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Abstract

The non-central chi-square distribution function has extensive use in the field of Mathematical
Finance. To a great extent, this is due to its involvement in the constant elasticity of variance
(hereafter, CEV) option pricing model of Cox (1975), in the term structure of interest rates
model of Cox et al. (1985a) (hereafter, CIR), and the jump to default extended CEV (here-
after, JDCEV) framework of Carr and Linetsky (2006). Efficient computation methods are
required to rapidly price complex contracts and calibrate financial models. The processes
with several parameters, like the CEV or JDCEV models that we will address are examples
of where this is important, since in this case the pricing problem (for many strikes) is used
inside an optimization method. With this work we intend to test recent developments con-
cerning the efficient computation of the non-central chi-square distribution function in the
context of these option pricing models. We will give particular emphasis to the recent devel-
opments presented in the work of Gil er al. (2012), Gil et al. (2013), Dias and Nunes (2014),
and Gil ez al. (2015). For each option pricing model, we will define reference data-sets com-
patible with the most common combination of values used in pricing practice, following a
framework that is similar to the one presented in Larguinho et al. (2013). We will conclude
by offering novel analytical solutions for the JDCEV delta hedge ratios for the recovery parts
of the put.
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JEL Classification: G12, C63.



Sumario

A distribuicao de probabilidade chi-quadrado ndo-central tem sido alvo de vasta utilizacdo
no dominio da Matemadtica Financeira, em grande parte devido a sua utilizagdo no modelo
constant elasticity of variance (doravante, CEV) de Cox (1975), no term structure of interest
rates model de Cox et al. (1985a) e no modelo jump to default extended CEV (doravante,
JDCEV) de Carr and Linetsky (2006). Métodos de cdlculo eficientes e rapidos sdo de espe-
cial relevancia na calibragdo de modelos para a determinagdo do preco de contratos finan-
ceiros complexos. Os modelos CEV, CIR e JDCEV sao exemplos de modelos com diversos
parametros que, quando usados em contexto de determinacao do prego de op¢des com varios
precos de exercicio, mostram como esta optimizacao € fundamental. Com este trabalho pre-
tendemos testar os mais recentes desenvolvimentos no cdlculo eficiente da distribuicdao de
probabilidade ndo-central chi-quadrado, no contexto dos modelos de célculo de preco de
opg¢des mencionados anteriormente. Daremos €nfase aos recentes desenvolvimentos apre-
sentados nos trabalhos de Gil et al. (2012), Gil et al. (2013), Dias and Nunes (2014) e de
Gil et al. (2015). Para cada um dos modelos, definiremos um conjunto de parametros de re-
feréncia compativel com as combinagdes mais usadas na préatica, seguindo uma metodologia
similiar a usada em Larguinho et al. (2013). Concluimos com a derivagdo de novas solucdes

analiticas para os racios de delta hedging no modelo JDCEV.

Palavras-chave: Preco de op¢des financeiras, Modelo JDCEYV, Fungdes especiais, Algorit-
mos.
Sistema de Classificacao JEL: G12, C63.
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Chapter 1

Introduction

The non-central chi-square distribution function has extensive use in the field of Mathematical
Finance. To great extent, this is due to its involvement in the constant elasticity of variance
(hereafter, CEV) option pricing model of Cox (1975), in the term structure of interest rates
model of Cox et al. (1985a) (hereafter, CIR), and the jump to default extended CEV (here-
after, JDCEV) framework of Carr and Linetsky (2006). With this work, we test the recent
developments concerning the efficient computation of the non-central chi-square distribution
function in the context of the option pricing models referred before. We will give particular
emphasis to the recent work of Gil et al. (2012), Gil et al. (2013), Dias and Nunes (2014),
Gil et al. (2014) and Gil et al. (2015) in parallel with Sun et al. (2010) and Kapinas et al.
(2009). We expect to conclude about the efficiency and accuracy of these algorithms when
compared to the previously available methods in the context of option pricing models we are
addressing.

When pricing financial options under the aforementioned models, the incomplete Gamma
function is important. It is used in the computation of the non-central chi-square distribution
function used in the CEV and CIR models and also in the truncated and raw moments for
option pricing under the JDCEV model. For this purpose, we will test the recent develop-
ments introduced by Gil et al. (2012) work.

The non-central chi-square or the non-central Gamma cumulative distribution function,
also known as Marcum-Q function, plays a central role in the computation of option prices
under the CEV and CIR option pricing models. For this purpose, we will test the recent
developments introduced by Gil et al. (2015) against Benton and Krishnamoorthy (2003).



The truncated and raw moments of the non-central chi-square distribution function, also
known as Nuttall-Q functions, play a key role in the computation of option prices under the
JDCEV pricing model. For this purpose, we will test the recent developments introduced by
Dias and Nunes (2014) against Sun et al. (2010) and Gil et al. (2013).

Efficient computation methods are required to rapidly price complex contracts and ca-
librate financial models. For the calibration process, i.e., when fitting model parameters of
the stochastic asset processes to market data, we normally need to price European options
at a single spot price, very quickly, with varying strike prices. Examples of where this is
important are the processes with several parameters, like the CEV or JDCEV model that we
will address, since there the pricing problem (for many strikes) is used inside an optimization
method. As stated in Broadie and Detemple (1996), a trader wishing to price a single option
requires a computation speed on the order of 1 second. However, dealers or large trading
desks may need to price thousands of options on an hourly basis, considering that higher ac-
curacy is known to always be better, except if insignificant price improvements are obtained
at an unacceptable cost in terms of computation time.

To achieve the proposed goals, we plan to thoroughly describe both the aforementioned
option pricing models and the recent developments in the computation of the non-central
chi-square distribution function. We plan to implement the option pricing models and the
non-central chi-square algorithms in Matlab and Fortran programming languages.

Regarding the overall methodology, we plan to follow a general structure similar to the
one presented in Larguinho et al. (2013) that, following Broadie and Detemple (1996), ran-
domly generate the option pricing parameters according to probability distributions for the
pricing parameters.

The selected algorithms used to compute the non-central chi-square distribution function
will be tested for speed-accuracy trade-off in the context of option pricing under CEV, CIR
and JDCEYV, to obtain a comparison framework as the one presented in Larguinho et al.
(2013, Table 2).

In general, for each algorithm, we will register the maximum absolute error (MaxAE),
the maximum relative error (MaxRE), the root mean absolute error (RMSE), the mean abso-
lute error (MeanAE), the number of times the absolute difference between the two methods
(algorithm and benchmark) exceed a pre-determined difference (K'), and the computation
time in seconds. With this setup we can test for both speed and accuracy.

The remainder of the work proceeds as follows. In Chapter 2 we describe the CEV option

pricing model. In Chapter 3 we describe the CIR term structure of interest rates model. In



Chapter 4 we describe the JDCEV option pricing model. In Chapter 5 we characterize the
non-central chi-square distribution function, the Marcum and Nuttall functions and their
relations with the non-central chi-square function. We review the algorithms involved in
their implementation in the context of the models previously enumerated. In Chapter 6 we
present the numerical results of the tests we have performed. In Chapter 7 we offer offer
new analytical solutions for the JDCEV delta hedge ratios for the recovery parts of the put.
Chapter 8 concludes.



Chapter 2

CEYV Option Pricing Model

The CEV model of Cox (1975) offers a notable improvement over the seminal work of Black
and Scholes (1973) and Merton (1973) (hereafter, BSM) option pricing model, that assumes
that the underlying asset price is governed by a geometric Brownian motion with constant
volatility. The log-normal diffusion process of the BSM model was oftentimes challenged
in favor of a more adequate distributional assumption in accordance with empirical obser-
vations. As Jackwerth and Rubinstein (2012) point out, the observed implied risk-neutral
probability densities evidence high skewness to the left and are shown to be very leptokurtic,
contrasting with the log-normal assumption of the BSM model.

In practice, if we equate the BSM model option price to its market price, we can compute
what is commonly known as the option implied volatility. In empirical data, we can observe
that this volatility is not constant and it varies with the strike price originating an effect that is
known as implied volatility skew — see, for example, Dennis and Mayhew (2002). Another
significant observation first discussed by Black (1976) is the so-called leverage effect. It
stems from the empirical evidence that stock price level is negatively correlated with the
realized stock volatility — see, for example, Bekaert and Wu (2000).

The CEV model offers the flexibility to be consistent with empirical observations and
overcome the BSM model drawbacks described earlier and, at the same time, it offers a
closed-form solution to price financial options. Even though the complete derivation of the
Cox (1975) option pricing formulas is outside the scope of this work — for details, see, for
instance, Hsu et al. (2008) — we will consider some aspects of the process that are key for a

better understanding of the mechanics of CEV.



