
Congreso de Métodos Numéricos en Ingenieŕıa 2005
Granada, 4 a 7 de julio, 2005

c©SEMNI, España, 2005

OSIRIS.FRAMEWORK: AN INTEGRATED TOOL FOR
MODELING ASTRPHYSICAL AND LABORATORY

PLASMAS.

Ricardo A. Fonseca1,2∗

1: Centro de F́ısica dos Plasmas
Instituto Superior Técnico

Universidade Técnica de Lisboa
Av. Rovisco Pais, 1049-001 Lisboa, Portugal

e-mail: ricardo.fonseca@ist.utl.pt web: http://cfp.ist.utl.pt/

2: Departamento de Ciências e Tecnologias da Informação
Instituto Superior de Ciências do Trabalho e da Empresa

Av. Forças Armadas, 1649-026 Lisboa, Portugal
e-mail: ricardo.fonseca@iscte.pt web: http://dcti-server.iscte.pt/

Keywords: Computational Physics, Plasmas, Particle-In-Cell, Parallel Computing,
SEMNI

Abstract. We describe the osiris.framework [1], a general purpose, three-dimensional,
fully relativistic, massively parallel, object oriented particle-in-cell code for the numerical
simulation of astrophysical and laboratory plasmas, complemented by a set of specially de-
signed visualization tools [2]. Developed in Fortran 95, the code runs on multiple platforms
(Cray T3E, IBM SP, Beowulf, Mac clusters) and can be easily ported to new ones. Details
on the code’s capabilities are given. We discuss the object-oriented design of the code, the
encapsulation of system dependent code and the parallelization of the algorithms involved.
We also discuss the implementation of communications as a boundary condition problem
and also load balancing, as well as other key characteristics of the code, such as the mov-
ing window, open-space and thermal bath boundaries, arbitrary domain decomposition, 1D
(cartesian), 2D (cartesian and cylindrical) and 3D geometry, ion sub-cycling, tunnel and
impact ionization and diagnostics. Finally results from three-dimensional simulations are
presented, in connection with the data analysis and visualization infrastructure developed
to post-process the scalar and vector results from PIC simulations.

1 INTRODUCTION

Based on the highly nonlinear and kinetic processes that occur during high-intensity
particle and laser beam-plasma interactions, we use particle-in-cell (PIC) codes [3, 4],
which are a subset of the particle-mesh techniques, for the modeling of these physical

1



Ricardo A. Fonseca

problems. In these codes the full set of Maxwell’s equations are solved on a grid using
currents and charge densities calculated by weighting discrete particles onto the grid. Each
particle is pushed to a new position and momentum via self-consistently calculated fields.
Therefore, to the extent that quantum mechanical effects can be neglected, these codes
make no physics approximations and are ideally suited for studying complex systems with
many degrees of freedom.

Achieving the goal of one to one, two and three dimensional modeling of laboratory ex-
periments and astrophysical scenarios, requires state-of-the-art computing systems. The
rapid increase in computing power and memory of these systems that has resulted from
parallel computing has been at the expense of having to use more complicated computer
architectures. In order to take full advantage of these developments it has become neces-
sary to use more complex simulation codes. The added complexity arises for two reasons.
One reason is that the realistic simulation of a problem requires a larger number of more
complex algorithms interacting with each other than in a simulation of a rather simple
model system. For example, initializing an arbitrary number of lasers or particle beams
in 3D on a parallel computer is a much more difficult problem than initializing one beam
in 1D or 2D on a single processor. The other reason is that the computer systems, e.g.,
memory management, threads, operating systems, are more complex and as a result the
performance obtained from them can dramatically differ depending on the code strategy.
Parallelized codes that handle the problems of parallel communications and parallel IO
are examples of this. The best way to deal with this increased complexity is through an
object-oriented programming style that divides the code and data structures into inde-
pendent classes of objects. This programming style maximizes code reusability, reliability,
and portability.

The goal of this code development project was to create a code that breaks up the
large problem of a simulation into a set of essentially independent smaller problems that
can be solved separately from each other. This allows individuals in a code development
team to work independently. Object oriented programming achieves this by handling
different aspects of the problem in different modules (classes) that communicate through
well-defined interfaces.

This effort resulted in a new framework called OSIRIS, which is a fully parallelized,
fully implicit, fully relativistic, and fully object-oriented PIC code, for modeling intense
beam plasma interactions. Details of the status of OSIRIS several years ago can be found
in [10]. The evolution of OSIRIS is due to the combined efforts of many people. In this
paper we describe some of this evolution and the current status of OSIRIS.

