

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:

2018-11-23

Deposited version:

Post-print

Peer-review status of attached file:

Peer-reviewed

Citation for published item:

Bhimani, A., Frantz, P., Gulamhussen, M. A. & Ncube, M. (2008). Collaboration, competition and strategic costing: knowing when to start learning. International Journal of Accounting, Auditing and Performance Evaluation. 5 (2), 138-156

Further information on publisher's website:

10.1504/IJAAPE.2008.020842

Publisher's copyright statement:

This is the peer reviewed version of the following article: Bhimani, A., Frantz, P., Gulamhussen, M. A. & Ncube, M. (2008). Collaboration, competition and strategic costing: knowing when to start learning. International Journal of Accounting, Auditing and Performance Evaluation. 5 (2), 138-156, which has been published in final form at https://dx.doi.org/10.1504/IJAAPE.2008.020842. This article may be used for non-commercial purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in the Repository
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Collaboration, Competition and Strategic Costing: Knowing when to Start Learning

Alnoor Bhimani

London School of Economics*

Pascal Frantz

London School of Economics*

Mohamed Azzim Gulamhussen Lisbon University Institute (ISCTE)**

Mthuli Ncube

University of Witwatersrand***

.....

^{*}Department of Accounting , London School of Economics, Houghton Street, London, UK WC2A 2AE, UK.

^{**} Department of Accounting and Finance, ISCTE, Av. Forças Armadas, 101-B 1649-026 Lisboa, Portugal

^{***}Graduate School of Business Administration, University of Witwatersrand, 2 St David's Place, Parktown, Johannesburg, South Africa.

Collaboration, Competition and Strategic Costing: Knowing when to Start Learning

Abstract

Many companies confronted with "make or buy" decisions adopt the mid-way option of engaging in collaborative relationships (CRs) with suppliers rather than to engage in internal production or the purchasing of parts through a process of competitive bidding. Engaging in CRs requires evaluations of when to enter such relationships and when to abandon them. Traditional incremental cost analysis does not readily allow such analysis for the establishment of supplier networks and relationships. This paper develops a real options based model that focuses on the cost implications of learning curves and timing concerns. It provides an optimal timing valuation approach to establishing/abandoning a CR that incorporates differential learning rate payoffs and that assesses the contingencies embedded in a CR. A standard illustration of the application of the model is provided.

Keywords: collaborative relationships; strategic costing; timing issues, learning rates.

I. INTRODUCTION

The "make-or-buy" option for a firm requiring subcomponents or input material has been extensively discussed in the management accounting literature with particular reference to incremental costing approaches as a decision aid. Conventionally, the costs and benefits accruing to a firm producing required parts or subcomponents internally are weighed against the financial and managerial consequences of outsourcing via competitive bidding (CB) by suppliers of the products (Callioni et al, 2005; Dekker, 2004; Groot and Merchant, 2000; Meer-Kooistra, 1994; Quinn and Hilmer, 1994; Speklé, 2001; Vining and Globerman, 1999). Incremental cost analysis has been advocated as an appropriate approach to making this type of managerial decision.

Increasingly, alterations to buyer-supplier links today presents firms with a mid-way option: the collaborative relationship (CR) which is in effect a "quasi-vertical" form of integration (Das and Teng, 2000; Richardson, 1993; Tomkins, 2001). CRs are finding increasing appeal among many enterprises (Datta, 2006; Handfield et al, 2000; Helper and Sako, 1995; Lambert and Cooper, 2000; Leiblein and Miller, 2003; Liker and Choi, 2004; Trent and Monczka, 1998). Sheth and Sharma (1997, p.91) note that "organizational buying is dramatically shifting from the transaction oriented to the relational oriented philosophy and will shift from a buying process to a supplier relationship process". Management accounting scholars have also begun to extensively address this shift (Anderson and Sedatole, 2003; Dekker, 2004; Hakansson and Lind, 2007; Kamminga and Van der Meer – Kooistra, 2007; Kraus and Lind, 2007) but have not formally assessed its implications for cost management processes even

though these are extensive.

The decision to enter into a collaborative relationship with a supplier as opposed to engaging in transaction focused competitive bidding for required products by a buying firm entails a variety of cost-benefit implications that stem from the various options available in the subcontracting link. For instance, a CR can offer the opportunity to alter product specifications mid-stream as dictated by the volatility of market demands. Likewise, it may be possible for the firm to earn superior returns through learning rate differentials between CR and CB suppliers. Unplanned purchase volume changes, including temporary suspension of purchases, can also be effected in the buying relationship. Further, the relationship may lead to growth opportunities contingent upon entering the initial contract but not specified at the time. These features of CRs entail cost management issues necessitating an assessment of the flexibilities offered vis-à-vis the cost implications of establishing CRs. By contrast, it is clear that establishing a CR can be time consuming with resources being required to set up an appropriate trading infrastructure. Moreover, there has to be a willingness to share operational information including accounting information between the trading entities (Dyer and Singh, 1998; Handfield et al., 2000; Vining and Globerman, 1999).

Learning curve effects affect the economic viability of engaging in a supplier partnership.

Cost reductions can flow from a subcomponent supplier to the outsourcing firm as part of a CR. One specific issue concerns the point in time when the economic benefits accruing from a CR as a result of learning curve effects can be regarded as exceeding those under CB. An important cost related outsourcing issue is thus the timing of when to shift out of CB and

establish a CR and when to abandon the CR and switch back to CB. Whilst the accounting literature recognises learning curve costs effects, its strategic connections to the timing issue have not been evaluated (Lee, 1988; Peles, 1991). Addressing this void provides the primary motivation for the present study. This is undertaken here by appealing to a real options perspective which lends itself to considering the cost trade-offs which are time-related in make or buy decisions. Although prevalent in many facets of managerial decision-making, a real options approach has not been considered in assessing make or buy decisions with learning cost or timing issues as strategic factors in the management accounting literature.