2.1 CEV diffusion process

In the CEV diffusion process of Cox (1975), assuming the equivalent martingale measure
Q (risk-neutral probability measure) as given, the asset price {S;,t > 0} is governed by the
following stochastic differential equation,

A4S, = S, dt + S72AwR, >0, S,=S>0, 2.1)
with local volatility function defined by,
o(S,) = 68T, 2.2)

for §, § € R, and where WtQ is a standard Wiener process defined on a filtered probability
space (€2, F,{F:},.,,Q) and  is a constant, representing the risk-neutral drift rate (¢ =
r — q, being r > 0 the constant risk-free interest rate and ¢ > 0 the constant dividend yield).

The elasticity of the local volatility function is 5 — 2 given that the variance with respect
to price has the relationship dv(S;)/v(S;) = (8 — 2)dS;/S; that, upon integration on both
sides, yields the instantaneous variance of asset returns v(S;) = 02572, This implies that
the elasticity of the variance is independent of the asset price, given the proportionality of
the volatility to the power of the underlying asset price.

As particular cases, the CEV specification of (2.1) encompasses the log-normal geo-
metric Brownian motion of Black and Scholes (1973) and Merton (1973) (8 = 2) and the
absolute diffusion (5 = 0) and square-root processes (/5 = 1) of Cox and Ross (1976). For
the case of 5 < 2 (8 > 2) the local volatility function of (2.2) becomes a decreasing (increas-
ing) function of the asset price. The J parameter, assumed to be positive, is defined as the
scale parameter of the local volatility function, defining the initial instantaneous volatility at
time ¢t = 0, 5 = o(S,) = 65°/*7 .

The case of 5 < 2 was originally studied by Cox (1975) and later extended to 5 > 2
by Emanuel and MacBeth (1982). Although Cox initially restricted the elasticity parameter
to 0 < § < 2, evidence has been found that 3 is generally smaller than 2 — see MacBeth
and Merville (1980) — and that typical values of 3 implicit in the S&P500 in the post-crash
of 1987 could be as low as § = —6 — see Jackwerth and Rubinstein (2012). Jackwerth
and Rubinstein call the model with § < 0 the unrestricted CEV. Empirical evidence can
be found in the literature for the case of § < 2 (with downward sloping implied volatility

or direct leverage effect) to be of relevance for the stock index option market — see, for



instance, Black (1975) and MacBeth and Merville (1979) — and that values of 5 > 2 (with
downward sloping implied volatility or inverse leverage effect) could be expected for some
commodity futures options — see, for instance, Davydov and Linetsky (2001), Geman and
Shih (2009) and Dias and Nunes (2011).

2.2 CEV diffusion transition probability function

The option valuation problem is intrinsically related with the probability distribution of the
terminal stock value. According to Cox and Ross (1976), the issue of option pricing is,
in fact, equivalent to determining the distribution of the stock variable S and, hence, the
distribution underlying the stochastic differential equation assumed to govern the movement
of the asset. Cox and Ross used a hedging argument to propose a framework where risk-
neutrality is the choice of preferences and where, if so, the expected return on the stock is

the same as in the options’. For the stock,

St} =Tt (2.3)

and for the the general European option with boundary value, P(S,T") = h(S), then, at time

12
1

St} = 5rg g E{MSD)IS)} =070, (2.4)

P(STaT)
{ (5,1)

P(S,t)

or

P(S,t) = e """V E{h(S7)[S:}
@.5)
_ (T / h(S)AE (Sr, T|Si, ),

where F'(St, T|S;, t) represents the probability distribution of the stock at time T, S7, given
the stock price at time ¢ < 7', S;. From (2.5), it becomes clear that if we know the cumulative
probability distribution of the stock, we can value the option.

In the CEV model, for 8 = 2 we are in presence of the log normal-diffusion of Black-
Scholes and so, the transition probability density function comes down to a normal density
function with mean m and variance V. If § # 2 the transition is much more complex.
First Cox (1975) for § < 2 and later Emanuel and MacBeth (1982) for 5 > 2, derived the



following transition probability function ':

(2 — 6)1{:”2 /3( yl- 2,3)1/
xe PV p(2(x Y2 =B <2
f(Sr|%, T >1) = (8 — 2)kY C=8) (gy1—28)1/(4=28) (2.6)
xe " VI 5_o(2(xy)/?) < B> 2
where,
_ 2(r —q)
b= 52(2 — B) [er—0C=Br _ 1]’ (2.72)
z = kS Pelr—a@=A)r (2.7b)
y =k, 2.7¢)
8* =03 ", (2.7d)
T=T-1% 2.7¢)

and where r denotes the risk-free interest rate, ¢ denotes the continuous proportional dividend
rate and /,(.) is the modified Bessel function of the first kind of order ¢, given, for instance,
in Abramowitz and Stegun (1972, Eq. 9.6.10).

2.3 CEV pricing solutions to European-style options

Given the transition probability functions shown in (2.6), the European option formula can
be derived by taking the conditional expectation on the risk-neutralized process of the stock
price according to the Cox-Ross pricing equation of (2.5).

First Cox for 8 < 2, and later Emanuel and Macbeth for 5 > 2, derived the follow-

ing option pricing formulas, in terms of the standard complementa amma distribution
g option p g fi 1 t f the standard pl tary G distribut.

'For more details on the derivation of the pricing solutions, see, for instance, Chen and C.-F. Lee (2010)
and the references therein to Feller (1951) and Breiman (1986) concerning the standard procedure to identify
the transition density, if it exists.



function:

T Zoo e 2" G(n+141/(2—B),kX2—F)
n=0

+1/<F2(n51) -5)

—T‘T 7I n G’(n+1 kX

- En =0 T(nt+1+1/(2—B)) <: b <2

(S, X, T) = S,e—m [1 —wgnt1/(8-2)G(kX28 nil) ) (2.8)
[ 20" T(n+1+1/(5-2))) ]

e [1 - S, R 0] > g

where G(m,v) = [[(m)]”" [% e umtdu is the standard complementary Gamma distri-
bution function and k, x and 7 are as defined in (2.7a), (2.7b) and (2.7¢) respectively.
Schroder (1989) expressed the CEV model in terms of the non-central chi-square distri-

bution as follows:

(Ste*qT Q(2y;2 + ﬁ, 2r) — Xe™ '
X [1 - Q(2x; ﬁﬂy)} =0[<2
Sie™ 1 Q(2x; [ﬁ, 2y) — Xe 7
X [1— Q(Qy;2+%,2x)] =B>2

Ct(St, X, T) = 3 (29)

where (QQ(w, v, A) is the non-central chi-square distribution function evaluated at w, with v
degrees of freedom and non-centrality parameter A\, and where &, z, y, ) and 7 are as defined
in (2.7a) to (2.7¢).

Although our analysis will be primarily focused on call options, the CEV put option
formulae can be expeditely derived with the help of the put-call parity relationship, being the

time-¢ value of an European-style put given by

( Xe'm Q(2x; ﬁ, 2y) — Sie” 1"
X [1 —Q2y; 2+ 2 ﬁ,2x)] =B<2
Xe T Q(2y; 2+ ,8 5,21) — S;e” 1"
X [1 — Q(2x; E,Zy)} <=f>2

pt(St7X7 T) = 9 (210)

and where k, x, y, 0 and 7 are as defined in (2.7a) to (2.7e).



Chapter 3

CIR Option Pricing Model

The term structure of interest rates has long been a matter of great interest for economists.
The relationship among the yield of default-free securities and their term to maturity repre-
sents a central topic in financial research. The need to price and hedge interest rate contingent
claims has played a major role in the need to better understand and to model the behavior of
the term structure of interest rates.

Albeit early research in the area is vast!, there seems to be consensus that it can be
identified as belonging to one of two different strands of though, namely, the Expectations
Theory and the Market Segmentation Theory — see, for instance, Fabozzi and Mann (2005).

The Expectations Theory, in its broadest interpretation called the Pure Expectations The-
ory — rooting back to, at least, I. Fisher (1896) — states that implied forward rates represent
expected future rates — see Lutz (1940). However, this theory does not account for the
price risk involved, for instance, in investing in a strategy comprising bonds with maturity
longer than the holding period. To account for that, Hicks (1939)? introduced the so-called
Liquidity Preference Theory, that builds on the idea that investors would hold longer-term
maturities if offered a risk premium, uniform and increasing with maturity, over the expected
average future rates. Yet another theory, proposed by Modigliani and Sutch (1966), is known
to be the Preferred Habitat Theory that, building upon the previous interpretations, rejects

ISee, for instance, 1. Fisher (1896), Macaulay (1938), Hicks (1939), Lutz (1940), Modigliani and Sutch
(1966), Malkiel (1966), Telser (1967), Nelson (1972), Modigliani and Shiller (1973), J. W. Elliott and Baier
(1979), Shiller (1979) and Shiller (1981), Cox et al. (1981), Brennan and Schwartz (1982), Fama (1984a) and
Fama (1984b), Cox et al. (1985b) and Cox et al. (1985a) and Shiller and McCulloch (1987).

