2020 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)

Automated security testing of Android applications
for secure mobile development

Francisco Palma, '"Nuno Realista, 'Carlos Serrfio, *Luis Nunes, *Jodo Oliveira, *Ana Almeida
'ISTAR - Information Sciences and Technologies and Architecture Research Center
21T - Instituto de Telecomunicagdes
3CISUC - Centre for Informatics and Systems
ISCTE - Instituto Universitario de Lisboa
Lisboa, Portugal
Francisco_Livramento, Nuno_Realista, carlos.serrao, luis.nunes, joao.p.oliveira, ana.almeida{(@iscte-iul.pt}

Abstract— Mobile computing is on the rise. More and more
users rely on mobile applications and mobile devices to execute
the most basic tasks of their lives while depositing their most
private and critical data on them. Mobile application stores act
as the trust anchors that sit between applications developed by
third parties and the user’s mobile devices. Therefore, app
stores should provide the means to ensure that the apps installed
by the users follow high security and quality standards,
minimising the user’s data exposure risks. A critical path
towards that security and quality standards is to early test and
detect mobile application vulnerabilities resulting from
incorrect development practices and to provide developers
feedback about the problems found and some additional
information on how to correct them. This paper presents a
system, developed to help Android app stores (in this case, on
the Aptoide app store) timely detect vulnerabilities on submitted
apps and provide appropriate feedback to developers. The
provide feedback makes developers aware of the secure
development processes while improving the quality and security
of their apps before they are made available to end-users and
installed on their devices.

Keywords— vulnerabilities, android, mobile, security, tests,
software, development, developers, feedback

I. INTRODUCTION

Mobile computing has achieved a level never seen before
(estimates are that the number of smartphones will reach 6,1
billion by 2020)[1]. The two major mobile platforms (Android
and i0S) completely dominate the market and users continue
to adhere massively to these significant mobile platforms.
Users are switching from more traditional data processing
platforms (such as desktop computers) and embrace mobile
platforms increasingly. Messaging, e-commerce, productivity
tools, health and fitness, home banking, payments and many
more are just some of the examples of mobile applications that
handle end-users’ data. The mobile platform has become the
more personal and intimate, and at the same time critical, of
all the other end-user devices [2].

As the trust of end-users on these mobile platforms and
applications augments, more and more users adopt and use
them daily. However, as the number of users increases and the
amounts of critical information deployed on these mobile
platforms, they become more attractive to malicious attackers
that will try to obtain unauthorised access to mobile devices
and users’ data [3]. Attackers are targeting mobile platforms
increasingly, both on the two major mobile platforms - iOS
and Android [4]. Android, due to its market penetration
(around 80% of all mobile devices in the World) and openness
(Android is free and open, and smart devices manufacturers

use it as the basis for their systems) make it more attractive to
attackers [5].

Mobile platforms are becoming increasingly popular, and
the number of developers is growing. This fact makes these
platforms more prone to development mistakes that are most
of the times, translated into vulnerabilities that can be
exploited by attackers to target end-users [6]. Therefore,
developers need to have caution when writing their
applications to assure that they are free from these
vulnerabilities. Most developers have good knowledge about
mobile development frameworks but have difficulties
understanding mobile software development risks and how to
mitigate them to increase the quality of the developed mobile
applications. In terms of security, lowering the number of
development-introduced security vulnerabilities will result in
applications, that pose lower security risks for the end-users.

Therefore, developers require training to tackle these
security risks that might translate into vulnerabilities that
might compromise end-user security. Currently, developers
can use multiple sophisticated tools to discover and analyse
weaknesses. However, these tools are not simple to use, and
numerous tools often generate different results, making the
developers task a daunting and exhaustive experience.
Moreover, this experience repeats itself each time newer
versions of the application are released. This paper,
considering these problems, presents a developer’s security
feedback system that simplifies mobile applications secure
development. Also, it helps developers discover and correct
security vulnerabilities when submitting applications to app
stores, providing feedback and helping them understand the
risks and correct those vulnerabilities. The provided feedback
will help increase the overall security of the mobile
application before it is made publicly available on the app
store, downloaded and installed on the end-user mobile
device.

Android (and other platforms) app stores act as the trust
gateway between the mobile application developers and end-
users’ smartphones. When the user installs a mobile
application on their device, they should have the assurance
that the application passed a robust quality assurance process
to assure the security of the application when it executes on
the mobile device. Currently, the most well-known Android
mobile app stores have quality assurance processes that
evaluate the applications’ security with signature-based
mobile antivirus and antimalware tools but are not looking
specifically into insecure mobile application development
practices.

978-1-7281-1075-2/20/$31.00 ©2020 IEEE
DOI 10.1109/ICSTW50294.2020.00046

2 @co[r%EEuter
psoaety

Aptoide (www.aptoide.com) is an Android app store with
over 220 million unique active users and partnerships with
over 15.000 app developers, having almost 1 million apps
available. Being an entity between developers and users, the
app store has the means for analysing the apps received
according to security and quality parameters before making
them available to consumers. Despite being considered by
independent research, one of the most secure marketplaces
[7], Aptoide continues to strive to face the moving-target
nature of mobile malware and poorly developed applications.
Fostering safe mobile software development practices is
considered a prevention strategy because by reducing the
security vulnerabilities in the apps distributed, the app store
makes it hard for malicious applications to exploit or steal
personal data/assets from its users. This objective can be
achieved by analysing apps vulnerabilities as presented in this
paper and by providing developers with action-oriented
feedback about how to mitigate the security of their apps
breaches and make their user-base safe.

