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Abstract

A novel algorithm for computing the action of a matrix exponential
over a vector is proposed. The algorithm is based on a multilevel Monte
Carlo method, and the vector solution is computed probabilistically gen-
erating suitable random paths which evolve through the indices of the
matrix according to a suitable probability law. The computational com-
plexity is proved in this paper to be significantly better than the classical
Monte Carlo method, which allows the computation of much more ac-
curate solutions. Furthermore, the positive features of the algorithm in
terms of parallelism were exploited in practice to develop a highly scal-
able implementation capable of solving some test problems very efficiently
using high performance supercomputers equipped with a large number of
cores. For the specific case of shared memory architectures the perfor-
mance of the algorithm was compared with the results obtained using an
available Krylov-based algorithm, outperforming the latter in all bench-
marks analyzed so far.

Keywords— Multilevel, exponential integrators, Monte Carlo method, matrix
functions, network analysis, parallel algorithms, high performance computing

1 Introduction

In contrast to the numerical methods for solving linear algebra problems, the devel-
opment of methods for evaluating function of matrices has been in general much less
explored. This can be explained partially due to the underlying mathematical com-
plexity of evaluating the function, but also under the computational point of view,
because the algorithms developed so far tend to be less efficient and in general more
difficult to be parallelized. In addition, related to the first issue, an added difficulty
appears in estimating the associated error of the numerical method, which is well
understood for solving iteratively linear algebra problems, but becomes a rather cum-
bersome process for functions of matrices. This is even worse in the case of the matrix
exponential, due to the lack of a clear and consensually agreed notion of the residual
of the iterative method, see for instance [13].
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In particular the second issue represents indeed a serious drawback, since it is
preventing in practice to deal with large scale problems appearing in science and en-
gineering. Nowadays there are a plethora of applications described by mathematical
models which require evaluating some type of function of matrices in order to be solved
numerically. For the specific case of the matrix exponential, we can find applications
in fields as diverse as circuit simulations [41]; power grid simulations [35, 42]; nuclear
reaction simulations [34]; analysis of transient solutions in Markov chains [36]; nu-
merical solution of partial differential equations (PDEs) [30]; and analysis of complex
networks [10], to cite just a few examples. More specifically, in the field of partial dif-
ferential equations, numerically solving a boundary-value PDE problem by means of
the method of lines requires in practice to compute the action of a matrix exponential
using therefore exponential integrators [28]. On the other hand, in network analy-
sis, determining some relevant metrics of the network, such as for instance the total
communicability which characterizes the importance of the nodes inside the network,
entails computing the exponential of the adjacency matrix of the network.

For the specific problem of computing the action of the matrix exponential over a
vector several classes of numerical methods have been proposed in the literature in the
last decades (see the excellent review in [26], and references therein). Probably the
most analyzed and disseminated methods are those based on Krylov-based subspace
methods, which use in practice a basis of a subspace constructed using the Arnoldi
process, and compute the exponential of the projected matrix (typically much smaller)
by using standard matrix exponential techniques [27].

An alternative to the aforementioned deterministic methods does exist, and con-
sists in using probabilistic methods based on Monte Carlo (MC) simulations. Although
much less known than the former methods, the Monte Carlo methods specifically used
for solving linear algebra problems have been discussed in the literature in various
forms along the years. In fact, it was the seminal paper by von Neumann and Ulam
during the 40’s [22] that gives rise to an entire new field, and from there a multi-
tude of relevant results, and substantial improvements of the original algorithm have
appeared in the literature during the last years, see e.g. [17] and [16] for further
references. Essentially the main goal is to generate a discrete Markov chain whose un-
derlying random paths evolve through the different indices of the matrix. The method
can be understood formally as a procedure consisting in a Monte Carlo sampling of
the Neumann series of the inverse of the matrix. The convergence of the method was
rigorously established in [29], and improved further more recently (see for instance
[12], and [19] just to cite a few references).

Generalizing the method for dealing with some functions of matrices, such as the
matrix exponential, was only recently accomplished in [7]. The method is based on
generating random paths, which evolve through the indices of the matrix, governed
now by a suitable continuous-time Markov chain. The vector solution is computed
probabilistically by averaging over a suitable multiplicative functional.

The main advantages of the probabilistic methods, as it was already stated in the
literature, are mainly due to its privileged computational features, such as simplicity
to code and parallelize. This in practice allows us to develop parallel codes with
extremely low communication overhead among processors, having a positive impact
in parallel features such as scalability and fault-tolerance. Furthermore, there is also
another distinguishing aspect of the method, which is the capability of computing the
solution of the problem at specific chosen points, without the need for solving globally
the entire problem. This remarkable feature has been explored for efficiently solving
continuous problems such as boundary-value problems for PDEs in [3, 5, 6], offering
significant advantages in dealing with some specific applications found in science and
engineering.

Yet an important disadvantage of any Monte Carlo method is the slow conver-
gence rate to the solution of the numerical method [20], being in general of order
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O(N−1/2), where N denotes the sample size. Nevertheless, there already exist a few
statistical techniques, such as variance reduction, multilevel Monte Carlo (MLMC),
and quasi-random numbers, which have been proposed to mitigate in practice such a
poor performance, improving the order of the global error, and consequently the overall
performance of the algorithm. Among all the aforementioned methods, the multilevel
method clearly stands out, and currently it has become in fact the preferred method
to speed up the convergence of a variety of stochastic simulations, with a remarkable
impact on a wide spectrum of applications. An excellent review has been recently
published in [24] describing in detail the method as well as a variety of applications
where it was successfully applied (see also [8] for more details specifically related with
the topic of this paper).

One of the main contributions of this paper is precisely to develop a multilevel
method for the problem of computing the action of a matrix exponential over a vec-
tor. This is done by conveniently adapting the probabilistic representation of the
solution derived in [7] to the multilevel framework. In addition, the convergence of the
method is analyzed, as well as the computational cost estimated. The second impor-
tant contribution was to parallelize the resulting algorithm, and finally run successfully
several relevant benchmarks for an extremely large number of processors using high
performance supercomputers belonging to the top-performance supercomputers in the
world (according to the well-known TOP500 list [40]).

The outline of the paper is as follows. Briefly, the mathematical description of
the probabilistic method is summarized in Sec. 2, and the problem is mathematically
formalized according to the multilevel framework. In Sec. 3, the developed algorithm
is described through the corresponding pseudocodes. Sec. 4 is devoted to the analysis
of both, the algorithm complexity, and the numerical errors of the method. Finally
in Sec. 5 several benchmarks are run to assess the performance and scalability of the
method, and whenever available, a comparison with the performance obtained by the
classical Krylov-based method is done. In closing, we highlight the main results and
suggest further directions for future research.

2 Mathematical description of the probabilistic

method and multilevel Monte Carlo method

In order to implement any multilevel Monte Carlo method it is mandatory to have a
probabilistic representation of the solution. Thus, we describe next the probabilistic
method used so far to compute the action of a matrix exponential over a vector.

2.1 A probabilistic method

A probabilistic representation for the action of a matrix exponential over a vector was
introduced in [7] for dealing exclusively with adjacency matrices of undirected graphs.
However, in the following we show that this representation can be straightforwardly
generalized for dealing with arbitrary matrices.

Consider A = (aij)i,j=1,...,n a general n-by-n matrix, u a given n-dimensional
vector, and x an n-dimensional vector. This vector corresponds to the vector solution
after computing the action of a matrix exponential over the vector u, that is x = eβA u.
Here the parameter β is a constant, typically interpreted as the time variable in partial
differential equations, or an effective ”temperature” of the network in problems related
with complex networks (see [21], e.g.).

Let us define a diagonal matrix D, represented hereafter as a vector d, with entries
dij = 0 ∀i 6= j, dii = di = aii + lii, i = 1, . . . , n, and a matrix T with entries tij given
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by

tij =

{

lii, if i = j

(−1)σij lij , otherwise
(1)

where σij is a binary matrix with entries taking the value 1 when aij < 0, and 0
otherwise. Here L = (lij) denotes the Laplacian matrix, defined in the broad sense as
a matrix with nonpositive off-diagonal entries lij = −|aij |, and zero row sums, that is
lii = −

∑

j 6=i lij . Then, it holds that A = D− T . Note that our definition differs from
the classical one A = D−L addressed to adjacency matrices [2]. Instead, in this paper
matrix A can be any matrix. This is possible due to two changes. First, our diagonal
matrix D is not a degree matrix since the diagonal term aii in the original matrix
is added to the degree of the row (stored in lii). Second, we replace matrix L with
matrix T , which takes into account that matrix A can have both positive and negative
values unlike an adjacency matrix. Thus, this does not constitute any restriction in
the class of matrices amenable to be represented probabilistically. Quite the contrary,
one can see that any arbitrary matrix can be straightforward decomposed in such a
way.