2Building on the work of Keynes (1930) and Keynes (1936).



Hicks’s ever-rising price risk with maturity. Instead, it asserts that price risk can be positive
or negative, to accommodate imbalances in the demand and supply of funds across differ-
ent terms, forcing investors to shift maturities, thus having to compensate for either price or
reinvestment risk.

The Market Segmentation Theory suggested by Culbertson (1957), states that the shape
of the term structure is constrained by the asset/liability management by borrowers and cred-
itors, in specific maturity sectors. This theory, contrasting with the Expectations Theory,
does not consider the possibility of market participants shifting maturities, to take advantage
of differences between expectations and forward rates.

The seminal work of O. Vasicek (1977)%, based on an economic equilibrium approach,
introduced the stochastic modeling of the evolution of the term structure of interest rates
in continuous time. In his model, the continuously compounded interest rates evolve as an
Ornstein-Uhlenbeck process with constant coefficients, leading to a positive probability for
negative rates. Noteworthy, its analytical tractability, characterized by a Gaussian density
short rate process, is hardly surpassed by other distribution models.

Cox et al. (1985a) (hereafter, CIR) model implies continuously compounded positive
interest rates, characterized by a non-central chi-square distribution. In the CIR model,
the volatility is proportional to the square root of the short rate, meaning that if the rate
approaches zero, the volatility becomes very small, letting the drift dominate the process,
pushing it towards the mean. This is a remarkable improvement over Vasicek’s model. Both
models belong to the category of what has came to be known as endogenous models, given
the fact that the term structure is an output rather than an input of the model. This can be
seen as a drawback of these models since they cannot be fitted to a currently observed term
structure in the market.* Hull and White (1990) adapted Vasicek’s model to allow for the fit
of the current term structure by calibrating a time-dependent drift term, in what has came to
be known as the extended Vasicek model. The authors also propose an extension to the CIR
model considering time dependent coefficients.

By assuming different processes for the dynamics of the short rate, other short rate mod-
els were introduced by authors including Cox (1975), Cox and Ross (1976), Black (1976),
Merton (1973), Brennan and Schwartz (1977), Dothan (1978), Cox et al. (1980), Brennan

3Following Black and Scholes (1973) arguments to derive an arbitrage-free price for interest rate deriva-
tives, accounting for the non-tradable feature of interest-rates, under the real-world measure — see Brigo and
Mercurio (2006).

“Both models are also know to belong to the class of the so-called affine term-structure models, deriving
from the fact that the continuously-compounded spot rate is an affine function of the short rate — see Duffie
and Kan (1996).

10



and Schwartz (1980), Rendleman and Bartter (1980), Ball and Torous (1983), F. Longstaff
(1989), Courtadon (1982), Black et al. (1990), Black and Karasinski (1991), Ingersoll Jr. and
Ross (1992), Chan et al. (1992), Miltersen et al. (1997) and Mercurio and Moraleda (2000).

Some authors have developed more complex models, resorting to multi-dimensional
analysis, seeking to model the imperfect correlation among different rates in the term struc-
ture curve — see, for instance, Cox et al. (1985a), Richard (1978), F. Longstaff and Schwartz
(1992), Duffie and Kan (1996), Brennan and Schwartz (1979), Schaefer and Schwartz (1987)
and Fong and O. A. Vasicek (1991). Jamshidian (1997) has found that two-component dif-
fusions can explain 85% to 90% of the variations in the zero-coupon curve.

Ho and S.-B. Lee (1986) introduced a discrete-time model describing the whole dynamics
of the yield curve. Heath er al. (1992) (hereafter, HIM), building on the work of Ho and
Lee, developed a complete continuous-time framework for the stochastic evolution of the
complete term structure, relying in the modeling of the instantaneous forward rates, under
an arbitrage-free argument. One of the remarkable features of the HIM framework is that
virtually any exogenous term-structure model can be derived under its assumptions.

Another popular and promising family of interest-rate models are the so-called market
models. The log-normal forward-LIBOR model (LFM) — see Miltersen et al. (1997) and
Brace et al. (1997) — and the log-normal forward-swap model (LSM) — see, Jamshidian
(1997) — represent interest rate dynamics compatible with Black (1976) formula for the
very active interest-rate-options market of caps and swaptions.

Jump-diffusion models (JDMs) are used to account for discontinuities in the diffusion
processes of the interest rates due, for instance, central banks interventions — see, for ex-
ample, Merton (1976) and Glasserman and Merener (2001) and Glasserman and Merener
(2003).

Finally, we should add that although the CIR process is mainly used to model interest
rates, it found different financial applications such as the modelling of the stochastic volatility
of stock prices — see Heston (1993) — and the credit spread — see Brigo and Alfonsi
(2005).

In the following sections, although the complete derivation of the complete CIR frame-
work is outside the scope of this work, we will consider some aspects of the process that are

central for a better understanding of the mechanics of CIR.
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3.1 CIR diffusion process

The CIR model is a general equilibrium approach, where interest rates are determined by
supply and demand, following a logarithmic utility function. The diffusion process, under
the risk-neutral process Q, with respect to the risk-adjusted process for the instantaneous

interest rate 7, is governed by the equation,
dry = [k6 — (A + k)re] dt + o/rdW2, (3.1)

where k represents the reversion rate, 6 the asymptotic interest rate, o is the volatility of the
process and \ is the market price of the risk parameter. The condition 2k > o2 needs to be
enforced so that in the process of (3.1), r; remains positive.

According to Cox et al. (1985a), the interest rate dynamics implied in the process has
the following relevant empirical properties: (i) Negative interest rates are excluded. (i) If
the interest rate process reaches zero, it can become positive afterwards. (iii) The variance in
absolute terms increases when the interest rate increases. (iv) The interest rate has a steady

state distribution.

3.2 CIR diffusion transition probability function

The CIR process has an explicitly known transition density function. According to Cox et al.
(1985a) and Feller (1951), the probability density of the interest rate at time s, conditional

on its value at the current time, ¢, is given by,

/2
f(rslry, s >t) =ce ™" (g)(] Iq(2(uv)1/2), (3.2)
with,
2k
c= (1 = D)’ (3.3a)
u = crye P, (3.3b)
v = cryg, (3.3¢)
2k6
¢=——1, (3.3d)
o
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where [, q(.) 1s the modified Bessel function of the first kind of order ¢, given, for instance, in
Abramowitz and Stegun (1972, Eq. 9.6.10).

3.3 CIR pricing solutions to zero-coupon and coupon bonds

Although our aim is to deal with the CIR option pricing framework and with its use of the
non-central chi-square distribution function, for the sake of completeness, we present here

the CIR pricing solutions to zero-coupon and coupon bonds.

3.3.1 Zero-coupon bonds

According to Cox et al. (1985a), we can write the fundamental equation for the price of a
general interest claim F'(r, t), with cash flow rate C(r, t),
OF(r,t) N OF(r,t) OF(r,t)

1, O*F(r,t) _
50 TW+R( —7) pm By AT o —rF(r,t)+C(r,t) =0. (3.4)

In the CIR framework, the price of a zero-coupon bond, at valuation date ¢, maturity date
at time s (with s > t), Z(r,t,s), satisfying the equation with C(r,t) = 0, subject to the

boundary condition Z(r, s, s) = 1, is given by
Z(r,t,s) = E2 [e’ ftST(“)du} = A(t, s)e” Blto)r, (3.5)

where constants A(t, s), B(t, s), and v > 0, are given by

A 2yellstrty)(s—1)]/2 2/o® 3.6
t,s) = .
(9) [(/@%—)\—kv)(eﬂs—t) 1) +27} ’ (60
276 — 1)
B = 3.6b
(K +A+7)(e7C7) = 1) + 2y (60
vi= [+ N2+ 2072 (3.6¢)

3.3.2 Coupon-paying bonds

A coupon bond can be considered a portfolio of zero-coupon bonds with different maturities.
That implies that the value of a riskless coupon bond, at the valuation date ¢ and maturity

date s (with s > t), P(r,t,s), can be expressed as a weighted sum of zero-coupon bond
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prices, as

7" t, 5 7“ t, 51 3.7

HMZ

where s, So, ..., Sy represent the N dates on which payments are made, and each a; > 0

term denotes the amount of the payments made.