This paper starts by providing a brief introduction about
the secure development of mobile applications context. The
architecture of modern mobile applications and the
identification of the significant risks of mobile application
development will help introduce the secure software
development theme. The second part of this paper is devoted
to the description of the developed system. The system is
capable of analysing Android applications development
vulnerabilities through the integration of multiple scanning
tools and provide detailed feedback to the developers. The
provided feedback will help them understand the security
problems that affect the final quality of mobile applications. It
will also provide education and training, so developers
implement appropriate modifications and security mitigations.
Finally, at the end of this paper, we present several
conclusions from this work and introduce some future work
directions.

II. SECURE MOBILE APPLICATIONS DEVELOPMENT

In the following section of this paper, we approach the
secure mobile applications development. Developers play an
important role on the security of the application’s execution
on the end-users’ devices and how they can be targeted by
other malicious applications or users to compromise the user
data or conduct other types of obnoxious activities.
Developers must understand the different risks that affect
mobile applications and know which are the recommendations
that can help mitigate those security risks.

A. The architecture of a modern mobile application

Most of the times, there is a misconception on what relates
to mobile applications. They are often only looked as software
applications that execute on the mobile device. However,
modern mobile applications result from the aggregation of
different elements and components that when joined together,
provide the necessary environment for the provision of the
needed functionalities to end-users. Modern mobile
applications are composed of the following parts:

o Application: this is the result of a programmer activity
to produce the necessary source code and compile it to
the appropriated format (APK, in the case of Android).
They are made available for installation on the end-
user device through some application store (in
Android, under certain conditions, users can install
applications on their devices directly without requiring

223

a proper application store). Applications running on
the device may access the underlying OS services,
access and store data, access hardware sensors,
communicate with other applications or services and
communicate through the available network.

Device: the physical device that executes the client-
side part of the mobile application, composed of all the
hardware, sensors, operating system (Android or i0S),
and specific operating services and applications.

Network: the different mobile devices can use several
means of communication that allow direct interaction
with other nearby devices. Also, they can
communicate with external services (servers or cloud)
to exchange information. The communication medium
can suffer from third party interference or sniffing.

Server: consists of multiple external services (cloud)
on distributed remote locations accessed through the
Internet. These remote services provide extra
functionality to the mobile application on the device
through the provision of APIs to exchange information
with the application.

Therefore, a modern mobile application is the intelligent
combination of all these four previously described
components to offer the desired functionalities to the end-user.
From a security perspective, security risks are affecting all the
different mobile application components. In the context of this
paper, we only address the security risks related explicitly to
the development of the mobile application.

B. Mobile applications development security risks

As referred before, multiple risks could affect the
development of a mobile application. One of the primary
references existing on what concerns the identification and
classification of risks on mobile applications development is
OWASP. OWASP has a different mobile application security-
related projects integrated on the OWASP Mobile Security
Project [8].

The OWASP Top 10 Mobile Risks [9] is a list that resumes
the most prevalent risks affecting the security of mobile
applications. It presents the following ten risks: (M1)
Improper Platform Usage, (M2) Insecure Data Storage, (M3)
Insecure Communication, (M4) Insecure Authentication,
(M5) Insufficient Cryptography, (M6) Insecure Authorisation,
M7: Client Code Quality, (M8) Code Tampering, (M9)
Reverse Engineering and (M10) Extraneous Functionality.

Apart from the OWASP Mobile Top 10, which lists the
most common and prevalent mobile applications security
risks, OWASP also provides two other relevant sources of
information related to mobile applications security
development. The first one is the Mobile Security Testing
Guide [8], which is a comprehensive manual for mobile
application security testing and reverse engineering devoted
to the iOS and Android mobile platforms.

The second one is the OWASP Mobile Application
Security Verification Standard [8] used by software architects
and developers seeking to develop secure mobile applications,
as well as security testers to ensure completeness and
consistency of the security test results.

ENISA has also been developing some work on this field
of mobile application security development, and one of the
most essential and relevant initiatives is the ENISA report on

“Privacy and data protection in mobile applications” [10].
This report presents a study on the mobile application
development ecosystem and the technical implementation of
the GDPR (EU regulation on privacy). The scope of this
document is to provide a meta-study on privacy and data
protection in mobile apps by analysing the features of the app
development environment that impact privacy and security, as
well as defining relevant best-practices, open issues and gaps
in the field.

ENISA also has another exciting initiative in the field of
secure mobile application development called “Smartphone
Secure Development Guidelines” [11]. This report is a
technology-neutral document produced for developers of
smartphone applications as a guide for developing secure
mobile applications. This guide comprises the following
aspects, also addressed by OWASP: (1) Identify and protect
sensitive data; (2) User authentication, authorisation and
session management; (3) Handle authentication and
authorisation factors securely on the device; (4) Ensure
sensitive data protection in transit; (5) Secure the backend
services, and the platform server and APIs; (6) Secure data
integration with third-party code; (7) Consent and privacy
protection; (8) Protect paid resources; (9) Secure software
distribution; (10) Handle runtime code interpretation; (11)
Device and application integrity; (12) Protection from client-
side injections; and (13) Correct usage of biometric sensors.