2 DEVELOPMENT

The programming language chosen for this purpose was Fortran 90, mainly because
it allows us to more easily integrate already available Fortran algorithms into this new
framework that we call OSIRIS. We have also developed techniques where the Fortran 90
modules can interface to C and C++ libraries, allowing for the inclusion of other libraries

2



Ricardo A. Fonseca

that do not supply a Fortran interface. Although Fortran 90 is not an object-oriented
language per se, object-oriented concepts can be easily implemented [5, 6, 7] by the use
of polymorphic structures and function overloading.

In developing OSIRIS we followed a number of general principles in order to assure that
we were building a framework that would achieve the goals stated above. In this sense
all real physical quantities have a corresponding object in the code making the physics
being modeled clear and therefore easier to maintain, modify and extend. Also, the code
is written in a way such that it is largely independent from the dimensionality or the
coordinate system used, with much of the code reused in all simulation modes.

Regarding the parallelization issues, the overall structure allows for an arbitrary domain
decomposition in any of the spatial coordinates of the simulation, with an effective load
balancing of the problems in study. The input file defines only the global physical problem
to be simulated and the domain decomposition desired, so that the user can focus on
the actual physical problem and does not need to worry about parallelization details.
Furthermore, all classes and objects refer to a single node (with the obvious exception
of the object responsible for maintaining the global parallel information), which can be
realized by treating all communication between physical objects as a boundary value
problem, as described below. This allows for new algorithms to be incorporated into the
code, without a deep understanding of the underlying communication structure.

3 DESIGN

3.1 OBJECT-ORIENTED HIERARCHY

Figure 1 shows the class hierarchy of OSIRIS. The main physical objects used are par-
ticle objects, electromagnetic field objects, and current field objects. The particle object
is an aggregate of an arbitrary number of particle species objects. The most important
support classes are the variable-dimensionality-field class, which is used by the electro-
magnetic and current field classes and encapsulates many aspects of the dimensionality
of a simulation, and the domain-decomposition class, which handles all communication
between nodes.

Benchmarking of the code has indicated that the additional overhead from using an
object oriented framework in Fortran 90 leads to only a 8% slowdown in speed.

3.2 PARALLELIZATION

The parallelization of the code is done for distributed memory systems, and it is based
on the MPI message-passing interface [13]. We parallelize our algorithms by decomposing
the simulation space evenly across the available computational nodes. This decomposition
is done by dividing each spatial direction of the simulation into a fixed number of segments
(N1, N2, N3). The total number of nodes being used is therefore the product of these three
quantities (or two quantities for the 2D simulations).

The communication pattern follows the usual procedure for a particle-mesh code [14].

3



Ricardo A. Fonseca

Particles

Species

Species
Diagnostics

Species
Profile

Species
Boundary

Particles
Diagnostics

EM Field Current

EM
Diagnostics

EM
Boundary

Current
Diagnostics

Current
Boundary

Current
Smooth

Pulse
Sequence

Laser Pulse

Antenna
Array

Antenna

Diagnostic Utilities VDF Domain Decomposition

System Support Classes

Physical Classes

Figure 1: Osiris main class hierarchy

The grid quantities are updated by exchanging (electric and magnetic fields) or adding
(currents) the ghost cells between neighboring nodes. As for the particles, those crossing
the node boundary are counted and copied to a temporary buffer. Two messages are then
sent, the first with the number of particles, and the second with the actual particle data.
This strategy allows for not setting an a priori limit on the number of particles being
sent to another node, while maintaining a reduced number of messages. Because most of
the message are small, we are generally limited by the latency of the network being used.
To overcome this whenever possible the messages being sent are packed into a single one,
achieving in many cases twice the performance.

We also took great care in encapsulating all parallelization as boundary value routines.
In this sense, the boundary conditions that each physical object has can either be some
numerical implementation of the usual boundary conditions in these problems or simply
a boundary to another node. The base classes that define grid and particle quantities
already include the necessary routines to handle the latter case, greatly simplifying the
implementation of new quantities and algorithms.

3.3 ENCAPSULATION OF SYSTEM DEPENDENT CODE

For ease in porting the code to different architectures, all code that is machine depen-
dent is encapsulated in the system module. At present we have different versions of this
module for running on the Cray T3E, the IBM SP, and for Macintosh clusters, running
on both MacOS 9 (MacMPI [11]) and MacOS X (LAM/MPI [12]) clusters. The latter is
actually a fortran module that interfaces with a POSIX compliant C module and should

4



Ricardo A. Fonseca

therefore compile on most UNIX systems, allowing the code to run on PC-based (Beowulf)
clusters. The MPI library has also been implemented on all these systems requiring no
additional effort.