3.4 CIR pricing solutions to European-style bond options

3.4.1 Zero-coupon bond options

The CIR model provides solutions for the price of European call and put options,
c*“(r,t,T, s, K), with valuation date ¢, expiration date 7', strike price K, with maturity date s
(with s > T' > t), and with instantaneous interest rate r;. According to Cox et al. (1985a), by
taking the relevant expectations, and considering the basic valuation equation with terminal
condition

C(r,t,T;s, K) =max [P(r,T,s) — K, 0], (3.8)

where s > T > t, and K restricted to be less than A(T, s) — the maximum bond price at

expiration® — we reach the following call option pricing formula
& t, T, s, K) = Z(r,t,s)F(x1;a,b1) — KZ(r,t,T)F(x9;a, by), (3.9

where F'(a;a,b) represents the non-central chi-square distribution function with a degrees
of freedom and non-centrality parameter b,

x:=2r"[p+ ¢+ B(T,s)], (3.10a)
T = 2 [+ 9], (3.10b)
0= ﬁ, (3.10¢)
o
o 2¢%re’ (=1
b= S BT (3.10d)
- 2¢2re?(T=1)
1)2 = ¢—|——1/}’ (3106)

>Otherwise the option would never be exercised and would be worth nothing.
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where,

._ 2y
6= T T (3.11a)
2
g o=t A;L”, (3.11b)
g

= {m (A(f(’ S)ﬂ /B(T, s), (3.11¢)

and r* represents the critical interest rate below which exercise will occur, i.e., K = Z(r*, T, s).
The CIR corresponding put option on zero-coupon bonds, p*“(r,t, T, s, K), can be expe-

ditely derived with the help of the put-call parity relationship,
pe(rt, T, s, K) = KZ(r,t,T)Q(xe; a,by) — Z(r,t,5)Q(x1;a,b), (3.12)

where Q(.; a,b) represents the complementary non-central chi-square distribution function

with a degrees of freedom and non-centrality parameter b.

3.4.2 Coupon-paying bond options

Following the work of Jamshidian (1989), it can be shown that, in all one-factor term struc-
ture models, an option on a portfolio of pure discount bonds decomposes into a portfolio of
options on the individual bonds. For a portfolio composed of N zero-coupon bonds with dif-

ferent expiry dates s;, strike price /', maturity date 7', we have for an European call option,

N
¢ =(rt,T,sK)= Zaiczc(r,t,T, si, K), (3.13)
i=1

with T < 51 < s9 < ... < sy, a; > 0, K; = Z(r**, T, s;), and where r** is the solution
to Zf\il a;Z(r,T,s;) = K°® The corresponding put option on coupon paying bonds,
p?P(r,t,T, s, K), can be expeditely derived with the help of the put-call parity relationship,

N
P =t T8, K) =Y agp™(rit, T, si, ). (3.14)

i=1

® Alternatively, we could have used the closed-form solution offered by F. Longstaff (1993, Eq. 7).
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Chapter 4

Jump to Default Extended CEV Option
Pricing Model

Carr and Linetsky (2006) introduced what they called the JDCEV process, an unified frame-
work for the valuation of corporate liabilities, credit derivatives, and equity derivatives as
contingent claims, introducing stock-dependent default intensity into Cox (1975) CEV model.
When we have addressed the CEV model in Chapter 2, we have pointed out some issues that
affect the BSM option pricing model, namely, the implied volatility skew effect and the lever-
age effect. In fact, there is another well known phenomenon where empirical evidence de-
viates from BSM and CEV assumptions. That is the observed positive relationship between
equity volatility and default probability.

Several studies demonstrate the aforementioned relationship. Campbell and Taskler
(2003) find evidence that cross-sectional variation in bond yields can be well explained by
both credit ratings and idiosyncratic firm-level volatility. Cremers et al. (2008) show that
individual option prices contain important information for credit spreads and contain infor-
mation on the likelihood of rating migrations. Vassalou and Xing (2004) found that for
individual firms positioned in segments with high default risk, equity returns and default risk
are positively correlated and default risk seems to be systematic.

Many other studies have focused on the relationship between equity volatility and credit
default swap (CDS) spreads. For instance, Consigli (2004) documents the positive relation-
ship between stock price volatility implied in option prices and the spread movements for
six stocks over 2002-2003. Cremers et al. (2008) find that both stock options individual
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implied volatilities and implied-volatility are influencing factors for credit spreads. Zhang
et al. (2009) find that volatility risk predicts up to 50% of the CDS spread movement, while
when accounting for jump risk or when adding up credit ratings, macroeconomic conditions
and firms’ balance sheet information, that this fit rises to 69% and to 77%, respectively.

The credit risk modeling can traditionally be interpreted as following two theoretical ap-
proaches: the so-called intensity or reduced form model and the structural model. The struc-
tural class was pioneered by Black and Scholes (1973), Merton (1974) and later extended by
Black and Cox (1976) and F. A. Longstaff and Schwartz (1995)'. The Merton-Black-Cox-
Longstaff-Schartz approach models the firm value evolution and default occurs when the
firm market value drops bellow a defined threshold. The reduced form approach was studied
by, for instance, Jarrow and Turnbull (1995), Jarrow et al. (1997), Madan and Unal (1998)
and Duffie and Singleton (1999) and considers that default occurs as a pure random event.

Both models are normally considered to be competing and there is debate on which one
is the most appropriate — see, for instance, Jarrow (2003) and the references therein. Jarrow
and Protter (2004) compare the two approaches arguing that, from an information based
perspective, reduced form models are preferred to structural models since the market does
not observe the firm’s asset value continuously in time.

Under the diffusion or structural model approach, a sudden drop in the value of the firm is
impossible and so firms never default by surprise. In the reduced form approach, an explicit
relation (structural) between default and the firm value is not considered. The hazard rate
of default is modeled as an exogenous process, not specifying the economic underpinnings
behind the default mechanism. Nevertheless, the reduced form JDCEV model is specified
in order to provide consistency with the empirical observations described earlier. For the
the stock price, it assumes a process with possible diffusion to zero or a jump to default,
whichever comes first. Building on the already described properties of CEV — consistency
with the volatility skew effect and the leverage effect — JDCEV further assumes that the
default intensity is an increasing affine function of the instantaneous stock variance.

A number of references about defaultable stock models can be found in the literature.
First Merton (1976) and later Jarrow and Turnbull (1995) worked in a very tractable frame-
work, producing downward sloping implied volatility skews, extendable to deterministi-
cally time varying default arrival rates and instantaneous volatilities. The work of Carr and
Linetsky encompasses all the processes previously addressed. The JDCEV relevance is re-

markable as it includes killing (default), time-dependent parameters and retains analytical

1Introducing stochastic interest rates to address one of the limitations of the Merton (1974) model — see
Jarrow (2003) for a review of these limitations.
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tractability due to the Bessel processes properties.

4.1 JDCEYV diffusion process

The diffusion process modeling the pre-default stock price is characterized by the time-
inhomogeneous stochastic differential equation

ds; Q

E: [re —q + A (t,S)]dt + o (t,5) dW, (4.1)
with S;, > 0, and where r, > 0, 7, > 0, 0(S,t) > 0 and \(S,t) > 0, all time-dependent
parameters, represent respectively, the risk-free interest rate, the dividend yield, the instanta-
neous stock volatility and the default intensity, where the latter two can also be state depen-
dent. The authors consider the probability space (€2, G, Q) comprising the Brownian motion
{Bt,t > 0} and the exponential random variable e ~ Exp(1), further assuming frictionless
markets, no arbitrage and taking the equivalent martingale measure Q as given.

The authors assume that o(S,¢) and A(S,¢) remain bounded as S — oo and so the
process does not explode to infinity but, on the other hand, they do not assume that o (.S, t)
and (S, t) remain bounded as S — 0. This implies that the process may hit zero depending
on how o(S,t) and A(S,t) behave. In general, default can happen at time 7, via diffusion to
zero or at time C~ via jump to default, whichever comes first.

The time of default ¢ can then be decomposed into a predictable and a totally inaccessible
part given by

¢=mAC, 4.2)

where, for the first part, bankruptcy occurs at the first passage time of the stock price to 0
7o :=1inf {t >ty : S; = 0}, 4.3)

and, for the second part, the stock price can jump to default at the first jump time

t
/ A u, §) du > @} , (4.4)

to

5::1nf{t>t0:

{t<7’0}

of the integrated hazard process to the level drawn from an exponential random variable © in-
dependent of WtQ and with unit mean. Following R. J. Elliott ez al. (2000), D = {D,,t > to}
is the filtration generated by the default indicator process D; = 1y~¢).
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In accordance with Cox (1975), Carr and Linetsky (2006) account for the leverage effect
and the implied volatility skew by specifying the instantaneous stock volatility as a power
function?

o (t, ) = a5, (4.5)

where 3 < 0 represents the volatility elasticity parameter and a, > 0, V¢ is the time-
dependent volatility scale parameter. The authors further assume consistency with the empir-
ical evidence linking corporate bond yields and CDS spreads to equity volatility by specifying
that the default intensity is an affine function of the instantaneous variance of the underlying

stock
A(t,S)=b+co(tS)?, (4.6)

where ¢ > ( is a positive constant parameter governing the sensitivity of \ to o2, and b, > 0,
Vt, is a deterministic non-negative function of time.