Finding a probabilistic representation for this problem requires in practice [7] to
use a splitting method for approximating the action of the matrix exponential over
the vector u as follows,

x̄ =
(

e∆tD/2e−∆tT e∆tD/2
)N

u, (2)

where ∆t = β/N , which in the following and for convenience it will be termed as the
time step. Note that x̄ corresponds to an approximation of the true solution x. In
fact, this corresponds to the Strang splitting method, and therefore leads to an error,
which after one time step is known [1] to be of order O(∆t3) locally, and of order
O(∆t2) globally. Therefore, the true solution is recovered in the limit N → ∞.

In [7] a probabilistic representation for the particular problem consisting of adja-
cency matrices was derived. Here such a representation is generalized to deal with
more general matrices. This is done resorting first to the following Lemma which
provides a way to represent probabilistically the vector e−∆tT e∆tD/2 u.

Lemma 1 Let {Xt : t ≥ 0} be a stochastic process with finite state space Ω =
{1, 2, · · · , n} corresponding to a continuous-time Markov chain generated by the in-

finitesimal generator Q = −(lij), and final state X0 = i. Then, any entry i of the

vector

y = e−∆tT e∆tD/2 u, (3)

can be represented probabilistically as yi = E[η], with η = φ e∆t dX∆t
/2 uX∆t

, and

E[η] its expected value. Here φ is a multiplicative random variable defined as φ =
∏K−1

k=1 (−1)
σXSk−1

XSk if K ≥ 2, and φ = 1 otherwise, where {Sk : k = 0, 1, · · · } are

random times defined as S0 = 0, S1 = inf{t > 0 : Xt 6= X0}, Sk = inf{t > Sk−1 :
Xt 6= XSk−1

}, k > 1, and K = inf{k ≥ 0 : Sk > ∆t}.

Proof. Since D is a diagonal matrix, then yi can be computed as follows

yi =
n
∑

j=1

(e−∆tT )ijwj , (4)

where wj = e∆t dj/2 uj . Note that the matrix F = (fij) = (e−∆tT )ij is the solution of
the system of differential equations

dfij
dt

=
n
∑

k=1

tikfkj , fij(0) = δij , (5)
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evaluated at time ∆t, or expressed in matrix notation as

dF

dt
= T F, F (0) = 1 (t ≥ 0). (6)

Here δij denotes the Kronecker delta function. Using the definition of matrix T in Eq.
(1), this system can be rewritten as the following system of integral equations

fij(t) = δij e
−liit +

∑

k 6=i

∫ t

0

ds lii e
−lii s (−1)σik µik fkj(t− s), (7)

where µik = |lik|/lii. Note that when σik = 0, which corresponds to matrices char-
acterized by having all positive entries, aik > 0, these equations reduce to the cor-
responding equations for the transition probabilities of the continuous-time Markov
chain solution of the Kolmogorov’s backward equations,

dP

dt
= QP, P (0) = 1, (8)

for the matrix transition probability P (t) = (pij) = P(X0 = j|Xt = i) [9], and
infinitesimal generator Q = −L. For general matrices with entries of arbitrary sign
this does not hold, however for this case, an alternative probabilistically representation
of the solution can be established. This has been done by adapting conveniently the
formalism introduced in [4] in the framework of parabolic partial differential equations
for this specific matrix problem.

Let S be a continuous random variable defined on a suitable probability space, and
governed by the exponential density function p(s) = d

ds
P[s < S] = lii e

−lii s, and k a
discrete random variable that takes values on Ω = {1, 2, · · · , n} with probability µik.
Note that

∑

k 6=i µik = 1 by definition of the Laplacian matrix. Then, the following
probabilistic representation for ξij = fij(t)wj is obtained

ξij(t) = δij wj P [S > t] +E
[

(−1)σik µik ξkj(t− S)1[S≤t]

]

. (9)

Here E is the expected value with respect to the joint distribution function of the
random variables S and k, and 1A denotes the indicator function, being 1 or 0 de-
pending on whether the event A occurs. Note that this system of equations is an
implicit coupled system in which to evaluate ξij for a given time t is required to eval-
uate ξkj at previous instants of time. This can be readily solved resorting to Picard
iteration for ξij(t) as it was proposed in [4], thus obtaining a Picard series that it can
be probabilistically sampled according to the following recursive algorithm:

1. Generate a first random time S0 obeying the exponential density function lii e
−lii s;

2. Then, depending on whether S0 < t or not, two different alternatives are taken;

3. If S0 > t, the algorithm stops, and no jump from the state i to a different state
is taken;

4. If, on the contrary, S0 < t, then the state i jumps to a different state k according
to the probability function µik, and a new second random number exponentially
distributed S1 is generated. Furthermore, the sign of the entry aik is taken into
account by updating conveniently the value of the random variable φ;

5. If S1 < (t − S0) the algorithm proceeds repeating the same elementary rules,
otherwise it stops.

Such a procedure generates a random path, which evolves backward in time from
the state i at t = ∆t to a final state for t = 0, jumping randomly from i to any
state on Ω governed by an exponential random time distribution with rate parameter
lii, and transition probabilities between states µik. Note that, mathematically, this
corresponds to a realization of the stochastic process consisting in a continuous-time
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Markov chain having the infinitesimal generator −L. In addition, when generating the
random path, and every time a jump is taken, the multiplicative random variable φ,
which has been initialized to 1, is updated multiplying the previous obtained value by
the number (−1)σik .

Intuitively, the role played by the variable φ in the probabilistic representation
is collecting the signs of all entries aij of the matrix A multiplying conveniently its
values. Here i and j correspond to the different states the random path has visited
when jumping randomly through the matrix.

Therefore, from Eq. (4) and using the probabilistic representation for ξij in Eq.
(9), a probabilistic representation for yi can be written as follows

yi = E[φwX∆t
]. (10)

Here {Xt} is a random process with state space Ω = {1, 2, · · · , n}, whose paths cor-
responds to a continuous-time Markov chain generated by the infinitesimal generator
−L, matrix transition probability P (t), and with initial state X∆t = i. �

It is worth to remark here the following fact concerning the matrix transition
probability. Unlike what happens for the probabilistic methods developed so far for
solving linear systems (see [10] e.g), where the choice for the transition probability
of the corresponding Markov chain is not uniquely determined, this does not hold
anymore for the proposed method. In fact, note that the transition probability of
the corresponding continuous-time Markov chain P (t), which is the solution of the
Kolmogorov’s backward equations in Eq. (8), is unique, being the solution of the Kol-
mogorov’s backward equations in Eq. (8). Moreover, the infinitesimal generator of a
continuous-time Markov chain is also unique, since by construction of the method the
original matrix A has to be decomposed as A = D − T , and it is mandatory that D
should be a diagonal matrix, and T a matrix related with the Laplacian matrix L, as
it was defined in Eq. (1).

This probabilistic representation for the vector y can be used straightforwardly
to derive the probabilistic representation for computing a single entry i of the vector
solution x̄. In fact, from Eq. (2) the vector x̄ can be obtained applying the following
recursive procedure

y(1) = e−∆tT e∆tD/2 u,

y(k) = e−∆tT e∆tD y(k−1), k = 2, . . . , N.

x̄i = e∆tD/2y(N),

Then, applying the Lemma 1 to every partial vector y(k) we can derive the probabilistic
representation, and is given by

x̄i = e∆t di/2E[
N
∏

k=1

ηk], (11)

where ηk = φk e
∆t dik , k = 1, . . . , N − 1, and ηN = φN e∆t diN /2 uiN . The ik,

k = 1, . . . , N , is a sequence of N discrete random variables with outcomes on Ω =
{1, 2, · · · , n}. The probabilities pik−1 ik (t), k = 2, . . . , N , and pi i1(t) for k = 1, cor-
respond to the transition probabilities of a continuous-time Markov chain generated
by the infinitesimal generator Q = −L and evaluated at time ∆t for each k. φk

was defined already in the Lemma 1 , and in practice consists in a two-point random
variable taking values −1 and 1 according to the matrix σij , and with a probability
of occurrence governed by the transition probability P of the Markov chain. A neat
picture of this probabilistic representation can be described as follows: A random path
starting at the chosen entry i is generated according to the continuous-time Markov
chain governed by the generator Q, and evolves in time jumping randomly from i at
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time t to any state on Ω. Along this process, N functions ηk are evaluated, being the
solution obtained through an expected value of the multiplicative functional

∏N
k=1 ηk.

