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          ABSTRACT 

          The Laplace transform is a widely used tool in the study of probability distributions, 

often allowing for a simpler determination of the p.d.f.'s and d.f.'s, and having the 

possibility to work as a “moments generating function”. In this paper it is considered a 

situation not so simple, as it is the case of the 𝑀|𝐺|∞ queue busy period length 

distribution. Attention will also be given the respective tail Laplace transform. Then, in 

the context of an open queues network, which nodes behave as 𝑀|𝐺|∞ queues, the 

Laplace transform will be used to construct an algorithm to determine the Laplace 

transform of the global service time length of a customer during their stay on the network 

distribution. 

          Keywords: Laplace transform, 𝑀|𝐺|∞, busy period, queues network, algorithm. 

          Mathematics Subject Classification: 44A10 and 60G99 

  INTRODUCTION 

          In the 𝑀|𝐺|∞ queue, customers arrive according to a Poisson process at rate 𝜆, 

upon its arrival receive immediately a service with time length d. f. G(∙) and mean 𝛼. The 

traffic intensity is ρ=𝜆𝛼, see for instance [7]. 

           As it happens for any queue, in the  𝑀|𝐺|∞  queue activity there is a sequence of 

idle and busy periods. For this queue the study of the busy period length distribution is 

very important since, as it is part of its definition, a customer must find immediately an 

available server upon its arrival. So, it is important for the manager to know how many, 

and how long, servers must be in prevention, see [1] and [5, 6]. 

            In the next two sections, the busy period length and the busy period length tail 

Laplace transforms will be studied, by this order, in some of their most important details. 

           The 𝑀|𝐺|∞  queue busy period length distribution is called B, the d. f. B(t) and the 

p. d. f. b(t). The Laplace transform is denoted 𝐵̅(𝑠). 
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           A network of queues is a collection of nodes, arbitrarily connected by arcs, across 

which the customers travel instantaneously and 

           - There is an arrival process associated to each node, 

           - There is a commutation process which commands the various costumers’ paths, 

           The arrival processes may be composed of exogenous arrivals, from the outside 

of the collection, and of endogenous arrivals, from the other collection nodes. Call  

Λ = [

𝜆1

𝜆2

⋮
𝜆𝐽

]   (1.1) 

the network exogenous arrival rates vector, where 𝜆𝑗 is the exogenous arrival rate at node 

j and 𝜆 = ∑ 𝜆𝑗
𝐽
𝑗=1 . 

           A network is open if any customer may enter or leave it. A network is closed if it 

has a fixed number of customers that travel from node to node and there are neither 

arrivals from the outside of the collection nor departures. A network open for some 

customers and closed for others is said mixed. 

          The commutation process rules, for each costumer that abandons a node, which 

node it can visit then or if it leaves the network. In a network with J nodes, the matrix 

𝑃 = [

𝑝11 𝑝12

𝑝21 𝑝22

⋯ 𝑝1𝑗

⋯ 𝑝2𝑗

⋮ ⋮
𝑝𝑗1 𝑝𝑗2

⋮ ⋮
… 𝑝𝑗𝑗

] (1.2) 

 

is the commutation process matrix, being  𝑝𝑗𝑙 the probability of a customer, after ending 

its service at node j, go to node l, 𝑗, 𝑙 = 1,2, … 𝐽. The probability 𝑞𝑗 = 1 − ∑ 𝑝𝑗𝑙
𝐽
𝑙=1           is 

the probability that a customer leaves the network from node  𝑗, 𝑗 = 1,2, … 𝐽. Call now 𝛾𝑗, 

the total – from the outside of the network and from the other nodes – customers arrival 

rate at node j and  

Γ = [

𝛾1

𝛾2

⋮
𝛾𝐽

] (1.3) 

the network exogenous arrival rates vector. If the network is stable, the following equality 

– traffic equations – holds: 

Γ𝑇 = Λ𝑇 + Γ𝑇P     (1.4). 



          Note that they may be written as Γ𝑇 = Λ𝑇(𝐼 − 𝑃)−1 . 

          For more details on networks of queues see [2] and [15]. 

          In section 4, for open networks of queues, which nodes are 𝑀|𝐺|∞ queues, it will 

be constructed an algorithm to determine the Laplace transform of the distribution of the 

global service time length of a client during their stay on the network, see [11]. This 

work finishes with the presentation of a conclusions section and a short list of 

references. 