Under the unified modeling framework of Carr and Linetsky (2006), taking §; = F;V Dy,
and assuming no default occurring by time ¢y (i.e. ¢ > t;), then the time-t, value of a
European-style call (if ¢ = —1) or put (if ¢ = 1) on the stock price S, with strike K,
recovery value R, and maturity date 7" (> ), can be represented by the following building
blocks

vty (Si, K, T, Ry 6, 1) = v} (Si, K, T3 0) + v (St R, T 6,1) (4.7)

where
of, (St K, T:0) = Eq [ o™ (0K = 651)" Licom| G @438)

is the option value but conditional on no default by time 7', and
_ [,
oD (St RT3 6,) 1= Eq [ 0" (0R)* Ligery | o) 4.9)

for n € {(,T}. The recovery claims with n = T correspond to defaultable zero-coupon
bonds under fractional recovery of treasury and with n = ( correspond to defaultable zero-
coupon bonds under fractional recovery of face value — see, for instance, Lando (2009, p.
120). For the case of an European call, there is no recovery if the firm defaults. However, for
the European put, equation (4.9) corresponds to a recovery payment equal to the strike (i.e.
R = K), that can be paid at the default time ¢ or at the maturity date 7", depending on the

recovery assumption.

ZWe use notation consistent with Ruas ez al. (2013).
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4.2 JDCEY pricing solutions to European-style options

Assuming that ¢ > t,, and constant r, ¢, a, b, and ¢, Carr and Linetsky (2006, Prop. 5.5)
show that the ¢(-price of an European-style call option with strike price K and expiry date at

time T' (> t) is given by

k2 z?
Cto (Sa K7 T) = e—q(T—to) S (D—l—l <Oa - 5+7 _) (410)
T T

1
2\ 23] 1 k2 2
_ ) (T—to) o ((Z2 o _—,,—;5+,x— ,
T 218" T T

and the ?y-price of the European-style put, conditional on no default by time 7', is given by

T

k’2 2
_e_q(T_tO) Sto (I)fl (Oa ), (5+7 ‘T_) )
T T

2\ 257 1 k2 2
pg (Sa K7 T) = 6_(r+b)(T_t0) K x_ (I)—l TS5 5—1—7 x_ (411)
0 218 T T

where 1
. ‘L' KBl 1B1r—a+5)(T—t0) 4.13)
ﬂ Y
2c+1
and
a® (T —ty) & r—q+b=0
— . 4.15
T a? (1 — e 2Alr=ath(T=t0)) = — g+ b#£0 @
2|Bl(r—q+b) 1

The functions @y (p, y; v, \) = EX* () (Xpl{gngy}>, for 6 € {—1,1}, are defined
by Carr and Linetsky (2006, Eq. 5.11 and 5.12) to be the truncated p-th moments of a
non-central chi-square random variable X with v degrees of freedom and non-centrality
parameter .

For the European-style put option, the recovery part at time-t, to be paid at maturity date
T, is given by

pL (S, K,T) = Ke "™ (1 — Q(S,t0; T)), (4.16)
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where,
1

2\ 2157 2
Ly — b@—to) (TN (L AT
Q(Sat(]aT) € (T) M 2|/8|76+7 T ) (417)

represents the risk-neutral survival probability, and M (p;n, \) := EX*(»Y) (X?) is the p-th
raw moment of a non-central chi-square random variable X with n degrees of freedom and
non-centrality parameter A, as defined in Carr and Linetsky (2006, Eq. 5.10). Following
equations (4.11) and (4.16), the ¢y-price of an European-style put option is given by

P (S, K, T) =py, (S,K,T) +p. (S, K,T). (4.18)

For the put option contracts paying also the value R, but at default time ( (i.e. considering
the fractional recovery of face value assumption), following Carr and Linetsky (2006, Eq.

5.15), the value of a claim that pays R dollars at the default time ¢ is given by

T
pD (St K T) :R/ e—(r+b)(u—to) b Sto 5+ Sto)
to 0 ) o 7_ ) U)
7

M
+ca 525 —2|B|(r—q+b)(u—to) ( >

1 . 1'2(St0)):|
— —1:6 du.
M< 205~ )

(4.19)
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Chapter 5

Algorithms

The CIR and the CEV option pricing models make use of the non-central chi-square distri-
bution function.

Extensive research has been devoted to the efficient computation of this distribution func-
tion — see, for instance, Farebrother (1987), Posten (1989), Schroder (1989), Ding (1992),
Kniisel and Bablok (1996), Benton and Krishnamoorthy (2003) and Dyrting (2004).

A comprehensive overview of alternative methods to compute the complementary non-
central chi-square distribution function is provided in Larguinho ez al. (2013). These authors
make comparisons for performance, in terms of accuracy and computational burden, for the
alternative methods to compute such kind of probability distributions in the context of CEV
option prices and Greeks. They find that the Gamma series method and the iterative proce-
dures provided by Schroder (1989), Ding (1992) and Benton and Krishnamoorthy (2003) are
accurate for a wide scope of parameters but present significant differences in computation
speeds. Additionally, they find that the analytic approximations of Sankaran (1963), Fraser
et al. (1998) and Penev and Raykov (2000) are fast, but when w and \ are small they produce
significant errors. They conclude by pointing out that the computer experiments performed
evidence that the Benton and Krishnamoorthy (2003) clearly offers the best speed-accuracy
tradeoff.

Benton and Krishnamoorthy (2003) offer an accurate and efficient way to compute the
non-central chi-square distribution function. Following, for instance, Abramowitz and Ste-
gun (1972, p. 26.4.25), the authors provide the cumulative distribution function of a non-

central chi-square random variable as a series solution encompassing Poisson probabilities
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and the incomplete Gamma function. In Benton and Krishnamoorthy (2003, Eqgs. 4.3 and
4.4), the efficiency of the algorithm is enhanced by evaluating the incomplete Gamma func-
tions using the recurrence relations offered by Abramowitz and Stegun (1972, Egs. 6.5.21
and 6.5.23). To save time and mitigate underflow errors, the series is initiated at the inte-
ger closest to the mean of the Poisson distribution. The algorithm finally truncates the series
when the sum of the remaining error of the series is below some pre-specified error tolerance.

The JDCEV option pricing model makes use of the non-trivial evaluation of the raw and
truncated moments from a non-central chi-square distribution function.

Marchand (1996, Lemma 2) provides an explicit solution to compute the truncated mo-
ments of the non-central chi-square cumulative density function. Nevertheless, the elegant
solution provided by the authors is only valid for moments of integer order.

Gil et al. (2013) provide an effective path to compute the moments of real order for the
partial non-central chi-square distribution function relying on a recurrence relation based on
Bessel function ratios that minimizes overflow errors.

Dias and Nunes (2014) propose a fast and accurate algorithm to compute the truncated
moments of a non-central chi-square random variable. Their method relies on forward and
backward relations for the incomplete Gamma function. They apply it in the pricing of finan-
cial options under JDCEV. Their algorithm is an extension of Benton and Krishnamoorthy
(2003, Algorithm 7.3). Following Carr and Linetsky (2006, Egs. 5.11 and 5.12), the authors
develop a series solution for the truncated moments of the non-central chi-square distribu-
tion, involving Poisson probabilities and the incomplete Gamma function. But, this time, the
real order of the moment will be present as the first argument of the incomplete Gamma func-
tion, and so, more general recursions than those offered in Abramowitz and Stegun (1972,
Egs. 6.5.21 and 6.5.23) are needed. The proposed algorithm is similar to Benton and Krish-
namoorthy (2003, Algorithm 7.3) and encompasses Benton and Krishnamoorthy (2003, Egs.
4.3 and 4.4) as a particular case. The authors solutions are tested against Marchand (1996,
Lemma 2) explicit solution. The authors also note that since any raw moment can be stated
as the sum of two truncated moments — see, for instance, Carr and Linetsky (2006, Eq.
5.13) — the proposed algorithm can also be applied to the evaluation of raw moments from
a non-central chi-square law. The results of the numerical analysis highlight the robustness
of the algorithm that is shown to provide better speed-accuracy than the usual resource to
evaluate the Kummer confluent hypergeometric function as stated, for instance, in Carr and
Linetsky (2006, Eq. 5.10).

In the following sections, after describing the non-central chi-square distribution, we will
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review the works of Gil et al. (2012), Gil et al. (2013), Gil et al. (2014), Gil et al. (2015),
Sun et al. (2010) and Dias and Nunes (2014), as they constitute building blocks in the search
for the improvement of the efficiency of CEV, CIR and JDCEV option pricing models.