NIST also has some work on this mobile applications
security field being the most visible the “Vetting the Security
of Mobile Applications” report [12]. The purpose of this
report is to “help organisations understand the process for
vetting the security of mobile applications, plan for the
implementation of an application vetting process, develop
application security requirements, understand the types of
applications vulnerabilities and the testing methods used to
detect those vulnerabilities, and determine if an application is
acceptable for deployment on the organisation’s mobile
devices”.

As observed in this section of the paper, it is possible to
conclude that there are a different set of initiatives that address
specifically the mobile applications security development.
With minor differences between them, they all propose a set
of security requirements that need to be addressed by the
different stakeholders to have more secure mobile
applications that do not pose security risks for users or
organisations.

C. Secure software development methodologies

These methodologies are not specific for secure mobile
application development since all software development
methodologies that consider application security will need to
adhere to the appropriate methodology practices to attain such
objectives. Secure software development methodologies add
to the traditional software development engineering processes
the necessary steps to enable the design and implementation
of secure software through a holistic and integrated security
vision. Secure software development methodologies often
cover aspects such as security requirements, threat modelling,
secure coding, static and dynamic code reviews and specific
security tests.

Microsoft developed their own Secure Development
Lifecycle (SLD) [13] that consists on a set of practices that
support security assurance and compliance requirements,
helping developers to build more secure software by reducing

224

the number and severity of vulnerabilities in software while
reducing development cost. The Microsoft SDL includes the
following activities: training, requirements, design,
implementation, verification, release and response. To
implement good security software engineering practices both
on traditional and agile software development lifecycles can
use this methodology [14].

Another relevant initiative in terms of secure software
development is BSIMM (Building Security In Maturity
Model) [15]. BSIMM is a study of existing software security
initiatives that quantifies the practices of many different
organisations. It describes the common ground shared by
many as well as the variations that make each unique. BSIMM
model is composed of 116 activities grouped into four
domains: Governance, Intelligence, Secure Software
Development Life- cycle Touchpoints and Deployment [15].
The Secure Software Development Lifecycle Touchpoints
includes those practices associated with analysis and
assurance of particular software development artefacts and
processes, such as architecture analysis, code review and
security testing [16].

OWASP also has a relevant initiative in this field that is
SAMM (Security Assurance Maturity Model). SAMM is a
framework from OWASP that can help the organisations to
assess, formulate, and implement a strategy for software
security. SAMM can integrate with existing Software
Development Lifecycle. SAMM is fit if the organisation is
mainly developing, outsourcing, or instead, focusing on
acquiring software, or independent of the software
development method [17].

III. VULNERABILITIES IDENTIFICATION AND
DEVELOPERS FEEDBACK SYSTEM

This paper describes the architecture and implementation
of the Vulnerabilities Identification and DEVelopers feedback
system (VIDev, for short). VIDev is a system developed to
implement the identification of potential vulnerabilities on
Android applications (APKs) and to provide the necessary
feedback for developers on how to mitigate or eliminate such
vulnerabilities using information from different sources.

VIDev is mostly composed of two significant elements.
The first system component is an API used to feed the system
with new APKSs that require security vulnerabilities revision
and also to get feedback for the developers about analysed
APKs. The second system component is a collection of
software components, written in Python, that regularly
executes to perform a security analysis on the Android APKs
that require it and provide feedback to developers.

One of the primary objectives on the development of
VIDev system was the possibility of integration with the
existing automated Aptoide app store application quality and
security assurance processes. These processes require the
system to be able to handle hundreds of new mobile
applications or existing applications updates submissions per
day. VIDev should be able to test each of the new app
submissions, determine the existence of security
vulnerabilities (classified according to the OWASP Mobile
Top 10 security risks) and return the appropriated feedback to
the developers. VIDev can either operate directly over the
APK file uploaded to the system, use a remote APK location
or use the unique app store identifier (the Aptoide store uses
an MDS hash identifier). The developer receives appropriate
educational feedback containing detailed information about

each of the potential vulnerabilities discovered and how to
conduct the proper measures to mitigate them.

Client
POST /apkscan
AP|

Registers APK
MDS to scan

apkscanner

|

manager

]

downloader

Every XX minutes calls
the “manager”

CRON ‘o>

Aptoide App Store
AP

GET /apkfeedback

for a given APK MD5

/Eexs all the feedback

—

VulnTool [1]

N

scanner

= VulnTool[2] —=

JSON,
XML
results

—_—

Results

> Processing

Engine

—

= VulnTool In]

Figure 1. The overall architecture of the vulnerabilities scanning engine

A. VIDev system architecture and components

The VIDev system is supposed to receive APK identifiers
from external systems, perform heavy testing on those APKs
and provide feedback about the security-related findings to the
developers. VIDev exposes to external clients through an API
that isolates the information exchange processes from the
internal operations completely.