The real options perspective is adopted in our analysis because it enables a dynamic assessment of CR variables which may be subject to uncertainty. It provides an approach to the evaluation of the costs and benefits of the contingencies embedded in CRs. Some scholars have suggested that cost related timing issues affecting managerial decisions should be considered using a real options frame of reference (Amran and Kulatilaka, 1998; Copeland and Tufano, 2004; Datta, 2006; Dixit and Pindyck,1994; Luehrman, 1998a;1998b; Trigeorgis, 1996). The practical potential of considering managerial action within a real options perspective has been widely voiced. Benaroch and Kauffman (2000) apply the approach to assessing point of sale debit services by the Yankee 24 electronic banking network of New England. Campbell (2002) considers optimal timing issues in practice of information systems investments. Kim and Sanders (2002) likewise expose the practical application of real option approach to the evaluation and justification of IT investments. Within emerging business-to-business cost management situations, a number of scholars have applied real options based analyses although timing issues have not been central to their concerns (Amran and Kulatilaka, 1999; Copeland,

2001; Kakabadse and Kakabadse, 2000a; 2000b; Leiblein and Miller, 2003; Means and Schneider, 2000; Van Putten and MacMillan, 2004). In this paper we extend the real options approach to take into account the time implications of learning rate cost effects in strategic supplier switch decisions.

The contribution of this paper is in three areas. First, the paper shows the role of risk in cash-flows in determining the input sourcing decisions including the choice of CR versus CB. Such risk is captured by the volatility of cash-flows. Second, the paper seeks to assess the impact of learning effects and their time implications on sourcing decisions. Third, the paper directly analyses the impact of cost-reduction effects on supply choice decisions and provides practical insights on the applicability of the real-options approach in practical situations.

The paper is structured as follows: we first discuss the characteristic differences between collaborative subcontracting relationships and competitive bidding as strategic options. This is followed by the development of a formal CR valuation model, which draws on an options valuation perspective. An example of the application and results of the model are discussed with special reference to entry and exit timing decisions over time-bound maturities. We conclude with a discussion of the contributions and limitations of our analysis and comment on research possibilities for applying our approach to other CR related issues connected to cost management.

II MAKE OR BUY OPTIONS IN MODERN ENTERPRISES

A shift is in evidence in contemporary business-to-business relationships where factors such as product development input, price rebates, after sales warranties, supplier inspection policies and information systems integration, play increasingly important roles. contractual issues between buyers and sellers continue to gain relevance, particularly in new product development contexts (Arnold, 2000; Axelson et al, 2000; Cousins, 1999; Gadde and Snehota, 2000; Narayanan and Raman, 2004; Reyniers and Tapiero, 1995). Supplier selection decisions generally entail a variety of dimensions requiring evaluation (Dalmin and Mininno, 2003:). The development of relationships-based or collaboration-oriented purchasing behaviour can be influenced by many factors including similarities between the industry and technologies of buyers and suppliers (Buvik and Halskan, 2001; Datta, 2006; Gadde and Häkansson, 2001); prior experiences of change among suppliers (Frey and Schlosser, 1993, Hahn et al, 1990); effective communications between buyer and suppliers (Hoberman and Mailick, 1992; Lascelles and Dale, 1989; Mohrman and Mohrman, 1993; Van Weele, 2000); the creation of cost information exchange relationships (Ellram, 1996), and the consideration of purchase leverage factors and volume of initial business (Billington and Ellram, 2001; Kulmala, 2004). The importance of experiential learning is a major characteristic of customer supplier links (Bessant et al., 2003; Dyer and Singh, 1998; Krapfel et al, 1991; Langfield-Smith and Greenwood, 1998; Stjernstrom and Bengtsson, 2004).

In practice, two options generally exist for a company wishing to purchase a subcomponent or a service-based product from an external supplier. On the one hand, the buyer can put out a bid tender and choose the most competitive quote for a certain number of parts over a period of time. Benefits from past performance are limited; exchanges tend to be at arm's length and

product specifications; and prices are well defined. In contrast to this transaction-based competitive bidding approach, the buyer can establish a collaborative relationship with a supplier. Such a relationship would entail sharing of technical and financial information, managerial interaction and liaison and a more flexible buyer-supplier link as to time/volume variables and product specification. The costs involved in identifying the right supplier for a collaborative relationship and operationalising such a link differ from those in a bidding situation. Firms regard one or the other approach as a strategic issue.

Competitive bidding involves a specific set of economic transactions whose terms are made explicit prior to the commencement of trading. An attempt is made to cover recourse options for departures from the terms of the contract and the buyer-supplier link is characterised by a concern which minimizes each party's dependence on the other. By contrast, collaborative subcontracting relationships are founded on trust and transactional dependence with specific supply undertakings (often made orally) extending over only part of the overall trading relationship. The obligations of long-term CRs are diffuse and guide the resolution of specific transaction problems on a case-by-case basis. The CR exhibits mutual indebtedness which can span over long periods with a loose principle of give and take. A CB situation is characterised by narrow and formal channels of communication between the buyer's purchasing department and the supplier's sales department whereas a CR tends to have extensive and multiple channels of communication between a variety of functional managers and departments within the two companies. The most significant difference between CB and CR for the purposes of this paper is that CR sets very loose terms of trade as to supply quantity, timing of supply, product specifications and product price at the time of establishing the trading relationship.

Conversely, CB formally and narrowly stipulates how much is to be traded, at what price and time. This enables the economic exposure to be calculated with a high degree of accuracy prior to the commencement of trading. Table 1 identifies some contrasting characteristics of CB and CR.

"Insert Table 1"

The absence of contractualised specificity as to quantity, price and timing of supply makes it difficult to assess the economic value of a CR trading link. The buyer's ability to alter quantities purchased from the supplier and to change product specifications confers operational flexibility. There is also a timing choice embedded in a CR that enhances managerial flexibility. A company may, for instance, decide to enter a market either as an innovator or as a follower. This will dictate when it will purchase required subcomponents from a supplier. The timing decision is conditioned by product life cycle considerations that place strategically desirable time frames relating to market entry (Dunk, 2004). A firm may choose to delay entry into a market for the sale of its final product and thus also delay the purchase of subcomponents from a supplier. Here, the firm faces a timing decision. It will assess whether it should invest in the product and allocate resources to the new business opportunity sooner rather than later whereby it might enhance the likelihood that it will dominate the market in the long run by virtue of an early lead. Issues of volume strategies and low cost positioning will form part of the decision process. This type of timing issue is amenable to analysis using a "real" options perspective (see below).

What makes the analysis real is that the heuristics relate to investments in physical and human assets rather than to financial instruments. This form of timing decision is however not the focus of the present analysis. Rather, we focus on the more practical situation whereby the decision to produce the product has already been taken by a firm. It may then choose to deal with the supplier offering the lowest bid. Conversely, it may opt to form a closer alliance with a subcomponent supplier and develop a collaborative relationship. Here, the buying firm would be making a "platform investment" (Datta, 2006; Dixit and Pindyck, 1994; Kogut and Kulatilaka, 1994; Luehrman, 1998a, 1998b). As such, it would be enabling operating flexibility by for instance, altering purchase volumes in line with changing sales of the final product. Moreover, it would create the possibility of rapid expansion and growth in ways not anticipated at the outset. There is also a timing element in that the CR will put into effect a transfer of benefits accruing from the lower cost of producing subcomponents over time alongside the accumulation of experience by the supplier (Child, 2005).