5.1 Non-central chi-square distribution

The non-central chi-square distribution was first obtained by R. A. Fisher (1928, p. 663),
as a limiting case of the distribution of the multiple correlation coefficients. Being very
close to the normal distribution, the non-central chi-square distribution appears frequently
in finance, estimation theory and in time series analysis — see, for instance, Scharf and
Demeure (1991). As described in Dyrting (2004), despite being a well known function, the
non-central chi-square distribution function is sometimes difficult to evaluate accurately and
efficiently, in part due to its multiple arguments. Whereas most special functions have one
or to arguments, the non-central chi-square distribution has three: the number of degrees of
freedom, the non-centrality parameter and the distribution’s boundary.

Being 7, Zs,..., Z, independent unit normal random variables, and ¢y, ds, ..., d,, con-

stants, then

Y =3 (2 +5,), (5.1)
j=1

where Y is the non-central chi-square distribution with v degrees of freedom and non-
centrality parameter A = Z?zl (5]2-. In the case of A = 0, which implies that all  will be
zero, the distribution Y will be a central chi-square distribution with v degrees of freedom
and we denote it by x>.

Hereafter, we define p,2(y)(w) = p(w;v, A) as the probability density function of a non-
central chi-square distribution x2 () and p,z2 (w) = p(w; v, 0) as the probability density func-
tion of a central chi-square distribution x?2. Furthermore, P [x?(\) < w] = F(w;v, \) repre-
sents the cumulative distribution function of x?()\) and P [x? < w] = F(w;v,0) represents
the cumulative distribution function of x2. The notations Q(w; v, ) and Q(w; v, 0) stand for
the complementary distribution functions of x2()\) and x?, respectively.

One of several available representations of the cumulative distribution function of x?
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(see, for instance, Johnson et al. (1995, Eq. 29.2)) is given by

P [Xg()\) < w} = F(w;v, )

ey Oy

“ j12v2HT(v/2 + j) (5.2)

></ YTV 2dy, w0,
0

where -
['(a) ::/ t*le~tdt,a > 0, (5.3)
0

represents the Euler Gamma function as defined in Abramowitz and Stegun (1972, Eq.
6.1.1), while F(w; v, \) = 0 for w < 0.

It is also possible to express F'(w; v, A) forw > 0 as a weighted sum of central chi-square
probabilities where weights are equal to the probabilities of a Poisson distribution, where the
Poisson parameter is one-half of the non-centrality parameter of the non-central chi-square
distribution (see, for instance, Johnson et al. (1995, Eq. 29.3), or Abramowitz and Stegun
(1972, Eq. 26.4.25))

F(wyv,A) = i <()\/-2)j e_A/2> P [Xiy2; S w]

— i (()\/2)je_/\/2) F(w;v +24,0) (5.4)

J!

_ i (Me—w) 15+ %)

j! INCE I

where F'(w; v+2, 0) represents the central chi-square probability function as given in Abramowitz

and Stegun (1972, Eq. 26.4.), A the non-centrality parameter, and

v(a, x) ::/ t"le~tdt,a > 0, (5.5)
0

and -
I'(a,x) ::/ t*le~tdt,a > 0, (5.6)

being, respectively, the lower incomplete Gamma function and the upper incomplete Gamma
function as defined in Abramowitz and Stegun (1972, Eqgs. 6.5.2 and 6.5.3).
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The complementary distribution function of the non-central chi-square function x2(\) is

given by
Qw;v, ) =1— F(w;v,A)

= 2 (M —W) Q(w; v +24,0)

J!
S

where the complementary central chi-square probability function Q(w; v+27, 0) is as defined
in Abramowitz and Stegun (1972, Eq. 26.4.2).

The probability density function of the non-central chi-square function x?(\) can also

(5.7)

be defined as a mixture of central chi-square probability density functions (see, for instance,
Johnson et al. (1995, Eq. 29.4) or Benton and Krishnamoorthy (2003, Eq. 4.1))

Px2 () (w) =
—2 B4l (5.8)

where [,(.) represents the modified Bessel function of the first kind of order ¢, as given in
Abramowitz and Stegun (1972, Eq. 9.6.10)

2\ (2%/4)
W= () L+ o)

As shown in Larguinho et al. (2013, Egs. 7 and 8), we can alternatively express the

functions F'(w; v, \) and Q(w; v, \) as integral representations

“1 (v=2)/4
F(w;v,\) = / 56_()\—’—“)/2 (;) T—2y/2(V Au)du, (5.10)
0
and
1 ayge ()2
Qv \) = [ 5e (A) Tio—2)2(V ) du. (5.11)
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5.1.1 Marcum functions and relations to the non-central chi-square

function
For A > 0 and x > 0, the generalized Marcum Q-function of real order p > 0 is defined by

]_ u2+)\2

Qp()\,a:):Ap_I/ uPe™ 2 1, 1 (Au) du, (5.12)

where [, is the modified Bessel function of the first kind and order p, as defined in equation
(5.9).

In the case of p = 1, then (5.12) reduces to the standard Marcum Q-function ()(a,b), as
originally defined by Marcum (1960).

An alternative representation for the generalized Marcum Q-function is offered by Gil
etal. (2014, Eq. 1)

Qu(\, z) = /Oo e~ () (;)(”_1)/2 I,_1(2VAu)du, (5.13)

and where A, x > 0 and v > 0.
As shown by Gil ez al. (2014, Eq. 5), the relation between the alternative representations
in equations (5.12) and (5.13) is defined by

Qu(X, ) = Qu(V2X, V22). (5.14)
The generalized Marcum Q-function as defined in (5.13) and its complementary

~ x (v=1)/2
P\ ) = /0 e~ Ov+u) (%) o1 (2V ) du, (5.15)

satisfy the relation P,(\, z) + Q,(\, z) = 1 and they yield the non-central chi-square cumu-
lative and complementary distribution functions as defined in equations (5.10) and (5.11). It

can be shown that

Q(22;2v,2)) = Q,(\, z) = Qu(V2\,V21), (5.16)
and
F(22:20,2)) = P,(\, ) = P,(V2X, V2x). (5.17)
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5.1.2 Nuttall functions and relations to the non-central chi-square func-
tion

The standard Nuttall Q-function is a generalization of the Marcum Q-function, and was
initially defined by Nuttall (1972, Eq. 86),

Qpo(N,x) = /OO upe_(”2+’\2)/2]v (Au) du, (5.18)

where x,p,v > 0, A > 0, and where I, is the modified Bessel function of the first kind and
order v, as defined in equation (5.9).
Kapinas et al. (2009) and Sun et al. (2010) alternatively define a normalized
Nuttall Q-function as
QoA 7)

Qpu(A,2) = P (5.19)

that when p = v + 1 reduces to the generalized Marcum Q-function of order v + 1

Qv+1,v()\7 IE) = Qv-l—l()‘a :L‘)a (520)

for all admissible values of v, A\ and z.
A different representation is proposed for the Nuttall Q-function by Gil et al. (2013, Eq.
4) and Ruas et al. (2013, Eq. D.4)

QoA 2) = A7 / WPt e L <2\/)\u> du, (5.21)

which, following Ruas et al. (2013, Eq. D.2), can be related to the standard Nuttall Q-
function defined in (5.18) by

QN x) =277 2072 Qopr (\/ﬁ \/%) . (5.22)

The Nuttall Q-function representations offered in equations (5.18), (5.19) and (5.21), can be

related to is (complementary) Nuttall P-function by changing the range of integration'

P, (A x) = \"7" / Wt e, (2\/Au) du, (5.23)
0

For the Nuttall P-function ]Bp,,,()\, x) relation with its complementary @pﬂ,(/\, x), an identity if offered in
Ruas et al. (2013, Eq. D.3).
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The p-th raw moment and the lower tail and upper tail of the truncated moment of a
random variable X ~ XQ(’U, A) can be defined as (see, for instance, Carr and Linetsky (2006,
Lemma 5.1))

M(p;v, 3) = BV (X7)

_ ope—3 I'(p+3)

v v )\) (5.24)

g (pa T, /\) = EX2(U’)\) (Xpl{X>at})

- QPi e (3)Tr+35+i3) (5.25)
2o T4

O (p, w30, \) 1= EXON (XPLixoy)

RIS RA%) 526
! L5 +i) 7

=0

where EX*(Y) denotes the expectation respecting the law of a non-central chi-square random

variable, with v degrees of freedom and non-centrality parameter )\, and where

Fi(a,bz) = 3 W2 (5.27)

is the Kummer confluent hypergeometric function of the first kind as defined, for instance, in
Abramowitz and Stegun (1972, Eq. 13.1.2) and (a); is the Pochhamer function as defined in
Abramowitz and Stegun (1972, p. 6.1.22).