Notice that such a representation allows in practice to compute a single entry i
of the vector solution, but can be conveniently modified to represent as well the full
vector solution x̄. For the specific problem of solving linear systems this has been
done resorting to the so-called adjoint method [10]. In our problem the procedure
to follow is similar. Essentially the representation requires generating random paths,
which start now at a randomly chosen state j and time t = 0 according to a suitable
distribution p

(0)
j = P(X0 = j), and evolve forward in time governed by a continuous-

time Markov chain having now Q⊺ as the infinitesimal generator. This is partially
proved by the following Lemma.

Lemma 2 Let {Xt : t ≥ 0} be a stochastic process with finite state space Ω =
{1, 2, · · · , n} corresponding to a continuous-time Markov chain generated by the in-

finitesimal generator Q⊺, final state X∆t, and initial distribution X0 = j with j ran-

domly chosen from a given probability function p
(0)
j . Then, the vector

y = e−∆tT e∆tD/2 u, (12)

can be obtained probabilistically as yX∆t
= E[η], where η = φ e∆t dX0

/2 uX0/p
(0)
X0

and

E[η] is the expected value. Here φ is the multiplicative random variable defined in

Lemma 1.

Proof. The proof of this Lemma is similar to Lemma 1, being the more significant
difference the direction of time when generating the random paths. Essentially, it
can be seen that both probabilistic representations are connected through the Bayes’
theorem. In fact, applying the theorem to the transition probability P = (pij) in Eq.
(8), we obtain

pij = P(Xt = i|X0 = j)
P(X0 = j)

P(Xt = i)
= pji

p
(0)
j

pi
= (P ⊺)ij

p
(0)
j

pi
, (13)

where pi = P(Xt = i). Note that the matrix transition probability (P ⊺)(t) is the
solution of the transposed equation of Eq. (8). This equation is the Kolmogorov’s
forward equation, and therefore the solution corresponds to a continuous-time Markov
chain with generator Q⊺. Another important difference is that the initial distribution
for X0 is not a prescribed state anymore, being instead randomly chosen according to
the distribution function p

(0)
j . Concerning the final state, the random path Xt could

end at any state on Ω at time ∆t. If the state i is reached at time ∆t for a given trial,
then this path will contribute to the ith component of the vector y with the value η.
Therefore, in practice the vector y is obtained probabilistically as a whole, and not
componentwise as in Lemma 1, and is given by yX∆t

= E[η]. �

Notice that the choice of the distribution function p
(0)
j is not unique, and clearly the

choice of the function may have a direct impact on the variance, and, in turn, on the
performance of the algorithm. The more reasonable choice seems to be choosing p

(0)
j

proportional to |uj |, since this resembles the well known importance sampling method
for variance reduction, where the sampling is done according to the importance of the
data. In fact, in this work we chose the probability function to be p

(0)
j = |uj |/u, with

u =
∑n

j=1 |uj |. But obviously there are many other possible choices, some of them
could even provide better performance results than the results already shown in Sec. 5.
Therefore it is worth investigating more carefully this issue in future works, searching
for an optimal probability function given the specific input vector u. Moreover, note
that when the probability function p

(0)
j is used, the function η in Lemma 2 should be

redefined as η = uφ e∆t dX0
/2 sgn(uX0) to account for possible arbitrary signs in the

coefficients of the vector u.
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Concerning the probabilistic representation for the full vector x̄, this can be derived
using the same procedure as in (11). The contribution to every entry i of the vector
is then mathematically formalized through the following representation:

x̂i = e∆t di/2 uE[
N
∏

k=1

ηk], (14)

where ηk = φk e
∆t dik , k = 1, . . . , N − 1, and ηN = φN e∆t diN /2 uiN . Concerning the

expected value now is taken with respect also to a random variable j on Ω governed
by the probability function p

(0)
j .

In order to adapt this representation to the multilevel Monte Carlo framework,
it is convenient to use the typical notation used so far in the literature. This entails
rewriting the probabilistic representation for computing a single entry i of the vector
solution as

x̄i = E[P ], P =

N/2
∏

j=1

ηj , (15)

where

ηj = φ̄j e
∆t(dik

/2+dik+1
+dik+2

/2)
, j = 1, . . . , N/2− 1,

ηj = φ̄j e
∆t(dik

/2+dik+1
+dik+2

/2)
uk+2, j = N/2. (16)

Here k = 2j − 1, i = i1, and φ̄j = φkφk+1. Note that this representation can be
obtained by simply expanding Eq. (11),

x̄i = e∆t di1/2
E[φ1 e

∆t di1 φ2 e
∆t di2 · · ·φN e∆t diN /2 uiN ], (17)

then renaming the random variables as i1 → i2, i2 → i3, . . . , iN → iN+1, i → i1, and
finally rearranging the expression in groups of terms as follows,

x̄i = E

[

φ1φ2 e
∆t(di1/2+di2+di3/2)φ3φ4 e

∆t(di3/2+di4+di5/2) · · ·

×φN−1φN e
∆t(diN−1

/2+diN +diN+1
/2)

uiN+1

]

. (18)

Note that this rearranging of terms reduces in practice by a half the upper limit in
the product of Eq. (11).

It is worth observing here that we have to deal with two sources of error when
implementing in practice the probabilistic method, that is the statistical error coming
from the use of a finite sample size for estimating the expected value, and the error due
to the splitting method. In fact this error can be considered as being the equivalent
to the truncation error appearing in discretizing differential equations, and in the
following it will be termed as truncation error.

Concerning the statistical error, and to ensure the convergence to the mean of
the corresponding estimator used in our Monte Carlo simulations, it is mandatory to
guarantee the finiteness of its variance, and therefore the finiteness of both moments,
E[

∏N/2
j=1 ηj ], and E[

∏N/2
j=1 (ηj)

2]. However, in practice it is only needed to prove the
finiteness of the second moment, since the finiteness of the first one follows from the
finiteness of the second one. From the definition of ηj in Eq. (15), and considering the
worst case scenario in which dik is the maximum positive value of d, say dmax, for all
k, then it holds that

N/2
∏

j=1

(ηj)
2 = e2N ∆t dmax u2

iN+1
= e2β dmax u2

iN+1
< ∞. (19)

From here it follows the finiteness of the random variable
∏N/2

j=1 (ηj)
2 for any other

possible scenario, and consequently this guarantees the convergence of the estimator
for any matrix A.
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2.2 An alternative probabilistic method

We discuss other possible probabilistic method to compute the action of a matrix
exponential over a vector can be derived as follows. Let x(t) be the solution of the
system of differential equations,

dx

dt
= Ax, x(0) = u (t ≥ 0). (20)

Such a system of differential equations can be rewritten in an integral form, and is
given by

xi(t) = edit e−liit ui +
∑

k 6=i

∫ t

0

ds lii e
dis e−lii s (−1)σik µik xk(t− s). (21)

The solution can be obtained recursively, replacing the solution xk(t− s) on the right-
hand side with the solution xi(t), obtaining in such way an expansion in terms of
multiple exponential random times, Si. This procedure was done for the previous
proposed probabilistic representation in Eq. (7), and can be applied here straightfor-
wardly. Note, however, that the procedure now is much more involved since now the
integral term contains, along with the solution itself, the time-dependent coefficient,
edis. A probabilistic representation can be written as follows

xi(t) = edit ui P [S > t] +E

[

ediS (−1)σik µik xk(t− S)1[S≤t]

]

, (22)

where the random variables S and k are the same variables already defined in Eq.
(9). Similarly to the previous probabilistic representation, this implicit equation can
be solved resorting to Picard iteration for xi, and then sampled probabilistically using
the same recursive algorithm proposed in Sec. 2.1.

Note that the main advantage of this alternative probabilistic method is the fact
that the solution xi(t) can now be obtained directly at time t without the need of
discretizing the time variable as required for the probabilistic representation proposed
in Sec. 2.1. As a result, the corresponding numerical method is free of any trunca-
tion error due to the time discretization, remaining exclusively the statistical error as
the unique source of error of the numerical method. However, some caution should
be paid since other important disadvantages compared with the previous probabilis-
tic representation may arise, and therefore it is required to be carefully investigated
elsewhere.

A major concern is the fact that the coefficient ediS multiplying the solution xk(t−
S) in Eq. (22) might be much greater than 1, therefore being the convergence of the
numerical procedure not guaranteed. In fact, the series obtained by expanding the
implicit equation could be divergent, and in general cannot be summed simply by
a sequence of partial sums. A similar behavior has been already described in [5].
Moreover, the presence of such a coefficient in the probabilistic method may increase
the variance of the underlying Monte Carlo algorithm, thus increasing the statistical
error of the solution, and consequently degrading the computational performance of
the algorithm.