The initial subcomponent or service offering cost of a supplier able to engage in a CR may supercede that of a CB value supplier but the higher cost needs to be considered in the light of foregoing the payoffs from a CR. In particular, the transfer of knowledge and the availability of flexibilities say between a supplier and assembler may over time contribute to value advantages exceeding those of pure initial subcomponent price differentials between CB and CR. Ultimately, not engaging in a CR will cost the buyer the benefit of cost reduction learning. The longer the buyer holds off entering into a CR in favour of entertaining a CB link, the lower the experience-related cost minimization it can tap into. It is this timing issue which is delineated within the real options lens and which provides the focus of the arguments

developed below.

The incentive to establish or abandon a CR is considered here to depend on the extent to which learning effects are available. Naturally, some firms will opt for both CR and CB depending on their purchasing portfolio mix (Axelson et al., 2000). The existence of learning (or experience) curves has been established in a variety of industries (Dutton and Thomas, 1984; Dyer, 1996; Peles, 1991). In the presence of learning effects, marginal costs decrease in cumulative output. In part, this is because of the aggregate result of labour learning, process improvement, product standardisation, and economies of scale. The extent to which economies of learning are available varies across and within industries and is explained by differences in R&D expenditure and capital intensity as well as team effects (Dyer, 1997; Dutton and Thomas, 1984; Gruber, 1992; Lieberman, 1984). In practice, learning effects are higher under CR links than in CB links and so the resulting costs mount with delays in establishing CR links. The earlier the establishment of a CR, the earlier it is possible to establish and achieve precise learning curve parameters on the basis of quantifiable effects between volume and cost reductions. The CB option does not provide equivalent incentives for supplier or customer related investments.

It is likely that forestalling a CR, will create delays representing learning curve losses to the buyer. But just as there is an entry timing issue with economic value implications, the option to temporarily or permanently abandon the CR entails an evaluation of time-affected economic factors. Our approach is to use a real options perspective to place an aggregate value on the operational and managerial flexibilities offered by a CR-based buyer-supplier link such that the

optimal contract entry and abandonment time may be determined. Similar real options based approaches have been applied in practical contexts (see Adner and Levinthal, 2003; Benaroch and Kauffman, 2000, Bowman and Moskowitz, 2001; Campbell, 2002; Kim and Sanders, 2002; Copeland and Antikarov, 2001; Kogut and Kulatilaka, 2001; Kulatilaka and Perotti, 1998). For this, a formal assessment of the uncertain elements of the CR subcontracting link is undertaken. The analytical model is developed below. This is followed by an illustrative example.

III TIMING OPTIONS TO ADOPTING COLLABORATIVE RELATIONSHIPS

Consider an assembler with an investment opportunity consisting in the launch of a new product. The assembler may establish a CR within the time horizon [0,T] and purchase some or all of the subcomponent part requirements. Alternatively, the assembler can purchase the subcomponents from a supplier following a competitive bidding process.

What determines decisions towards a CR approach is the hidden gains from the arrangement under conditions of uncertainty. The value of the gains from a CR can be characterised as contingent-claims or real options (Datta, 2006; Dixit and Pindyck, 1994; Luehrman, 1998a; 1998b; Trigeorgis, 1996; Whaley, 1981). By embarking on a CR linkage, the buying company which assembles the final product after purchasing a subcomponent from a supplier is in fact making an investment as it believes there is a pay-off that will translate into contingent profits. In formal terms, the value of the pay-off depends on the present value S of the expected cash flows, the present value X of the cost of the subcomponent¹, the time-horizon T for the CR, the

volatility rate σ of S, and the discount rate, r. Thus the value of the profit expected from a CR arrangement can be represented as C (S, X, T, σ , r) – which in financial terms is equivalent to a "call" option.

The present value S of the cash flows from revenues of the new product to be launched less all material and operating costs, except for the incremental cost of the subcomponent associated with the CR, is stochastic and generated by a geometric Brownian motion. Over the interval [t, t +dt], it can hence be represented by:

(1)
$$dS/S = \mu dt + \sigma dz$$

where: μ = the instantaneous expected rate of the present value of cash flow stream S;

 σ = the volatility rate of S;

z = a factor generated by a Wiener process;

The value of the pay-off from a CR that is exercised immediately is:

(2)
$$C_0 = Max (S - X, 0)$$

Where zero profits reflect profits above those to be derived from CB.

Effectively, the assembler can be considered to be holding a timing option on the opportunity to collaborate with the supplier. One can then define the value of the timing-option V as:

(3)
$$V = C(S,X,T,\sigma,r) - C_0$$

The value of the timing option represents the excess value of the deferrable undertaking over

the currently achievable profits.

To derive the value of the CR pay-off, C(.), we use the options value derivation which is well-determined in the literature and can be characterised by the Black-Scholes formula (Black and Scholes,1973; Merton,1973), which is presented in Appendix A. In this analysis, we have assumed that X is constant. It could however be argued that X might in reality be stochastic². This would be the case for instance when the uncertainty surrounding the demand for the final product affects the demand for the subcomponent. When both S and X are stochastic, we can value the CR payoff embedded in our analysis using the approach developed by Magrabe (1978).

The Implication of Cost Reduction Events

Suppose, that early establishment of a collaborative relationship yields a deterministic payoff D derived for instance from a one-time technological breakthrough or learning event after the start of production by the supplier. This may render earlier implementation of the project advantageous. If the payoff D occurs at time t^* , then the present value of profits initially is $S_0 + De^{-rt^*} - X$ and at time t^* , the value of the project is $S_{t^*} + D - X$. It is to be noted that t^* represents some optimal time, which lies between t and T. This designation is consistent with the Black-Scholes model approximation procedure for valuing American call options.

Given that the value of the timing option must be equal to zero at a time when delaying implementation becomes no longer worthwhile, we can posit that there is a "threshold" present

value of the project \hat{S}_t^* when this will occur. Thus at time t^* , from equation (2):

(4)
$$V(t^*, T) = C(\hat{S}_{t^*}, X, t^*, T, \sigma, r) - (\hat{S}_{t^*} + D - X) = 0$$

where C(.) is given by a Black-Scholes option value formula.