The following image (Figure 1) depicts the overall system.
As it is possible to observe, the API separates the external
systems from the internal operation of the VIDev system,
allowing it to operate independently and concurrently.

B. Information storage

The system stores all the necessary information and the
results from the vulnerability analysis in an internal database
(developed using the MySQL relational database). The
database is composed of the following tables:

o apk: Contains all the information about a downloaded
APK, so all the metadata information that exists about

the APK that is being analysed by the system.

apk2scan: Contains the information about the APKs
that have been submitted to the system but have not yet
been processed (scanned). It is a pool of APKs to be
analysed.

apkresults: Contains information about the results
obtained after applying the appropriate scanning tools
to a given APK. This structure contains information
about the different collected analysis results over time.

These tables aggregate all the necessary information that
the system requires to analyse the submitted APKs and stores
information about the analysis results.

C. VIDev system API

One of the critical components of the VIDev system is an
API that allows external systems to interact with the VIDev
system internal operations. This API will provide the

225

necessary capabilities for the analysis of APKs as well as for
the collection of results from the analysed APKs. In resume,
this API possesses two main capabilities: a) the ability to
receive the indication of a new APK to be scanned (apkscan)
and b) the capability of providing feedback about an analysed
APK (apkfeedback).

The apkscan API entry is used by external entities to send
a new APK to the VIDev system for analysis. The client
should pass (POST) an MD5 unique identifier (md5) of the
APK to scan. MD5 is used by the Android App store to
identify uniquely the different APKs that are submitted. This
API entry operates in the following manner:

1. The client sends a POST request for the /apkscan API
entry, passing the identifier of the APK for scanning
(mdS);

2. API server receives the request, checks for the existence
of the APK MD5 identifier;

3. API server stores the APK identifier on the internal
system database;

4. API server returns the result of the operation to the

client.
The result of the operation is a JSON-formatted message
that has the following structure:

status: a Boolean that can be either “true” or “false”
depending on the success or not of the API call;

message: a string, that contains a message with some
further details of the result of the operation.

The apkfeedback API entry is used by an external client
entity to request the results for a previously submitted APK to
the VIDev system for analysis. The client should request
(GET) the results passing the MD5 unique identifier (md5) of
the APK for which he requests feedback. This API entry
operates in the following manner:

1. The client sends a GET request for the /apkfeedback
API entry, passing the identifier of the APK for scanning
(mdS);

2. API server receives the request, checks for the existence
of an MD5 identifier;

3. API server requests to the database the existing results
for the given APK;

4. API server returns the results to the client.

The answer to this request is a JSON-formatted message
and has the following structure, depending on the situation:

e Ifan error occurred or if the requested APK is not yet
processed, a JSON-formatted message is received
containing a status field indicating the success or
failure of the API call and a message field with some

further details of the result of the operation.

If the system has already processed the APK, and the
results are already available, a JSON-formatted
message is received. This message contains a status
field, a results_history field with information about
the history of the analysis of this APK throughout the
time (if the APK has been submitted for review more
than once) and a results field with the APK analysis
results and some additional feedback information. In
the next section, we provide a more detailed
description of this message.

eron DB - apkscanner

manager

L]

Execute manager

1
Check timer . H
every 5 minutes H |
i 1
0 1

Check for APKs to test
Download APK

APK Info

Store APK
info on

-

Download concluded database

Scan APK

downloader

In the following section, we detail the internal operation of
the vulnerability scanning engine and the feedback rules
system.

D. VIDev vulnerabilities analysis and internal feedback
system

This section describes the core of the system and how it
integrates with the previously described API that allows
external entities to communicate with the VIDev system to
perform APK security analysis and receive detailed feedback.
Here, the internal operations of the different components of
VIDev system will be detailed — each of these components
interacts with the others to perform the services exposed by
the API. The operation of the internal components to analyse
the APKs are entirely independent of the API invocation. This
way it allows multiple clients to invoke the API endpoints
without having to wait for the vulnerability scanning
operations to complete (some of these tasks may take a long
time, depending on the type of APK, its dimension and the
number of scanning tools to apply). The VIDev system checks
for the existence of new APKs to scan, batch processes them,
and stores the results. The client can perform regular
periodical calls to the API to check if a given APK analysis is
completed or not and receive the appropriate feedback (we
will consider other client notification options in the future).
The sequence diagram (Figure 2), describes the internal
operations of VIDev system.

scanner Seanning tool APTOIDE API

T T T
|
|
|
I
I
|
|

Download APK from AppStores

APK.

Store APK

1
1
1
|
1
1
|
1
T
|
1
1
1
1
1
I
I
I
I
1
L

Results

Scan APK using available tools

]

Results

Normalize
results

Store results for APK

Store
results on

]

database
Done

Completed

Figure 2. Overview of the scanning engine internal operations

The system operates using the available vulnerability
scanning tools over the requested Android APKs, collecting
the results, while returning the appropriated feedback to
developers. Feedback will allow them to improve their
application development through the mitigation of
development vulnerabilities that might represent security
threats for the end-users. The sequence of operations
conducted by the system sums up in the following:

e In order not to exhaust the resources on the server, the

system uses the Unix/Linux “cron” daemon to execute

226

the necessary operations over a group of APKs. Cron
is set up to run according to a specific time interval and
executes the VIDev “manager”. The “manager” is
responsible for the central operations over the APK to
analyse, for the collection of the results and for
providing developers feedback;

When the “manager” starts, it connects to the
“apkscanner” database and checks for the existence of
newer APKs to test — these APKs have been added
previously by some external system using the API. If

there are new APKs to scan on the database, the
“manager” will order the “downloader” to download
the APK from the app store to initiate the
vulnerabilities analysis scanning.