Another important disadvantage of this approach lies in the fact that this proba-
bilistic method is able to compute the solution exclusively at time t in a single evalua-
tion, while the probabilistic method proposed in Sec. 2.1 yields in a single evaluation
the values of the matrix exponential at N intermediate times. This will be explained
carefully later, and has been explored specifically in Sec. 5 for solving efficiently
boundary-value problems with time-dependent boundary data as it is shown in the
example in Eq. (44).

Finally, we will show in the following that the multilevel Monte Carlo method
based on the probabilistic representation proposed in Sec. 2.1 stands out especially in
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a feature that is apparently lacking for any other probabilistic methods, which is the
autonomous operation of any multilevel algorithm. In fact, for the multilevel method
it is enough, in general, to prescribe the desired accuracy of the solution, and the
algorithm proceeds automatically in order to meet the requirements established for
the solution. Rather, this alternative probabilistic method may require a continued
surveillance by the user of the underlying statistical errors, being often necessary to
repeat simulations a few times in order to satisfy the requirements demanded for the
solution in terms of accuracy.

2.3 The multilevel Monte Carlo method

The multilevel Monte Carlo method we have developed is essentially based on the well-
known method many times described in the literature. In the following we introduce
briefly the ideas underlying the method for those readers not familiar with the topic.
For further details see the excellent survey in [24], and references therein.

Essentially, the goal of the geometric multilevel Monte Carlo method consists in
approximating the finest solution PL, obtained to the level of discretization L, using a
sequence of coarser approximations obtained at previous levels l, from l0 to L− 1. In
our specific problem this corresponds to different levels of discretization according to
the value of ∆t, being now ∆tl = β/Nl, with Nl = 2l. The minimum and initial level
l0 is chosen typically to be the entire interval, that is ∆t0 = β. However this is not
theoretically required, and for this specific problem we show in Sec. 4 that it is best
not to do so. This is because the computational cost tends to be independent of the
level when simulating for the coarsest level of simulation. Therefore, in the following
we assume that the minimum level to be chosen is l0. The multilevel method can be
formalized mathematically through the following telescoping series,

x̄L = E[PL] = E[Pl0 ] +

L
∑

l=l0+1

ml, (23)

where ml = E[Pl − Pl−1], Pl =
∏N/2

j=1 η
(l)
j , and

η
(l)
j = φ̄

(l)
j e

∆tl(dik
/2+dik+1

+dik+2
/2)

, j = 1, . . . , N/2− 1,

η
(l)
j = φ̄

(l)
j e

∆tl(dik
/2+dik+1

+dik+2
/2)

uk, j = N/2, (24)

with k = 2j − 1, i1 = i, and the superscript l denotes the corresponding level of
discretization. Note that this induces a truncation error which is proportional to
E[PL −PL−1]. Numerically, when a finite sample of sizes Ml, l = l0, . . . , L is used, Eq.
(23) can be approximated by the following estimator

x̄L ≈
1

M0

M0
∑

i=1

P
(i)
l0

+

L
∑

l=l0+1

1

Ml

Ml
∑

i=1

(P
(i)
l − P

(i)
l−1). (25)

It is worth observing that the samples used for computing the approximation at level
l are reused for computing the level l−1 adapting them conveniently for such a coarse
level. In fact, the underlying correlation appearing between the two consecutive levels
belonging to the same sample becomes essential in order to reduce the overall variance
for the same computational cost. However, the final goal of the multilevel method
is the opposite, that is, reducing the computational cost by choosing conveniently an
optimal sample size Ml, keeping fixed the overall variance within a prescribed accuracy
ε2. After a suitable minimization process, the result as explained in [24] is given by

Ml =
1

ε2

√

Vl

Cl

L
∑

j=l0

VjCj , (26)
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Figure 1: Sketch diagram showing the four possible sampled paths obtained for
level l = 2, and for a matrix of size n = 10. The solid line corresponds to a
random path obtained for a level number l, and the dotted line with l − 1.

where Cl, and Vl are the computational cost, and the variance for each level l, respec-
tively. The overall computational cost and variance can be calculated as follows

CT =
L
∑

l=l0

MlCl, VT =
L
∑

l=l0

Vl

Ml
, (27)

3 The multilevel algorithm

To implement in practice the multilevel method for computing the action of the matrix
exponential over a vector, it is first necessary to introduce a suitable algorithm capable
of generating efficiently the random paths. Second, we need to describe the strategy
followed to compute the difference between any two consecutive levels as appears in Eq.
(25). This requires an efficient technique to reuse the paths obtained when simulating
with a higher level l for the lower level at discretization l − 1.

Concerning the first issue, it was already described in Sec. 2, and in Fig. 1 a
sketch diagram for the case of l = 2 is shown.

This illustrates graphically how the second issue, related to the computation of
the coarse level l − 1 using the higher level l, has been solved in practice. There
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we plot the four different scenarios that may occur when generating random paths
(assuming we are interested in computing only a single entry i of the vector solution,
and therefore forcing all random paths to start at the same state i). Thus, from Eq.
(15), the possible outcomes of the two random variables may induce two transitions to
any of the rows of a given matrix during the two time steps of size ∆t2. But only the
last one should be used for determining the paths corresponding to the previous level
l = 1. More specifically, the set of the four figures describe the following scenarios: a)
Transitions occur at the first and the second time step; b) Transition only at the first
time step; c) Transition only at the second time step, and d) no transition at all. Note
that the last scenario contributes with zero to the term E[P2 − P1] in (23).

In Algorithm 1, we describe a pseudocode corresponding to the implementation of
the multilevel method. In fact, this consists in the general setting for any implementa-
tion of the method for a variety of problems. The distinguishing feature among them is
the suitable procedure chosen to compute in practice any of the terms of the expansion
in Eq. (23), as well as the associated variances. The pseudocode of the procedure for
computing a single entry of the vector solution is described in Algorithm 2.

Although the multilevel method could be used to compute the full vector solution as
well, the implementation is much more involved and the performance of the algorithm
less efficient. This is because it will require in practice to save vectors instead of
scalars for any of the levels in Eq. (23). This can be mitigated instead by computing a
scalar function of the full vector solution, and since the complexity of the algorithm for
computing the full vector solution by Monte Carlo is similar to that for obtaining the
solution of a single entry, in principle the computation time of the multilevel method
for the former case should be comparable. In fact, the pseudocode is similar (see Eq.
(11) and Eq. (14)).

Algorithm 1 Multilevel Monte Carlo (MLMC) algorithm.

INPUT: L = l0 + 4, M = M0, i,N , ε, β
Call MLMCL(i,∆tl, N,M0) for fast estimating ml and Vl for l = l0, . . . , L
while error ≥ ε do

Compute the optimal number of samples Ml for l = l0, . . . , L
Call MLMCL(i,∆tl, N,Ml) for further improvement for l = l0, . . . , L
if error ≤ ε then EXIT
else

Increase number of levels, L = L+ 1
end if

end while

4 Convergence and Computational complexity

of the multilevel algorithm

The computational complexity of any MLMC algorithm can be established properly
resorting to Theorem 1 in [24]. However, it is mandatory to characterize previously the
convergence of some important quantities such as the mean |E[Pl − P ]| and variance
V [Pl − Pl−1], as well as the computational time of the Monte Carlo algorithm, as a
function of the level l.

Concerning the scaling of the mean |E[Pl − P ]| with the level l, it can be readily
estimated as follows. Since E[P ] corresponds to the theoretical solution, x = eβA u,
obtained probabilistically in practice when N → ∞, |E[Pl −P ]| corresponds in fact to
the truncation error |E[Pl] − x]|. Recall that this was considered previously as being
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Algorithm 2 Procedure to compute a single entry i of the vector solution x̄i.

procedure MLMCL(i,∆tl, N,M)
ml = 0, m2l = 0
for l = 1,M do

η1 = 1, η2 = 1, j = i
for n = 1, . . . , N do

η2 = η2e
dj∆tl/2

if nmod 2 6= 0 then

η1 = η1e
dj∆tl

end if

generate τ exponentially distributed
while τ < ∆tl do

generate S exponentially distributed
k = j
generate j according to Eq.(7)
τ = τ + S
η2 = (−1)σkjη2
η1 = (−1)σkjη1

end while

η2 = η2e
dj∆tl/2

if nmod 2 = 0 then

η1 = η1e
dj∆tl

end if

end for

ml = ml + [uj(η2 − η1)]/M
m2l = m2l + [uj(η2 − η1)]

2/M
end for

Vl = m2l/M −m2
l

return (ml, Vl)
end procedure

13



due to the Strang splitting method. Therefore, the local error after one time step εS
of this approximation is known [1] to be

εS = ∆t3l (
1

12
[D, [D,T ]]−

1

24
[T, [T,D]])u+O(∆t4l ), (28)

and globally of order O(∆t2l ), where [·, ·] denotes the commutator of the two matrices,
defined as [A,B] = AB − BA. This is in agreement with Fig. 2(a), where the mean
|E[Pl − Pl−1]| is plotted as a function of the level l for the example consisting in
simulations of a small-world network of three different sizes.