Equation (4) captures the point at which both the present value of profits from the undertaking and the cost of further delaying are sufficiently large as to make the option of delaying any longer unattractive. This gives two possibilities for timing choices: either $S_{t^*} > \hat{S}_{t^*}$ and implementation should proceed at time t^* or $S_{t^*} < \hat{S}_{t^*}$ and waiting for time T is preferable.

Suppose the assembler decides that it would, in strategic terms, be sensible to assume a longer time period over which the product can be produced and marketed and hence to expand the time frame over which the CR could be established. This will increase the time to maturity of the option and hence increase the threshold \hat{S}_{t^*} value. The company will then find it is desirable to delay establishing the CR link. Conversely, an increase in the value of the bonus D from early entry into the CR will proportionately decrease the value of the timing option and therefore lower the threshold present value. The company will then be induced to opt for earlier CR entry. Likewise, as the cost of purchasing the subcomponent via a CR increases, the company will feel less pressed to enter the relationship and will prefer to delay (the threshold value will be higher). In this case, the problem of valuing the CR gains with an explicit benefit from learning D, or technological change occurring at time t^* , we value C(.) in equation 4 using the usual Black-Scholes formula with S replaced by Se $^{-b(T-t^*)}$ where b = D/S. This approach was proposed by Black (1975) for valuing American type options that pay

dividends. The Black approach preserves simplicity. It is a closed-form model for which a comparative static analysis can be performed. (Alternatively, numerical procedures based on binomial trees may be appropriate but the ability to perform simple comparative static analysis becomes more constrained.)

Learning Curve Effects

Typically, supplier learning will be ongoing and will lead to not one singular event but to a stream of cost reduction improvements. Effectively, it is likely that there is a learning curve effect afforded by the subcontractor if the CR is established. This could stem from production of the subcomponent which yields known (deterministic) cost reductions as a function of volume output. Although CRs entails loose terms of trade as to supply quantity, timing of supply, product specification and product price, it is possible to establish more precise learning curve parameters on the basis of quantifiable effects between volume and cost reductions. It is anticipated that delaying the establishment of the CR will cause the loss of bonuses accruing from learning curve effects. What therefore is essential is to adjust Equation (4) to enable threshold values to be obtained at each present value decline caused by the bonus paid out such that:

(5)
$$C(S_{k^*}, X, t_h, t_{k^*}, T, \sigma, r) = \hat{S}_h - X$$

Here h represents a time point just before a known present value decline caused by D_h , t_{k^*} is the optimal time point when the option value is maximised. The term t_h represents times before the

dividend payment. This gives a value for \hat{S}_h which makes the timing option worthless at time t_h so that the CR link is established when $S_h > \hat{S}_h$. If $S_h < \hat{S}_h$ then the company awaits time t_{k^*} . We can express D received continuously as a percentage of S, giving us a yield rate b. In our scenario, b is taken to be a dividend yield that is enjoyed continuously as a surrogate for learning curve effects. It will be referred to as the learning rate. A numerical application of the model developed above follows.

IV THE OPTIMAL TIMING FOR CR ENTRY: A NUMERICAL EXAMPLE

Suppose that S, the present value of total revenues from the sale of the new products less the material and operating costs net of the price of the subcomponent, follows the process analysed in the previous section over five years (T=5) and that $S_0=\$100\text{m}$. The market risk-free rate of return is assumed to be equal to 10%. We utilized the valuation approach developed by Black (1975) for American type options with a dividend yield. Table 2 shows the value of the deferrable subcontracting collaborative relationship opportunity for different degrees of uncertainty (represented by different values of volatility rates σ of the CR link ranging from 0.05 to 0.4) and for a range of different learning rates b (from a lower bound of 0% to an upper bound of 15%). Table 3 shows the value of the timing option and Table 4 indicates threshold measures \hat{S}_t for these values of σ and b.

"Insert Table 2"

Table 2 indicates the value of the deferrable undertaking whose opportunity cost of

postponement is reflected by the foregone benefits implied by the learning rate. For a given learning rate, increased uncertainty increases the value of the deferrable contract though as the learning rate increases for a given degree of uncertainty, the deferrable contract value decreases. The value of the deferrable CR option is monotonically increasing in volatility and decreasing in the learning rate².

"Insert Table 3"

Table 3 suggests that for a given learning rate, increases in uncertainty increase the value of the timing option for lower learning rates (0 to 3%). This is in line with the established result that the value of an American option is an increasing function of uncertainty (volatility rate). An increase in the volatility rate makes the option more likely to be profitable. This increases the intrinsic value of the option. As the cash flows to be derived from higher learning rates (5% and above) increase, a high degree of uncertainty militates against postponing the establishment of the CR link.

"Insert Table 4"

Table 4 indicates that for low learning rates, the threshold point for establishing the contract is high. As learning rates increase, the desirability of early contract adoption increases. In this example, a learning rate at or above 3% yields a present value of profits that compares favourably with the alternative outsourcing option (competitive bidding) which offers lower returns (that is, below 3%, $\hat{S}_{t*} > \$100m$).

V THE DECISION TO ABANDON A COLLABORATIVE RELATIONSHIP

Once a collaborative relationship is entered into, altered circumstances may make it necessary to abandon the relationship earlier than anticipated. This could be justified for instance if the supplier is believed to be facing financial difficulties and may close down, or if the assembler expects a superior rival product to be launched by a competitor making the continued production and marketing of the existing product unviable, or if the need for the subcomponent part is diminished or its costs are rising due to exogenous factors (Dyer, 1997). The supplier in such cases would have to give up anticipated future cash flows. Expectations about future cash flows from the collaborative relationship will be revised by the assembler as new information arises, such that the value of the link wanders randomly. Uncertainty about future cash flows is related to uncertainty about the value of CR as an option. A stochastic process for the value of the CR may be viewed as reflective of the underlying process for the cash flows. Suppose now that the assembler has an ongoing collaborative relationship with the supplier and is assessing the option to abandon the relationship. Any associated costs to ending the CR would be seen as a lower limit of the project's value. That is the abandonment alternative becomes an insurance against further losses. The payoff is referred to as a "put" and can be represented as $P(S,X,T,\sigma, r) = Max (X-S,0)$. So one abandons the contract if $S \cdot \hat{S}^*$. The value of the threshold \hat{S}^* decreases as the learning rate b increases. The gains from abandoning are partially offset by the loss from learning effects. Therefore, the firm requires a lower \hat{S}^* to

abandon, as learning gains increase.