By definition, the three functions defined in equations (5.24) to (5.26) satisfy the identity

(D-f—@ (p,ZE;U,)\)‘I'(D_Q (pwr;va)‘) :M(pvva)‘)7 (528)

for any = > 0.

Recently, Dias and Nunes (2016) presented a series solution for p-th moment about zero
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of a random variable X ~ x?(v, \) defined as

o (5.29)
- QPZOPJ@ +z’,p) ,
where P is the Poisson density (with mean %)
_2A A\?
P, = ﬂ_ (5.30)

The truncated moments in the first step of equations (5.25) and (5.26), can be related to
the Nuttall function representations of equations (5.18) and (5.21) by

Do (p,22;20,20) = 2°Qpu(N, 1) = 2N 2Qupe (V2 V2Z), (53D)
and, as shown by Ruas et al. (2013, Eq. D.1), to the representation of equation (5.23) by

d_y (p, 22;20,2)) = 2P, ,(\, ). (5.32)

5.1.3 Auxiliary derivations

As in Dias and Nunes (2014), to save space and using the incomplete Gamma function ratios
P(a,z) = v(a,x)/T'(a) and Q(a,z) = I'(a,x)/T'(a) as shown in Abramowitz and Stegun
(1972, Eq. 26.4.19), the following definition will be adopted hereafter for § € {—1,1}:

y(atpx) _ F(aﬂ’)p(a +pr)<=0=-1

I(a,2,p;0) =< @ =~ L
(JS ! = (F(Zf)Q(a+p,x) <=0=1

: (5.33)

Definition (5.33) allows the series solutions (5.25) and (5.26) to be summarized as

op.ain,\) =23 R (5 +i.5,0:0) (5.34)
1=0
where
—2 (A)¢
pae 2B (535)
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is a Poisson density with mean \ /2.
Therefore
1

/ 0 > n . x
Qy(p,v5m, N) i= 5®9(p,:c;n, A) = QPZ (X - 5) PRI <§ +ti5p; 9) . (5.306)
=0

The p-th moment about zero of a random variable X ~ x?(v,\) can be defined as a

series solution by

Ze i (3) T(p+3+i0)
. = p 2 2
M(p;v,\) =2 ; i T (5+1) (5.37)

=0

where P, is the Poisson density (with mean %) given in equation (5.35).
Therefore
i1

, 0 > ~/v
M(psv,0) = 2 M(pio,N) =20 ) (X - 5) PI(5+ip). (5.38)
i=0

5.2 Incomplete Gamma function ratios by Gil et al. (2012)

For the option pricing models we are addressing, the incomplete Gamma function is of prime
relevance. It is employed in the computation of the non-central chi-square distribution func-
tion used in the CEV and CIR models and also in the truncated and raw moments for the
computation of the JDCEV option pricing model.

In this paper, the authors present numerical algorithms to evaluate the incomplete Gamma
functions ratios P(a,z) = v(a,x)/T'(a) and Q(a,z) = I'(a,x)/I'(a) for positive values of
a and z. The authors also present inversion methods for solving P(a,z) = p and Q(a,x) =
¢, with 0 < p and ¢ < 1. The authors present a software associated with the discussed
algorithms (a Fortran 90 module called IncgamFI) and its performance is compared with
earlier published algorithms — see, for instance, DiDonato and Morris (1986).

In the numerical algorithms described by the authors, both P(a, z) and )(a, x) are com-
puted. Because P(a, z) + Q(a,z) = 1, only one function needs to be computed, usually, the
smaller of the two. For large values of a, x, the authors consider a transition at a ~ x, with
P(a,z) < 3 whena 2 z and Q(a,z) <

~

1+ when a < z. Following this, the methods of

computation are divided in two zones, comprising each one several methods of computation.
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The authors describe the methods that should be used for each (x, a) quarter plane. First
they define a function with the purpose to separate the (z, a) quarter plane into two regions.
Each region defines the primary function P(a, x) and Q(a, =) that should be computed first.
Following Gautschi (1979), the authors define

: 1
a(z) =4 ?f T2 (5.39)
m lf O <r < %

Then, the primary function can be defined as

P(a,z) when a > a(x),
(5.40)
Q(a,z) when a < a(x).

RN

- {
4 K

/A

[Tl in':]j

() '] N . |I. ‘I {II- - L - 1
Figure 5.1: Domains for computing P(a, z) and Q(a, z) PT: using the Taylor expansion of P(a,x) — see Gil
et al. (2012, Section 2.2); QT: using the Taylor expansion of Q(a, z) — see Gil ef al. (2012, Section 2.3); CF
using the continued fraction for Q(a, x) — see Gil et al. (2012, Section 2.4); UA: using the uniform asymptotic
methods for P(a, z) and Q(a, z) — Gil et al. (2012, Section 2.5).

The authors establish the domains based on a compromise between efficiency and accu-
racy, being the efficiency the prevailing factor whenever the accuracy of two methods is the

same.

5.3 Moments of the partial non-central chi-square distri-
bution function by Gil et al. (2013)

As we have seen previously, the truncated and raw moments of the non-central chi-square

distribution function, play a central role in the computation of option prices under the JDCEV
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pricing model.

In this paper, the authors present and discuss the properties and methods of computation
of the moments of the partial non-central chi-square distribution, also known as Nuttall Q-
functions.

The partial non-central chi-square distribution nth moment is given by

+0o0
Quulz,y) = 2201 / trra(eDemt=ep (2y/at)dt. (5.41)

Y

5.3.1 Properties

The series expansion for the nth moment of the non-central chi-square distribution function

can be represented by

e "D+ p+n,y)
Quulz,y)=e ZF T (5.42)
n=0

that when given in terms of the incomplete Gamma function ratio? Q,,(z) = I'(u, )/ (1)

takes the form
_ _IZOO 2" D(n+ p+n)
QU7M(I7y) =¢ TL' F(M+7'L)

n=0

Qn+u+n(y) : (5.43)

By considering integration by parts, the integral in (5.41) together with the relation
21,-1(z) = (2"I,(z)), a recurrence relation for the moments of the non-central chi-

square distribution function, can be represented as

(SIS

Quas(.y) = Quusa (2,9) =1Qy-re1 = (2) v V1, (2y/). (5.44)

This recurrence, which reduces to a first order difference equation for the Marcum Q-function

when 7 = 0, can be used for testing and also for computation.

5.3.2 Computing moments using the series expansion

The authors test the series expansion written in (5.42) with the recurrence relation of (5.44)
by writing
@t (z

Qn,u(xa y) + 7]Qﬁ-L#+1 - (%

2Whose algorithms are given in Gil et al. (2012).

Z =1, (5.45)

y
)2 yle=r=vI,(2/7Y)
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where the left-hand side deviations from 1 (absolute value) in (5.45) measure the accuracy
of the tested method. The authors implemented a Fortran 90 module NuttallF to compute
the series expansion. The latter module uses the Gil et al. (2012) module IncgamFI to
compute the Gamma function ratios. The authors test the series expansion for the parameter
region (1, u,x,y) € (1,50) x (1,50) x (0,20) x (0,20) and the tests show that with the
series expansion an accuracy of 10~ can be obtained. To avoid overflow problems, when

i+ n — oo, the authors use

I'(n+p+n)

TR (w4 n)". (5.46)

5.3.3 Computing moments by recursion

If we write the recurrence relation of (5.44) as

122

Quyut1(2,y) = Quu(@, y) +NQy-1,41 + (%) ’ yle VL (2y/zy), (5.47)
we are in the presence of a numerically stable relation since all the right-hand side terms are
positive. It is worthwhile mentioning that particular care has to be taken with the application
of the inhomogeneous recurrence. Overflow/underflow errors can occur due to bad condi-
tioning of the exponentials in the Bessel function when x and/or y becomes large. Part of this
problem can be avoided if one uses the scaled Bessel function I, (x) = e *I,(x). Rewriting

(5.47) in terms of this function, we have

s
Quu1(2,y) = Quu(@,y) + 1Qy—1,1 + (%) ’ yne_(ﬁ_ﬂ)qu(Q\/@>‘ (5.48)
Now, if we assume that we know the moments of order zero (Marcum functions) for a
sequence of real values p;,7 = 1,...N with ;.1 — p; = 1, and if Q(1, u) is also known,
(5.47) can be used to compute (1, u+1). That means that starting from the value of Q(1, 1),
we can compute Q(1, ), n = 1,2, ..., N in a stable way. In the same way, after determining
Q(l,p),n=1,2,....N, if we know ((2,1), we can compute Q(2, ), x = 1,2,..., N and
SO on.
Considering an homogeneous equation offers an alternative way of computing the recur-

rences. This equation can be constructed from the inhomogeneous equation by writing

Qn,u+2 - Qn,,u+1 - 7]@7771,/1+2 = Cu+1 (Qn,,qul - Qn,u - 77an1,#+1) (549)
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where

_ [y L (2y7y)
Cp1 = \/; AN (5.50)

If we know Q(n—1, ), u = 1,2, ..., N itis possible to compute Q(n, p), u = 1,2, ..., N,
starting from Q)(n, 1) and (7, 2) with the recurrence

Qnurz = (14 cu1)Qnpt1 — Cus1Qnp + 1Qn—1,pu12 — NCu41Qn—1,p41- (5.51)

In this equation, because Bessel function ratios are used instead of Bessel functions them-
selves, overflow problems are reduced. In Gil et al. (2013, Table 2), the authors present the
relative errors obtained when comparing the values obtained with the recurrence relation of

(5.51) and the series expansion of 5.43, that can be found to have an accuracy of 107,

5.4 GammaCHI package for the inversion and computa-
tion of the Gamma and chi-square cumulative distri-
bution by Gil et al. (2015)

In Gil et al. (2015), the authors present a Fortran 90 module GammaCHI that, in the authors
view, favour reliable and fast routines for the inversion and computation of Gamma and chi-
square distribution functions.