Characterizing the variance V [Pl − Pl−1] as a function of the level l turns out to
be a much more involved procedure. To start, it holds that

V [Pl − Pl−1] = E[(Pl − Pl−1)
2]− (E[Pl − Pl−1])

2 ≤ E[(Pl − Pl−1)
2]. (29)

Hence, the problem can be reduced to the problem of estimating E[(Pl −Pl−1)
2]. For

this purpose, and as a preliminary step, it will be estimated next a partial result re-
garding the random variable η

(l)
2 and η

(l−1)
1 , and then the final result will be estimated

accordingly. These random variables are obtained when generating paths for a single
time step (when the level is l−1), and two consecutive time steps (when the level is l).
The subscripts 2 and 1 denote two and one consecutive steps respectively. Therefore,
we first establish the following Lemma.

Lemma 3 Let j and k discrete random variables that take values on Ω = {1, 2 · · · , n},
with probability pij(t) and pjk(t) given by the transition probabilities of a continuous-

time Markov chain generated by the infinitesimal generator Q = −(L)ij and evaluated

at time ∆tl. Then, it holds that

E[(η
(l)
2 − η

(l−1)
1 )2] = O(∆t3l ), (30)

where η
(l)
2 = e∆tl di/2e∆tl dj e∆tl dk/2 uk, and η

(l−1)
1 = e∆tl die∆tl dk uk, respectively.

Proof. Expanding η
(l)
2 and η

(l−1)
1 in powers of ∆tl yields

E[(η
(l)
2 − η

(l−1)
1 )2] = ∆t2lE[ξ2] +E[O(∆t3l )], (31)

where ξ = (−di/2 + dj − dk/2)uk. The possible outcomes of the random variables
j, and k can be one of the following four different cases: (a) j 6= k 6= i; (b) j 6=
i, k = j; (c) j = i, k 6= i and (d) j = k = i (see Fig. 1 for illustration). To
distinguish among them, consider one pair of binary variables (α1, α2), taking values
{(0, 0), (0, 1), (1, 0), (1, 1)} and corresponding to the cases a, b, c, and d, respectively.
From the transition probabilities of the corresponding continuous-time Markov chain,
the probability of obtaining each of them is given by

pα1α2 = [α1 e
∆tl di + (1− α1)(1− e∆tl di)][α2 e

∆tl dj + (1− α2)(1− e∆tl dj )] (32)

It is worth observing that any multiple transitions within time ∆tl are not con-
sidered in this calculation, since it can be seen that they contribute to a higher order
O(∆t2l ) to the transition probability.

By expanding pα1α2 in powers of ∆tl, we have

pα1α2 = α1 α2 + C∆tl +O(∆t2l ), (33)

where C depends merely on di, dj , dk. Note that for the case (d), which corresponds

to (α1, α2) = (1, 1), ξ turns out to be 0, therefore it follows that E[(η
(l)
2 − η

(l−1)
1 )2] is

O(∆t3l ) and the proof is complete. �

To find the global convergence rate, consider the following Lemma.
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Figure 2: (a) Mean ml and (b) variance Vl of Pl − Pl−1 in log2 scale versus
the level number l obtained numerically. The adjacency matrix corresponds to
a small-world network of different sizes n. The blue line denotes an ancillary
function of slope −2.

Lemma 4 Assume ik, with k = 1, · · · , N , are N discrete random variables taking

values on Ω = {1, 2 · · · , n}, with probability pik ik+1
(t) given by the transition prob-

abilities of a continuous-time Markov chain generated by the infinitesimal generator

Q = −(L)ij and evaluated at time ∆tl. Then, it holds that

E[(Pl − Pl−1)
2] = O(∆t2l ) (34)

Proof. Expanding η
(l)
j and η

(l−1)
j in Eq. (24) in powers of ∆tl, we have

E[(Pl − Pl−1)
2] = ∆t2lE[(

Nl/2
∑

j=1

ξj)
2] +O(∆t3l ), (35)

where ξj = (dik/2+ dik+1
+ dik+2

/2)− (dik + dik+2
), and k = 2j− 1. We can estimate

the probability of occurrence of the event q characterized by the value
∑Nl/2

j=1 ξj = 0.
This event may occur when zero transitions took place during time t. Recall that we
are ignoring here, for the same reason pointed out in Lemma 4, the contribution to
the probability of multiple transitions leading to a final state equal to the initial one.
Therefore, assuming the initial state to be i, the probability of occurrence of the event
q is given by

P(q) =

Nl
∏

k=1

e−∆tl lii = e−Nl∆tl lii , (36)

which is independent of ∆tl, since Nl = β/∆tl, and moreover for β 6= 0 strictly
different from 1. Therefore, when ∆tl → 0 we have a non-zero probability of obtaining
non-zero values for

∑Nl/2
j=1 ξj . Then, E[(

∑Nl/2
j=1 ξj)

2] cannot be zero, and consequently,

from Eq. (35) it follows that E[(Pl − Pl−1)
2] should be of order O(∆t2l ). �

In Fig. 2(b), V [Pl − Pl−1] is shown as a function of the level l. The adjacency
matrices correspond to a small-world network of three different sizes. Note that the
obtained numerical convergence rate fully agrees with the theoretical estimation.
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Figure 3: Computational time in log2 scale versus the level l for adjacency
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blue line corresponds to an ancillary function of slope 1.

The computational time of the Monte Carlo algorithm was already estimated in
[7], and it is given by

TCPU = αinβd̄M + αout
β

∆tl
M. (37)

Here d̄ is d̄ = 1
n

∑n
i=1 di, while αin and αout are suitable proportionality constants. In

Fig. 3, the results corresponding to the CPU time spent by the Monte Carlo algorithm
when computing the total communicability of two different networks characterized by
different values of d̄ is shown. The results are in agreement with the theoretical esti-
mation in Eq. (37). In particular, note that for ∆tl sufficiently large (or equivalently l
sufficiently small) the computational time tends to a constant value, while for smaller
values the computational time scales as 1/∆tl. This also explains what was mentioned
previously in Sec. 2, which is that the initial level l0 of the multilevel method could be
different from zero to obtain a better performance of the MLMC algorithm. In fact,
depending on the value of ∆tl and consequently on the level l, two different working
regimes can be observed, and only for the regime characterized by a value of ∆tl suf-
ficiently small, the computational time asymptotically increases with l. Specifically
this occurs when the contribution to the computational time of the second term in Eq.
(37) is much larger than the first term. Assuming that the value of the proportionality
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constants αin, αout are similar, we can readily estimate the minimum value of the level
needed for this purpose, and is given by

l0 ≫ log2(βd̄). (38)

However, in general both constants αin, and αout are not only different, but also
difficult to be theoretically estimated. From numerical simulations, however, a more
practical lower bound has been found and is given by

l0 = log2(2βdmax), (39)

where dmax corresponds to the maximum value of the diagonal matrix D. In Fig. 4
the computational time spent by the MLMC method for different values of the initial
level l0 is shown. Here the MLMC was applied to the problem of computing the
total communicability [11] of two different networks, small-world and scale-free, of
size n = 106. For the small-world network the maximum degree is 7, while for the
scale-free network is 3763. The value of β was chosen to be 1 for the small-world
network and 1/dmax for the scale-free network. The last one was chosen specifically
to ensure the convergence of the method, as it was pointed out in [7]. Note that, for
both networks, the computational time attains a minimum at a specific value of l0,
which is well approximated by Eq. (39).