Tables 5, 6 and 7 provide the relevant data for the numerical example developed above.

"Insert Tables 5, 6 and 7"

Table 5 indicates that as the volatility rate of S increases, the option to abandon increases the potential loss from taking this action. In effect, the learning rate is a monotonically increasing function of this loss of value. Table 6 indicates that volatility increases enhance the value of the timing option. Likewise, increases in the learning rate would be expected to be matched by rises in the value of the timing option. Table 7 confirms that increases in the volatility rate reduce the abandonment threshold points as do learning rate increases. This is reflective of the diminished likelihood of exiting from the CR at high b or volatility values.

In the case of a CR being entered into without limits being placed on the number of subcomponents to be supplied or as to the duration of the relationship, it is possible to construct a real options analytical model which uses an infinite time horizon perspective. This point is not pursued further in this paper.

VI CONCLUSION

Make or buy decisions for many firms open up the possibility of a mid-way option: collaborative relationships. Placing an economic value on collaborative subcontracting

relationships present difficulties tied to the flexibility and open-endedness of such buyer-supplier links. These modern day complexities in supply chain relationships have not been adequately addressed by incremental costing approached to "make or buy decision". One decision element involves the timing option as to when such a link should be formed and when it should be abandoned. The concern here has been to provide an approach to entry and abandonment timing decisions by using a real options perspective. In assessing when to enter or abandon a contractual relationship the real options-based perspective provides a reference point directly reflective of the managerial flexibility embedded in CRs. Our investigation has addressed three areas where we make a contribution; The role of risk in cash-flows in determining supply choice decisions, the impact of learning effects and their time implications on such decisions and the identification of applied cost reduction effects in supply choices.

Our approach has been to model the standard situation of the learning curve versus the wait-time as a cost-benefit trade off. This scenario can readily be extended to consider the implications of infinite time contracts and definable product profitability distributions for our model. As shown, possibilities exist for the real options perspective to be extended by altering assumptions concerning stochasticity of the learning rate and subcomponent costs in both entry and exit situations. The approach enables an analysis of when it is optimal to enter a product market in the presence of sales uncertainty. It is thus possible also to view a CR as a strip of options whereby the object is to value the CR as a sequence of opportunities (Geske, 1979). It may be that the buyer may want to temporarily halt the purchase of subcomponents. This would imply the need to develop a multiple entry/exit heuristics model. The approach presented here readily lends itself to this. Its only drawback in an applied context is the

conceptual complexity perceived by executives attempting to implement the approach. The output results are however readily understood by managers.

The approach presented here allows developments and refinements for exploring issues similar to those addressed in this paper. In practice, a CR can enable the assembler to benefit from the knowledge acquired by the supplier and to use this knowledge to alter subcomponent features which can lead to unanticipated opportunities to redesign the product. This flexibility and the implied costing consequences can be analysed by viewing the relationship as a compound option, i.e. an option with other options nested inside. Such more specific elements of buyer-supplier linkages and the decision to enter CR's will likely become important as organizations ponder over issues of costs, efficiency and strategic advantages in their purchasing and supplier relations structuring activities (Amran and Kulatilaka, 1999; Kapoor and Gupta, 1997; Sheth and Sharma, 1997). This is so particularly in the light of outsourcing thinking coming to be seen as a "paradigm" (Kakabadse and Kakabadse, 2000a; 2000b) and the growing relevance of learning rate effects which are part of supplier linkages.

Real options formulations which are conceptually founded are increasingly acknowledged as having extensive practical relevance (Benaroch and Kauffman, 200; Campbell, 2000; Copeland and Tufano, 2004; Datta, 2006; Lander and Pinches, 1998; Luehrman, 1998a, McGrath, 1997; 1999, Trigeorgis, 1996). We have illustrated in this investigation, the practical appeal of this frame of reference in the context of accessing learning potential from the structuring of sourcing linkages. What is clear from the results of this investigation is that a buying firm which recognises the differential impacts of learning effects accruing at the supplier end

establishes a platform for assessing when to enter or exit a CR.

Our illustration impresses the value of uncertainty and volatility – in increasingly uncertain global products and services markets across most sourcing categories. Such a perspective can be of particular relevance to make or buy focused decision making given the value that firms increasingly place on learning effects. Additionally, in situations where innovations build on the learning of past profitable products thereby enabling subcontractors to produce "nested" subcomponent supply opportunities, it could be beneficial for assemblers to adopt and develop on the heuristic approach we have delineated. The arguments developed in this paper could be of relevance within modern competitive industrial environments where the ability of firms to manage knowledge and related cost management concerns is viewed as a core competitive strength. The approach we have outlined in this paper to considering purchase options across the CR-CB spectrum indicates that purchasing choice is itself an investment in learning that can be portrayed in managerial flexibility terms and which can engage extensive cost management analyses.

Bibliography

Adner, R. and Levinthal, D. 2004. What is not a real option: Identifying Boundaries for the Application of Real Options to Business Strategy, Academy of Management Review. 29 (1): 74-85

Amran, M. and Kulatilaka, N., 1999. Disciplined Decisions: Aligning Strategy with the Financial Market. Harvard Business Review, January . 45-51.

Amran, M. and Kulatilaka, N. 1998. Real Options: Managing Strategic Investments in an Uncertain World (Boston, Mss.: Harvard Business School Press)

Arnold, N., 2000. New Dimensions of Outsourcing: A Combination of Transaction Cost Economics and the Core Competencies Concept. European Journal of Purchasing and Supply Management, 6, 23-29.

Axelsson, B., Van Weele, A. and Wynstra, F., 2000. Driving and enabling factors for purchasing involvement in product development. European Journal of Purchasing and Supply Management, 6, 129-141.

Benaroch, M. and Kauffman, R. 2000. Justifying Electronic Banking Network Expansion Using Real Options Analysis. MIS Quarterly 24(2): 197-225

Bessant, J., Kaplinsky, R. and Lamming, R. 2003. Putting Supply Chain Learning into Practice International Journal of Operations and Production Management 23 (2), 167-184.

Billington, C. and Ellram, L., 2001. Purchasing leverage considerations in the outsourcing decision. European Journal of Purchasing and Supply Management, 7, 15-27.