The “manager” connects to the Appstore (in this
specific case, the Aptoide Android app store) API and
downloads and saves the APK locally to analyse;

The “manager” stores APK metadata information on
the database;

The “manager” invokes the “scanner” component;

The “scanner” checks for the availability of existing
and integrated scanning tools on the system (VIDev
uses a pluggable system that enables the integration of
multiple specific vulnerability analysis on the system,
permitting the extensibility of the system);

For each of the scanning tools discovered, execute the
appropriated “plugin” (scanning tool);

Each scanning “plugin” executes their specific tests
over the selected APK file;

Each scanning “plugin” temporarily writes their results
to the filesystem.

After the “scanner” finalises its work, the “scanner”
normalises the findings obtained. The normalisation
process involves going through each of the
vulnerabilities identified by the multiple scanning
“plugins” and eliminate the duplicate findings and
providing adequate feedback for each of the unique
identified vulnerabilities;

Finally, the “manager” writes the “normalised” results
to the “apkscanner” database;

The work is completed, until the next round of
execution requested by “cron” daemon.

This core part of the system is independent of the API,
allowing the system to receive multiple APKs to analyse
without depending on the time that the actual analysis takes to
complete. Since the purpose of VIDev is to integrate with an
app store, where thousands of new Android apps (or new
versions of already existing apps) are submitted every day is
essential to make the APIs and the system core independent
from each other. It is not the purpose of the work described
here, but the authors already considered that in the future other
ways to load balancing the analysis of APKs, across multiple
nodes (servers).

E. VIDev pluggable system

One of the objectives in the design and implementation of
the system was the ability to allow the system to scale and
adapt to newer vulnerabilities and analysis tools. There are
already a plethora of multiple Android application static and
dynamic vulnerabilities analysis tools. Tools such as
Androbugs [18], DroidstatX [19], AndroWarn [20], Cuckoo-
Droid [21], EviCheck [22], Quick Android Review Kit [23],
StaConAn [24], Mobile Security Framework [25] and others
are used to detect different types of security vulnerabilities.
The VIDev system can support those and any other new
scanning tool that might appear in the future. Therefore, any
developer can select a new scanning tool, write a simple
plugin for the tool, and make it available to the VIDev system.

227

For that, the developer must create a Python plugin file, using
a specific supplied integration template file, and adapt it to the
specific scanning tool. Also, the developer has to define a
results integration dictionary that maps the specific results
from the scanning tool into VIDev system results and
feedback to be provided to the developer (Figure 3).

plugin_Androbugs Androbugs
plugin_DroidstatX DroidstatX

scanner JSON,
XML

results

TV

plugin_Other Other

1

dicc_Other
dice_DroidstatX

Results and
Feedback
Processing Engine

VIDev

Figure 3. Vulnerabilities analysis plugin system

Currently, VIDev system already contains two plugins that
offer support for two different Android static vulnerabilities
analysis tools — Androbugs and DroidstatX. These two plugins
are executed side-by-side over the Android application file
(APK) and produce a set of specific results that are integrated
and managed by the VIDev system. As more plugins (and
vulnerability scanning tools) get integrated, better will be the
obtained results about the existence of vulnerabilities and
better will be the feedback returned to the developers about
the vulnerabilities detected on the applications and how to
mitigate them.

Any developer willing to develop a plugin for the VIDev
system can accomplish that easily by using the source code of
the plugin template provided. With that template he can
implement the specificities of the scanning tool inside that
template — each scanning tool has their internal mechanisms
and behaviours, and that should be adopted by the developed
plugin to allow the scanning task to accomplish its objectives
and provide results. Also, another critical requirement for the
plugin developer is to provide a specific dictionary (a simple
file in JSON format). This dictionary maps the results
discovered by the specific scanning tool (developed for the
plugin) into the generic, integrated and categorised results
format that’s being provided by VIDev system. The dictionary
uses the OWASP Mobile Top 10 risk -classification
methodology, aggregating the tools results in the “M1..M10”
OWASP risks methodology.

F. Results and feedback

As presented in the previous sections of this paper, the
ultimate objective of the VIDev system is to automate APK
testing and produce appropriate feedback for Android mobile
application developers about existing vulnerabilities on their
applications. Also, it can provide appropriate feedback that
can help developers to learn how to mitigate those
vulnerabilities. When integrated on an app store mobile
applications pipeline, VIDev can contribute to the reduction
of insecure Android applications. It can accomplish this
objective by warning the app store managers and application

developers about possible security vulnerabilities that require
mitigation.