In view of the convergence rates estimated above, we can apply the aforementioned
Theorem 1 in [24] and conclude that the computational complexity of the proposed
MLMC algorithm is of order O(ε−2). In practice this means that the error due to
the splitting in Eq. (2) is totally canceled out from the algorithm, remaining only the
computational cost inherent to any Monte Carlo method due to the statistical error.
Rather, the complexity of the classical Monte Carlo algorithm proposed in [7] is of order
of ε−5/2. Indeed this can be readily proved as follows. Concerning the statistical error,
the sample size M required to achieve a prescribed accuracy ε is given by M = ε−2,
while for the splitting error, being the method of order of ∆t2, the time step required
for a given ε is ∆t = ε1/2. Therefore, the computational complexity, which depends on
M/∆t, is given by O(ε−5/2). In Fig. 5 the results corresponding to the computational
time spent to compute the communicability of a single node of a small-world network
of size n = 106 are plotted as a function of a chosen prescribed accuracy ε for both,
the multilevel Monte Carlo and the classical Monte Carlo method. Note the perfect
agreement with the theoretical estimates, and the performance notably superior to the
classical Monte Carlo method in [7] for lower accuracy values.

5 Performance evaluation

To illustrate the performance of the multilevel Monte Carlo method, in the following
we show the results corresponding to several benchmarks conducted so far. They con-
cern the numerical solution of a linear parabolic differential equation by means of an
exponential integrator, as well as, the numerical computation of the total communi-
cability metric in some complex synthetic networks.

In fact, among an important application of the multilevel algorithm for computing
the action of a matrix exponential, we have the numerical solution of parabolic PDEs
by means of the method of lines, using therefore an exponential integrator. When the
method of lines [31] is applied to an initial parabolic PDE problem discretizing the
spatial variable, a system of coupled ordinary differential equations, with time as the
independent variable, is obtained. Finally, the system can be solved resorting to the
computation of a matrix exponential which acts on the discretized initial value func-
tion. The method was here applied for solving the Dirichlet boundary-value problem
for both, a 3D heat equation, and a 3D convection-diffusion equation. The former
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problem is given by

∂u

∂t
= ∇2u, in Ω = [−δ, δ]3, t > 0, (40)

with boundary- and initial-conditions

u(x, t)|∂Ω = 0, u(x, 0) = f(x). (41)

The approximated solution û(x, t) where x ∈ R3, x = (x, y, z), after discretizing in
space with grid spacing ∆x = ∆y = ∆z = 2δ/nx, and using the standard 7−point
stencil finite difference approximation, can be written formally as

û(x, t) = e
n2
xt

4δ2
L̂
û0(x), (42)

where L̂ denotes the corresponding discretized Laplacian operator.
This problem is specially relevant, because the eigenvalues of the matrix A =

n2
x/4δ

2L̂ can be analytically obtained [38]. In fact, the largest eigenvalue is known to be
λmax = 6n2

x/4δ
2(1−cos nxπ

nx+1
), while the smallest one is λmin = 6n2

x/4δ
2(1−cos π

nx+1
).
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Therefore, we can compute readily the so-called stiffness ratio r = λmax/λmin for this
problem, and asymptotically for large values of nx is given by r ∼ 4n2

x/π
2. Note that

in view of the values of nx used for the simulations in Tables 1 and 2, this problem
represents indeed a suitable example to test the performance of the method for solving
stiff problems.

Concerning the convection-diffusion equation, mathematically we have

∂u

∂t
= ∇2u+ β · ∇u, x ∈ Ω, t > 0,

u(x, t)|∂Ω = g(x, t), (43)

u(x, 0) = f(x),

where β is the velocity field. After applying the standard Galerkin finite element
method [43] to the discretized nodes xi, i = 1, . . . , n, the following linear system of
coupled first order ODEs is obtained

M
du

dt
= Ku+ F, u(0) = u0, (44)
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where u = (u(x1, t), . . . , u(xn, t)), M is the assembled mass matrix, K is the cor-
responding assembled stiffness matrix, and F is the load vector. Concerning the
boundary data, these are included modifying as usual the matrices and the vector.
For computational convenience, in the following the mass matrix was lumped [43],
resulting in practice in a diagonal mass matrix.

Formally, the solution of the inhomogeneous system of ODEs (44) can be written
in terms of a matrix exponential as follows

u(x, t) = e−tM−1Ku0 +

∫ t

0

ds e−sM−1KF(t− s). (45)

Note that for the particular case of having time-independent boundary data, the load
vector becomes therefore constant, and the solution simplifies to

u(x, t) = e−tM−1Ku0 −K−1M
(

e−tM−1K − 1

)

F. (46)

On the other hand, for arbitrary time-dependent boundary data, the integral in Eq.
(45) can be computed resorting to suitable numerical quadratures. This procedure
can be followed in any case to avoid evaluating the inverse of the matrix K in Eq.
(46), which in general can be computationally costly. In fact, this was specifically
used here for solving numerically the system of equations in (44). Since to compute
the matrix exponential the error was estimated to be of order O(∆t2) (see Sec. 4),
to avoid lowering down this order, in the following we have implemented the Simpson
quadrature rule, which is known to be of much higher order. More specifically, the
solution û(x, t) can be computed as follows

û(x, t) = e−tM−1Ku0 +∆t



F(t) + 2

N/2−1
∑

j=1

e−tj M−1KF(t− tj)

+4

N/2
∑

j=1

e−tj M−1KF(t− tj) + e−tM−1KF(0)



 , (47)

where tj = j∆t, j = 1, . . . , N , and ∆t = t/N . Note that we require to compute N
independent matrix exponential evaluations at N different instants of time. However,
it turns out that using the Algorithm 2, in practice only a single evaluation at the final
time t is needed to compute. This is because when using the Monte Carlo method
for computing the matrix exponential at time t, the information required to evaluate
the matrix exponential at intermediate times have been also automatically generated
by the algorithm. In fact, the random paths generated up to time t, which have been
simulated advancing in time steps of size ∆t, can be used directly to evaluate the
matrix exponential over the vector F at time j∆t. Moreover, it should be stressed
that this can be accomplished without any additional computational cost.

In practice this can be readily done modifying slightly the Algorithm, as it is shown
in boldface in the new Algorithm 3. Here ωn is a vector containing the suitable weights
(1, 2, 4, . . . , 2, 4, 1) corresponding to the Simpson quadrature rule.

Other important application of the matrix exponential consists in computing the
total communicability of a network. By definition, the total communicability of a
network [11] is given by

TC = (1, eA 1), (48)

where 1 is a vector of ones, and (·, ·) denotes the scalar product. In the following we an-
alyze the total communicability for several networks consisting in generated synthetic
networks of the type small-world and scale-free of arbitrary size. These networks have
been generated in Matlab using the functions smallw and pref, respectively, both freely
available through the toolbox CONTEST [15]. In contrast to the small-world network,
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Algorithm 3 Procedure to compute a single entry i of the vector solution
û(x, t)

procedure MLMCL-FEM(i,∆tl, N,M)
ml = 0, m2l = 0,integ1 = 0,integ2 = 0
for l = 1,M do

η1 = 1, η2 = 1, j = i
for n = 1, . . . , N do

η2 = η2e
dj∆tl/2

if nmod 2 6= 0 then

η1 = η1e
dj∆tl

end if

generate τ exponentially distributed
while τ < ∆tl do

k = j
generate S exponentially distributed
generate j according to Eq.(7)
τ = τ + S
η2 = (−1)σkjη2
η1 = (−1)σkjη1

end while

η2 = η2e
dj∆tl/2

if nmod 2 = 0 then

η1 = η1e
dj∆tl

end if

integ1 = integ1 + ωnη1
integ2 = integ2 + ωnη2

end for

ml = ml + [uj(η2 − η1)]/M+ [Fj(integ2 − integ1)]/M
m2l = m2l + [uj(η2 − η1)]

2/M+ [Fj(integ2 − integ1)]
2/M

end for

Vl = m2l/M −m2
l

return (ml, Vl)
end procedure
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the scale-free networks are characterized by the presence of hubs, which in practice
entail a much larger largest eigenvalue than for the small-world networks. Then, since
the value of this eigenvalue increases with the network size, and in order to keep con-
stant the numerical error, it may be necessary for the MLMC method to increase
strongly the number of required levels accordingly. To prevent such a computationally
costly procedure, a reasonable alternative relies on computing a generalization of the
communicability, that is eβA, where β is typically interpreted as an effective ”temper-
ature” of the network (see [21], e.g.). Essentially the idea that was exploited in [7] was
to use the inverse of the largest eigenvalue as the value of the parameter β, which in
practice will control the rapid growth of the norm of the matrix A with the size of the
network. Different values of β could have a direct impact not only on the entries of the
communicability vector, but also on the ranking of the nodes according to their com-
municability values. However, in practice this does not occur. Through the analysis of
the intersection similarity of several networks [7] it was shown that the chosen value of
β does not affect significantly the results, being in all cases the differences well below
the typical error tolerances, and even becoming smaller for increasingly larger network
sizes. Consequently, and to ensure fast convergence of the method, in the simulations
below we have used β = 1/λmax, where λmax is the largest eigenvalue of A. However,
finding the largest eigenvalue for large networks is itself computationally costly and,
in the following, a faster alternative based on computing the maximum degree of the
network, dmax, was used instead as an upper bound value.