Black, F. 1975. Fact and fantasy in the use of options, Financial Analyst Journal, 31 (July/August), 36-41

Bowman, E.H. and Moskowitz, G.T. 2001. Real options analysis and strategic decision making. Organization Science 12(6) 772-777.

Buvik, A. and Halskan, Ø., 2001. Relationship duration and buyer influence in just-in-time relationships. European Journal of Purchasing and Supply Management, 7, 111-119.

Callioni, G., Montgros, X., Slagmulder, R., Wassenhowe, L. and Wright, L. 2005. Inventory-Driven Costs, *Harvard Business Review* March, pp. 271-282.

Campbell, J.A. 2002. Real Options Analysis of the Timing of IS Investment Decisions Information and Management 39(5): 337-344.

Child, J. 2005. Cooperative Strategy (Oxford University Press)

Copeland, T. and Antikarov, V. 2001. Real Options: a practitioner's guide. New York: Texere LLC.

Copeland, T. and Tufano, P. 2004. A Real World Way to Manage Real Options. Harvard Business Review (March) 21-28.

Copeland, T., 2001. Valuation in Rayport, J.F. and Jaworski, B., E-Commerce (Boston: McGraw-Hill/MarketspaceU), 293-320.

Cousins, P.D. Supplier Base Rationalisation: Myths or Reality? European Journal of Purchasing and Supply Management, 5, 143-155.

Dalmin, R. and Mininno, V. 2003. Supplier Selection using a Multi-Criteria Decision Aid Method. Journal of Purchasing and Supply Management, 9, 177-187.

Das, T.K and Teng, B. 2000. Instabilities of Strategic Alliances: An Internal tensions perspective. Organization Science 11(1), 77-101

Datta, S. 2006. Strategic Outsourcing: A Real Options Approach (Bristol Business School Working Paper).

Dekker, H.C. 2004. Control of inter-organizational relationships: evidence on appropriate concerns and coordination requirements. *Accounting, Organizations and Society*, 29(1), 27-49.

Dixit, A.K. and Pindyck, R.S., 1994. Investment under Uncertainty, Princeton, New Jersey: Princeton University Press.

Dunk, A. 2004 Product Cost Life Cycle Analysis: The Impact of Customer Profiling, Competitive Advantage and Quality of IS Information Management Accounting Research 15(4) 379-410

Dutton, J. and Thomas, A., 1984. Treating Progress Functions as a Managerial Opportunity. Academy of Management Review, 9, 235-248.

Dyer, J.H., 1996. Specialized Supplier Networks as a Source of Competitive Advantage: Evidence from the Auto Industry. Strategic Management Journal, 17(4), 271-291.

Dyer, J.H., 1997. Effective Interfirm Collaboration: How Firms Minimize Transaction Costs and Maximize Transaction Value. Strategic Management Journal, 18(7), 535-556.

Dyer, J.H. and Singh, J.H. 1998. The Relational View: Cooperative Stategy and Sources of Inter-Organizational Competitive Advantage The Academy of Management Review 23(4), 660-679.

Ellram, L.M., 1996. A structured method for applying purchasing cost management tools. International Journal of Purchasing and Materials Management, 32, 11-19.

Frey, S.C. and Schlosser, M.M., 1993. ABB and Ford, creating value through cooperation. Sloan Management Review, Fall, 65-72.

Gadde, L-E., Häkansson, H., 2001. Supply Network Strategies. Wiley, Chichester.

Gadde, L-E., Snehota, I., 2000. Making the most of supplier relationships. Industrial Marketing Management, 29, 305-316.

Geske, R., 1979. The Valuation of Compound Options. Journal of Financial Economics, 7, 63-81.

Groot, T.L.C.M. & Merchant, K.A., 2000. Control of international joint ventures. *Accounting, Organizations and Society*, 25(6), 579-607.

Gruber, H., 1992. The Learning Curve in the Production of Semiconductor Memory Chips. Applied Economics, 24, 885-895.

Hahn, C.K., Watts, C.A. and Kim K.Y., 1990. The supplier development program: a conceptual model. Journal of Purchasing and Materials Management, Spring, 2-7.

Hakansson, H. and Lind, J. 2007. Accounting in an Interorganizational Setting. In C.Chapman, A. Hopwood and M.Shileds (Eds) Handbook of Management Accounting Research. (Elsevier) 885-902.

Handfield, R.B., Krause, D.R., Scannel, T.V. and Monczka, R.M., 2000. Avoid the Pitfalls in Supplier Development. Sloan Management Review, 42(2), 37-49.

Helper, S.R. and Sako, M., 1995. Supplier Relations in Japan and the United States: Are they Converging? Sloan Management Review, Spring, 77-84.

Hoberman, S. and Mailick, S., 1992. Experiential Management Development – From Learning to Practice. New York: Quorum Books.

Kakabadse, N. and Kakabadse, A., 2000a. No Business is an Island, Scandinavian Journal of Management, 5(3), 187-200.

Kakabadse, N and Kakabadse, A., 2000b. Outsourcing: a paradigm shift. Journal of Management Development, 19, 670-728.

Kamminga, P.E. and Van der Meer-Kooistra, J. 2007. Management Control Patterns in Joint Venture Relationships: A model and an Exploratory Study. Accounting, Organizations and Society 32, 131-154.

Kapoor, V. and Gupta, A., 1997. Aggressive Sourcing: A Free Market Approach. Sloan Management Review, Cambridge 39(1), 21-31.

Kim, Y.S. and Sanders, L. 2002. Strategic Actions in Information Technology Investments Based on Real Options Theory. Decision Support Systems 33(1); 1-4

Kogut, B. and Kulatilaka, N. 1994. Options Thinking and Platform Investments: Investing in Opportunity. California Management Review (Winter), 52-71.

Kogut, B. and Kulatilaka, N. 2001. Capabilities as real options. Organization Science. 12(5) 34-49.

Krapfel, R.E. Jr., Salmond, D. and Spekman, R., 1991. A Strategic Approach to Managing Buyer-Seller Relationships. European Journal of Marketing, 25(9), 22-37.

Kraus, K and Lind, J. 2007. Management Control in Interorganzational Relationships in T. Hopper, D. Northcott and R. Scapens (Eds). Issues in Management Accounting (London: FT Prentice Hall) 269-296.

Kulatilaka, N. and Perotti, A. 1998. Strategic growth options. Management Science, 44(8): 1021-1031.

Kulmala, H. I., 2004. Developing Cost Management in Customer Supplier Relationships: Three Case Studies. Journal of Purchasing and Supply Management, 10, 65-77.