   THE 𝑴|𝑮|∞ QUEUE BUSY PERIOD LENGTH LAPLACE TRANSFORM 

 
           The 𝑀|𝐺|∞, queue busy period length Laplace transform is, see [3], [7] and [9], 
 

 

           𝐵̅(𝑠) = 1 + 𝜆−1 (𝑠 −
1

∫ 𝑒−𝑠𝑡−𝜆∫ [1−𝐺(𝑣)]𝑑𝑣
𝑡
0 𝑑𝑡

∞
0

)         (2.1).  

 

 

           From (2.1) it is easy to obtain the following expression for the mean busy period 

length, see [3], [14] and [17]: 

 

 

𝐸[𝐵] =
𝑒𝜌 − 1

𝜆
     (2.2), 

 

                                                    

for any service time distribution. 

 

          Inverting (2.1) it is achieved the 𝑀|𝐺|∞ Queue Busy Period Length p. d. f., see 

[4]: 

 

 

𝑏(𝑡) = 𝐺(0)𝛿(𝑡) + (1 − 𝐺(0)) [
𝑑

𝑑𝑡
(𝑒−𝜆 ∫ [1−𝐺(𝑣)]𝑑𝑣

𝑡
0

𝐺(𝑡) − 𝐺(0)

1 − 𝐺(0)
)] 

 

                                 ∗ ∑ [
𝑑

𝑑𝑡
(1 − 𝑒−𝜆 ∫ [1−𝐺(𝑣)]𝑑𝑣

𝑡
0 ]

∗𝑛

                        (2.3) ∞
𝑛=0 , 

 

where 𝛿 is the Dirac delta and ∗ is designated convolution operator. 

           For constant service time with value 𝛼, expression (2.3) becomes, see [5], 

  

𝑏(𝑡) = ∑ 𝑔(𝑡) ∗ [
𝑑𝐴(𝑡)

𝑑𝑡
]
∗𝑛∞

𝑛=0

𝑒−𝜌(1 − 𝑒−𝜌)𝑛        (2.4) 

 

where 𝑔(𝑡) =
𝑑𝐺(𝑡)

𝑑𝑡
 and  𝐴(𝑡) = {

1−𝑒−𝜆𝑡

1−𝑒−𝜌 , 𝑡 < 𝛼

1, 𝑡 ≥ 𝛼
 . 

 



 

            For a  𝑀|𝐺|∞,  queue, if the service time d. f. belongs to the collection, see [7, 8], 

𝐺(𝑡) = 1 −
1

𝜆

(1 − 𝑒−𝜌)𝑒−𝜆𝑡−∫ 𝛽(𝑢)𝑑𝑢
𝑡
0

∫ 𝑒−𝜆𝑤−∫ 𝛽(𝑢)𝑑𝑢
𝑤
0 𝑑𝑤 − (1 − 𝑒−𝜌) ∫ 𝑒−𝜆𝑤−∫ 𝛽(𝑢)𝑑𝑢

𝑤
0 𝑑𝑤

𝑡

0

∞

0

, 𝑡 ≥ 0,−𝜆

≤
∫ 𝛽(𝑢)𝑑𝑢

𝑡

0

𝑡
≤

𝜆

𝑒𝜌 − 1
                 (2.5) 

 

the busy period length d. f. (achieved inverting 
1

𝑠
𝐵̅(𝑠)) is 

 

𝐵(𝑡) = (1 − (1 − 𝐺(0))) (𝑒−𝜆𝑡−∫ 𝛽(𝑢)𝑑𝑢
𝑡
0 + 𝜆 ∫ 𝑒−𝜆𝑤−∫ 𝛽(𝑢)𝑑𝑢

𝑤
0 𝑑𝑤

𝑡

0

)

∗ ∑ 𝜆𝑛(1 − 𝐺(0))
𝑛
(𝑒−𝜆𝑡−∫ 𝛽(𝑢)𝑑𝑢

𝑡
0 )

∗𝑛

 , 𝑡 ≥ 0,−𝜆 ≤
∫ 𝛽(𝑢)𝑑𝑢

𝑡

0

𝑡

∞

𝑛=0

≤
𝜆

𝑒𝜌 − 1
                   (2.6). 

  

           Notes: 

           -The demonstration may be seen in [7], 

           -For     
∫ 𝛽(𝑢)𝑑𝑢

𝑡
0

𝑡
= − 𝜆, 𝐺(𝑡) = 𝐵(𝑡) = 1, 𝑡 ≥ 0  in (2.5) and (2.6), respectively, 

           -For  
∫ 𝛽(𝑢)𝑑𝑢

𝑡
0

𝑡
=

𝜆

𝑒𝜌−1
, 𝐵(𝑡) = 1 − 𝑒−

𝜆

𝑒𝜌−1
𝑡, 𝑡 ≥ 0,   only exponential in (2.6),                                      

           -If  𝛽(𝑡) = 𝛽 (constant) 