5.1 Shared memory architecture

The simulations corresponding to the shared memory architecture were run on both a
commodity server equipped with 12 cores and 32 GB of RAM, and the MareNostrum
supercomputer using a single node with 48 cores. The MLMC algorithm has been
implemented in OpenMP, and the SPRNG library [37] for the parallel random number
generator. To compare the performance with other methods, as well as to control the
numerical errors, the MATLAB toolbox funm−kryl freely available in [23] has been
used. This method consists in the implementation of a Krylov subspace method with
deflated restarting for matrix functions [27]. Note that Matlab was originally written in
C/C++ and, specifically, operations involving matrix-vector multiplication or matrix-
matrix multiplication show nowadays an optimal performance in the latest versions of
Matlab, since they are exploiting very efficiently multithreading execution as well as
SIMD units available in current microprocessors. Taking into account that the Krylov
subspace method requires matrix-vector multiplications extensively, we assume the
obtained performance of the Matlab code to be more than competitive with respect
to the performance of a native code in C/C++. Moreover, our implemented OpenMP
code was not optimized to ensure a fair comparison with Matlab. Finally, it is worth
remarking that the choice for using Matlab for comparison and not a native code was
essentially motivated by the lack of any parallel code freely available in C/C++.
Example A: Partial Differential equations.

The computational time spent by both, the MC and MLMC method, for solving
the initial-boundary value problem for a 3D heat equation at a single point is shown
in Tables 1 and 2. This has been done for different matrix sizes and number of cores
running on the commodity server, and for about the same accuracy.

It is worth noting that in view of the probabilistic nature of any Monte Carlo-
based algorithm, the measured computational times cannot be uniquely defined. For
that reason the simulations have been repeated a few times, reporting therefore in the
corresponding tables both, the mean value and the value of the two standard deviation
(95% confidence interval) in parenthesis. However, this has been done exclusively
for the simulations run using the commodity server, since for the other simulations
run using supercomputers (MareNostrum and Marconi) the computational time was
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measured only once in a single simulation due to the limited CPU-time available during
the course of this work.

Concerning the error, this was estimated using the aforementioned Krylov-based
method by setting a very small value of the stopping-accuracy parameter, 10−16, as
well as the restart parameter to 40.

For comparison, the computational time spent by Matlab is also shown only for
the smaller matrix size, since for the larger one Matlab simulations run out of memory.
As it was pointed out in [7] this is mainly due to the memory demands of any Krylov-
based algorithm. Instead, the Monte Carlo method is extremely efficient in terms of
memory management, since it requires only to allocate in memory the input matrix.

Table 1: Elapsed time spent for computing the solution of the 3D heat equation
at the single point (0, 0, 0), and for time t = 1 as a function of the number of

cores. The initial value function was f(x) = e−(x2+y2+z2). The accuracy was
kept fixed to 5× 10−4. The length of the domain was δ = 4 and the number of
grid points was n3

x, with nx = 256.

Cores Time MC (s) Time MLMC (s) Time Matlab (s)

1 231(1) 164(5) 428
4 66(3) 46(2) 306
8 33(1) 24(2) 327
12 22(1) 16(1) 334

Table 2: Elapsed time spent for computing the solution of the 3D heat equation
at the single point (0, 0, 0), and for time t = 1 as a function of the number of
cores. The accuracy was kept fixed to 5× 10−4. The length of the domain was
δ = 4 and the number of grid points was n3

x, with nx = 512.

Cores Time MC (s) Time MLMC (s)

1 1120(1) 786(10)
4 316(5) 227(6)
8 164(2) 117(6)
12 110(2) 78(2)

For the solution of the convection-diffusion equation, the arbitrary complex geome-
try plotted in Fig. 6 was used as the domain, being the Dirichlet boundary data chosen
to be u = 0 at the surface of the outer sphere, and u = 1 at the surface of the inner
cylinder. The size of the domain can be conveniently increased by simply rescaling
both, the sphere and cylinder, using a single scale parameter scale. To generate the
computational mesh, and obtaining the corresponding FEM matrices and vector, the
scientific software COMSOL [14] was used, choosing specifically linear elements at the
discretization setting. Concerning the element size used when meshing the geometry,
it was kept fixed to be 0.8 and 0.14 for the maximum and minimum size, respectively.

It is worth to remark here that this is the more general example, consisting in an
unsymmetric matrix with entries of arbitrary sign.

To gain some insight about the properties of the underlying matrix used in this
example, it can be useful to analyze the largest and smallest eigenvalue of the matrix,
as it was done for the previous example. However, it turns out that there is no
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Figure 6: Computational mesh describing the domain used for solving the 3D
convection-diffusion equation.

available analytical solution for this problem, being required therefore to resort to
some numerical approximations. This was done specifically for this problem using the
Arnoldi method, which has been implemented in Matlab and executed through the
command eigs. In general, especially for large matrices, it is known that this could be
a formidable numerical task in itself. In fact, here it was only possible to compute such
eigenvalues for the smallest problem, which corresponds to the size domain denoted as
scale = 4 in Table 4. The real part of the eigenvalues, since the matrix is unsymmetric,
are given by Re(λmax) = 2.08× 103, Re(λmin) = 3.47.

The computational time spent for computing the solution at a single point and
time inside the domain for different number cores is shown in Table 3. Note that
both the MC method and the MLMC method scale well with the number of cores,
while the computational time spent with Matlab rapidly saturates when increasing the
number of cores, due to the heavier intercommunication overhead of the Krylov-based
algorithm.

In Table 4 the computational time spent when computing the solution for different
size domains is shown, being now the number of cores kept fixed to the maximum
number of cores available.

It is remarkable that the computational cost of the MC and MLMCmethod appears
to be almost independent of the size of the domain, while it increases almost linearly
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Table 3: Elapsed time spent for computing the solution of the 3D convection-
diffusion equation at a single point, and for time t = 1 as a function of the
number of cores. The spatial point where the solution is computed, has been
chosen to be the nodal point of the computational mesh closer to the physical
point (0, 0, 0). The accuracy was kept fixed to 5 × 10−4. The radius of the
sphere was r = 4 × scale, with scale = 12, being the total number of nodes of
the computational mesh n = 2, 375, 211.

Cores Time MC (s) Time MLMC (s) Time Matlab (s)

1 1, 519(33) 423(15) 152
4 378(8) 106(3) 107
8 215(4) 77(10) 91
12 167(5) 64(9) 89

for the Krylov-based method. As it was already explained in [7] for the specific case
of complex networks, this is mainly due to the similar matrix structure observed for
any value of the matrix size. Because of this, the error becomes mostly independent of
the size, and consequently it is not required to modify further the value of the sample
size M, or the time step ∆t for increasingly larger matrix sizes (assuming a given
prescribed accuracy for the solution), making therefore the computational cost of the
algorithm almost independent of the size of the domain. This does not happen with
the Krylov-based method, allowing specifically for the MLMC method to achieve a
computational performance higher than the Matlab solution for large scale problems.

Table 4: Elapsed time spent for computing the solution of the 3D convection-
diffusion equation at a single spatial point, and time t = 1 for different sizes
of the domain. This has been done rescaling both, the sphere and cylinder,
choosing different values of the scale parameter. The number of cores was kept
fixed to 12 cores. The spatial point where the solution was computed consisted
in the nodal points closer to the physical point (0, 0, 0). The accuracy was kept
fixed to 5× 10−4.