Therefore, the system produces integrated security
vulnerability analysis, using a set of specific existing mobile
applications security analysis tools. VIDev collects the
findings of each one, and aggregates, classifies and
categorises them into a single results file that follows the
OWASP Mobile Top 10 risks methodology (the risks range
from “M1” to “M10”). These aggregated results are returned
to the client (via the /apkfeedback API entry, as previously
presented) using a JSON formatted response composed by
several different structures. It is possible to interpret these
structures by various means (other tools, a mobile or web
application, or any other). Another important aspect is the
useful educational feedback provided to the developers for
each of the identified vulnerabilities. Developers receive
additional help (URL’s for web sites, videos, books and other
resources) that will allow them to understand better the
reported vulnerabilities, how they work and how attackers
exploit them, and how to correct or mitigate them.

The “response” that contains the appropriate vulnerability
scanning results and the developer’s feedback is JSON-
formatted message that is composed by multiple structures -
“status”, “results history” and “results” (Figure 4). The first
one, “status”, is a simple JSON object that contains a Boolean
value that indicates if the API request has succeeded or not,
and an optional “message” that contains some additional

information in the event of an error.

The second element on the result is the “results history”
element composed by an array of JSON objects that represent
the history of the different vulnerability analysis conducted
over the time on a given Android mobile application or on the
different versions of that application. The results history is
essential because it allows tracking the security maturity of a
given application over time. Each of the “results history”
elements have the following structure:

e “created at”: represents the time and date of the

performed scanning activity;

“details”: a string of data that provides extra details
about the performed scanning activity. These extra
details may include details about some specificities of
the tools used or some specificities about the execution
conditions that were present;

“id”: each of the scanning activities is uniquely
represented and identified by the system. This
identifier is part of the JSON object;

“md5”: this is the unique representation of the Android
mobile application APK in the App Store. In this case,
the Aptoide App Store represents each APK uniquely
in the system with an MD5 hash;

“results location”: the server stores the different
results produced by the multiple vulnerability scanning
tools used. This field is the server storage location
containing the specific scanning results with further
detailed information;

“scantools”: this represents the identification of the
multiple specific scanning tools used to perform the
security analysis and vulnerabilities identification on
this run;

228

e “status’: this is the representation of the success or not

of the specific scanning operation that took place at
this moment in time.

created_at
details
id
md5
status results_location

scantools

status

created_at

results_history details

\

|| vulnerability |
id
details
mds

A

e severity
results_location

response

url

|
|
] -

scantools i detectedby |
video
e | feedback [|
i = book |
results | » M1 wulnerability
i‘ M2 \ details
M3 severity
i detectedby url
Ms video
foodback [
ks Mé 2= book

M9 other

M8

Figure 4. Feedback JSON formatted message

Finally, the last element on the result is “results”,
composed by a specific subset JSON objects, and named
according to with the OWASP Mobile Top 10 nomenclature,
ranging from “M1” up to “M10”. VIDev gathers the specific
results from the multiple vulnerability scanning tools used,
categorising and classifying them according to the OWASP
naming. This approach will help organise and enumerate the
multiple vulnerabilities into a general risk classification
metrics allowing developers to quickly understand the
security risks of their Android applications and learn how to
take the appropriate actions to mitigate them. Each of the
“M1..M10” structures is composed of an array of multiple
vulnerabilities (if they exist), that has the following structure:

o “vulnerability”: this corresponds to a single sentence
that clearly describes the vulnerability identified in the
conducted analysis. This vulnerability might be

identified by a single tool or by a different set of tools;

“details”: in this field, a more detailed description of
the vulnerability is presented, providing a more
verbose explanation of the detected vulnerability with
all the relevant details as well as some possible CVE
or CWE enumeration, if it exists;

“severity”: not all the vulnerabilities detected share the
same severity classification. Vulnerabilities are
grouped according to their critically. The higher the
level of severity the more critical they are, ranging
from a highly exploitable vulnerability that can
compromise the end-user easily to something that is
less exploitable and can let an attacker get some
information about the execution environment. If more
than one scanning tool reports the same vulnerability

with different severity levels, then the average level of
those severities is considered,;

“detectedby”: this field indicates which scanning tool
has detected this vulnerability — if different scanning
tools detected this vulnerability then they are
enumerated here;

“feedback”: one of the objectives of VIDev system is
to provide appropriate feedback. This feedback
includes not only information about the existing
development security vulnerabilities that are present
on their Android applications, but also information
about the way the detected vulnerabilities operate and
how they affect the security of the end-users and how
they can correct or mitigate them. Thus, this feedback
mechanism intends also to educate mobile application
developers not only about development risks but also
about good development practices that need to be
employed to correct these development security risks.
VIDev system returns a plethora of additional
information in a specific format. First, an “url” field
with a list of URLs that point to online resources
containing relevant information about the vulnerability
and how to correct it. Second, a “video” field
containing links to videos with information relevant
about the vulnerability. Third, a “book” field
indicating books that refer to the vulnerability. Fourth,
an “other” field containing any other relevant
information related to the vulnerability.

This structure returns upon invoking the API by any client
application that submits some Android application for
analysis that can process it and present to the developer.
Currently, VIDev integrates with Aptoide’s security and
quality assurance system, and a web-based system presents
the results allowing further analysis and configuration to
personalise how to deliver the end-user feedback.