 

                        𝐺(𝑡) = 1 −
(1−𝑒−𝜌)(𝜆+𝛽)

𝜆𝑒−𝜌(𝑒(𝜆+𝛽)𝑡−1)+𝜆
, t≥ 0,−𝜆 ≤ 𝛽 ≤

𝜆

𝑒𝜌−1
      (2.7)                                     

  and 

𝐵𝛽(𝑡) = 1 −
𝜆 + 𝛽

𝜆
(1 − 𝑒−𝜌)𝑒−𝑒−𝜌(𝜆+𝛽)𝑡, 𝑡 ≥ 0,−𝜆 ≤ 𝛽 ≤

𝜆

𝑒𝜌 − 1
             (2.8),  

a mixture of a degenerate distribution at the origin and an exponential distribution.∎ 



         The expression (2.1) is equivalent to (𝐵̅(𝑠) − 1)𝐶(𝑠)=𝜆−1𝑠𝐶(𝑠) where 𝐶(𝑠) =

∫ 𝑒−𝑠𝑡−𝜆∫ [1−𝐺(𝑣)]𝑑𝑣
𝑡
0 𝜆(1 − 𝐺(𝑡))𝑑𝑡

∞

0
. Differentiating n times to s and using Leibnitz´s 

formula, it is achieved the expression, see [4], [7] and [12], 

𝐸[𝐵𝑛] = (−1)𝑛+1 {
𝑒𝜌

𝜆
𝑛𝐶(𝑛−1)(0) − 𝑒𝜌 ∑(−1)𝑛−𝑝 (

𝑛

𝑝
)𝐸[𝐵𝑛−𝑝]

𝑛−1

𝑝=1

𝐶(𝑝)(0)} , 𝑛 = 1,2, …

𝐶(𝑛)(0) = ∫ (−𝑡)𝑛
∞

0

𝑒−𝜆 ∫ [1−𝐺(𝑣)]𝑑𝑣
𝑡
0 𝜆(1 − 𝐺(𝑡))𝑑𝑡, 𝑛 = 0,1, …

 (2.9) 

 

that permits to write exact formulae for the 𝐸[𝐵𝑛], 𝑛 = 1,2, … through a recurrent process. 

The efficiency of these formulae depends on the possibility of calculating the 

various 𝐶(𝑛)(0).But, for instance, for the distribution given by (2.8) it is obtained 

                   𝐸[𝐵𝑛] =  
𝜆+𝛽

𝜆
(1 − 𝑒−𝜌)

𝑛!

(𝑒−𝜌(𝜆+𝛽))
𝑛 , 𝑛 = 1,2, …  (2.10). 

             And in the situation of constant service times 

    𝐶(0)(0) = 1 − 𝑒−𝜌 and 𝐶(𝑛)(0) = −𝑒−𝜌(−𝛼)𝑛 −
𝑛𝐶(𝑛−1)(0)

𝜆
, 𝑛 = 1,2, …  (2.11), 

so, the calculations are quite simple. 

         THE 𝑴|𝑮|∞ QUEUE BUSY PERIOD LENGTH TAIL LAPLACE 

TRANSFORM 

         Call 𝐻(𝑡) = 1 − 𝐵(𝑡), 𝑡 ≥ 0 the 𝑀|𝐺|∞ busy period length tail and 𝐻̅(𝑠) it’s 

Laplace Transform. The essential result in this section is, see [10]: 

          Lemma 3.1 

                                   1 − 𝐺(𝑡) = 𝜆−1
𝐿−1[

1

𝜆𝐻̅(∙)+1
](𝑡)

∫ 𝐿−1[
1

𝜆𝐻̅(∙)+1
](𝑣)𝑑𝑣

𝑡
0

, 𝑡 ≥ 0     (3.1).∎  

           Notes: 

           -The symbol 𝐿−1 means inverse Laplace transform, 

           -Obviously 1 − 𝐺(𝑡) is the service length tail, 

           -Expression (3.1) allows determining the service tail corresponding to a busy 

period tail. But there are situations for which 1 − 𝐺(𝑡) does not match to a tail. So, it is 

fundamental to look for conditions that 𝐻̅(𝑠) must satisfy to guarantee that a tail is 

obtained through expression (3.1).∎ 



           Using Polya’s Theorem, see for instance [16], and defining  

                                              𝑎(𝑡) =
𝜆𝐻̅(−𝑖𝑡)

𝑒𝜌−1
, 𝑖 = √−1       (3.2)  

the following result was achieved, see again [10]: 

 

           Lemma 3.2 

            If 𝑎(𝑡) is a real function different from 
1

1−𝑒𝜌 and satisfy the conditions: 