Scale n Time MC (s) Time MLMC (s) Time Matlab (s)

4 83, 813 125(3) 59(11) 2
8 694, 751 146(5) 66(10) 24
12 2, 375, 211 167(5) 64(9) 90

Even though, the MC and MLMC methods were proposed initially to compute the
solution at single temporal points, it turns out that they can be used as well to obtain
the solution at intermediate instants of time. As a remarkable feature this can be done
without any additional computational cost, as it was already explained in Sec. 5. For
the Krylov-based methods, it is worth pointing out that there were also some recent
attempts [32] to improve the performance of the method for computing the solution in
a finite time interval, being however the performance of the resulting algorithm slightly
worse than the performance of the algorithm for computing the solution at a single
time. To test the accuracy of the obtained solution for intermediate times, in Fig. 7
the solution computed using the Monte Carlo method is compared with the solution
obtained using the Krylov-based method. Note the excellent agreement between both
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Figure 7: Solution of the 3D convection-diffusion equation evaluated at the
nodal points closer to the physical point (0, 0, 0), and for different values of

time. The initial value function was f(x) = e−(x2+y2+z2), and the velocity field
β (−1,−1,−1). The solid line denotes the solution obtained with the MLMC
method, and the dotted line corresponds to the Krylov-based solution.

solutions for any value of time.
Example B: Complex networks

Small-world networks. In Table 5 the computational time required to compute the
total communicability of a small-world network of size n = 108 is shown as a function
of the number of cores for the Monte Carlo, MLMC method, and Matlab.

In Table 6 the results corresponding to a sort of weak scalability analysis of the
MLMC algorithm are shown. For this purpose the algorithm was run for an increasing
number of cores, searching for the value of the accuracy ε that equals the simulation
time. Note that when the number of used cores increases, the accuracy ε should be
reduced accordingly. Moreover, since the computational cost of the MLMC algorithm
is of order O(ε−2), the workload of the algorithm increases when reducing the value of
ε, being therefore required to increase conveniently the number of used cores to keep
approximately constant the overall execution time.

From the results in Table 6 it can be seen, for instance, that whenever the number
of used cores increases 24 times (passing from 1 to 24 cores), the value of ε should be
reduced by a factor of approximately 0.22 for the same execution time. It is worth
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Table 5: Elapsed time spent for computing the total communicability of a small-
world network as a function of the number of cores. The size of the matrix is
n = 108, and the accuracy ε was kept fixed to 6.25 × 10−4. The simulations
were run on the commodity server.

Cores Time MC (s) Time MLMC (s) Time Matlab (s)

1 825(2) 508(4) 348
4 225(2) 137(7) 258
8 114(2) 71(8) 257
12 76(2) 47(3) 282

observing that for such a reduction of ε, the workload of the algorithm increases by
a factor of 21, which can be fully mitigated by increasing the number of used cores
up to 24. This is due to the remarkable scalability of the parallel algorithm. Similar
conclusions can be drawn from the results obtained when using 48 cores.

Table 6: Weak scalability analysis of the MLMC algorithm for computing the
total communicability of a small-world network. The elapsed execution time
was kept fixed around 1100 seconds, and the size of the matrix was n = 108.
The simulations were run on the MareNostrum supercomputer.

Cores ε Time MLMC (s)

1 4.05× 10−4 1107
24 8.8× 10−5 1095
48 6.25× 10−5 1115

Table 7: Elapsed time spent for computing the total communicability of a small-
world network as a function of the network size. The accuracy ε was kept fixed
to 6.25× 10−4, and the number of cores on the commodity server to 12.

Size n Time MC (s) Time MLMC (s) Time Matlab (s)

105 36(1) 26(2) 0.2
106 38(1) 30(1) 1.9
107 75(1) 45(2) 21
108 76(1) 47(3) 282

Table 7 shows the results corresponding to the computational time when computing
the total communicability for different network sizes. Here the number of cores was
fixed to the maximum number of cores available. It is remarkable to note that the
computational cost of the MLMC method appears to be almost independent of the
size of the network, while it increases almost linearly for the Krylov-based method.

Concerning the largest and smallest eigenvalues of the matrix, since again no ana-
lytical solution is available, we resort here to numerical approximations for the smallest
network size, n = 105, and the results are λmax = 3.14, and λmin = 2.6959× 10−5.

Scale-free networks. In Table 8 the results corresponding to a scale-free network
for an arbitrarily large size are shown for different number of cores. Similar to the
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results obtained for the small-world network, the MLMC method outperforms the
Krylov-based method for large size networks and cores. Since the network size used
in this example has a matrix extremely large, no numerical approximations for the
largest and smallest eigenvalues could be computed.

Table 8: Elapsed time spent for computing the total communicability of a scale-
free network as a function of the number of cores. The size of the matrix was
n = 108, and the accuracy ε was kept fixed to 2.5× 10−8. The simulations were
run on the commodity server.

Cores Time MC (s) Time MLMC (s) Time Matlab (s)

1 136(1) 87(10) 98
4 35(1) 23(10) 88
8 18(1) 11(3) 89
12 12(1) 8(3) 95

5.2 Distributed memory architecture

The simulations for a distributed memory architecture were carried out on the MareNos-
trum Supercomputer of the Barcelona Supercomputing Center (BSC) and on the Mar-
coni Supercomputer at CINECA. In both cases, two processes were launched on each
node (one per processor), with as many threads as physical cores available (24 threads
on MareNostrum and 18 on Marconi). Up to 200 nodes (a total of 9600 cores) were
used on MareNostrum and up to 160 nodes (5760 cores) on Marconi, which are re-
spectively the maximum we had access to.

To the best of our knowledge, no parallel code suitable for distributed memory
architecture capable of computing the action of a matrix exponential over a vector
is currently available. Therefore, in the following, only results corresponding to the
proposed multilevel method implemented in MPI are given.
Example A: Partial Differential equations.

The computational time spent by the multilevel method for computing the solution
of the boundary value problem for the 3D heat equations at a single point is shown in
Table 9 for different number of cores. These results were all obtained in the Marconi
system. The speedup column indicates how much faster the execution is relative to
half the number of cores (previous row in the table).

In all cases, the speedup is very close to the ideal, even for such a large number of
cores. This is because most of the calculations are totally independent, corresponding
to the Monte Carlo simulations performed at the each level of the method. For the
defined level of accuracy ε, a very large number of samples is required, exceeding the
number of 109 for the coarsest level. Communication is required between levels, but
the overhead is negligible.
Example B: Complex networks

Small-world networks. In Table 10 the computational time required to compute
the total communicability of a small-world network of size n = 108 is shown as a
function of different number of cores for the multilevel method.

As in the case of the partial differential equation, the scalability of the method is
almost perfect.
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Table 9: Elapsed time spent for computing the solution of the 3D heat equation
at the single point (0, 0, 0), and for time t = 1 as a function of the number of
cores. The accuracy ε was kept fixed at 10−5. The length of the domain was
δ = 4, and three different numbers of discretization points, nx, were used. Note
that the matrix size for the system is given by n3

x × n3
x.

nx Cores Time MLMC (s) Speedup

720 153
128 1440 82 1.9

2880 41 2.0
5760 21 2.0

720 774
256 1440 395 2.0

2880 196 2.0
5760 107 1.8

720 3577
512 1440 1773 2.0

2880 906 2.0
5760 467 1.9

Table 10: Elapsed time spent for computing the total communicability of a
small-world network as a function of the number cores. The size of the matrix
was n = 108, and the accuracy ε was kept fixed at 10−7.

Cores Time MLMC (s) Speedup

1200 315
MareNostrum 2400 175 1.8

4800 87 2.0
9600 50 1.7

720 320
Marconi 1440 166 1.9

2880 86 1.9
5760 44 2.0
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6 Conclusion

The multilevel Monte Carlo method was conveniently recast to be able to compute the
action of a matrix exponential over a vector. As the main ingredient of the method, the
leading probabilistic method requires generating suitable random paths which evolve
through the indices of the matrix according to the probability law of a continuous-time
Markov chain governed by the associated Laplacian matrix.

This new method extends the previous work in three respects. First, the prob-
abilistic method proposed in [7] has been generalized allowing now to be applied to
any class of matrices (not only adjacency matrices). Second, it allows now to compute
much more efficiently a highly accurate solution. In fact the computational complexity
has been proved in this paper to be significantly better than that of the classical Monte
Carlo method. Third, the underlying algorithm after parallelization has been shown
to be highly scalable, which in practice enables simulation of large-scale problems
for extremely large number of cores. We analyzed the performance of the algorithm
running several benchmarks of interest in science and engineering. These consist in
computing the total communicability of the network for a variety of complex networks
(real and synthetic), and in solving at single points inside the domain a boundary-
value problem for parabolic partial differential equations. Finally, whenever available,
simulations based on a standard Krylov-based method have been conducted, and the
performance compared with the multilevel MC method. In particular, the multilevel
MC method clearly outperforms the deterministic method for solving problems con-
sisting in large matrices, not only in terms of computational time, but also in terms
of memory requirements.

To conclude, an interesting question deserving further investigation is whether
the proposed method can be extended to deal with other matrix functions such as
trigonometric functions arising in oscillatory problems, and even hyperbolic functions
appearing in coupled hyperbolic systems of partial differential equations.
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