3.4 CODE FLOW

Figure 2 shows the flow of a single time step on a typical OSIRIS run. It closely
follows the typical PIC cycle [4]. The loop begins by executing the diagnostic routines
selected (diagnostics). It follows by pushing the particles using the updated values for the
fields and depositing the current (advance deposit). After this step, the code updates the
boundaries for particles and currents, communicating with neighboring nodes if necessary.
A smoothing of the deposited currents, according to the specified input file, follows this
step. Finally, the new values of the electric and magnetic field are calculated using the
smoothed current values, and its boundaries are updated, again communicating with
neighboring nodes, if necessary.

6.678 6.726 6.775 6.824 6.873 6.922 6.971

current smooth field solverupdate jay boun

advance depositdiagnostics update emf boun update particle

0

1

Figure 2: A typical cycle, one time step, in an OSIRIS 2 node run. The arrows show the direction of
communication between nodes.

If requested, at the end of each loop, the code will write restart information, allowing
the simulation to be restarted later on at this time step.

4 OSIRIS FRAMEWORK

The code is fully relativistic and it presently uses either the charge-conserving current
deposition schemes from ISIS [8] or TRISTAN [9]. We have primarily adopted the charge-

5



Ricardo A. Fonseca

conserving current deposition algorithms because they allow the field solve to be done
locally, i.e., there is no need for a Poisson solve. The code uses the Boris scheme to push
the particles, and the field solve is done locally using a finite difference solver for the
electric and magnetic fields in both space and time.

In its present state the code contains algorithms for 2D and 3D simulations in Cartesian
coordinates and for 2D simulations in azimuthally symmetric cylindrical coordinates, all
of which with 3 components in velocity (i.e. both 2D modes are indeed 21

2
D or 2D3V

algorithms). The loading of particles is done by distributing the particles evenly on the
cell, and varying the individual charge of each particle according to the density profile
stipulated. Below a given threshold no particles are loaded. The required profile can be
specified by a set of multiplying piecewise linear functions and/or by specifying Gaussian
profiles. The initial velocities of the particles are set according to the specified thermal
distribution and fluid velocity. The code also allows for the definition of constant external
electric and magnetic fields.

The boundary conditions we have implemented in OSIRIS are: conducting, and Lind-
mann open-space boundaries for the fields [19], and absorbing, reflective, and thermal
bath boundaries for the particles (the later consists of reinjecting any particle leaving the
box with a velocity taken from a thermal distribution). Furthermore, periodic boundary
conditions for fields and particles are also implemented.

This code also has a moving window, which makes it ideal for modeling high-intensity
beam plasma interactions where the beam is typically much shorter than the interac-
tion length. In this situation the simulation is done in the laboratory reference frame.
Simulation data is shifted in the direction opposite to the motion of the window when-
ever nc∆t > ∆x where n is the first integer for which this inequality is satisfied. Since
this window moves at the speed of light in vacuum no other operations are required.
The shifting of data is done locally on each node, and boundaries are updated using the
standard routines developed for handling boundaries, thus taking care of moving data
between adjacent nodes. The particles leaving the box from the back are removed from
the simulation and the new clean cells in the front of the box are initialized as described
above.

OSIRIS also incorporates the ability to launch EM waves into the simulation, either by
initializing the EM field of the simulation box accordingly, or by injecting them from the
simulation boundaries (e.g. antennas). Moreover, a subcycling scheme [20] for heavier
particles has been implemented, where the heavier species are only pushed after a number
of time steps using the averaged fields over these time steps, thus significantly decreasing
the total loop time. We have also implemented particle sorting routines that allow for
better use of CPU cache memory, resulting in performance gains of up to 40%.

A great deal of effort was also devoted to the development of diagnostics for this code
that goes beyond the simple dumps of simulation quantities. For all the grid quantities
envelope and boxcar averaged diagnostics are implemented; for the EM fields we imple-
mented energy diagnostics, both spatially integrated and resolved; and for the particles

6



Ricardo A. Fonseca

phase space diagnostics, total energy and energy distribution function, and accelerated
particle selection are available. The output data uses the HDF [15] file format. This is
a standard, platform independent, self-contained file format, which gives us the possibil-
ity of adding extra information to the file, like data units and iteration number, greatly
simplifying the data analysis process.