• 

𝑑2𝑎(𝑡)

𝑑𝑡2  (𝑎(𝑡)+
1

𝑒𝜌−1
)−2(

𝑑𝑎(𝑡)

𝑑𝑡
)
2

𝑎(𝑡)−
1

𝑒𝜌−1

> 0, 𝑡 > 0 

• lim
𝑡→∞

𝑎(𝑡) = 0 

 

1 − 𝐺(𝑡) obtained through expression (3.1) is a tail.∎ 

          Note: 

          -Distributions that do not fulfil this lemma cannot be 𝑀|𝐺|∞, busy period length 

distributions. ∎ 

         AN ALGORITHM TO COMPUTE THE GLOBAL SERVICE TIME 

DISTRIBUTION IN AN OPEN NETWORK OF  𝑴|𝑮|∞ QUEUES THROUGH 

LAPLACE TRANSFORMS 

           An open network of queues with infinite servers in each node, with Poisson process 

exogenous arrivals, may be looked like a  queue. The service time is the sojourn 

time of a customer in the network, see [13, 14].  

          Note that the sojourn time is the mixture of the sums of the services corresponding 

to each path that a customer may have in the network. The total time spent in a path by a 

customer distribution is so the convolution of the service time distributions in each node 

belonging to the path, since those service times are independent. Each one of these 

convolutions is a parcel in the mixture which weight is given by the path probability. Each 

path starts in a node j with probability 
𝜆𝑗

𝜆
 and ends in node k with probability 1 − ∑ 𝑝𝑘𝑗

𝐽
𝑗=1 . 

          As the Laplace transform of a convolution of two functions is the product the two 

those functions Laplace transforms and having in mind the traffic equations seen above 

(expression (1.4)): 

• Denote S the sojourn time of a costumer in the network and 𝑆𝑗 its service time at 

node 𝑗, 𝑗 = 1,2, … 𝐽. Be  𝐺(𝑡) and   𝐺𝑗(𝑡) the S and  𝑆𝑗  distribution functions, 

respectively, and    𝐺̅(𝑠)   and   𝐺̅𝑗(𝑠) the Laplace transforms, 

• Define 

 

 



             Λ(𝑠) =

[
 
 
 
𝜆1𝐺̅1(𝑠)

𝜆2𝐺̅2(𝑠)
⋮

𝜆𝐽𝐺̅𝐽(𝑠)]
 
 
 

    and  𝑃(𝑠) =  

[
 
 
 
 𝑝11𝐺̅1(𝑠) 𝑝12𝐺̅2(𝑠)

𝑝21𝐺̅1(𝑠) 𝑝22𝐺̅2(𝑠)

… 𝑝1𝐽𝐺̅𝐽(𝑠)

… 𝑝2𝐽𝐺̅𝐽(𝑠)

⋮ ⋮
𝑝𝐽1𝐺̅1(𝑠) 𝑝𝐽2𝐺̅2(𝑠)

⋮
𝑝𝐽𝐽𝐺̅𝐽(𝑠) ]

 
 
 
 

 (4.1) 

 

           

• It results 

 

𝐺̅(𝑠) = ∑(𝜆−1Λ𝑇(𝑠)𝑃𝑛(𝑠)(𝐼 − 𝑃)𝐴)      (4.2),

∞

𝑛=0

 

 

 

• And finally, using the Leontief’s matrix properties, the global service time 

distribution Laplace transform service time for a customer during its permanence 

in the network is given by 

 

                                𝐺̅(𝑠) = 𝜆−1Λ𝑇(𝑠)(𝐼 − 𝑃(𝑠))
−1

(𝐼 − 𝑃)𝐴       (4.3),  

          where I is the identity matrix with the same order as P and A is a column with J  

          1`s, for the Laplace Transform service time, confer with [11]. 

          So, the problem in terms of Laplace transforms is operationally simple. The 

“problems” arrive when inverting the Laplace transform. As usual the situation is not bad 

when using exponential expressions.  

         CONCLUSIONS 

         In this text the operational qualities and also the research incentive of the Laplace 

transform are well known. The results presented are of both types: purely quantitative and 

of theoretical scope. 

         In studies about stochastic processes, of which queues are part, it is very common 

to use this tool. 

         The situation is like that which occurs in differential equations: great simplification 

in operational matters, not always accompanied by comparable simplification when it is 

necessary to reverse the transform. 

          It happens that in the case of stochastic processes, it is often possible to collect the 

fruits of the research without recourse to inversion. 

           From the presented results it is worth noting the formula (4.3) for its simplicity 

and evident utility, where the qualities of the Laplace transform are quite explored. 
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