that proven to be the most accurate in the out-of-sample analysis. Regarding

the second approach, the most important models belong to the ARCH/GARCH family.

Robert F. Engle (1982) was the �rst to introduce time series models with conditional

heteroskedasticity, the autoregressive conditional heteroskedasticity (ARCH) model where

the recent past could be used to forecast the future variance. The ARCHq model can be

written as:

rt = xtβ + ut,

ut = σtεt, (5)

σ2
t = a0 +

q∑
i=1

αiu
2
t−i, (6)

where rt is the dependent variable, xt is a vector with explanatory variables, β is a

vector with unknown parameters and εt is a sequence of i.i.d. innovations with mean

zero and variance one. Also, to guarantee that unconditional and conditional variances

(σ2
t ) are both positive, the restrictions α0 > 0 and αi ≥ 0, (i = 1, 2, ..., q) are needed.

Furthermore, a more parsimonious speci�cation appeared, the generalized autoregressive

conditional heteroskedasticity (GARCH) model (Bollerslev, 1986). The GARCHq model

can be represented as:

rt = xtβ + ut,

ut = σtεt,

σ2
t = a0 +

q∑
i=1

αiu
2
t−i +

p∑
i=1

δiσ
2
t−i . (7)
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These models are frequently used in asset pricing and �nancial risk management. However,

the conditional quantile of rt depends on a linear relationship with the volatility, as:

Qτ (rt|Ft−1) = σt−jQτ,ε (8)

and traditional GARCH models provide a linear equation to the conditional variance,

which means that the standard deviation (being the square root of the variance) will not

have a linear relationship with the explanatory variables. Hence, quantile regression for

GARCH models faces some technical di�culties. To tackle this problem, Koenker and

Zhao (1996) considered the LARCHq model. A linear ARCH model, where:

σt = a0 +

q∑
i=1

αi|ut−i| . (9)

The conditional quantile is estimated through a linear quantile regression.

Additionally, Xiao and Koenker (2009) proposed a two-step approach for quantile

regression with linear GARCH time series (LGARCH). The conditional τ th quantile can

be represented as:

rt = σtεt

σt = a0 +

q∑
i=1

αi|rt−i|+
p∑
i=1

δiσt−i

Qτ (rt|Ft−1) = σtQτ,ε (10)

with εt being a sequence of i.i.d. innovations with mean zero and variance 1 and Qτ,ε

the τ th quantile of εt. The �rst step is to set some initial estimates for unobservable

σt−i's and �nally estimate the linear quantile regression. Recently, Guo (2013) estimated

VaRs of �ve international equity indices (U.S. S&P Composite Index, Japanese Nikkei 225

Index, U.K. FTSE 100 Index and the Hong Kong Hang Sheng Index). This study used

weekly returns from September 1976 to August 1999 and the quantile regression method

approach of Koenker and Bassett (1978) with AR-ARCH models. Similarly, they de�ned:

rt = α′xt + ut,

ut = σtεt,

σt = γ0 +

q∑
i=1

γi|ut−q|, (11)
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with (γ0 . . . γq) > 0. Assuming that εt have a general distribution D, including commonly

used distributions and rt = α0 +
∑s

i=1 αirt−i + ut where s is the maximum lag used. So,

V aRt at τ -percent level is:

−V aRt,τ = xtβ + γ′τZt, (12)

where Zt = (1, |ut−i|, . . . , |ut−q|)′ and (γ0 . . . γq)D
−1
τ . Also, γτ is estimated by the following

estimator:

γ̂τ = arg min
γ

∑
t

(ut − Z ′tγ)
(
τ − Iut−Z′

tγ<0

)
. (13)

Sequential tests are conducted to choose the optimal lags for the AR-ARCH processes.

Then, a performance comparison with VaR by RiskMetrics and VaR by GARCH Normal-

ity Assumption (asymmetric GARCH with the conditionally normal return distribution

assumption) reveals that the VaR by Quantile Regression is more robust than RiskMet-

rics. Also, for the 5% VaR of the S&P 500 Index the quantile regression approach seems

to produce higher VaRs than the asymmetric GARCH, during low volatility periods. On

high volatility periods, the asymmetric GARCH method produced much higher VaRs.

The authors considered that the quantile regression approach generated more reasonable

VaRs at that high volatility period.

There is accumulated evidence that GARCH models can capture the persistent in�u-

ence of long past shocks better than ARCH models (Xiao and Koenker, 2009). Motivated

by that, an hybrid quantile regression estimation for time series with conditional het-

eroskedasticity was introduced by Zheng et al. (2018). The main advance is related to a

transformation T : R→ R for the conditional quantile:

T (x) = x2sgn(x) (14)

where sgn(x) is the sign function

sgn (x) =


1 ifx > 0

−1 ifx < 0

0 otherwise

and it works as the inverse of the square-root function as it is also continuous and non

decreasing on R. This transformation allows the use of a large variety of GARCH models

which are linear models for the conditional variance, rather than to be stuck with linear

models for the conditional standard deviation. The drawback of this transformation is

that the conditional mean must be 0.

The hybrid conditional quantile estimation procedure starts with the estimation of
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GARCH parameters via Gaussian quasi-maximum likelihood estimator (QMLE), using a

sample average to compute the initial variance estimates. After that, they �rst estimate

Qτ (rt|Ft−1) by estimating Qτ (T (rt)|Ft−1):

Qτ (T (rt)|Ft−1) =

(
a0 +

q∑
i=1

αi|r2t−i|+
p∑
i=1

δjσ
2
t−j

)
T (Qτ,ε) = θ′τxt, (15)

xt =
[

1 r2t−1 . . . r2t−q σ2
t−1 . . . σ2

t−p

]′
θτ = T (Qτ,ε)

[
a0 a1 . . . aq δ1 . . . δp

]
.

Zheng et al. (2018) also proposes a more e�cient technique to estimate θτ , a method to

minimize the sum of the weighted tilted deviations. So, if T (rt) = yt we have:

θ̂τ = arg min
θ

n∑
t=1

1

σ̂2
t

(yt − θ′xt) (τ − Iyt−θ′xt<0) , (16)

Then, relying on the monotonicity of the transformation, by applying the inverse trans-

formation T−1(x) =
√
|x|sgn(x) to Qτ (yt|Ft−1), the author estimates the τ conditional

quantile of rt. Finally, in order to evaluate the performance of this method, two di�er-

ent time series were generated by a GARCH(1,1) model with Gaussian and Student's-t

innovations, using Monte Carlo simulations. The author uses two processes de�ned by:

(a0, a1, δ1) = (0.1, 0.8, 0.15) and (a0, a1, δ1) = (0.1, 0.15, 0.8). Models on test include a

group of three models that use the estimation process described above, with two of them

with di�erent initial estimation guesses for the variance, competing with a CAViaR model

and the well known RiskMetrics model. A total of 1000 simulations are carried for three

di�erent sample sizes (200, 500 and 1000). The performance of all models are examined

on the biases and the mean squared errors (MSEs) forecasts for the 5% conditional quan-

tile. MSE results show that, for the �rst set of parameters, the model with the hybrid

estimator as described here is the best method, for the second set of parameters, the

CAViaR shows a better performance.
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3 Methodology

We conduct Monte Carlo simulations in Matlab, with di�erent return generating processes,

in order to examine the conditional quantile estimator method proposed by Zheng et al.

(2018). The advantage of using Monte Carlo simulations instead of real portfolio returns

is not having to rely on a battery of backtesting methods to analyze the performance of

the VaR models, which would necessarily introduce noise in the analysis. Similar to the

studies proposed by Zheng et al. (2018), we decided to de�ne and control the playground

where the VaR models are tested.

So, we start with returns being generated by the same GARCH process that is assumed

for the Zheng et al. (2018) model. This process can be generated as:

rt = µt + εt, εt ∼ N(0, σ2
t ) (17)

σ2
t = ω + γε2t−1 +βσ2

t−1. (18)

with (ω, γ, β) > 0 and γ + β > 1 to ensure σt remains positive. By our choice, we will set

µt = 0, ∀t and for the heteroskedastic process, two sets of parameters are used:

1. (ω, γ, β) = (0.1, 0.15, 0.8) � this is the same set of parameters used by Zheng et al.

(2018);

2. (ω, γ, β) = (3.125× 10−7, 0.05, 0.9) � a new set of parameters chosen by us;

The �rst set serves as a direct comparison to the original paper, since we use the same

set of one of the experiments carried by Zheng et al. (2018). To initiate the process, we

assumed the steady state variance given by ω
1−β−γ , this will be our σ2

1. Note that this

set of parameters used by Zheng et al. (2018) has a large implied steady state variance:
0.1

1−0.15−0.8 = 2. This means a daily volatility of 141%, quite an outrageous value. Based

on this, a second set of more reasonable parameters is considered with ω = 0.00252(1 −
γ − β) = 3.125× 10−7, consequently with a steady state daily volatility of 0.25%.

The true VaR at the α quantile level can be easily computed as:

V aRt,α = Φ−1N (1− α)σt − µt, (19)

where Φ−1N is the inverse of the standard normal cumulative distribution function, com-

puted with the Matlab function norminv(x).

Although the heteroskedasticity of �nancial data is the main reason for the develop-

ments and use of GARCH models, there is no certainty that it is always present. Thus, we

also conduct simulations with an homoskedastic process, in order to evaluate the perfor-

mance of the model discussed by Zheng in capturing the homoskedasticity. With this in
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mind, we perform Monte Carlo simulations using the Skewed Generalized T Distribution

(SGT), studied by Theodossiou (1998).

The SGT distribution can be de�ned by 5 parameters, namely: mean (µ), standard

deviation (σ), skewness (s) and kurtosis (p and q) with (σ, p, q) > 0 and −1 < s < 1.

To work with this distribution on Matlab we need the �Flexible distributions toolbox�, a

toolbox that includes all the main functions used, developed by Ahmed BenSaïda, sets a

minimum bound of q > 2. As p and q increases, the function becomes more platykurtic

and vice-versa, when p and q decreases it becomes more leptokurtic (kurtosis increases).

This �exible distribution grant us the possibility of controlling tails and skewness at the

same time. High �exibility plays a huge role here giving us the possibility of studying

special cases like the Normal distribution with SGT (µ, σ, p = 2, q = ∞, s = 0) and the

Skewed T Distribution with SGT (µ, σ, p = 2, q, s), besides many others that are not going

to be the focus of our work but were studied by Hansen, McDonald, and Newey (2010).

The common presence of heavy tails and skewness in �nancial returns and the possibility

of �tting both properties, at the same time, is of great importance, specially due to

well known di�culties and limitations of more used distributions such as the Normal

distribution on capturing these behaviors.

Returns (r) are generated using the sgtrnd(x) function from the �Flexible distributions

toolbox�. This process can be described as:

rt ∼ SGT (µ, σ, p, q, s) (20)

Regarding the simulations of SGT returns, we de�ne 4 main sets of parameters:

1. SGT (µ = 0.02%, σ = 1.25%, p = 2, q =∞, s = 0) � this is the Normal distribution

special case, equivalent to N(0.02%, 1.25%), it has neither skew or heavy tails;

2. SGT (µ = 0.02%, σ = 1.25%, p = 2, q = 3, s = 0) � keeping the distribution

symmetric, we study the heavy tails, equivalent to a Student-t distribution with 6

degrees of freedom;

3. SGT (µ = 0.02%, σ = 1.25%, p = 2, q = 3, s = −0.3) � this scenario has heavy tails

and negative skewness (s < 0), similar to �nancial market returns distribution in

general;

4. SGT (µ = 0.02%, σ = 1.25%, p = 2, q = 3, s = 0.3) � in this scenario the returns

distribution has heavy tails but with positive skewness (s > 0) instead.

Again, since we know the distribution of returns, estimating the real VaR is trivial. The

true VaR for each scenario is given by the inverse SGT cumulative distribution to each

speci�ed quantile, using the same parameters of the generating process. In Matlab we

can just use the function sgtinv(α, [p, q, s], µ = 0.02%, σ = 1.25%).

12



For each of all simulations presented so far, we will generate 4500 returns, that repre-

sent 4500 market days. The last 2500 returns will be part of the test window (nearly 10

years of calendar days) and each scenario will be simulated 1000 times, the same number

of simulations used by Zheng et al. (2018) in his experiments. We will estimate VaR at the

1%, 2.5% and 5% signi�cance levels (α). However, our analysis will focus on the α = 1%,

since it is the o�cial signi�cance level recommended by the Basel Comittee (2004).

In each simulation, for each testing day, we will compare how far models estimations

( ˆV aRt) were from the true VaR (V aRt) using the Normalized Root Mean Squared Devi-

ation (NRMSD):

NRMSD =

√∑n
n=1(

ˆV aRt−V aRt)2
n∑n

n=1 V aRt
n

, (21)

This measure is similar to the mean squared error (MSE) used by the original paper,

however, since we will examine more than one quantile level it is important to normalize

the results in order to guarantee that they can be compared. For the sake of model

performance appraisal we will compare the mean of the NRMSD 1000 simulation's results,

also, for understanding the results dispersion, we will analyze several statistics such as:

standard deviation, minimum, maximum, 5% and 95% quantile. The consistency of results

is important because we do not want to favor a model that just gets lucky in one simulation

and the next one he completely fails. So, the other �gures will also be important if mean

results are very similar. The logic behind this is: we want that the average normalized

deviation to be as low as possible but we also want to have the most consistent results

across all simulations.

Ideally we would like to simulate 10000 times or more. However, every model that we

need to estimate parameters (either the quantile regression models or the ones that have

to �t a distribution) will have two versions. One where we will reestimate the parameters

every 20 days and other that only estimates the parameters once and keep them until

the end of the test window (the ones named �([. . .]-NoR�). Hence, we will be studying

a reasonable amount of models and scenarios for 3 di�erent signi�cance levels, many of

those models need to frequently �t distributions or GARCH parameters, that can become

computationally intensive. Despite that, since the major time consumption is due to

models that require parameters reestimation, we carried additional 10000 simulations to

all remaining models. Results con�rmed that 1000 simulations appears to be enough, since

the increased number of simulations did not have a meaningful impact in our analysis.

The complete results from 10000 simulations are provided in the Appendix A.2.