IV. TESTS AND RESULTS

To evaluate the VIDev system and to assure that the
automated APK testing and developer feedback mechanisms
were effective to detect Android mobile application security
vulnerabilities, we have conducted several tests. These tests
used the available data (both existing APKs and
corresponding metadata) on the Aptoide app store. The testing
procedure was entirely automated without any manual
intervention and consisted of two phases. On the first phase,
we have selected from each of the categories existing on the
Aptoide app store (44) the top popular applications, in terms
of downloads, by the end-users. The selection process resulted
in a total of 1193 Android applications to be tested by the
VIDev system and the appropriated identification of possible
security vulnerabilities. The selected APK had an average size
of 27MB, with the larger APK having 1.37 GB and the
smallest one having 27 KB in size. In terms of downloads
from the Aptoide app store, the average number of downloads
of the selected apps was 263 million (most downloaded app:
3625 million downloads; least downloaded app: only six
downloads).

The tests executed on a single Dell OptiPlex 790 server
equipped with an Intel Core i3-2120 CPU running at 3.30GHz
with 4GB of RAM. The server was running Ubuntu Server
with the 4.15.0-72-generic kernel as the operating system. The
configuration of the VIDev used three different vulnerability
analysis plugins - Androbugs, Droidstatx and Androwarn.

229

These plugins executed against all the selected Android
applications. The execution took a total of 21 hours and 32
minutes to complete, with an average analysis time for each
app of 1 minute and 5 seconds (the most laborious application
to analyse took 33 minutes, while the easiest one took just 1
second).

TOTAL VULNERABILITIES ACCORDING TO OWASP TOP 10

Figure 5. Distribution of the detected vulnerabilities according to
OWASP Mobile Top 10

After the VIDev system concludes the security analysis of
the 1193 Android apps, it was possible to observe that one of
the plugins (Droidstatx) failed to analyse and produce results
for 79 Android apps (6,6%). However, the other two plugins
used (Androbugs and Androwarn) run flawlessly on the
totality of the Android apps. This fact highlights one of the
advantages of the VIDev system because it allows the
collection of test results from a multiplicity of vulnerability
scanning tools, offering a 100% coverage of all the testing
targets.

VIDev system has produced a set of evidence that resulted
in the identification of 16730 security vulnerabilities. These
vulnerabilities were mapped to the OWASP Mobile Top 10
risk identification methodology, aggregating the test results
from the different vulnerability scanning plugins used by
VIDev (Figure 5). From this analysis, it is possible to identify
(M1) Improper Platform Usage, (M2) Insecure Data Storage
and (M8) Code Tampering as the most prevalent
vulnerabilities identified on the tested mobile apps. These
three types of OWASP risks account for 88% of the detected
vulnerabilities (Figure 6). It is also interesting to notice that
the automated VIDeyv tests detected no vulnerabilities related
to insecure authentication (M4). This aspect reveals that most
mobile application developers put determined efforts on this
specific aspect of their mobile apps.

Furthermore, the VIDev system automated tests conducted
revealed that the “Shopping”, “Weather”, “Maps and
Navigation” and “Transport” categories are the ones that
contain the more significant number of detected security
vulnerabilities (Figure 7). All these vulnerabilities were also
organised and categorised according to the OWASP Mobile
Top 10 risk methodology.

The conducted tests resulted in 1193 security feedback
reports sent to the developers. These reports included
information about each of the security vulnerabilities
discovered by the VIDev system. They also contained specific
feedback that allowed developers to get a better insight about

the security vulnerability and its risks as well as some advice
on how to further investigate the vulnerability and correct it.

From the tests, it was possible to conclude two main
aspects. First, the required average time to conduct the proper
security tests and analysis by VIDev on a specific Aptoide app
stored submitted Android app is around 1 minute and 30
seconds. Depending on the complexity and size of the app, this
time can grow up to 30 minutes (on the conducted tests
hardware configuration). VIDev used three different scanning
plugins, so the average time to conduct these types of security
tests would grow with the increase in the number of plugins.
Second, VIDev was able to detect an average of 14 security
vulnerabilities per Android app and an average of 380 security
vulnerabilities per app category. This number shades a light
about the security of the applications that end-users install on
their own devices. Also, it reveals how these vulnerable
Android applications evade the quality assurance processes
implemented on the app stores and how they are made
available for download and install on millions of end-user
Android devices.

TOTAL VULNERABILITIES ACCORDING TO OWASP TOP 10

M1 m2 m3 M6 m7 ms M9

ma 5

3226

10

=

Figure 6. Number of vulnerabilities identified according to the
OWASP Mobile Top 10

VULNERABILITIES TYPES ACCORDING TO OWASP TOP 10

o & &
& & f

©
&
SN\ & &

&
& &
& & @‘\0
& o &
Q& &

&

Figure 7. Number of vulnerabilities discovered by Android app category according to OWASP Top 10

V. CONCLUSIONS AND FUTURE WORK

As the number of users using smartphones and mobile
applications continues to grow, also the security risks to which
user’s data is exposed is climbing. These mobile platforms are
already a target of choice for attackers/criminals that are
exploring several attacks to compromise the users.