5 VISUALIZATION AND DATA-ANALYSIS INFRASTRUCTURE

It is not an exaggeration to say that visualization is a major part of a parallel computing
lab. The data sets from current simulations are both large and complex. These sets
can have up to five free parameters for field data: three spatial dimensions, time and
the different components (i.e., Ex, Ey, and Ez). For particles, phase space has seven
dimensions: three for space, three for momentum and one for time. Plots of y versus x
are simply not enough. Sophisticated graphics are needed to present so much data in a
manner that is easily accessible and understandable.

We developed a visualization and analysis infrastructure [2] based on IDL (Interactive
Data Language). IDL is a 4GL language, with sophisticated graphics capabilities, and it
is widely used in areas such as Atmospheric Sciences and Astronomy. It is also available
on several platforms and supported in a number of systems, ranging from Solaris to the
MacOS.

While developing this infrastructure we tried simplifying the visualization and data
analysis as much as possible, making it user-friendly, automating as much of the process
as possible, developing routines to batch process large sets of data and minimizing the
effort of creating presentation quality graphics. We implemented a full set of visualization
routines for one, two and three-dimensional scalar data and for two and three dimensional
vector data. These include automatic scaling, dynamic zooming and axis scaling, inte-
gration of analysis tools, animation tools, and can be used either in batch mode or in
interactive mode. We have also developed a comprehensive set of analysis routines that
include scalar and vector algebra for single or multiple datasets, boxcar averaging, spec-
tral analysis and spectral filtering, k-space distribution function, envelope analysis, mass
centroid analysis and local peak tools.

6 RESULTS

The code has been successfully used in the modeling of several problems in the field of
plasma based accelerators, and has been run on a number of architectures. Table 1 shows
the typical push times on three machines, two supercomputers and one computer cluster.

We have also established the energy conservation of the code to be better than 1 part
in 105. This test was done in a simulation where we simply let a warm plasma evolve in
time; in conditions where we inject high energy fluxes into the simulation (laser or beam
plasma interaction runs) the results are better. Regarding the parallelization of the code,
extensive testing was done on the old EPP cluster and also on the new ExPP cluster [21]

7



Ricardo A. Fonseca

Table 1: Typical push time for three machines, in two and three dimensions. Values are in
µs/particle× node

Machine 2D push time 3D push time

IBM SP 3.82 7.32
Cray T3E-900 5.77 11.2
EP2 Cluster 4.96 9.82

ExPP Cluster 0.97 2.02

at IST in Lisbon, Portugal. We get very high efficiency, (above 91% in any condition),
proving that the parallelization strategy is appropriate. It should be noted that the new
cluster (20 dual G5 2.0 GHz Apple XServe G5, Gigabit Ethernet) is substantially faster
than the IBM SP or the Cray T3E for the class of problems that it can run. However, for
larger problems requiring up to 2048 cpus traditional supercomputers or large scale/fast
interconnect clusters still provide the best results. One example of a three-dimensional
modeling of a plasma accelerator is presented on figure 3. This is a one-to-one modeling
of the E-157 Experiment [16] done at the Stanford Linear Accelerator Center, where a
30 GeV beam is accelerated by 1 GeV. The figure shows the Lorentz forces acting on the
laser beam e.g. E + z×B, where z is the beam propagation direction, and we can clearly
identify the focusing /defocusing and accelerating/decelerating regions

Figure 3: Force field acting on the 30 GeV SLAC beam inside a plasma column.

Another example of the code capabilities is the modeling of the Laser Wakefield Accel-
erator (LWFA). In the LWFA a short ultrahigh intensity laser pulse drives a relativistic

8



Ricardo A. Fonseca

electron plasma wave. The wakefield driven most efficiently when the laser pulse length
L = cτ is approximately the plasma wavelength λp = 2πc/ωp - Tajima-Dawson mech-
anism [17]. Figure 4 shows the plasma wave produced by a 800 nm laser pulse with a
normalized vector potential of 2.16, corresponding to an intensity of 1019W/cm2 on focus,
and a duration of 30 fs, propagating in an underdense plasma.

Figure 4: Plasma Wave produced in the LWFA. Isosurfaces shown for values of 0.5, 1.2, 2.0 and 5.0
normalized to the plasma background density.

7 FUTURE WORK

In summary, we have presented the OSIRIS framework for modeling plasma based
accelerators. This is an ongoing effort; future developments will concentrate on the im-
plementation of true open-space boundaries [18], ionization routines and dynamic load
balancing. Regarding the visualization and data analysis infrastructure, a Web-Driven
visualization portal will be implemented on the near future, allowing for efficient remote
data analysis on clusters.