All models are presented in the next subsections.
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3.1 Quantile regression with GARCH(1,1)

The model we want to examine was �rst proposed by Zheng et al. (2018) and tries to

improve previous quantile regression models by enabling the use of volatility models that

explain the conditional variance instead of the conditional standard deviation. Hence,

the author extends quantile regression to GARCH(1,1) models. Researchers have studied

and proposed a large number of GARCH models (symmetric and asymmetric). This is

the building-block model of the GARCH family but tends to work well against other

GARCH(p,q) variations, as described by Namugaya, Weke, and Charles (2014).

To estimate the GARCH parameters we use the garch(x) function from Matlab with

Gaussian distributed innovations and an initial guess for the σ̂2
1 = 1

n

∑n
i=1 r

2
t−i with

n = 500. Hence, a total of 4000 variance estimates will be carried. Returns are T (x)

transformed as described in (14), in order to get yt = T (rt). We estimate the quantile of

yt by minimizing the weighted tilted deviation as proposed by Zheng et al. (2018). Similar

to what was described before, for an α quantile we have:

θ̂α = arg min
θ

n∑
t=1

1

σ̂2
t

(yt − θ′x̂t) (α− Iyt−θ′x̂t<0) , (22)

with x̂t =
[

1 r2t−1 σ̂2
t−1

]′
and θ =

[
θ0 θ1 θ2

]′
. The α quantile estimate for the

transformed return yt is then given by

Qτ (yt|Ft−1) = θ̂′αx̂t = θ̂0 + θ̂1r
2
t−1 + θ̂2σ̂

2
t−1

Transforming the quantile of yt into a quantile for the return rt using

Qτ (xt|Ft−1) = T−1 [(Qτ (yt|Ft−1))] (23)

we �nally obtain the VaR estimate:

ˆV aRt = −
√∣∣∣θ̂0 + θ̂1r2t−1 + θ̂2σ̂2

t−1

∣∣∣sgn(θ̂0 + θ̂1r
2
t−1 + θ̂2σ̂

2
t−1). (24)

All parameters, including the necessary GARCH volatility estimates, will be reestimated

every 20 days over the 2500 days of the test window. The sum of the weighted tilted

deviations will be calculated with our function SumWTTD(x)1. The minimum sum of the

weighted tilted deviations will be calculated using the fminsearch(x) function, considering

a sample size of the last 1000 observations. Additionally, we also present results, on

Appendix A.1.2 and Appendix A.2.2, where 500 observations were used to understand

the sample size sensitivity. Also, we will create a version of this model with the only

di�erence being that it does not reestimate the parameters along the test period.

1All the Matlab code is available on request.
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With the aim of understanding upcoming di�culties in estimating the coe�cients

correctly, we will test a model that is exactly as the Zheng's model and that makes use of

the true variance from the simulated returns. So, instead of estimating a GARCH(1, 1)

model that �ts a sample of returns and then estimate the quantile regression parameters,

we will only have to estimate the former. Obviously, this would not be possible in a real

context where we do not know and control the return generating process. Here, we can

study how much would the knowledge of the true variance help to estimate the quantile

regression model.

3.2 Benchmarks

In order to benchmark Zheng's model, we select several models as benchmarks from three

di�erent VaR methodologies: Historical VaR models, Parametric VaR models and other

Quantile Regression VaR models. Regarding the Parametric and Quantile Regression

VaR models, we will test two di�erent volatility estimation approaches: equally weighted

with a rolling sample and EWMA.

The equally weighted method is the simplest method and is be described as:

σ̂t =

√√√√ 1

n

n∑
i=1

r2t−i. (25)

Each return observation from the sample n observations will have the same weight in

volatility estimation. The choice of the sample size is important because it has to balance

having enough data to achieve statistical accuracy but not too much to avoid a distant

past to in�uence the volatility estimate. We �nd n = 500 to be a good balance of this

two forces. Implicitly we are taking into account the last 2 calendar years of daily returns

to predict what will be the next day volatility.

To obtain a time series of volatility estimates we will use the standard deviation of the

�rst 500 returns, generated by the Monte Carlo simulation, to estimate our σ̂1. For the

following days we will use a rolling window with a �xed sample size of n = 500. Hence,

every time that we move to the next day estimation, the last 500th return used on the last

estimation will be disregarded and the most recent past return will be considered. Since

we have 4500 returns, we are able to estimate a time series of 4000 volatility estimates.

An alternative method to estimate volatility is the EWMA. This method uses a decay

factor λ that can be set between 0 and 1:

σ̂2
t = (1− λ)

∞∑
i=1

λi−1r2t−i, (26)

The recursive version of this formula is:
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σ̂2
t = λσ̂2

t−1 + (1− λ)r2t−1, (27)

The choice of λ is quite arbitrary, a lower λ makes our estimation more reactive to

recent observations and a higher λ gives less weight to recent observations. We are going

to de�ne the same as proposed by Morgan J P and Reuters TM (1996) for daily returns:

0.94.

We will generate a time series of 4500 data points, with a warm-up period for the

initial estimate of σ̂2
1 = r21. In theory all sample observations are used, but the λ factor

makes past observations become less and less important until they become negligible.

Also, generating 4500 data points stabilizes the variance estimation and makes the initial

guess even more negligible, taking into consideration that our models will not directly use

the �rst 1000 observations.

3.2.1 Quantile Regression VaR models

Quantile regression models are very �exible, as they allow us to de�ne our own explanatory

variables. In our study we will start with two speci�cations to estimate the V aRt, one with

only a volatility estimate for day t as explanatory variable and another that besides the

volatility estimate, adds a constant term. Close to what we did with the Zheng's model, we

duplicate all models to study if reestimating the quantile regression parameters every 20

days in a rolling window mechanism versus not reestimating it at all, have any meaningful

impact on results. All models will also be estimated with a sample size of 1000 and 500

observations.

We start with the simplest structure possible to estimate the V aRt via quantile re-

gression, a model with just one explanatory variable, in this case, a volatility estimate:

V aRt = c1σ̂t (28)

The coe�cient c1 is estimated, for each α level, adapting the Koenker and Bassett

(1978) method, as described in (4). With this we are able to estimate VaR without

knowing or having to assume a distribution. The coe�cient c1 that minimizes that sum,

is estimated with the fminsearch(x) Matlab function. The conditional quantile will be

explained by a linear function that depends on σt. In order to have a version of this model

without reestimation, we do not reestimate this parameter again, the VaR series will be

estimated using the same c1that we estimate once at the beginning of the testing period.

We can have the same quantile regression structure described in (28), but making a

di�erent decision regarding the volatility estimation process. Now, instead of using the

equally weighted method we use the Exponential Weighted Moving Average (EWMA)

method.

So far, we are implicitly assuming that V aRt can be fully explained by the estimated
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volatility of day t in a linear relationship without a intercept. Now, we can study if a

constant term increases the estimation power. So, using the equally weighted method to

estimate the volatility we have a new speci�cation:

V aRt = c0 + c1 ∗ σ̂t (29)

The parameters c0 and c1 are estimated at the same time for each quantile with a

similar process as described in (4). Again, we also want to understand how the volatility

estimation method changes the performance of our models. So, we test a VaR model that

includes a constant term and an EWMA volatility estimate.

3.2.2 Parametric SGT

Parametric models assume that portfolio returns and/or innovations of returns follow

a standardized distribution. We can assume that returns follow the SGT distribution

explained by the 5 parameters that we already discussed. So, our main task will be to �t

the distribution of returns (in the real world we don't know what are these parameters)

with our sample and, based on the estimated parameters, predict what is the Value-at-

Risk.

The �rst 3 parameters that de�ne the skewness (s) and tails (p and q) can be estimated

using the sgt�t(x) function as described by BenSaïda and Slim (2016). For calculation

purposes it is important to note that, as stated by the author on his function description

and with PSI being our q, �although there is no theoretical upper limit to the degree-of-

freedom parameter 'PSI' (...) the upper limit of the SGT PSI parameter is arbitrarily

set to 200�. Although the author has that in mind, this function actually estimates

the parameters by maximum likelihood without this upper bound limit (the author uses

in�nity as the upper limit). We decided to use 150 and set it before the maximum

likelihood estimation. Doing this, we help preventing it to enter into these anomalous

results. For �tting purposes, a sample of the last 1000 returns was also considered.

Since in the previous models with reestimation we would update the parameters every

20 days (that gives us more than 100 �tting processes per simulation), for this model we

will do the same. Additionally, for distributions with heavy tails like the SGT (µ, σ, 2, 3, s),

the �tting function often stays very far away from the real distribution. This provides

absurd VaR estimates and the reason behind is that the q̂ parameter �tted is equal to the

lower bound (probably due to the sample size used being too small). To prevent that, for

the no reestimation version, before we compute the V aRt, we check if q̂ rounded at two

decimal cases is equal to 2 (we have to round it because a tolerance of 1E-5 for all bounds

is used in the calculations of the sgt�t(x) so the real bound is de�ned by 2 + tolerance).

If the result is 2, we will stop the simulation and move on to the next simulation. For the

model with reestimation, since we �t the distribution many times for every simulation,
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and interrupting the simulation every time that one �tting process went wrong would be

too much time consuming, if any moment the function gets stuck in this bound, we will

use the last �t until a maximum of 3 consecutive times. If the �tting fails for 3 consecutive

times the simulation is also interrupted and discarded, and we move to a new simulation

until we have 1000 simulations completed.

After estimating p, q and s, we assume µ = 0. The reason behind it is that we are

dealing with discounted daily returns. Hence, in a real context if markets are e�cient we

would not expect that daily market changes over the risk free rate being much di�erent

from 0. Furthermore, we estimate σ with the equally weighted method and the EWMA

estimate, as we did before. The V aRt will be estimated using the inverse cumulative SGT

distribution Matlab function sgtinv(x), employing the estimated parameters.

3.2.3 Parametric Normal VaR

Assuming the Normal distribution, where rt is the portfolio's return at time t, εt are

random variables with mean 0:

rt = εt ∼ N(0, σ2
t ), (30)

The Parametric Normal VaR focus on two parameters: mean and standard deviation.

The single asset portfolio VaR, in percentage, to day t for a (1 − α) con�dence level is

computed as:

V aRt,α = Φ−1N (1− α)σt − µt (31)

As we discussed before, we can disregard the last part of this equation. The volatility

will be estimated with the equally weighted method previously described.

The Parametric Normal VaR methodology o�ers simplicity and, naturally, it is well

known for the RiskMetrics VaR model approach. For these reasons, it is widely used on

a daily basis for �nancial institutions to report VaR estimates.

In order to improve volatility estimation, RiskMetrics uses the EWMA method as (26)

and already described for other models. As previously discussed, RiskMetrics model uses

λ as 0.94 for daily data. Hence, we will also consider a VaR model that is using a method

that increases the weight of recent observations and, so, we hope to improve the response

of the Parametric Normal model to current volatility.

3.2.4 Historical VaR

As previously stated, empirical evidence shows that returns are not normally distributed

(see Sheikh and Qiao, 2009). By using Parametric Normal models, we might be under-

valuing the size of actual losses if the real distribution is negatively skewed and presents

heavier tails and we expect that these weaknesses are revealed in our simulated scenarios.
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Hence, rather than de�ning a distribution of portfolio's returns we can simply use the

distribution (whatever it is) from the data that we selected. This method is also simple

to implement and basically we start by de�ning the sample size (n), we will keep 1000

observations and, as we stated earlier, the V aRh,αis just the α quantile of the empirical

distribution of h day �nancial returns (for α = 0.01 we need at least 100 observations).

We use the quantile(x) function of Matlab. The sample size could be the major decision

of estimating VaR from Historical VaR model. If we de�ne n large enough we can �t

the portfolio returns empirical distribution much better. However, it is always a trade-o�

between having enough information from the past without going to far.

A few re�nements to some features can avoid a large event in the far past to have

a great impact on our VaR estimate. Here, we can re�ne this model so that it re�ects

current market conditions. We do that by adjusting portfolio returns as proposed by Hull

and White (1998):

r̂t =
rt
σt
σT (32)

where σT is the most recent daily volatility estimate (EWMA) made at the end of

T − 1, and σt is the past volatility on day t , with T > t. We assume that the probability

distribution of rt
σt
is stationary. Therefore, we can replace rt by r̂t and instead of estimating

VaR from a series of historical percentage returns, we use historical changes that are

adjusted by a ratio of the current volatility to the past volatility at time t. Bearing in

mind that the set of data (1000 adjusted returns) that we choose will still be a main driver

of our estimate (Abad, Benito, and López, 2014).
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4 Results analysis

4.1 GARCH simulations with Zheng et al. (2018)'s parametriza-

tion

Table 4.1: This table shows the summary Normalized Root Mean Squared Deviation (NRMSD) statis-

tics for 1000 simulations of GARCH returns, generated with (ω, γ, β) = (0.1, 0.15, 0.8) as Zheng et al.

(2018). Each simulation tests 2500 daily 1% VaR estimates.