Developers of mobile applications have an essential role
in the security of mobile applications because there are
responsible for their design and implementation. Some
implementation errors often lead to security vulnerabilities.
Most of the times, developers have in-depth knowledge of the

230

technologies used to develop mobile applications but are not
aware of good development security practices. VIDev is a
system proposal aiming to improve this panorama. It provides
to Android mobile application developers the opportunity to
automate security testing and evaluate the development
security vulnerabilities on their apps and receiving adequate
feedback that will help developers correct their apps and
mitigate vulnerabilities. VIDev integrates with the Android
app store quality assurance processes — in this case, Aptoide.
The system tests and analyses the multiple submitted
applications and report the security problems to developers

before the applications are accepted on the app store and made
available to the millions of end-users and their devices.

Although VIDev contributes to the mobile application
security improvement and developer’s education, it uses an
automated test process that detects security vulnerabilities. As
any fully automated process, it has some limitations. The most
important limitation is the existence of false positives, i.e. the
erroneous detection of security problems that need manual
confirmation. Therefore, as any security analysis, any specific
finding needs to be adequately verified. VIDev can help
pinpoint potential security problems, but they need to be
further confirmed by the developers. Also, as the VIDev
system continues its development, we are currently studying
the possibility of using machine learning techniques to
improve the developers provided feedback about the security
vulnerabilities found, and to improve the vulnerability
identification process by reducing the number of false
positives.

ACKNOWLEDGEMENTS

This work is part of the AppSentinel project, co-funded by
Lisboa2020/Portugal2020/EU in the context of the Portuguese
Sistema de Incentivos a I&DT - Projetos em Copromogao
(project 33953).

REFERENCES

J. Clement, “Mobile app usage - Statistics & Facts,” Statista,
2019. [Online]. Available:
https://www.statista.com/topics/1002/mobile-app-usage/.

A. Ahmad, K. Li, C. Feng, S. M. Asim, A. Yousif, and S. Ge,
“An empirical study of investigating mobile applications
development challenges,” IEEE Access, vol. 6, pp. 17711-17728,
2018.

J. Khan, H. Abbas, and J. Al-Muhtadi, “Survey on mobile user’s
data privacy threats and defense mechanisms,” Procedia Comput.
Sci., vol. 56, pp. 376-383, 2015.

P. Faruki, V. Laxmi, A. Bharmal, M. S. Gaur, and V. Ganmoor,
“AndroSimilar: Robust signature for detecting variants of
Android malware,” J. Inf. Secur. Appl., vol. 22, pp. 66-80, 2015.
I. Mohamed and D. Patel, “Android vs iOS security: A
comparative study,” in 2015 12th International Conference on
Information Technology-New Generations, 2015, pp. 725-730.
T. Petsas, A. Papadogiannakis, M. Polychronakis, E. P.

231

[13]

[14]

[23]
[24]
[25]

Markatos, and T. Karagiannis, “Rise of the planet of the apps: A
systematic study of the mobile app ecosystem,” in Proceedings of
the 2013 conference on Internet measurement conference, 2013,
pp. 277-290.

Y. Ishii et al., “Understanding the security management of global
third-party android marketplaces,” in Proceedings of the 2nd
ACM SIGSOFT International Workshop on App Market
Analytics, 2017, pp. 12-18.

OWASP, “OWASP Mobile Security Project.” [Online].
Available:
https://www.owasp.org/index.php/OWASP_Mobile_Security Pr
oject. [Accessed: 11-Dec-2019].

OWASP, “OWASP Mobile Mobile Top 10 (2016).” [Online].
Available:
https://www.owasp.org/index.php/Mobile_Top 10 2016-
Top_10. [Accessed: 11-Dec-2019].

ENISA, “Privacy and data protection in mobile applications,”
2018.

ENISA, “Smartphone Secure Development Guidelines,” 2017.
S. Quirolgico, J. Voas, T. Karygiannis, C. Michael, and K.
Scarfone, “Vetting the Security of Mobile Applications,” 2015.
M. Howard and S. Lipner, The security development lifecycle,
vol. 8. Microsoft Press Redmond, 2006.

M. Howard, “Building more secure software with improved
development processes,” IEEE Security and Privacy, vol. 2, no.
6. pp. 63-65, Nov-2004.

G. McGraw, “Software security and the building security in
maturity model (BSIMM),” J. Comput. Sci. Coll., vol. 30, no. 3,
pp. 7-8, 2015.

B. Chess and B. Arkin, “Software security in practice,” [EEE
Secur. Priv., vol. 9, no. 2, pp. 89-92, 2011.

G. McGraw, B. Chess, and S. Migues, “Building security in
maturity model,” Fortify & Cigital, 2009.

Androbugs, “AndroBugs Framework.” 2015.

C. André, “DroidstatX.” 2019.

D. Thomas, “AndroWarn.” 2019.

1. Revivo and O. Caspi, “Cuckoo-Droid.” 2017.

M. N. Seghir and D. Aspinall, “Evicheck: Digital evidence for
android,” in International Symposium on Automated Technology
for Verification and Analysis, 2015, pp. 221-227.

Linkedin, “Quick Android Review Kit.” 2017.

V. Cox, “Static Code Analyser.” 2017.

MobSF, “Mobile Security Framework - MobSF.” 2019.