9



Ricardo A. Fonseca

8 ACKNOWLEDGEMENTS

We are grateful to Prof. J. M. Dawson for his constant support, deep insights and
inspiration. The OSIRIS framework is the result of the collaboration of a large number
of groups. The author would like to acknowledge the collaboration of J.C.Adam, V. K.
Decyk, S.Deng, R. G. Hemker, T.Katsouleas, W. Lu, S. Lee, M. Marti, S. F. Martins, W.
B. Mori, C.Ren, L. O. Silva, J. Tonge, F. S. Tsung, and M. Tzoufras. This work was sup-
ported by DOE(USA), under grants number DE-FC02-01ER41179, DE-FG03-98DP00211,
and DE-FG03-92ER40727, NSF (USA), under grant number Phy-0078508, FLAD, GUL-
BENKIAN, and by FCT (Portugal) under grants PESO/P/PRO/40144/2000,
PESO/P/INF/40146/2000, CERN/P/FIS/40132/2000, POCTI/33605/FIS/2000,
ESO/FAT/43741, and CERN/FAT/43743.

REFERENCES

[1] R. A. Fonseca et al., OSIRIS: A Three-Dimensional, Fully Relativistic Particle in
Cell Code for Modeling Plasma Based Accelerators”, Lect. Not. Comp. Sci. Vol.
2331, pp. 342-351, (2002).

[2] R. A. Fonseca, Visualization and Data Analysis of Computer Simulations”, Proceed-
ings of ISSS-7, pp. 67-70 (2005).

[3] J. M. Dawson, Particle simulation of plasmas. Rev. Mod. Phys., Vol. 55, pp. 403-447,
(1983).

[4] C. K. Birdsall and A. B. Langdon, Plasma physics via computer simulation. Bristol,
UK: Adam Hilger, xxvi+479 pp, (1991).

[5] V. K. Decyk, C. D. Norton, and B. K. Szymanski, How to express C++ concepts in
Fortran 90. Sci. Prog., Vol. 6, pp. 363-, (1998).

[6] V. K. Decyk, C. D. Norton, and B. K. Szymanski, How to support inheritance and
run-time polymorphism in Fortran 90. Comp. Phys. Com., No. 115, pp. 9-17,
(1988).

[7] M. G. Gray and R. M. Roberts, Object-Based Programming in Fortran 90. Comp.
Phys., Vol. 11 pp. 355-361, (1997).

[8] R. L. Morse and C. W. Nielson, Numerical simulation of the Weibel instability in
one and two dimensions. Phys. Fluids, Vol. 14, pp.830-40, (1971).

[9] J. Villasenor and O. Buneman, Rigorous charge conservation for local electromagnetic
field solvers. Comp. Phys. Comm., Vol. 69, (1992).

[10] R. G. Hemker, Particle-In-Cell Modeling of Plasma-Based Accelerators in two and
three dimensions. Phd. Thesis, UCLA, (2000).

10



Ricardo A. Fonseca

[11] V. K. Decyk and D. E. Dauger, How to Build an AppleSeed: A Parallel Macintosh
Cluster for Numerically Intensive Computing. Proceedings of ISSS-6 (2001); also at
http://exodus.physics.ucla.edu/appleseed/appleseed.html

[12] http://www.lam-mpi.org/

[13] Message Passing Interface Forum.: MPI: A message-passing interface standard. Int.
J. Supercomp. App., Vol. 8, (1994).

[14] W. Gropp, E. Lusk, and A. Skjellum, Using MPI. MIT Press, xxii+371 pp. (1999).

[15] http://hdf.ncsa.uiuc.edu/

[16] P. Muggli, et al., Nature, Vol. 411, p. 43, (2001).

[17] T. Tajima and J. M. Dawson, Laser Electron Accelerator, Phys. Rev. Lett., Vol. 43,
pp. 267-270, (1979).

[18] J. L. Vay, A new Absorbing Layer Boundary Condition for the Wave Equation. J.
Comp. Phys., No. 165, pp. 511-521, (2000).

[19] Lindmann, E. L.: Free-space boundary conditions for the time dependent wave equa-
tion. J. Comp. Phys., No. 18, pp. 66-78, (1975).

[20] J. C. Adam, A. G. Serveniere, and A. B. Langdon: Electron sub-cycling in particle
simulation of Plasmas J. Comp. Phys., No. 47, pp. 229-244, (1982).

[21] http://cfp.ist.utl.pt/golp/epp/

11