GARCH(1,1) returns, α = 1%

Mean Median StDev Min 5% 95% Max

GARCHvolknown 7.9% 7.8% 2.0% 2.7% 5.0% 11.6% 17.8%
GARCHvolknownNoR 7.2% 6.7% 3.6% 1.6% 2.4% 14.0% 23.7%
GARCHQR 10.3% 10.1% 2.3% 5.3% 7.2% 14.5% 23.4%
GARCHQRNoR 8.8% 8.3% 3.9% 1.3% 3.6% 16.2% 27.4%
voltEqW 38.9% 36.0% 11.9% 22.6% 27.0% 60.4% 147.8%
voltEqWNoR 36.9% 34.3% 11.2% 22.3% 26.4% 55.7% 174.2%
voltEWMA 18.0% 17.2% 3.6% 12.6% 14.2% 24.3% 55.7%
voltEWMANoR 17.4% 16.7% 3.4% 11.8% 13.7% 23.6% 58.5%
c+voltEqW 41.2% 36.4% 17.0% 21.7% 27.3% 70.0% 194.7%
c+voltEqWNoR 39.8% 34.9% 24.6% 22.3% 26.8% 68.2% 596.7%
c+voltEWMA 18.1% 17.2% 3.6% 12.6% 14.2% 24.3% 55.7%
c+voltEWMANoR 17.4% 16.7% 3.4% 11.8% 13.7% 23.6% 58.5%
ParamSGT 34.6% 33.2% 7.4% 22.3% 25.8% 48.1% 86.9%
ParamSGTNoR 34.1% 32.8% 6.9% 22.2% 26.1% 46.7% 89.8%
ParamSGTEWMA 18.6% 18.0% 3.7% 11.9% 14.0% 25.5% 39.2%
ParamSGTEWMANoR 18.1% 17.6% 3.2% 12.0% 14.0% 23.9% 39.8%
NormalEqW 32.0% 30.8% 6.1% 21.5% 25.1% 42.2% 85.2%
RiskMetrics 15.8% 15.4% 2.3% 11.8% 13.3% 20.0% 40.7%
Historical 36.0% 33.8% 10.4% 22.1% 26.4% 52.8% 209.5%
HistVolAdj 18.3% 17.6% 3.5% 12.5% 14.1% 24.6% 51.6%

Starting with GARCH returns simulated with ω = 0.1, γ = 0.15 and β = 0.8 (the exact

same set of parameters used by Zheng et al., 2018), whose results are presented on Table

4.1 and Table A.1 in the Appendix, we con�rm that the GARCH hybrid quantile estimator

is the best model with an average NRMSD of 8.8% for the no reestimation version and

10.3% for the one that reestimates parameters every 20 days, at 1% signi�cance level,

and with a similar performance for the remainder quantiles. Obviously, we are not taking

into consideration the GARCH quantile regression model that makes use of information

impossible to know by the time of the estimation (GARCHvolknown). Previously knowing

the true variance, before estimating quantile regression parameters, improved the NRMSD

average by around 2 percentage points across all quantiles as observed on Table 4.1 and

Table A.1. These superior performances compare with much higher deviations from the

benchmarks, with the closest one being the RiskMetrics VaR method with 15.8% and
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the worst being the quantile regression with equally weighted volatility and a constant

term (average NRMSD of 41.2%). It is worth to remind that Zheng et al. (2018) had

already shown that their GARCH quantile regression model surpassed the RiskMetrics

model with (ω, γ, β) = (0.1, 0.15, 0.8), and our results con�rm this.

We also highlight the strong performance from the group of models that make use of an

EWMA volatility estimate. All of them have very similar and well-behaved performances

(NRMSD averages between 17.4% and 18.6% at 1% signi�cance level). This technique

consistently captured heteroskedasticity from returns distribution, regardless the VaR

methodology tested (historical, parametric or quantile regression).

It is interesting to notice that, regarding the quantile regression benchmark models,

adding a constant to the regression did not make much of a di�erence. Both models

have almost the same results, probably due to the constant term being almost irrelevant

since returns are simulated based on a process with mean zero. Another noteworthy

detail is that the RiskMetrics model has the same NRMSD at every quantile, and the

same is true for the Parametric Normal model with equally weighted volatility. This

happens because, here, returns follow a GARCH(1,1) process with GARCH innovations

being normal distributed, deviations will be caused by the mean and volatility estimates,

hence, the di�erence between the true VaR and the estimated VaR will be the same.

Surprisingly, the periodic reestimation of parameters may slightly increase the average

NRMSD results for all models at 1% signi�cance level. The same happens to almost all

models at the remaining quantiles, the exceptions are the Parametric SGT, Parametric

SGT with EWMA volatility estimate and the quantile regression VaR model with a con-

stant term at 2.5% and 5% signi�cance levels. For this returns process, it seems that it is

not worth to do it. For some models, like the GARCH(1,1) quantile regression model it

seems to mitigate the dispersion of the results. Since it does not happen to all models, we

can not say whether the reestimation of parameters every 20 days is meaningful or not.

Overall, we note that the performances of all models are similar in all quantiles and

invite the reader to check the full results presented on Table A.1 in the Appendix A.1

and that the main conclusions remain the same for a sample size of 500 observations as

shown by Table A.7, Table A.8 and Table A.9.
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4.2 GARCH simulations with a realistic parametrization

Table 4.2: This table shows the summary NRMSD statistics for 1000 simulations of GARCH returns,

generated with (ω, γ, β) = (3.125× 10−7, 0.05, 0.9). Each simulation tests 2500 daily 1% VaR estimates.

GARCH(1,1) returns, α = 1%

Mean Median StDev Min 5% 95% Max

GARCHvolknown 9.0% 8.9% 1.5% 5.1% 6.8% 11.8% 16.7%
GARCHvolknownNoR 8.7% 8.3% 3.5% 1.3% 3.2% 14.8% 31.7%
GARCHQR 10.3% 9.9% 3.4% 6.6% 7.8% 13.2% 84.1%
GARCHQRNoR 9.2% 9.1% 3.5% 1.0% 3.8% 15.8% 23.2%
voltEqW 13.4% 13.1% 2.2% 8.8% 10.6% 17.5% 22.1%
voltEqWNoR 12.9% 12.3% 2.5% 8.9% 10.1% 18.2% 27.3%
voltEWMA 10.2% 9.9% 1.6% 6.3% 8.0% 13.4% 18.6%
voltEWMANoR 9.8% 9.3% 2.2% 6.0% 7.4% 14.5% 19.8%
c+voltEqW 15.4% 14.9% 2.8% 10.2% 11.9% 20.7% 29.1%
c+voltEqWNoR 16.9% 14.2% 7.4% 8.6% 10.4% 33.0% 62.8%
c+voltEWMA 8.2% 8.0% 1.8% 4.3% 5.6% 11.1% 18.4%
c+voltEWMANoR 7.7% 7.1% 3.6% 2.4% 3.3% 15.1% 29.7%
ParamSGT 11.9% 11.7% 1.5% 8.7% 9.8% 14.8% 19.5%
ParamSGTNoR 11.9% 11.6% 1.5% 8.7% 9.9% 14.8% 18.0%
ParamSGTEWMA 8.9% 8.8% 1.1% 6.1% 7.3% 10.8% 14.8%
ParamSGTEWMANoR 8.8% 8.7% 1.1% 5.9% 7.3% 10.9% 13.6%
NormalEqW 11.4% 11.3% 1.2% 8.7% 9.6% 13.8% 17.1%
RiskMetrics 8.3% 8.3% 0.8% 5.6% 7.0% 9.7% 12.7%
Historical 12.5% 12.2% 2.0% 8.6% 10.1% 16.1% 38.6%
HistVolAdj 10.8% 10.4% 1.9% 6.6% 8.2% 14.5% 19.3%

As we can see from Table 4.2 when we move to GARCH returns with a more reasonable

parametrization, things get really surprising. Models that in the previous simulations

underperformed badly, are now better than the quantile regression GARCH model from

Zheng et al. (2018). Although the author's model performance (measured by the NRMSD

mean) worsens when the parameters are not reestimated and when the true volatility is

used (in terms of NRMSD standard deviations, all these versions get worse), their perfor-

mance remains basically constant. The greatest change happens on benchmark models.

In an opposite direction, we clearly see some huge improvements from all benchmarks,

with approximately 50% decrease on the average NRMSD. Also, we note that all quan-

tile regression models with less explanatory variables are performing better than the new

GARCH(1,1) quantile regression estimator of Zheng et al. (2018), presenting a lower stan-

dard deviation at all quantiles and overall lower mean NRMSD (few exceptions on the

quantile regression with the EWMA volatility as explanatory variable at 2.5% quantile).

RiskMetrics can be seen as a good example of the di�erence between the two GARCH

return simulations. This model that previously underperformed on Zheng et al. (2018) pa-
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per and in our simulations using the same parameters, now goes from an average NRMSD

of 15.8% to 8.3% and the NRMSD results dispersion also drops from a standard deviation

of 2.3% to 0.8%. The largest reduction was achieved by the Historical (no adjustment)

with mean results that were all above 31.5% at 1% quantile, on the previous experiment,

and now drops to an average NRMSD of 12.5% at the same signi�cance level. It is also

worth to mention that now the reestimation of parameters, at 1% quantile always mini-

mize the results dispersion but it still increases the average NRMSD. For the 2.5% and

5% signi�cance levels, this is not true for the GARCH quantile regression model since it

has an increased volatility with reestimation of parameters.

The overall NRMSD results from the benchmarks have decreased about 50% at all

quantiles. The only VaR model that has higher standard deviation than the (Zheng et

al., 2018) quantile regression GARCH model, at all quantiles, is the quantile regression

model with a constant term equally weighted volatility and no reestimation of parameters.

Also, at the 1% signi�cance level, the quantile regression VaR model with a constant term

and EWMA volatility has slightly higher standard deviation than the (Zheng et al., 2018)

VaR model.

So far, it seems that the original paper cherry picking GARCH parameters for the

returns simulation have a deeply impact on the benchmarks performance, making the

tested model (the quantile regression with a GARCH(1,1) speci�cation) look much better.

We can also con�rm this idea for a sample size of 500 observations and at all quantiles,

comparing the full results presented on Table A.7, Table A.8 and Table A.9 versus the

results presented on Table A.10, Table A.11 and Table A.12 in the Appendix. Also, as

expected, using 500 observations instead of 1000 produce generally worse results and same

will happen in other return generating processes.

4.3 Normal simulations

From Table 4.3 we check the performance of the GARCH quantile regression VaR model

in a SGT(2,∞,0) distribution which is equivalent to the normal distribution. It is impor-

tant to note that we are now in an homoskedastic return generating process. Here, the

1% VaR estimated by the GARCH(1,1) model has a very close performance to the quan-

tile regression model with a constant and EWMA volatility, either with reestimation of

parameters (7.3% of NRMSD mean for the GARCH(1,1) versus 7.2% for the benchmark)

and without reestimating parameters (5.6% versus 6.5%).

All models with equally weighted volatility stand out. Since our returns are generated

by homoskedastic volatility, models with constant volatility are superior to the corre-

spondent versions with the EWMA method that has some noisy estimates. That helps

to explain our top three models in this scenario, at all signi�cance levels as we can see

from Table A.3 in the Appendix. The Normal equally weighted model is a natural winner
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Table 4.3: This table shows the summary NRMSD statistics for 1000 simulations of the

SGT (0.02%, 1.25%, 2,∞, 0) returns. Each simulation tests 2500 daily 1% VaR estimates.

SGT(2,∞, 0) returns, α = 1%

Mean Median StDev Min 5% 95% Max

GARCHvolknown 6.2% 6.1% 1.7% 2.4% 3.7% 9.2% 12.5%
GARCHvolknownNoR 5.3% 4.8% 3.6% 0.0% 0.5% 12.5% 18.1%
GARCH2G 7.3% 7.1% 2.1% 2.6% 4.2% 10.9% 18.7%
GARCH2GNoR 5.6% 5.1% 3.5% 0.0% 0.9% 11.9% 21.1%
voltEqW 5.8% 5.7% 1.6% 2.0% 3.3% 8.6% 12.9%
voltEqWNoR 5.1% 4.4% 2.6% 1.4% 2.3% 10.4% 18.4%
voltEWMA 13.9% 13.7% 1.5% 10.7% 11.9% 16.5% 20.5%
voltEWMANoR 13.7% 13.3% 2.1% 10.4% 11.5% 17.8% 29.7%
c+voltEqW 8.4% 8.2% 2.2% 3.3% 5.1% 12.2% 18.4%
c+voltEqWNoR 10.3% 8.0% 8.4% 0.4% 2.0% 26.0% 104.1%
c+voltEWMA 7.2% 7.1% 1.7% 2.2% 4.7% 10.3% 13.2%
c+voltEWMANoR 6.5% 6.1% 3.5% 0.4% 1.7% 12.8% 24.4%
ParamSGT 4.0% 3.9% 1.1% 1.6% 2.4% 6.0% 8.4%
ParamSGTNoR 3.9% 3.7% 1.4% 1.1% 2.1% 6.7% 10.3%
ParamSGTEWMA 12.6% 12.6% 0.8% 10.3% 11.3% 14.1% 15.4%
ParamSGTEWMANoR 12.6% 12.5% 0.9% 10.2% 11.3% 14.2% 16.2%
NormalEqW 3.2% 3.1% 0.8% 1.5% 2.0% 4.5% 6.6%
RiskMetrics 12.3% 12.3% 0.7% 9.9% 11.2% 13.6% 14.9%
Historical 4.8% 4.6% 1.6% 1.5% 2.6% 7.6% 13.5%
HistVolAdj 14.7% 14.4% 1.7% 10.9% 12.3% 17.9% 25.0%

(only 3.2% of average NRMSD at 1% quantile). Results are as expected, since it assumes

a normal distribution combined with a equally weighted method for volatility estimation,

�ts very well our returns generating process. It is followed by the Parametric SGT with

equally weighted volatility (around 4% NRMSD mean for both versions), that seems to

be quite good on �tting the normal distribution. Obviously, the equally weighted method

makes a huge di�erence, the corresponding version with the EWMA method gets more

than three times higher mean NRMSD for all quantiles. Finally, the Historical VaR with

no adjustment stays behind these two with an average NRMSD of 4.8%.

Looking at other benchmarks, RiskMetrics and the Historical Volatility Adjusted are

hurt by the use of the EWMA method. RiskMetrics, however, has the lowest standard

deviation of all models in all quantiles (0.7%). It should be pointed out that the Normal

equally weighted VaR model and the RiskMetrics, each, have the same results in every

quantile for the same reasons explained when the returns were generated by a GARCH

with Gaussian innovations process, now returns are normally distributed.

It is also important to notice that the reestimation of parameters did not make much of

a di�erence if we look at the average of NRMSD results. Nevertheless, it helped to lower

the standard deviation of all models (Parametric SGT and quantile regression models),
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shorting the range between minimum and maximum NRMSD values. As an example, we

can look at the quantile regression model with a constant and EWMA volatility without

reestimating parameters, at 1% quantile, it has a NRMSD standard deviation of 3.5% with

mean 6.5% while his counterpart version with reestimation has 1.7% NRMSD standard

deviation but 7.2% of average deviation. Same happens in the other two quantiles.