Lambert, D.M. and Cooper, M.C., 2000. Issues in Supply Chain Management, Industrial Marketing Management, 29(1), 65-83.

Lander, D. M. and Pinches, G.E. 1998. Challenges to the practical implementation of modelling and valuing real options. The Quarterly Review of Economics and Finance. 38: 537-567.

Langfield-Smith, K. and Greenwood, M., 1998. Developing Cooperative Buyer-Supplier Relationships: A Case Study of Toyota. Journal of Management Studies, 35, 331-354.

Lascelles, D.M. and Dale, B.G., 1989. The Buyer-supplier Relationship in Total Quality Management. Journal of Purchasing and Materials Management, Summer, 10-19.

Lee, C.J., 1988. Capital Budgeting under Uncertainty: The Issue of Optimal Timing. Journal of Business, Finance and Accounting, 155-169.

Lieberman, M., 1984. The Learning Curve and Pricing in the Chemical Processing Industries. Rand Journal of Economics 15, 216-229.

Leiblein, M.J. and Miller, D.J. 2003. An Empirical Examination of Transation and Firm Level

Influences on the Vertical Boundaries of the Firm. Strategic Management Journal, 24, 839

Liker, J.K. and Choi, T.Y. 2004, Building Deep Supplier Relationships Harvard Business Review (Dec.), 29-38

Luehrman, T.A. 1998a. Investment Opportunities as Real Options: Getting Started on the Numbers. Harvard Business Review. (July/August), 3-15.

Luehrman, T.A. 1998b. Srategy as a Portfolio of Real Options. Harvard Business Review. (Sept/Oct), 89-99.

Magrabe, W 1978. The Value of an Option to Exchange One Asset for Another. Journal of Finance 33, 177-186.

McGrath, R. G. 1997. A real options logic for initiating technology positioning investments. Academy of Management Review, 22: 974-996.

McGrath, R. G. 1999. Falling forward: real options reasoning and entrepreneurial failure. Academy of Management Review, 24(1) 13-30.

Means, G. and Schneider, D., 2000. Metacapitalism, (New York: John Wiley).

Meer-Kooistra, J. van der, 1994. The coordination of internal transactions: the functioning of transfer pricing systems in the organizational context. *Management Accounting Research*, 5, 123-152.

Merton, R.C., 1973. The Theory of Rational Option Pricing. Bell Journal of Economics and Management Science, 4, Spring, 141-183.

Mohrman, S.A. and Mohrman, A.M., 1993. Organizational change and learning, in Galbraith, J.R. and Lawler, E.E. (eds.), Organizing for the Future. San Francisco: Josey Bass, 87-108.

Narayanan, V.G. and Raman, A. 2004 Aligning Incentives in Supply Chains Harvard business Review (Nov.), 42-51.

Peles, Y.C., 1991. On Deviations from Learning Curves. Journal of Accounting, Auditing and Finance, 6(3), 349-359.

Quinn, J.B. and Hilmer, F.G., 1994. Strategic Outsourcing. Sloan Management Review Summer, 43-55.

Reyniers, D. and Tapiero, C., 1995. The Delivery and Control of Quality in Supplier-Product Contracts. Management Science, 41, 1581-1589.

Richardson, J., 1993. Parallel Sourcing and Supplier Performance in the Japanese Automobile Industry. Strategic Management Journal 14, 339-350.

Sheth, J.N. and Sharma A., 1997. Supplier Relationships – Emerging Issues and Challenges. Industrial Marketing and Management, 26(2), 91-100.

Speklé, R.F., 2001. Explaining management control structure variety: a transaction cost economics perspective. *Accounting, Organizations and Society* 3(4), 141-167.

Stjernstrom, S. Bengtsson, L. 2004. Supplier Perspective on Business Relationships: Experiences from Six Small Suppliers. Journal of Purchasing and Supply Management

Tomkins, C. 2001. Interdependencies, trust and information in relationships, alliances and networks. *Accounting, Organizations and Society* 26, 161-191.

Trent, R.J. and Monczka, R.M., 1998. Purchasing and Supply Management: Trends and Changes throughout the 1990s. Journal of Supply Chain Management, 34(4), 7-21.

Trigeorgis, L. 1996. Real Options: Managerial Flexibility and Strategy in Resource Allocation (Cambridge, Mass.: MIT Press)

Van Putten, A. B. and MacMillan, I.C. 2004. Making Real Options Really Work Harvard Business Review (Dec.), 12-17.

Van Weele, A.J., 2000. Purchasing and Supply Management: Analysis, Planning and Practice. Business Press, London.

Vining, A. and Globerman, S. 1999. A Conceptual Framework for Understanding the Outsourcing Decision. European Management Journal, 17, 645-654

Whaley, R., 1981. On the Valuation of American Call Options on Stocks with Known Dividends. Journal of Financial Economics, 9, 207-211.

APPENDIX A

THE BLACK SCHOLES OPTION VALUATION MODEL AND BLACK (1975) MODEL

Asume S follows Geometric Brownian process in equation 1 above. The Black and Scholes (1973) formula, for value a call option with maturity period T-t, is given by

(A1)
$$C(.) = S N(d1) - X N(d2)$$

where

$$d1 = (\ln(S/X) + (r + \sigma^2/2)(T-t))/\sigma\sqrt{(T-t)}$$

$$d2 = d1 - \sigma \sqrt{(T-t)}$$
.

Black (1975) proposed an approximate formula for valuing American options. Black's approach, in valuing American options which pays a divided D continuously, and giving a dividend yield b, we replace S with Sexp(-b(T-t)) the Black–Scholes formula above.

Buyer-Supplier Link Characteristics	Competitive Bidding (CB)	Collaborative Relationship (CR)	
Knowledge	Proprietary	Operational knowledge flows between each party	
Price	Lowest bidder wins	Immediate price competitiveness is often secondary	
Timing terms	Strict penalties for deviating from contractual terms. Commitments tend to be short-term.	Flexibility exists to delay and even abandon purchases either temporarily or permanently without relinquishing buyer-supplier link over long term.	
Contract specificity	Product specifications usually predetermined	Limitless product specification changes may be made	
Communication channels	Narrow and formal	Multiple channels, information exchange is less formal and more frequent	

Contrasting Characteristics of Competitive Bidding (CB) versus Collaborative Relationships (CR)

TABLE 1

S = \$100m, X = \$30m, r = 10%, T = 5 yrs							
Learning Volatility Rate of S (σ)							
<u>b(%)</u>	0.05 0.4	0.1 0.2 0.					
0	81.8041	81.8041	81.8043	81.8436	82.1501		
1	76.927	76.927	76.936	77.0468	77.5123		
2	72.3412	72.4364	72.7964	73.2657	74.0755		
3	70	70.0597	70.4045	70.9581	71.8519		
5	70	70	70	70	70		
7	70	70	70	70	70		
10	70	70	70	70	70		
15	70	70	70	70	70		

Value of Deferrable Subcontracting Collaborative Relationship Opportunity (C(.))