The quantile regression models, in general, had a good performance in all quantiles

(this performance gets worse as α decreases). The highest mean NRMSD goes to the

EWMA which defeated the Historical VaR model with volatility adjustment by mean

and dispersion of NRMSD results. The quantile regression model with only an equally

weighted volatility as an explanatory variable had the best performance in this group of

models, with the no reestimation version also having the lowest mean but a higher dis-

persion of results, as we can con�rm by the standard deviation that almost doubled (from

1.6% to 2.6%). It is interesting to notice that, if we add a constant to the quantile re-

gression model with equally weighted volatility, the estimating power decreases. However,

for the quantile regression model with the EWMA method, this constant term was the

key factor to mitigate the EWMA volatility estimate variability. This last model outper-

formed its variant without the constant term and even the model with equally weighted

volatility and a constant. The intercept seems to help balancing the bene�ts from having

a current market volatility provided by the EWMA smoothing factor technique and also

a constant term that helps to minimize the impact of the EWMA variability. Quantile

regression coe�cients estimates could overweight this intercept instead of the EWMA

volatility term in order to best capture the homoscedasticity of returns.

4.4 SGT simulations

Now if we look at the results presented in Table 4.4 from a SGT (0.02%, 1.25%, 2, 3, 0)

return process, we can clearly observe that, overall, if the distribution has heavy tails, all

models have more di�culty in predicting the VaR. It is clear that the average deviation

and, also, the level of dispersion of NRMSD result have a considerable increase by all

metrics, for all quantiles as we can see from the results presented in Table A.4.

The GARCH quantile regression model has an average NRMSD of 17.6% with reesti-

mation of parameters and 13.7% without it. Again, it stays very close to the other quantile

regression models with less explanatory variables if we do not consider the EWMA volatil-

ity quantile regression model and the quantile regression model with equally weighted

volatility and a constant, that have higher NRMSD results at 1% signi�cance level. The

additional constant on the equally weighted volatility seems to add extra noise to the

coe�cients estimation at 1% level (this is only veri�ed at this speci�c quantile) with

the average NRMSD going from 17.6% to 20.8%. Apart from the quantile regression

VaR model and EWMA volatility estimate with and without reestimation of parameters,
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Table 4.4: This table shows the summary NRMSD statistics for 1000 simulations of the

SGT (0.02%, 1.25%, 2, 3, 0) returns process. Each simulation tests 2500 daily 1% VaR estimates.

SGT(2, 3, 0) returns, α = 1%

Mean Median StDev Min 5% 95% Max

GARCHvolknown 15.1% 13.8% 7.0% 4.8% 8.2% 26.0% 107.1%
GARCHvolknownNoR 13.0% 10.9% 10.0% 0.1% 2.4% 31.0% 115.3%
GARCH2G 17.6% 16.4% 6.8% 4.7% 9.8% 29.5% 63.3%
GARCH2GNoR 13.7% 11.3% 11.3% 0.1% 2.5% 34.1% 150.2%
voltEqW 17.6% 15.7% 9.0% 4.8% 9.0% 31.7% 100.3%
voltEqWNoR 17.1% 14.2% 13.1% 3.2% 6.8% 36.8% 201.7%
voltEWMA 38.8% 35.0% 15.5% 20.2% 25.5% 63.2% 183.6%
voltEWMANoR 37.6% 33.2% 17.3% 19.9% 23.2% 64.4% 296.8%
c+voltEqW 20.8% 19.4% 8.1% 7.7% 12.0% 34.5% 117.0%
c+voltEqWNoR 26.9% 17.7% 41.1% 0.2% 3.5% 76.8% 860.4%
c+voltEWMA 17.6% 16.2% 7.4% 5.6% 10.3% 28.6% 95.3%
c+voltEWMANoR 15.5% 13.4% 11.1% 0.4% 3.6% 34.6% 127.6%
ParamSGT 11.6% 9.8% 6.5% 3.5% 5.8% 25.0% 62.1%
ParamSGTNoR 13.2% 10.2% 11.8% 3.4% 5.8% 28.7% 234.9%
ParamSGTEWMA 32.5% 29.5% 11.2% 20.0% 22.9% 50.8% 203.4%
ParamSGTEWMANoR 33.2% 29.6% 13.6% 19.9% 22.9% 54.4% 262.6%
NormalEqW 18.4% 17.0% 8.7% 7.4% 12.2% 27.1% 103.7%
RiskMetrics 33.8% 30.9% 10.5% 25.6% 27.2% 48.5% 148.6%
Historical 10.9% 10.5% 3.9% 2.6% 5.6% 17.9% 31.2%
HistVolAdj 43.6% 39.6% 17.7% 21.3% 26.8% 71.2% 201.3%

where the average NRMSD is over 35% in all signi�cance levels, the quantile regression

models have a solid performance around 17% NRMSD mean. Generally increasing with

the α, they beat the RiskMetrics and the Historical with volatility adjustment by a 50%

distance in the average NRMSD at all quantiles. The quantile regression model with a

constant and an EWMA estimate beats all the other quantile regression benchmarks, in

all quantiles and for both versions (with and without reestimation). Adding a constant

term seems to help predicting the VaR in this scenario of extreme observations, in both

volatility estimation methods, except for the quantile regression model and equally weight

volatility at 1% signi�cance level.

Models assuming the normality of returns, such as the RiskMetrics and the Parametric

Normal equally weighted underestimate the VaR and that helps to explain how their

average NRMSD increases more than four times and two times, correspondingly .

Also, regarding the volatility estimation method, EWMA models keep to �nd huge

di�culties in modeling homoskedastic returns (with mean NRMSD being higher than 30%

at all quantiles, exception for the model with a constant and EWMA estimate), compared

to the equally weighted versions (with the quantile regression model with a constant and

equally weighted volatility being the worst in this category but only achieving 26.9% of
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an average NRMSD) at 1% signi�cance level. In general, comparing the two volatility

estimation methods, the EWMA models produce NRMSD results that more than double

the ones from equally weighted versions.

The Historical VaR (no adjustment) has the best performance, achieving the lowest

mean in every quantile (10.9% at the 1% signi�cance level) and dispersion (3.9% also at

the 1% VaR series). In the presence of homoskedastic simulated returns, there is no need

for the volatility adjustment done to the Historical VaR, in this case the variability of

estimates introduces too much noise that ruins the VaR estimates. The Parametric SGT

keeps is good performance, being second, specially for the 1% and 2.5% 1-day VaR not far

from the previous model with 11.6% average NRMSD at 1% VaR. Regarding the frequency

of reestimation, we can observe an improvement on the Parametric SGT models, by

NRMSD mean and dispersion. Despite on that, looking at the quantile regression models

it is clear that it helps to decrease the standard deviation (NoR models are responsible for

the highest maximum deviation but also the lowest minimum). Hence, the reestimation

of parameters remains to have a positive impact on consistency but it is not clear that

it shortens the NRMSD results. It is interesting to note that the largest reductions on

standard deviation happens on the structures with equally weighted volatility estimation,

for instance, at 1% signi�cance level the quantile regression model with a constant and

a equally weighted volatility estimate as explanatory variables has a standard deviation

of 41.1% that drops to 8.1% with reestimation of parameters (in the EWMA models the

decrease is nearly 2 percentage points).

From Table 4.5 we analyze the e�ects of negative skewness combined with the heavy

tails. The performance of all models got worse than on the previous scenarios. It is

important to be aware that this scenario could be the one that better represents �nancial

assets returns behavior as previously explained.

As usual, Historical (no adjustment) is, once more, the winner for all quantiles. Sim-

plicity, so far, pays-o�. At the 1% quantile is average NRMSD is 11.8% and looking

at all quantiles the NRMSD mean gap for the second best model tested stays around

5 percentage points as we can observe from the results presented on Table A.5 in the

Appendix.

At 1% signi�cance level, the GARCH quantile estimator tested has a very similar per-

formance to the one explanatory quantile regression model with equally weighted volatility

(19.1% and 19.3% correspondingly). Also, at all quantiles we can observe that both mod-

els have similar performances to the quantile regression model with a constant and a

volatility estimate (EWMA and equally weighted with reestimated parameters) and the

Parametric SGT equally weighted volatility. At the 1% quantile this performances are be-

tween an average NRMSD around 19% and 22%. The quantile regression model with the

constant term and equally weighted volatility, the Historical volatility adjusted model,

the Parametric Normal (both RiskMetrics and equally weighted VaR models) and the
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Table 4.5: This table shows the summary NRMSD statistics for 1000 simulations of the

SGT (0.02%, 1.25%, 2, 3,−0.3) returns process. Each simulation tests 2500 daily 1% VaR estimates.

SGT(2, 3,−0.3) returns, α = 1%

Mean Median StDev Min 5% 95% Max

GARCHvolknown 16.1% 14.8% 7.1% 5.2% 9.0% 27.0% 121.5%
GARCHvolknownNoR 14.4% 12.2% 11.5% 0.1% 2.5% 33.5% 173.1%
GARCH2G 19.1% 17.9% 7.1% 5.8% 10.6% 31.1% 65.2%
GARCH2GNoR 15.1% 12.5% 13.3% 0.1% 2.7% 33.4% 212.5%
voltEqW 19.3% 17.2% 9.9% 6.1% 10.0% 36.0% 152.5%
voltEqWNoR 19.3% 15.5% 15.4% 3.8% 7.6% 40.2% 202.3%
voltEWMA 40.4% 36.4% 16.9% 20.7% 25.2% 67.4% 240.1%
voltEWMANoR 41.2% 36.1% 19.7% 21.3% 25.0% 72.8% 279.7%
c+voltEqW 23.3% 21.7% 9.3% 8.7% 13.1% 38.4% 126.5%
c+voltEqWNoR 36.5% 21.7% 47.7% 0.8% 5.0% 119.3% 564.3%
c+voltEWMA 18.3% 17.2% 6.7% 6.4% 10.5% 29.3% 69.5%
c+voltEWMANoR 17.8% 15.3% 12.3% 0.4% 4.5% 37.8% 155.4%
ParamSGT 21.7% 21.6% 3.6% 12.1% 16.0% 27.3% 43.4%
ParamSGTNoR 22.2% 21.7% 5.0% 11.9% 16.0% 28.7% 59.8%
ParamSGTEWMA 36.6% 34.3% 7.4% 28.6% 30.6% 51.1% 89.8%
ParamSGTEWMANoR 36.9% 34.3% 8.6% 28.4% 30.6% 53.2% 132.4%
NormalEqW 30.6% 30.7% 4.4% 17.5% 25.1% 35.3% 109.5%
RiskMetrics 41.4% 39.9% 7.4% 33.1% 37.1% 50.3% 156.5%
Historical 11.8% 11.3% 4.3% 2.7% 5.9% 19.5% 32.8%
HistVolAdj 46.3% 42.1% 19.9% 20.0% 27.2% 77.7% 285.0%

Parametric SGT EWMA, has average NRMSD means between 35% and 46% looking at

all quantiles.

Most models bene�t from a reestimation of parameters (quantile regression models

and Parametric SGT), with both mean and dispersion reduction. The exceptions are the

quantile regression model with a constant and an EWMA estimate that has lower standard

deviation but higher mean than the no reestimation version (at all quantiles), similar to

what also happens to the GARCH models. For instance, looking at the GARCH(1,1)

quantile regression VaR model, not reestimating parameters produces NRMSD results for

the 1% VaR results with a variability of 13.3% versus 7.1% and NRMSD mean of 15.1%

versus 19.1%. The same logic applies to the GARCH model with known volatility.

EWMA models continue to lose by far to the equally weighted models in all quantiles.

Once again, exception to the VaR model with a constant term and EWMA estimate (with

and without reestimated parameters) that actually beats all the other quantile regression

models benchmarks in mean (18.3% at 1% signi�cance level) and dispersion �gures.

Quantile regression VaR models with the constant term, including the GARCHmodels,

are superior to the ones without it. However, exclusively at 1% quantile, that is not the

case for the VaR model with a constant term and an equally weighted volatility estimate
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(with and without reestimated parameters). This model is not able to win against his

matching version of only one explanatory variable.

The Parametric SGT VaR model with the equally weighted volatility estimate has

a huge increase on the NRMSD mean results, from the previous scenarios. It seems to

struggle to �t the true parameters, specially at low signi�cance levels. Since we are now

generating returns with negative skewness and heavy tails, this could mean that it could

be underestimating the VaR. The di�erence for the Historical VaR (no adjustment) as

been very close, with a small advantage for the Historical VaR but this time this di�erence

is huge. Since we are already generating returns from a SGT distribution, the main driver

of the Parametric SGT VaR model estimates is the set of the �tted parameters. Hence,

we were expecting it to perform much better.

Table 4.6: This table shows the summary NRMSD statistics for 1000 simulations of the

SGT (0.02%, 1.25%, 2, 3, 0.3) returns process. Each simulation tests 2500 daily 1% VaR estimates.

SGT(2, 3, 0.3) returns, α = 1%

Mean Median StDev Min 5% 95% Max

GARCHvolknown 13.3% 12.1% 5.9% 3.7% 7.2% 22.8% 59.9%
GARCHvolknownNoR 11.5% 9.8% 9.1% 0.1% 1.6% 27.0% 74.7%
GARCH2G 15.9% 14.3% 7.3% 4.6% 8.5% 27.3% 80.1%
GARCH2GNoR 12.2% 9.9% 11.4% 0.1% 2.1% 27.8% 191.5%
voltEqW 17.1% 14.7% 11.3% 4.8% 8.5% 30.8% 193.9%
voltEqWNoR 18.6% 15.0% 15.4% 4.4% 6.9% 41.7% 296.6%
voltEWMA 41.9% 37.5% 18.4% 22.1% 26.7% 71.3% 347.0%
voltEWMANoR 41.9% 37.2% 21.2% 21.2% 24.9% 74.3% 434.2%
c+voltEqW 16.9% 15.9% 5.9% 5.7% 9.8% 27.9% 65.4%
c+voltEqWNoR 20.4% 14.5% 22.0% 0.2% 3.3% 59.9% 357.3%
c+voltEWMA 14.8% 13.7% 6.3% 5.4% 8.4% 24.0% 90.6%
c+voltEWMANoR 13.3% 11.3% 9.3% 0.4% 3.0% 31.5% 111.9%
ParamSGT 43.1% 41.2% 12.0% 17.8% 28.7% 65.2% 122.5%
ParamSGTNoR 44.3% 40.7% 21.0% 10.5% 28.3% 72.1% 457.9%
ParamSGTEWMA 57.7% 53.9% 19.5% 31.6% 39.1% 89.5% 349.5%
ParamSGTEWMANoR 58.2% 53.4% 24.2% 26.6% 38.0% 93.9% 485.8%
NormalEqW 27.1% 23.9% 17.7% 6.4% 13.3% 49.3% 402.8%
RiskMetrics 44.9% 40.1% 21.3% 22.4% 27.9% 76.8% 415.2%
Historical 9.0% 8.6% 3.3% 2.1% 4.6% 15.5% 24.8%
HistVolAdj 46.5% 41.9% 20.8% 22.9% 28.7% 78.0% 381.6%

Moving on to the last scenario, where returns have heavy tails but positive skewness.

From the results in Table 4.6 and in Table A.6, models that does not use the quantile

regression methodology or the Historical VaR with no adjustment, are still getting worse

results in all quantiles, specially for the Parametric SGT models and, also, the Parametric

Normal equally weighted volatility. We are not fully aware of the reasons behind these

huge increases (as an example, the Parametric SGT model with reestimation of parameters
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and equally weighted volatility in the SGT (0.02%, 1.25%, 2, 3, 0), at 1% quantile has 11.6%

of average NRMSD and now has 43.1%). A possible explanation could have to be that the

distribution shift to the right causes an increased number of high positive returns that

will strike high volatility estimates (none of our models/benchmarks have asymmetric

volatility estimation) and that will push the VaR estimates to be too high. This strange

e�ect is not so evident on the 5% quantile, for instance, the Parametric SGT equally

weighted (both versions) recovers more than 20 percentage points of the average NRMSD

from the 2.5% VaR, �nishing with more reasonable results when we compare them with

the other SGT simulations.

Looking at all signi�cance levels on Table 4.6 and on Table A.6 in the Appendix,

quantile regression models show a lot of �exibility and, in general, have increased their

performance comparing to the negative skewed scenario. The two GARCH models with

no reestimation parameters seem to have the lowest average NRMSD on this group (11.5%

for the true volatility model and 12.2% for the estimated volatility version) but, as usual,

results are less consistent when comparing to the periodic reestimation of parameters

that has higher average results but lower variability of the outcome. Quantile regression

VaR models with two parameters performed better that in all SGT (0.02%, 1.25%, 2, 3, λ)

returns distributions. The best quantile regression benchmark model is the one with a

constant term and EWMA volatility speci�cation, either the reestimation version (average

of 14.8%) and the NoR model (13.3%). The single explanatory model with EWMA

volatility is still the worst quantile regression model, what reinforces the conclusion that

the homoskedasticity of simulated returns penalizes the EWMA estimates. Although the

EWMA method could theoretically be able to capture this behavior in the long run, the

variability of estimates adds too much noise to the VaR estimate. Nevertheless, results

show that adding a constant term, it helps minimizing all this noise and just be the leading

explanatory variable of the quantile regression structure, smoothing the estimates.

NoR models are, in general, slightly worse on average and, all of them, in dispersion of

results. Again we invite the reader to read the full results from the additional simulations

carried to all models that does not reestimate parameters on Appendix A.2.
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5 Conclusion

Our main goal with this dissertation was to evaluate the performance of the new quantile

regression model proposed by Zheng et al. (2018), on estimating the 1-day Value-at-Risk,

against more traditional methods and other quantile regression VaR models. Although

this approach does not belong to the regular models class, largely used by �nancial in-

stitutions, we believe that the advantage of not making any particular distributional

assumption and the huge �exibility make it a very useful model to be considered. Natu-

rally, estimating conditional quantiles can be computationally intensive, depending on the

number of explanatory variables used, and the huge �exibility can bite decision makers

back since it brings the same size of accountability.

The GARCH(1,1) quantile regression model overcomes the problem of estimating the

conditional quantile based on a linear relationship with a variance estimate of GARCH

models, introducing a new transformation (14) that works as the inverse of the square

root. The quantile regression parameters are estimated as proposed by Koenker and

Bassett (1978). Results from Zheng et al. (2018) show that this new model is superior to

the well known RiskMetrics model. Also, this same model is tested but making use of the

previously de�ned volatility. We want to understand how much di�cult it is to estimate

the quantile regression parameters even with a crystal ball that gives us the volatility

generated in the returns' process.

In order to examine this model performance, we �rst generate returns using the Monte

Carlo simulation process, with returns following a GARCH(1,1) process. Two sets of pa-

rameters for the generating process are used. First we use the same parameters (ω, γ, β) =

(0.1, 0.15, 0.8) as Zheng et al. (2018), that, in our opinion, are not suited for daily returns

since the implicit long run daily standard deviation is unreasonable (141%). We then ran

our simulations with more realistic parameters: (ω, γ, β) = (3.125×10−7, 0.05, 0.9). Addi-

tionally, since in the real world we do not know if returns exhibits always and every time

heteroskedastic processes, we simulate a Skewed Generalized T distribution (SGT). This

distribution allow us to de�ne the tail behavior and the presence of skewness. Hence, we

test 4 main scenarios for the returns distribution: Normal, heavy tails without skewness,

heavy tails with negative skewness and heavy tails with positive skewness. Finally, for

each simulation, a total of 4500 returns are generated. A test window with the last 2500

is de�ned so that we have the same number of daily VaR estimates for all models. We

simulate this process 1000 times and for each simulation we compare the estimated VaR

with the true VaR given by the parameters set to each scenario, for signi�cance levels of

1%, 2.5% and 5%. Since 1000 times could not be enough to avoid simulation bias, and it

was not feasible for time restrictions to increase the number of simulations, we also run

10000 simulations for the group of models that does not need to reestimate parameters

(main time consuming component). For evaluation purposes we compute and record the
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NRMSD for each simulation. Naturally, the best model in every scenario will be the one

with the lowest average NRMSD. Also we have to take into consideration other metrics

that reveal results dispersion like the NRMSD standard deviation, minimum, maximum,

5% quantile and 95% quantile. We seek for e�ciency with consistency.

As benchmarks, we start by selecting two simple quantile regression structures to pre-

dict the V aRt. So, from the quantile regression methodologies we start with a model that

has only the volatility estimate for day t as a parameter. The second has the volatility

estimate for t and also a constant term. From each of these two structures we can have

another two versions, one that uses a volatility estimate with a equally weighted method

based on the last 500 returns and other that uses an EWMA estimate with λ = 0.94.

Our aim is to check if the GARCH(1,1) quantile regression model is really worth it when

compared with speci�cations with fewer parameters, hence with less computational time.

We also compare this model performance with more traditional models like the Para-

metric Normal model (RiskMetrics model and Parametric Normal with equally weighted

volatility estimation process), the Parametric SGT with equally weighted method and the

Parametric SGT with EWMA method, the Historical VaR with EWMA volatility adjust-

ment and, �nally, the Historical VaR (no adjustment made). For all applicable models,

we test if the reestimation of parameters makes the di�erence. This is done by estimating

the Value-at-Risk from all these structures with reestimation of parameters every 20 days

and, additionally, without any reestimation of parameters. All models are de�ned with a

sample size of 1000 observations.

The results show that by using the same GARCH returns parameters as Zheng et

al. (2018), the benchmark models struggle a lot more and make the GARCH quantile

estimator shine as the best model by far. If we rather use more reasonable parameters,

it is game changing and the GARCH(1,1) quantile regression model is defeated not only

by the RiskMetrics model but also by the quantile regression models tested (except at

the 2.5% signi�cance level where the quantile regression model with a constant term and

an EWMA estimate slightly unperformed). Overall, as expected, models with EWMA

estimation are better than the equally weighted ones in both returns processes.

Regarding the SGT simulations, results on the four scenarios show that the Historical

(no adjustment) is the best performing model in the presence of heavy tails, the simplicity

pays-o�. Also, the homoskedasticity of returns can not be e�ciently captured by the

EWMA models pushing well known VaR models like the RiskMetrics model and the

Historical VaR with volatility adjustment to the bottom. The only exception is the

quantile regression model with EWMA estimate and an intercept, that is able to avoid

this problem by having the constant term in the quantile regression structure that does all

the job. GARCH(1,1) quantile regression model has a robust performance at all scenarios

but it is not superior to the quantile regression model with just an intercept and an

EWMA estimate in any scenario.
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Overall, the reestimation of parameters does not seem to make much of a di�erence in

terms of the average NRMSD result (slightly lower mean) but it certainly helps to increase

the consistency of results, mainly with lower variability. The Parametric SGT equally

weighted appears to perform reasonably well in all scenarios (except for the positive

skewness scenario), even in the Normal returns scenario he does not stay far away from the

best model (Parametric Normal VaR with equally weighted volatility). Also on GARCH

returns, with reasonable parameters it does not �nd problems with heteroskedasticity.

These results are important because if we do not know the true distribution of returns we

would rather choose the Parametric SGT VaR model over the Parametric Normal VaR

model for its consistency in di�erent scenarios. Regarding the quantile regression models,

overall they are very �exible models working solid in all scenarios, specially the equally

weighted models, without going too far away from the true VaR although neither of these

models won in any scenario and quantile. All quantile regression models are pretty robust

in both environments (GARCH and SGT returns). They were very consistent at the

top of the picking order in any scenario without exception. Results show that including

a constant term dramatically increased the explanation power of the EWMA volatility

model. In the equally weighted model it was only e�ective on the 2.5% and 5% quantiles.

Nevertheless, combining the results of all the experiments, if we had to pick one model

from the quantile regression models, the constant term with EWMA volatility model

seems to be the most consistent. It combines an EWMA estimate that improves the

volatility estimate with the current market conditions and, also, has a constant term that

helps to balance in the presence of homoskedasticity. Hence, the GARCH(1,1) quantile

regression VaR model proposed by Zheng et al. (2018) seems to not improve the already

established quantile regression speci�cations.

For further research we believe that it would be interesting to extend the examination

of this recent quantile regression model using other returns generating processes and

di�erent parameters reestimation frequency. Then, it could be interesting to test with

�nancial market data, despite the necessary cumbersome backtesting procedures. One

exciting experiment would be to evaluate if we can improve these models with exogenous

variables. Instead of only using models that describe volatility with variables within the

model, we would have the conditional standard deviation depending on implied volatilities

extracted from volatility indices.
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A Appendix

A.1 Results Summary, 1000 simulations

A.1.1 NRMSD results with 1000 sample size
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A.1.2 NRMSD results with 500 sample size

Table A.7: This table shows the summary NRMSD statistics of VaR estimates at the 1% signi�-

cance level for the 1000 simulations of GARCH returns, generated with (ω, γ, β) = (0.1, 0.15, 0.8)

as Zheng et al. (2018). All models estimate daily VaR using a sample size of 500 observations.

GARCH(1,1) returns, Zheng et al. (2018)'s parametrization� n = 500, α = 1%

Model Mean Median StDev Min 5% 95% Max

GARCHvolknown 11.4% 11.1% 2.2% 5.9% 8.3% 15.3% 22.6%

GARCHvolknownNoR 10.4% 9.8% 5.4% 1.5% 2.9% 20.5% 33.7%

GARCH2G 13.5% 13.0% 2.6% 7.5% 9.9% 18.2% 28.0%

GARCH2GNoR 11.7% 10.9% 5.4% 2.1% 4.5% 21.9% 44.5%

voltEqW 36.3% 34.5% 8.7% 22.8% 26.8% 53.5% 114.6%

voltEqWNoR 40.4% 36.3% 17.7% 23.0% 27.5% 65.8% 426.2%

voltEWMA 19.5% 18.8% 4.0% 12.9% 15.1% 26.9% 69.2%

voltEWMANoR 18.3% 17.3% 4.2% 12.3% 14.0% 26.6% 52.1%

c+voltEqW 42.6% 37.1% 21.5% 23.5% 27.4% 75.3% 376.5%

c+voltEqWNoR 44.5% 36.8% 31.3% 23.0% 27.5% 76.4% 425.5%

c+voltEWMA 19.6% 18.9% 4.0% 12.9% 15.1% 26.9% 69.2%

c+voltEWMANoR 18.3% 17.3% 4.3% 12.3% 14.0% 26.8% 52.1%

ParamSGT 34.7% 32.7% 7.9% 21.0% 26.0% 50.2% 94.8%

ParamSGTNoR 33.9% 32.1% 7.3% 21.3% 26.1% 48.1% 97.6%

ParamSGTEWMA 18.8% 18.0% 3.7% 12.2% 14.0% 26.4% 34.8%

ParamSGTEWMANoR 17.8% 17.2% 3.3% 11.7% 13.8% 23.9% 39.1%

NormalEqW 32.0% 30.8% 6.1% 21.5% 25.1% 42.2% 85.2%

RiskMetrics 15.8% 15.4% 2.3% 11.8% 13.3% 20.0% 40.7%

Historical 37.6% 34.8% 11.6% 23.1% 26.9% 55.5% 196.5%

HistVolAdj 19.5% 18.9% 3.8% 12.9% 15.1% 26.3% 63.1%
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Table A.8: This table shows the summary NRMSD statistics of VaR estimates at the 2.5% signif-

icance level for the 1000 simulations of GARCH returns, generated with (ω, γ, β) = (0.1, 0.15, 0.8)

as Zheng et al. (2018). All models estimate daily VaR using a sample size of 500 observations.