TABLE 2

Learning Rate	Volatility Rate of S (σ)				
<u>b(%)</u>	0.05	0.1	0.2	0.3	0.4
0	11.8041	11.8041	11.9043	11.8436	12.1501
1	6.927	6.927	6.936	7.0468	7.5183
2	2.3412	2.4364	2.7964	3.2657	4.0755
3	0	0.0597	0.4045	0.9581	1.8519
5	0	0	0	0	0
7	0	0	0	0	0
10	0	0	0	0	0
15	0	0	0	0	0

Value of Timing Option V(.)

TABLE 3

Learning Rate	Volatility Rate of S (σ)						
<u>kate</u> <u>b(%)</u>	0.05		0.1	0.2	0.3		
0	111.8041	111.8041	111.8043	111.8436	112.1501		
1	105.8683	105.8683	105.8686	105.9168	106.2562		
2	100.2822	100.2822	100.2825	100.3415	100.7159		
3	95.02417	95.02417	95.02417	95.09631	95.5077		
5	85.41352	85.41352	85.41495	85.5181	86.00952		
7	76.89056	76.89056	76.89355	77.03888	77.6171		
10	65.87009	65.87009	66.87891	66.11164	66.82918		
15	51.33974	51.33974	51.38887	51.83548	52.79157		

$\underline{ \ \ \ \ \ } \ \ \underline{ \ \ \ } \ \ \, \text{Threshold Point Project Values } (\boldsymbol{\boldsymbol{\hat{S}}}_{t^*})$

TABLE 4

S = \$100m, X = \$30m, r = 10%, T = 5yrs						
Learning Rate b(%)	Volatility Rate of S (σ) 0.05 0.1 0.2 0.3					
	0.4					
0	0	0	0.0002	0.0518	0.4363	
1	0	0	0.0003	0.0626	0.4845	
2	0	0	0.0005	0.0753	0.5373	
3	0	0	0.0008	0.0901	0.5945	
5	0	0	0.0018	0.1272	0.7241	
7	0	0	0.0036	0.1769	0.8745	
10	0	0	0.0099	0.2818	1.1432	
15	0	0	0.0465	0.5787	1.7363	

Value of Abandonment Option P(.)

TABLE 5

S = \$100m, X = £30m, r = 10%, T = 5 yrs						
Learning Rate b(%)	Volatility Rat 0.05 0.40	0.30				
0	0	0	0	0.0123	0.0904	
1	0	0	0	0.0136	0.0927	
2	0	0	0.0001	0.0148	0.0949	
3	0	0	0.0002	0.0159	0.0969	
5	0	0	0.0002	0.0175	0.0983	
7	0	0	0.0003	0.0182	0.0971	
10	0	0	0.0002	0.0162	0.0882	
15	0	0	0	0.0086	0.0667	

$\underline{ \mbox{Value of Timing Option V (.)} }$

TABLE 6

S = \$100m, X = \$30m, r = 10%, T = 5yrs							
Learning Rate							
b(%)	0.05 0.4	0.1 0.2 0.3					
0	30.	30.	29.9998	29.9482	29.5637		
1	29.7030	29.7030	29.7027	29.6411	29.2233		
2	29.4118	29.4118	29.4113	29.3379	28.885		
3	29.1262	29.1262	29.1254	29.0387	28.5490		
5	28.5714	28.5714	28.845	28.7430	28.2145		
7	28.0374	28.0374	28.0340	27.8721	27.2201		
10	27.2727	27.2727	27.2637	27.0166	26.2335		
15	26.0870	26.0870	26.0465	25.5837	24.5751		

$\underline{ Threshold\ Abandonment\ Values}\ \hat{\mathtt{S}}\underline{t^*}$

TABLE 7

¹ As might be expected, in the case of a CR, X is an amount net of any premium applied by the subcontractor to allow for irreversible equipment or tooling investments made.

 $^{^{^2}\,}$ It is well known that dC(.)/d $\sigma>0$ and dC(.)/db<0, which can be shown from the Black-Scholes formula with dividend payments.

Author Biographies

Alnoor Bhimani is Professor of Management Accounting at the London School of Economics. He has co-authored a number of books including *Management Accounting: Pathways to Progress* (CIMA, 1994) and *Management and Cost Accounting* (Prentice Hall, 2008). Al has also edited *Management Accounting: European Perspectives* (Oxford University Press, 1996), *Management Accounting in the Digital Economy* (Oxford University Press, 2003) and *Contemporary Issues in Management Accounting* (Oxford University Press, 2006). He has an extensive list of scholarly publications and serves on the editorial boards of numerous journals.

Pascal Frantz obtained an MSc in applied physics (ENSPG, Grenoble), an MBA and PhD in Accounting and Finance from the London Business School. He is currently a Lecturer in Accounting and Finance at the London School of Economics. His research interests include economic analyses in the areas of accounting, corporate governance, and mergers and acquisitions.

Mohamed Azzim Gulamhussen is Assistant Professor of Accounting and Finance at the Lisbon University Institute (ISCTE Business School). He teaches International Finance and Reporting at the undergraduate and graduate levels. He is the Director of the Doctoral Programme and of the Research Centre.

Mthuli Ncube holds a PhD from Cambridge University. Currently, he is a Professor of Finance and Director of the Wits Business School, University of the Witwatersrand, South Africa. He has been Head of Asset Allocation and Portfolio Manager at Investec Asset Management, and also founded Selwyn and Barbican Groups of Companies of which he is still Chairman. He has also taught at London School of Economics, UK. He has over 20 research papers in the area of Finance and Economics. His research work has appeared in *Journal of Econometrics, Journal of Banking and Finance, Mathematical Finance, Applied Financial Economics, Journal of African Economies, International Journal of Accounting Auditing and Performance Evaluation* and *Journal of Accounting and Public Policy* among others. He is the Finance Editor of the Afro-Asian Journal of Finance and Accounting.