GARCH(1,1) returns, Zheng et al. (2018)'s parametrization, n = 500, α = 2.5%

Model Mean Median StDev Min 5% 95% Max

GARCHvolknown 9.7% 9.5% 1.9% 5.7% 6.9% 13.2% 22.3%

GARCHvolknownNoR 9.1% 8.2% 4.8% 1.5% 2.8% 17.7% 30.7%

GARCH2G 12.0% 11.7% 2.2% 6.8% 8.8% 15.8% 26.9%

GARCH2GNoR 10.4% 9.6% 4.8% 1.1% 4.3% 19.4% 38.0%

voltEqW 33.2% 31.8% 6.4% 21.9% 26.1% 44.9% 86.9%

voltEqWNoR 37.9% 35.1% 14.9% 22.5% 27.3% 56.2% 403.3%

voltEWMA 18.6% 17.9% 3.7% 13.0% 14.6% 24.3% 72.2%

voltEWMANoR 17.5% 16.7% 3.3% 12.0% 14.0% 23.5% 45.8%

c+voltEqW 41.4% 36.7% 20.0% 22.4% 27.5% 69.3% 405.9%

c+voltEqWNoR 43.5% 36.1% 38.8% 23.7% 27.3% 73.4% 947.2%

c+voltEWMA 18.6% 18.0% 3.7% 13.1% 14.7% 24.3% 72.2%

c+voltEWMANoR 17.5% 16.7% 3.3% 12.0% 13.9% 23.5% 45.8%

ParamSGT 32.3% 30.9% 6.0% 21.1% 25.2% 43.5% 73.4%

ParamSGTNoR 32.3% 30.8% 6.7% 21.3% 25.3% 44.7% 94.0%

ParamSGTEWMA 16.1% 15.8% 1.9% 12.0% 13.5% 19.6% 25.7%

ParamSGTEWMANoR 16.2% 15.7% 2.6% 12.0% 13.4% 20.6% 50.5%

NormalEqW 32.0% 30.8% 6.1% 21.5% 25.1% 42.2% 85.2%

RiskMetrics 15.8% 15.4% 2.3% 11.8% 13.3% 20.0% 40.7%

Historical 33.8% 32.0% 8.9% 22.6% 26.0% 46.5% 175.7%

HistVolAdj 18.5% 18.0% 3.5% 12.7% 14.5% 24.0% 64.1%

49



Table A.9: This table shows the summary NRMSD statistics of VaR estimates at the 5% signi�-

cance level for the 1000 simulations of GARCH returns, generated with (ω, γ, β) = (0.1, 0.15, 0.8)

as Zheng et al. (2018). All models estimate daily VaR using a sample size of 500 observations.

GARCH(1,1) returns, Zheng et al. (2018)'s parametrization, n = 500, α = 5%

Model Mean Median StDev Min 5% 95% Max

GARCHvolknown 9.3% 9.1% 1.9% 4.6% 6.7% 12.5% 26.2%

GARCHvolknownNoR 8.7% 8.1% 4.3% 1.5% 2.5% 16.7% 24.5%

GARCH2G 11.6% 11.4% 2.2% 6.5% 8.5% 15.5% 29.7%

GARCH2GNoR 10.0% 9.2% 4.5% 1.1% 4.0% 18.2% 32.6%

voltEqW 32.2% 30.8% 5.8% 21.0% 25.6% 43.3% 71.7%

voltEqWNoR 36.4% 34.2% 11.3% 23.2% 27.1% 52.0% 296.2%

voltEWMA 18.0% 17.5% 3.3% 12.7% 14.7% 22.9% 62.9%

voltEWMANoR 17.0% 16.4% 2.9% 11.9% 13.7% 22.3% 49.3%

c+voltEqW 39.5% 35.5% 16.8% 21.6% 27.4% 63.7% 333.8%

c+voltEqWNoR 42.3% 35.3% 28.9% 22.8% 27.4% 70.3% 548.7%

c+voltEWMA 18.1% 17.5% 3.4% 12.9% 14.7% 22.9% 62.9%

c+voltEWMANoR 17.1% 16.4% 3.0% 11.9% 13.7% 22.4% 49.3%

ParamSGT 31.4% 30.2% 5.4% 21.2% 25.1% 41.6% 71.7%

ParamSGTNoR 31.9% 30.4% 6.5% 21.5% 25.0% 43.9% 91.4%

ParamSGTEWMA 15.7% 15.4% 1.9% 11.9% 13.6% 18.8% 33.4%

ParamSGTEWMANoR 16.2% 15.7% 2.7% 12.3% 13.6% 20.4% 65.5%

NormalEqW 32.0% 30.8% 6.1% 21.5% 25.1% 42.2% 85.2%

RiskMetrics 15.8% 15.4% 2.3% 11.8% 13.3% 20.0% 40.7%

Historical 32.2% 31.0% 6.8% 21.9% 25.6% 42.4% 150.4%

HistVolAdj 17.9% 17.4% 3.2% 12.4% 14.5% 22.8% 61.5%
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Table A.10: This table shows the summary NRMSD statistics of VaR estimates at the 1%

signi�cance level for the 1000 simulations of GARCH returns, generated with (ω, γ, β) = (3.125×
10−7, 0.05, 0.9). All models estimate daily VaR using a sample size of 500 observations.

GARCH(1,1) returns, realistic parametrization� n = 500, α = 1%

Model Mean Median StDev Min 5% 95% Max

GARCHvolknown 11.6% 11.4% 1.7% 7.5% 9.2% 14.6% 22.4%

GARCHvolknownNoR 10.9% 10.0% 5.0% 0.4% 3.9% 20.6% 40.5%

GARCH2G 12.8% 12.4% 2.9% 8.6% 10.0% 16.3% 59.7%

GARCH2GNoR 11.4% 10.4% 5.1% 1.9% 4.9% 20.5% 43.2%

voltEqW 13.3% 13.1% 1.8% 9.8% 10.9% 16.5% 24.3%

voltEqWNoR 15.4% 14.3% 4.1% 9.4% 11.0% 23.4% 43.4%

voltEWMA 11.3% 11.0% 1.8% 7.2% 8.9% 14.6% 19.6%

voltEWMANoR 10.6% 9.6% 3.4% 6.5% 7.4% 17.4% 28.3%

c+voltEqW 19.9% 19.2% 4.0% 11.6% 14.7% 27.4% 41.1%

c+voltEqWNoR 25.1% 19.7% 16.1% 9.4% 11.4% 56.2% 182.7%

c+voltEWMA 11.6% 11.4% 2.1% 6.2% 8.5% 15.4% 20.1%

c+voltEWMANoR 10.5% 8.9% 6.3% 2.6% 3.4% 23.0% 58.4%

ParamSGT 12.2% 12.0% 1.5% 9.3% 10.1% 14.8% 19.3%

ParamSGTNoR 12.1% 11.8% 1.6% 8.9% 9.9% 15.0% 19.2%

ParamSGTEWMA 9.2% 9.0% 1.1% 6.2% 7.5% 11.3% 14.1%

ParamSGTEWMANoR 9.1% 8.8% 1.4% 6.0% 7.3% 11.8% 16.0%

NormalEqW 11.4% 11.3% 1.2% 8.7% 9.6% 13.8% 17.1%

RiskMetrics 8.3% 8.3% 0.8% 5.6% 7.0% 9.7% 12.7%

Historical 13.3% 12.9% 2.1% 8.9% 10.6% 17.3% 24.7%

HistVolAdj 11.9% 11.6% 2.1% 7.3% 9.0% 15.9% 21.7%
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Table A.11: This table shows the summary NRMSD statistics of VaR estimates at the 2.5%

signi�cance level for the 1000 simulations of GARCH returns, generated with (ω, γ, β) = (3.125×
10−7, 0.05, 0.9). All models estimate daily VaR using a sample size of 500 observations.

GARCH(1,1) returns, realistic parametrization, α = 2.5%

Model Mean Median StDev Min 5% 95% Max

GARCHvolknown 9.2% 9.0% 1.6% 5.2% 6.9% 11.9% 15.4%

GARCHvolknownNoR 8.5% 7.8% 4.7% 0.5% 2.2% 17.0% 42.4%

GARCH2G 10.8% 10.4% 3.0% 5.9% 8.1% 13.8% 57.8%

GARCH2GNoR 9.1% 8.4% 4.7% 0.4% 2.8% 17.6% 42.2%

voltEqW 12.6% 12.4% 1.5% 9.2% 10.4% 15.4% 20.7%

voltEqWNoR 14.7% 14.0% 3.2% 9.3% 11.0% 21.5% 33.1%

voltEWMA 10.6% 10.4% 1.5% 7.1% 8.6% 13.3% 17.8%

voltEWMANoR 9.9% 9.3% 2.3% 6.4% 7.4% 14.5% 22.5%

c+voltEqW 18.3% 17.8% 3.4% 10.9% 13.9% 25.0% 40.9%

c+voltEqWNoR 23.7% 18.0% 17.3% 9.4% 11.0% 54.7% 193.1%

c+voltEWMA 10.1% 9.9% 1.7% 5.6% 7.5% 12.9% 17.0%

c+voltEWMANoR 9.2% 8.0% 5.1% 2.5% 3.4% 18.6% 39.5%

ParamSGT 11.7% 11.6% 1.2% 9.2% 10.0% 14.0% 17.3%

ParamSGTNoR 11.7% 11.6% 1.3% 8.9% 9.9% 14.1% 17.4%

ParamSGTEWMA 8.7% 8.6% 0.9% 6.0% 7.3% 10.3% 12.5%

ParamSGTEWMANoR 8.7% 8.5% 1.1% 6.0% 7.2% 10.6% 13.5%

NormalEqW 11.4% 11.3% 1.2% 8.7% 9.6% 13.8% 17.1%

RiskMetrics 8.3% 8.3% 0.8% 5.6% 7.0% 9.7% 12.7%

Historical 12.6% 12.4% 1.6% 8.3% 10.3% 15.4% 20.7%

HistVolAdj 11.1% 10.9% 1.7% 7.0% 8.7% 14.4% 17.6%
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Table A.12: This table shows the summary NRMSD statistics of VaR estimates at the 5%

signi�cance level for the 1000 simulations of GARCH returns, generated with (ω, γ, β) = (3.125×
10−7, 0.05, 0.9). All models estimate daily VaR using a sample size of 500 observations.

GARCH(1,1) returns, realistic parametrization, n = 500, α = 5%

Model Mean Median StDev Min 5% 95% Max

GARCHvolknown 9.9% 9.7% 1.7% 5.9% 7.5% 12.8% 18.5%

GARCHvolknownNoR 9.3% 8.6% 4.9% 1.0% 3.1% 17.7% 52.7%

GARCH2G 11.6% 11.2% 3.4% 6.8% 8.8% 15.0% 77.8%

GARCH2GNoR 9.8% 9.2% 4.9% 1.3% 3.4% 18.1% 52.4%

voltEqW 12.3% 12.2% 1.3% 9.0% 10.4% 14.6% 17.1%

voltEqWNoR 14.4% 13.8% 2.8% 9.3% 11.0% 20.1% 27.2%

voltEWMA 10.3% 10.2% 1.3% 7.2% 8.4% 12.6% 18.2%

voltEWMANoR 9.6% 9.2% 2.0% 6.4% 7.4% 13.6% 20.1%

c+voltEqW 17.9% 17.5% 3.0% 11.4% 13.7% 23.7% 31.7%

c+voltEqWNoR 22.7% 17.5% 15.8% 9.2% 10.9% 54.2% 146.7%

c+voltEWMA 9.7% 9.5% 1.6% 5.6% 7.3% 12.6% 16.6%

c+voltEWMANoR 9.0% 8.1% 4.7% 2.4% 3.4% 17.7% 34.4%

ParamSGT 11.5% 11.4% 1.1% 9.0% 9.9% 13.7% 16.2%

ParamSGTNoR 11.6% 11.4% 1.2% 9.1% 9.8% 13.7% 16.4%

ParamSGTEWMA 8.5% 8.4% 0.8% 6.0% 7.2% 9.9% 11.3%

ParamSGTEWMANoR 8.5% 8.4% 0.9% 6.0% 7.1% 10.1% 11.7%

NormalEqW 11.4% 11.3% 1.2% 8.7% 9.6% 13.8% 17.1%

RiskMetrics 8.3% 8.3% 0.8% 5.6% 7.0% 9.7% 12.7%

Historical 12.3% 12.1% 1.5% 8.7% 10.3% 14.9% 20.4%

HistVolAdj 10.7% 10.6% 1.5% 7.1% 8.6% 13.4% 19.7%
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Table A.13: This table shows the summary NRMSD statistics of VaR estimates at the 1%

signi�cance level for the 1000 simulations of SGT (0.02%, 1.25%, 2,∞, 0) returns. All models

estimate daily VaR using a sample size of 500 observations.

SGT (0.02%, 1.25%, 2,∞, 0) returns, n = 500, α = 1%

Model Mean Median StDev Min 5% 95% Max

GARCHvolknown 9.1% 8.9% 1.8% 4.2% 6.5% 12.2% 18.2%

GARCHvolknownNoR 7.9% 7.3% 4.9% 0.0% 1.0% 16.6% 34.4%

GARCH2G 7.3% 7.2% 1.8% 3.2% 4.6% 10.6% 16.5%

GARCH2GNoR 8.3% 7.7% 4.9% 0.2% 1.4% 17.2% 34.4%

voltEqW 6.7% 6.6% 1.5% 2.6% 4.5% 9.6% 12.7%

voltEqWNoR 6.6% 5.8% 3.7% 1.3% 2.4% 14.1% 27.2%

voltEWMA 14.9% 14.6% 1.7% 11.3% 12.7% 18.0% 22.0%

voltEWMANoR 14.6% 13.5% 3.2% 10.5% 11.6% 21.2% 31.0%

c+voltEqW 13.4% 13.0% 2.8% 6.2% 9.2% 18.5% 24.5%

c+voltEqWNoR 16.9% 12.7% 14.6% 0.2% 2.8% 45.0% 109.1%

c+voltEWMA 10.5% 10.4% 1.9% 5.3% 7.5% 13.7% 18.7%

c+voltEWMANoR 9.7% 8.9% 5.4% 0.3% 2.3% 20.1% 32.8%

ParamSGT 4.6% 4.5% 1.1% 1.9% 3.1% 6.7% 9.4%

ParamSGTNoR 4.4% 3.9% 1.9% 1.3% 2.2% 8.2% 14.5%

ParamSGTEWMA 12.8% 12.8% 0.8% 10.5% 11.5% 14.3% 16.1%

ParamSGTEWMANoR 12.8% 12.7% 1.0% 10.5% 11.4% 14.6% 17.9%

NormalEqW 3.2% 3.1% 0.8% 1.5% 2.0% 4.5% 6.6%

RiskMetrics 12.3% 12.3% 0.7% 9.9% 11.2% 13.6% 14.9%

Historical 6.8% 6.6% 1.7% 2.8% 4.3% 9.8% 14.7%

HistVolAdj 15.7% 15.4% 2.0% 11.8% 13.0% 19.6% 24.9%

54



Table A.14: This table shows the summary NRMSD statistics of VaR estimates at the 2.5%

signi�cance level for the 1000 simulations of SGT (0.02%, 1.25%, 2,∞, 0) returns. All models

estimate daily VaR using a sample size of 500 observations.

SGT (0.02%, 1.25%, 2,∞, 0) returns, n = 500, α = 2.5%

Model Mean Median StDev Min 5% 95% Max

GARCHvolknown 6.1% 6.1% 1.5% 2.9% 3.9% 8.7% 11.9%

GARCHvolknownNoR 5.1% 4.3% 4.0% 0.0% 0.4% 13.1% 21.1%

GARCH2G 6.1% 6.0% 1.5% 2.7% 3.9% 8.7% 11.6%

GARCH2GNoR 6.0% 5.2% 4.1% 0.1% 0.7% 13.4% 23.6%

voltEqW 5.7% 5.5% 1.4% 2.5% 3.7% 8.1% 11.9%

voltEqWNoR 5.9% 4.8% 3.4% 1.4% 2.4% 12.9% 22.7%

voltEWMA 13.9% 13.9% 1.2% 11.0% 12.2% 16.2% 18.0%

voltEWMANoR 13.7% 13.2% 2.0% 10.6% 11.5% 17.6% 24.7%

c+voltEqW 11.9% 11.7% 2.4% 6.1% 8.1% 15.9% 20.9%

c+voltEqWNoR 14.8% 11.0% 14.0% 0.3% 2.5% 39.6% 161.0%

c+voltEWMA 8.9% 8.8% 1.6% 4.7% 6.4% 11.8% 15.6%

c+voltEWMANoR 8.2% 7.6% 4.6% 0.1% 1.9% 16.6% 28.1%

ParamSGT 4.0% 3.8% 0.9% 2.0% 2.6% 5.7% 7.8%

ParamSGTNoR 3.8% 3.6% 1.4% 1.4% 2.1% 6.8% 10.8%

ParamSGTEWMA 12.6% 12.5% 0.8% 10.3% 11.3% 13.8% 15.1%

ParamSGTEWMANoR 12.6% 12.5% 0.8% 10.5% 11.3% 14.0% 16.5%

NormalEqW 3.2% 3.1% 0.8% 1.5% 2.0% 4.6% 6.7%

RiskMetrics 12.4% 12.3% 0.7% 9.9% 11.2% 13.6% 14.9%

Historical 5.9% 5.8% 1.5% 2.7% 3.7% 8.5% 11.4%

HistVolAdj 14.6% 14.5% 1.4% 11.4% 12.6% 17.1% 19.2%
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Table A.15: This table shows the summary NRMSD statistics of VaR estimates at the 5%

signi�cance level for the 1000 simulations of SGT (0.02%, 1.25%, 2,∞, 0) returns. All models

estimate daily VaR using a sample size of 500 observations.

SGT (0.02%, 1.25%, 2,∞, 0) returns, n = 500, α = 5%

Model Mean Median StDev Min 5% 95% Max

GARCHvolknown 7.7% 7.6% 1.4% 4.5% 5.5% 10.2% 13.5%

GARCHvolknownNoR 7.0% 6.4% 4.0% 0.1% 1.3% 14.3% 20.3%

GARCH2G 6.3% 6.2% 1.3% 3.1% 4.4% 8.5% 12.3%

GARCH2GNoR 7.3% 6.9% 4.2% 0.1% 1.5% 14.2% 47.4%

voltEqW 5.3% 5.3% 1.2% 2.4% 3.5% 7.3% 10.7%

voltEqWNoR 5.8% 5.1% 3.0% 1.3% 2.4% 12.2% 17.5%

voltEWMA 13.6% 13.5% 1.0% 11.0% 12.1% 15.5% 18.8%

voltEWMANoR 13.4% 13.0% 1.7% 10.4% 11.4% 16.7% 23.9%

c+voltEqW 11.6% 11.4% 2.2% 5.6% 8.2% 15.5% 19.0%

c+voltEqWNoR 14.3% 11.2% 12.6% 0.3% 2.5% 38.8% 134.0%

c+voltEWMA 8.5% 8.4% 1.5% 4.5% 6.3% 11.1% 13.9%

c+voltEWMANoR 7.7% 7.1% 4.4% 0.6% 1.9% 16.1% 28.0%

ParamSGT 3.6% 3.5% 0.9% 1.7% 2.4% 5.1% 7.4%

ParamSGTNoR 3.5% 3.3% 1.1% 1.5% 2.1% 5.8% 9.3%

ParamSGTEWMA 12.4% 12.4% 0.7% 10.4% 11.3% 13.7% 14.9%

ParamSGTEWMANoR 12.4% 12.4% 0.8% 10.5% 11.3% 13.8% 15.7%

NormalEqW 3.3% 3.2% 0.8% 1.5% 2.1% 4.7% 6.8%

RiskMetrics 12.4% 12.3% 0.7% 9.9% 11.2% 13.7% 14.9%

Historical 5.6% 5.5% 1.3% 2.1% 3.5% 7.8% 11.2%

HistVolAdj 14.1% 14.0% 1.2% 11.3% 12.4% 16.4% 20.0%
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Table A.16: This table shows the summary NRMSD statistics of VaR estimates at the 1%

signi�cance level for the 1000 simulations of SGT (0.02%, 1.25%, 2, 3, 0) returns. All models

estimate daily VaR using a sample size of 500 observations.

SGT (0.02%, 1.25%, 2, 3, 0) returns, n = 500, α = 1%

Model Mean Median StDev Min 5% 95% Max

GARCHvolknown 22.5% 20.7% 8.5% 9.5% 13.7% 38.7% 99.3%

GARCHvolknownNoR 18.8% 15.6% 14.0% 0.5% 3.6% 46.3% 118.8%

GARCH2G 18.6% 17.3% 6.6% 4.7% 10.8% 31.5% 53.0%

GARCH2GNoR 20.1% 15.6% 18.8% 0.3% 3.9% 48.7% 247.7%

voltEqW 17.4% 16.1% 6.1% 7.7% 10.6% 29.0% 58.2%

voltEqWNoR 19.5% 16.2% 12.7% 4.3% 6.9% 44.1% 96.5%

voltEWMA 40.1% 36.7% 13.5% 21.2% 26.6% 65.2% 128.7%

voltEWMANoR 39.1% 34.5% 15.6% 19.9% 24.4% 67.4% 160.6%

c+voltEqW 54.9% 42.6% 44.5% 14.4% 22.4% 132.2% 600.8%

c+voltEqWNoR 56.6% 30.8% 77.5% 0.4% 6.6% 193.2% 755.1%

c+voltEWMA 26.2% 24.1% 9.1% 14.1% 16.8% 41.3% 95.3%

c+voltEWMANoR 23.8% 20.0% 17.3% 0.5% 5.8% 52.6% 214.8%

ParamSGT 10.0% 9.3% 3.7% 3.4% 5.7% 16.6% 33.6%

ParamSGTNoR 12.7% 10.2% 9.5% 3.5% 6.1% 25.8% 139.5%

ParamSGTEWMA 31.6% 29.0% 9.2% 20.9% 23.2% 47.8% 123.7%

ParamSGTEWMANoR 32.6% 29.3% 11.5% 20.9% 23.4% 52.1% 166.0%

NormalEqW 18.4% 17.0% 8.7% 7.4% 12.2% 27.1% 103.7%

RiskMetrics 33.8% 30.9% 10.5% 25.6% 27.2% 48.5% 148.6%

Historical 16.4% 15.2% 5.5% 4.4% 9.8% 27.1% 44.5%

HistVolAdj 45.9% 42.4% 16.4% 22.5% 29.1% 75.6% 139.9%
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Table A.17: This table shows the summary NRMSD statistics of VaR estimates at the 2.5%

signi�cance level for the 1000 simulations of SGT (0.02%, 1.25%, 2, 3, 0) returns. All models

estimate daily VaR using a sample size of 500 observations.

SGT (0.02%, 1.25%, 2, 3, 0) returns, n = 500, α = 2.5%

Model Mean Median StDev Min 5% 95% Max

GARCHvolknown 12.0% 11.7% 3.5% 4.8% 7.4% 18.2% 43.0%

GARCHvolknownNoR 9.9% 8.4% 7.8% 0.0% 0.8% 23.3% 62.7%

GARCH2G 11.7% 11.3% 3.0% 5.1% 7.4% 17.2% 27.7%

GARCH2GNoR 12.0% 9.7% 11.0% 0.0% 1.3% 27.6% 147.6%

voltEqW 13.6% 12.7% 5.1% 5.5% 8.0% 22.3% 50.0%

voltEqWNoR 17.1% 14.4% 10.6% 3.9% 6.8% 36.6% 93.9%

voltEWMA 37.2% 33.9% 12.5% 21.9% 25.2% 60.6% 135.2%

voltEWMANoR 36.8% 33.0% 14.0% 19.8% 24.2% 62.2% 158.6%

c+voltEqW 32.8% 25.3% 32.8% 12.0% 16.0% 74.8% 502.3%

c+voltEqWNoR 39.0% 21.5% 58.5% 1.0% 5.0% 127.8% 1040.5%

c+voltEWMA 18.3% 17.3% 5.7% 8.5% 12.0% 27.9% 66.5%

c+voltEWMANoR 16.9% 14.3% 11.9% 0.3% 3.7% 38.9% 106.2%

ParamSGT 7.1% 6.8% 2.1% 3.2% 4.5% 10.6% 22.6%

ParamSGTNoR 13.6% 11.0% 9.8% 4.0% 5.9% 29.4% 143.2%

ParamSGTEWMA 31.1% 28.8% 8.7% 20.5% 22.9% 46.2% 117.0%

ParamSGTEWMANoR 33.1% 30.0% 11.5% 20.1% 23.7% 52.9% 169.6%

NormalEqW 14.9% 10.8% 14.2% 3.4% 5.6% 37.4% 133.0%

RiskMetrics 34.6% 30.7% 14.8% 18.9% 23.0% 57.8% 181.2%

Historical 11.3% 10.9% 3.1% 4.4% 6.8% 17.0% 27.8%

HistVolAdj 41.3% 37.9% 14.4% 23.5% 27.1% 66.1% 149.5%
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Table A.18: This table shows the summary NRMSD statistics of VaR estimates at the 5%

signi�cance level for the 1000 simulations of SGT (0.02%, 1.25%, 2, 3, 0) returns. All models

estimate daily VaR using a sample size of 500 observations.

SGT (0.02%, 1.25%, 2, 3, 0) returns, n = 500, α = 5%

Model Mean Median StDev Min 5% 95% Max

GARCHvolknown 13.4% 12.8% 3.9% 5.8% 8.9% 20.3% 52.3%

GARCHvolknownNoR 11.8% 10.8% 8.1% 0.0% 1.5% 25.3% 77.1%

GARCH2G 9.5% 9.2% 2.4% 4.9% 6.3% 13.8% 19.4%

GARCH2GNoR 12.2% 10.8% 8.4% 0.0% 2.0% 25.9% 71.7%

voltEqW 12.2% 11.2% 4.7% 4.9% 7.0% 20.3% 48.5%

voltEqWNoR 15.9% 13.2% 10.0% 3.8% 6.6% 34.0% 83.1%

voltEWMA 35.9% 32.8% 12.0% 20.7% 25.0% 56.9% 148.3%

voltEWMANoR 36.0% 32.3% 13.7% 19.8% 23.8% 60.0% 163.5%

c+voltEqW 21.7% 18.3% 22.1% 9.2% 12.4% 34.7% 395.6%

c+voltEqWNoR 30.4% 17.2% 43.4% 0.2% 3.7% 96.0% 576.0%

c+voltEWMA 14.8% 14.0% 4.2% 8.1% 10.1% 21.7% 53.9%

c+voltEWMANoR 13.9% 11.9% 9.2% 0.2% 3.2% 30.9% 69.0%

ParamSGT 6.7% 6.5% 1.8% 3.0% 4.4% 9.6% 20.7%

ParamSGTNoR 15.0% 12.3% 10.2% 4.2% 6.0% 33.7% 145.0%

ParamSGTEWMA 31.1% 28.9% 8.5% 20.5% 23.1% 45.7% 112.2%

ParamSGTEWMANoR 33.7% 30.9% 11.4% 19.8% 23.9% 53.4% 171.4%

NormalEqW 25.8% 21.8% 16.3% 6.6% 12.8% 51.6% 158.3%

RiskMetrics 41.7% 37.6% 17.3% 19.5% 26.9% 68.4% 208.8%

Historical 9.1% 8.8% 2.4% 3.9% 5.6% 13.3% 18.7%

HistVolAdj 39.3% 35.8% 13.8% 21.9% 26.6% 62.8% 169.7%
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Table A.19: This table shows the summary NRMSD statistics of VaR estimates at the 1%

signi�cance level for the 1000 simulations of SGT (0.02%, 1.25%, 2, 3,−0.3) returns. All models

estimate daily VaR using a sample size of 500 observations.

SGT (0.02%, 1.25%, 2, 3,−0.3) returns, n = 500, α = 1%

Model Mean Median StDev Min 5% 95% Max

GARCHvolknown 25.0% 22.3% 27.2% 7.4% 14.6% 39.9% 843.3%

GARCHvolknownNoR 20.7% 17.6% 15.0% 0.5% 3.8% 50.8% 122.2%

GARCH2G 20.2% 18.7% 7.1% 6.2% 11.2% 33.7% 54.5%

GARCH2GNoR 22.3% 17.9% 20.5% 0.4% 4.4% 56.4% 330.5%

voltEqW 18.0% 16.7% 6.6% 6.5% 10.7% 29.3% 84.9%

voltEqWNoR 20.9% 17.9% 13.0% 3.8% 7.7% 45.6% 147.5%

voltEWMA 44.1% 40.1% 17.6% 20.7% 27.1% 73.0% 232.5%

voltEWMANoR 41.3% 36.2% 18.5% 19.7% 25.4% 74.3% 232.9%

c+voltEqW 71.3% 57.6% 50.4% 19.5% 28.6% 163.3% 562.4%

c+voltEqWNoR 71.8% 37.4% 113.1% 2.6% 9.9% 222.5% 1617.9%

c+voltEWMA 29.7% 26.3% 25.2% 12.1% 17.6% 46.2% 646.5%

c+voltEWMANoR 26.7% 22.6% 19.0% 1.2% 6.7% 58.9% 212.8%

ParamSGT 21.6% 21.7% 3.3% 11.9% 16.2% 27.1% 38.9%

ParamSGTNoR 23.0% 22.1% 7.1% 11.5% 16.9% 30.8% 129.1%

ParamSGTEWMA 36.6% 34.5% 8.0% 28.0% 30.7% 48.6% 144.3%

ParamSGTEWMANoR 37.2% 34.7% 9.8% 28.3% 30.7% 52.7% 160.7%

NormalEqW 30.6% 30.7% 4.4% 17.5% 25.1% 35.3% 109.5%

RiskMetrics 41.4% 39.9% 7.4% 33.1% 37.1% 50.3% 156.5%

Historical 17.8% 16.7% 5.6% 5.8% 10.6% 28.8% 47.5%

HistVolAdj 52.1% 47.3% 21.9% 22.0% 29.8% 88.3% 257.5%
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Table A.20: This table shows the summary NRMSD statistics of VaR estimates at the 2.5%

signi�cance level for the 1000 simulations of SGT (0.02%, 1.25%, 2, 3,−0.3) returns. All models

estimate daily VaR using a sample size of 500 observations.

SGT (0.02%, 1.25%, 2, 3,−0.3) returns, n = 500, α = 2.5%

Model Mean Median StDev Min 5% 95% Max

GARCHvolknown 13.5% 13.0% 4.2% 3.9% 8.4% 20.8% 55.7%

GARCHvolknownNoR 10.9% 9.2% 8.3% 0.1% 0.9% 26.4% 53.3%

GARCH2G 13.0% 12.6% 3.5% 4.1% 8.2% 19.4% 29.2%

GARCH2GNoR 15.3% 11.8% 17.9% 0.1% 1.3% 37.5% 269.7%

voltEqW 14.8% 13.5% 5.9% 5.4% 8.6% 25.3% 77.3%

voltEqWNoR 19.1% 15.9% 12.3% 3.7% 7.3% 41.3% 159.5%

voltEWMA 40.6% 36.7% 16.1% 22.0% 26.5% 67.0% 246.0%

voltEWMANoR 39.8% 35.2% 17.6% 19.8% 25.2% 69.7% 247.2%

c+voltEqW 49.0% 36.2% 41.7% 14.2% 21.3% 129.0% 477.3%

c+voltEqWNoR 53.9% 27.7% 121.0% 0.8% 6.4% 160.2% 2452.2%

c+voltEWMA 20.8% 19.6% 5.8% 8.8% 14.1% 32.0% 54.6%

c+voltEWMANoR 19.5% 16.6% 14.6% 0.2% 3.8% 44.3% 172.0%

ParamSGT 17.2% 17.2% 2.6% 9.6% 13.1% 21.4% 34.9%

ParamSGTNoR 20.3% 18.7% 8.8% 7.9% 13.2% 32.9% 141.3%

ParamSGTEWMA 34.8% 32.6% 8.6% 25.6% 28.1% 48.8% 147.8%

ParamSGTEWMANoR 36.3% 33.4% 11.3% 25.0% 28.3% 54.9% 180.6%

NormalEqW 17.1% 15.9% 7.6% 6.8% 11.4% 25.5% 146.5%

RiskMetrics 34.8% 31.6% 12.1% 24.8% 27.1% 53.8% 195.7%

Historical 12.9% 12.4% 3.6% 3.9% 8.0% 19.4% 29.1%

HistVolAdj 46.1% 41.9% 19.1% 23.6% 28.6% 76.6% 295.6%
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Table A.21: This table shows the summary NRMSD statistics of VaR estimates at the 5%

signi�cance level for the 1000 simulations of SGT (0.02%, 1.25%, 2, 3,−0.3) returns. All models

estimate daily VaR using a sample size of 500 observations.

SGT (0.02%, 1.25%, 2, 3,−0.3) returns, n = 500, α = 5%

Model Mean Median StDev Min 5% 95% Max

GARCHvolknown 15.5% 14.7% 4.7% 7.7% 10.2% 23.9% 52.6%

GARCHvolknownNoR 13.5% 12.0% 9.1% 0.1% 2.1% 29.3% 71.2%

GARCH2G 11.0% 10.8% 2.6% 5.3% 7.3% 15.5% 20.5%

GARCH2GNoR 15.8% 12.8% 18.3% 0.4% 2.5% 33.4% 246.7%

voltEqW 13.4% 12.2% 5.6% 4.8% 7.6% 24.1% 69.8%

voltEqWNoR 17.9% 14.9% 11.3% 3.7% 7.3% 39.2% 126.7%

voltEWMA 38.9% 35.0% 14.6% 20.8% 26.1% 63.5% 195.2%

voltEWMANoR 38.9% 34.6% 17.2% 19.9% 24.9% 67.5% 245.2%

c+voltEqW 32.3% 25.7% 28.1% 10.3% 16.3% 77.3% 365.6%

c+voltEqWNoR 43.1% 23.3% 93.4% 0.7% 5.1% 127.2% 2404.5%

c+voltEWMA 17.4% 16.4% 5.4% 8.5% 11.8% 26.5% 74.3%

c+voltEWMANoR 16.8% 14.0% 13.5% 0.5% 3.5% 38.4% 226.5%

ParamSGT 13.4% 13.2% 2.3% 7.9% 10.1% 16.7% 34.0%

ParamSGTNoR 18.3% 15.9% 10.8% 5.1% 9.4% 35.6% 153.5%

ParamSGTEWMA 33.8% 31.5% 9.5% 22.6% 25.8% 48.9% 156.8%

ParamSGTEWMANoR 36.1% 32.7% 12.8% 20.8% 26.0% 57.1% 201.2%

NormalEqW 15.7% 12.4% 12.4% 3.7% 6.0% 36.0% 183.5%

RiskMetrics 36.4% 32.2% 16.3% 18.7% 23.5% 64.2% 234.5%

Historical 10.5% 10.3% 2.6% 4.2% 6.6% 15.2% 20.4%

HistVolAdj 43.4% 39.2% 17.9% 22.8% 27.6% 73.6% 265.7%
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Table A.22: This table shows the summary NRMSD statistics of VaR estimates at the 1%

signi�cance level for the 1000 simulations of SGT (0.02%, 1.25%, 2, 3, 0.3) returns. All models

estimate daily VaR using a sample size of 500 observations.

SGT (0.02%, 1.25%, 2, 3, 0.3) returns, n = 500, α = 1%

Model Mean Median StDev Min 5% 95% Max

GARCHvolknown 20.1% 18.6% 7.5% 7.8% 11.9% 32.5% 90.8%

GARCHvolknownNoR 16.9% 14.4% 12.2% 0.3% 2.5% 39.3% 95.7%

GARCH2G 15.5% 14.5% 5.3% 5.9% 8.9% 25.6% 46.9%

GARCH2GNoR 18.8% 14.7% 19.2% 0.5% 3.2% 44.9% 267.4%

voltEqW 17.4% 16.0% 7.1% 6.5% 10.1% 29.7% 73.2%

voltEqWNoR 20.1% 16.5% 12.9% 3.6% 7.4% 46.2% 116.3%

voltEWMA 44.1% 40.8% 15.3% 22.5% 28.3% 72.1% 159.9%

voltEWMANoR 43.6% 38.1% 18.4% 20.4% 25.3% 79.2% 186.1%

c+voltEqW 32.9% 25.8% 26.8% 12.1% 16.3% 69.9% 400.4%

c+voltEqWNoR 45.9% 25.6% 78.8% 0.9% 5.7% 135.3% 1693.6%

c+voltEWMA 23.1% 21.4% 9.0% 10.3% 14.1% 36.7% 115.1%

c+voltEWMANoR 20.9% 16.9% 17.5% 0.8% 4.3% 52.7% 194.6%

ParamSGT 41.9% 41.1% 9.0% 18.9% 28.9% 58.7% 80.4%

ParamSGTNoR 43.6% 40.9% 14.4% 13.8% 28.1% 68.5% 152.4%

ParamSGTEWMA 57.0% 54.0% 15.0% 29.4% 39.0% 84.1% 174.5%

ParamSGTEWMANoR 57.8% 54.0% 18.2% 24.7% 37.9% 90.8% 195.8%

NormalEqW 27.1% 23.9% 17.7% 6.4% 13.3% 49.3% 402.8%

RiskMetrics 44.9% 40.1% 21.3% 22.4% 27.9% 76.8% 415.2%

Historical 13.6% 12.7% 4.4% 5.7% 8.1% 21.6% 42.4%

HistVolAdj 49.0% 45.3% 17.4% 24.3% 30.4% 80.5% 178.6%
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Table A.23: This table shows the summary NRMSD statistics of VaR estimates at the 2.5%

signi�cance level for the 1000 simulations of SGT (0.02%, 1.25%, 2, 3, 0.3) returns. All models

estimate daily VaR using a sample size of 500 observations.

SGT (0.02%, 1.25%, 2, 3, 0.3) returns, n = 500, α = 2.5%

Model Mean Median StDev Min 5% 95% Max

GARCHvolknown 10.1% 9.6% 3.0% 4.0% 6.1% 16.0% 28.8%

GARCHvolknownNoR 8.3% 7.0% 6.8% 0.0% 0.7% 21.0% 87.3%

GARCH2G 9.5% 9.0% 2.3% 4.5% 6.5% 14.2% 22.9%

GARCH2GNoR 10.8% 8.6% 13.6% 0.0% 1.1% 26.5% 258.7%

voltEqW 14.1% 12.9% 6.6% 5.4% 7.7% 24.7% 68.1%

voltEqWNoR 18.1% 15.2% 11.6% 3.7% 6.9% 38.6% 128.7%

voltEWMA 41.4% 38.1% 13.9% 22.1% 27.3% 66.9% 129.5%

voltEWMANoR 41.4% 37.0% 16.1% 21.2% 25.7% 72.7% 173.2%

c+voltEqW 18.8% 16.6% 15.9% 7.7% 11.3% 29.3% 326.5%

c+voltEqWNoR 29.9% 18.2% 45.6% 0.1% 3.8% 89.5% 927.1%

c+voltEWMA 15.0% 14.2% 4.5% 7.4% 9.9% 22.6% 67.1%

c+voltEWMANoR 14.0% 12.0% 9.9% 0.2% 3.4% 32.4% 106.6%

ParamSGT 31.6% 31.2% 5.3% 16.6% 23.3% 41.1% 52.6%

ParamSGTNoR 35.7% 33.5% 14.1% 10.7% 19.1% 60.0% 131.4%

ParamSGTEWMA 49.8% 47.3% 12.8% 28.0% 35.4% 72.8% 157.4%

ParamSGTEWMANoR 51.6% 48.1% 17.6% 24.0% 32.0% 85.0% 187.2%

NormalEqW 41.7% 38.3% 19.4% 18.3% 26.4% 65.9% 460.3%

RiskMetrics 56.3% 51.4% 23.7% 30.6% 37.3% 91.5% 470.7%

Historical 9.0% 8.7% 2.5% 3.9% 5.6% 13.7% 23.9%

HistVolAdj 45.7% 42.2% 15.6% 23.9% 29.0% 75.7% 143.3%
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Table A.24: This table shows the summary NRMSD statistics of VaR estimates at the 5%

signi�cance level for the 1000 simulations of SGT (0.02%, 1.25%, 2, 3, 0.3) returns. All models

estimate daily VaR using a sample size of 500 observations.

SGT (0.02%, 1.25%, 2, 3, 0.3) returns, n = 500, α = 5%

Model Mean Median StDev Min 5% 95% Max

GARCHvolknown 13.4% 12.8% 3.9% 5.8% 8.9% 20.3% 52.3%

GARCHvolknownNoR 11.8% 10.8% 8.1% 0.0% 1.5% 25.3% 77.1%

GARCH2G 9.5% 9.2% 2.4% 4.9% 6.3% 13.8% 19.4%

GARCH2GNoR 12.2% 10.8% 8.4% 0.0% 2.0% 25.9% 71.7%

voltEqW 12.2% 11.2% 4.7% 4.9% 7.0% 20.3% 48.5%

voltEqWNoR 15.9% 13.2% 10.0% 3.8% 6.6% 34.0% 83.1%

voltEWMA 35.9% 32.8% 12.0% 20.7% 25.0% 56.9% 148.3%

voltEWMANoR 36.0% 32.3% 13.7% 19.8% 23.8% 60.0% 163.5%

c+voltEqW 21.7% 18.3% 22.1% 9.2% 12.4% 34.7% 395.6%

c+voltEqWNoR 30.4% 17.2% 43.4% 0.2% 3.7% 96.0% 576.0%

c+voltEWMA 14.8% 14.0% 4.2% 8.1% 10.1% 21.7% 53.9%

c+voltEWMANoR 13.9% 11.9% 9.2% 0.2% 3.2% 30.9% 69.0%

ParamSGT 6.7% 6.5% 1.8% 3.0% 4.4% 9.6% 20.7%

ParamSGTNoR 15.0% 12.3% 10.2% 4.2% 6.0% 33.7% 145.0%

ParamSGTEWMA 31.1% 28.9% 8.5% 20.5% 23.1% 45.7% 112.2%

ParamSGTEWMANoR 33.7% 30.9% 11.4% 19.8% 23.9% 53.4% 171.4%

NormalEqW 25.8% 21.8% 16.3% 6.6% 12.8% 51.6% 158.3%

RiskMetrics 41.7% 37.6% 17.3% 19.5% 26.9% 68.4% 208.8%

Historical 9.1% 8.8% 2.4% 3.9% 5.6% 13.3% 18.7%

HistVolAdj 39.3% 35.8% 13.8% 21.9% 26.6% 62.8% 169.7%
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A.2 Results Summary, 10000 simulations

A.2.1 NRMSD results with 1000 sample size
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