The module provided with this work includes routines where the direct computation of
the central Gamma and chi-square distribution works as well as their inversion. In what the
direct computation is concerned, the algorithm computes both P(a,x) and Q(a,x). A note
should be made to the fact that computing Q) (a, ) simply as 1 — P(a, x) if P(a, x) is close to

1 can lead to serious cancellation problems. Also, the inversion routine solves the equations
Pla,z) =p, Qa,r)=q 0<pg<l, (5.52)

for a given value of a.
The authors describe in Gil et al. (2013) the algorithm to compute the Gamma distribution
function. Nevertheless, the authors state that some improvements to its performance are

included in the version included in the GammaCHI package. In the package, the distribution
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functions are computed with the use of Taylor expansions, continued fractions or uniform
asymptotic expansions in combination with high order Newton methods, as we have seen in
(Section 5.2).

5.5 Tight bounds of the generalized Marcum and Nuttall
(Q-functions by Sun et al. (2010)

It is well known that precise computation of the generalized Marcum and Nuttall Q-functions
are difficult because of the modified Bessel function of the first kind I, involved in their
computation. Based on the log-concavity of these functions, Sun et al. (2010) propose tighter
bounds than the ones suggested recently by, for instance, Kapinas et al. (2009) and by Li and
Kam (2006).

5.5.1 Marcum Q-functions

Sun et al. (2010) refer to the closed form expressions of the generalized Marcum Q-function,
Q. (a,b), given by Li and Kam (2006, Eq. 11), for the case when v is an odd multiple of 0.5

Q,(a,b) = %erfc (%) + %erfc (%)

b (=1)7(29)!
_Z( )4(29)

av2r i 2" i (k- (5.53)
2q
1 i _b=a)? _(b+a)?
N

and to a derivation of Li and Kam (2006, Eq. 12), for the case a = 0

b b2 \/5 o kel
Ja,b) =eric (=) 475y 2 S 54
Qv(a,0) e”(\@)“’ 7 2= 2k + 1) (>->4)

where erfc(-) is the complementary error function as defined in Abramowitz and Stegun
(1972, Eq. 7.1.2).
Considering that equations (5.53) and (5.54) represent a closed-formula solution for

Q). (a,b) where v is an odd multiple of 0.5 and letting || be the maximal integer less than
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or equal to x then, v; = |v 4 0.5] + 0.5 represents the minimal order that is larger than v
and an odd multiple of 0.5 and v, = |v — 0.5] 4+ 0.5 represents the maximal order that is less
than or equal to v and also an odd multiple of 0.5. The log concavity of v — @), (a,b) on
[1,00), as given in Sun et al. (2010, Theorem 3(b)), implies one lower bound for @, (a, b),
given by (Sun et al. (2010, Eq. 52))

Qv(a,b) > Qy,_rpi(a,b)

(5.55)
= Qu,(a,0)"72Q,,(a,b)" ", v > 1.5,

and two upper bounds for @, (a, b), given by (Sun et al. (2010, Eq. 55))

(0, )+
Ql/(aa b) S Qy—UBl(a'a b) = g (1(a)b)l’1”’ v Z 17 (556)
v1+ )

and (Sun et al. (2010, Eq. 56))

QV2 (CL, b)V—V2+1

QV(a7 b) < QV*UBQ(C% b) = Q @ b)l/*l/Q’

v > 2.0. (5.57)

From Sun ez al. (2010, Theorem 1), the authors obtain that v — @, (a, b) is strictly increasing
for v € (0, 00). Building on this result, the authors obtain another lower bound for @, (a, b),
given by (Sun et al. (2010, Eq. 61))

Qu<a7 b) 2 QquBQ(C% b)
= Qu(0,0) + [Qu, (a,b) — @, (0,0)] (5.58)
X [Ql/2 (CL, b) - Quz (07 b)]Vl—V ) vz 057

and another two upper bounds for ), (a, b), given by (Sun et al. (2010, Eq. 62))

QV(av b) S QV—UB3<a7 b)

[@u,(a,0) = Q,, (0, )] (5.59)
= Wy 07 b) + v1—v) > 07
Q ( ) [QV1+1 (av b) - QV1+1(O? b)] Y
and (Sun et al. (2010, Eq. 63))
Qv(a,b) < Qy_vpa(a,b)
_ v—va+l 5.60
— u(0,b) + (@0 = @n(0.0) v>15. >0

[QV2_1(G’ b) - Quz—l(o, b)]V—Vz ’
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5.5.2 Nuttall Q-functions

Sun et al. (2010) refer to the closed form expressions of the standard Nuttall Q-function,
Qu.(a,b), given by Kapinas et al. (2009, Th. 1), given by

1

(~1)"(2a) "> nz (n — k)n—1(20)"

Q,u,u(aa b) = ﬁ A
0

:J’;m(a, b), (5.61)

wherea > 0,0>0,u>v,m=pu+05€N,n=v4+0.5¢€ N,andwherethetermf],’jw 18
given by

x {P (”Tl + (T (”Tl s “>2> (5.62)
— [sgn(b— )]y (HTl b ;a)2>] ,

where ' is the Euler Gamma (Abramowitz and Stegun (1972, Eq. 6.1.1)), «y is the lower
incomplete Gamma (Abramowitz and Stegun (1972, Eq. 6.5.2)), I'(+, ) the upper incomplete
Gamma (Abramowitz and Stegun (1972, Eq. 6.5.3)) functions, respectively, and where ()
is the binomial coefficient as defined in Abramowitz and Stegun (1972, Eq. 24.1.1 C) and
sgn(-) is the signum function.

The authors further consider the normalized Nuttall Q-function @, ,(a, ), for m = p +

0.5 € Nand n = v + 0.5 € N, as defined in Kapinas et al. (2009, Corollary 1)

—1 n2—n+% n—1 — k) 1(2 k
Qu(a,b) = & \/%a%_l 3 (n )k! 120) 75 (a,b). (5.63)
k=0

Building on Sun et al. (2010, Theorem 6) where it is obtained that the function v +—>
Qv (a,b) is log-concave on [0, o) for  — v > 1 fixed, the authors define lower and upper
bounds for the standard and normalized Nuttall Q-function, @, (a,b). When  — v > 11is
an integer and letting 11y = |+ 0.5] + 0.5 be the minimal order that is larger than p and
also an odd multiple of 0.5, and po = | — 0.5] 4 0.5 be the maximal order that is less than

or equal to £ and is an odd multiple of 0.5, the authors define one lower bound for @), ., (a, b)
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Q,u,u(av b) > QMV—LB(C% b)

(5.64)
= Q,Uhl/l <a7 b)V_VQQMQ,VQ (aa b)lll—l/’ v Z 05,

and two upper bounds defined as

Q)u7y<a/7 b) S QﬂvV*UBl (a7 b)
Q,uhlq (CL, b)yliwrl >0 (5.65)
- b V — )
QMH—LVH-I(G’ b)yl_y

and

Q/J,l/(a7 b) S Qu,ufUB2<aa b)
B Quon (@, b)r—vatl - s (5.66)
= Qu2_17y2_1(a’ b)V—VQ 9 1% = cJ.

5.6 Truncated moments of a non-central chi-square ran-
dom variable by Dias and Nunes (2014)

Dias and Nunes (2014) propose a fast and accurate algorithm for the computation of trun-
cated moments (of any real order) for a non-central chi-square random variable, based on
forward and backward recurrence relations for the incomplete Gamma functions. Further-
more, the authors provide relations to compute the generalized Marcum P-function and Mar-
cum Q-function as shown in Gil et al. (2014, Eq. 2 and 1) and the Nuttall P-Function and
Q-Function as shown in Gil et al. (2013).
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Chapter 6

Numerical Analysis

In this section, we test the algorithms proposed by Gil et al. (2012), Gil et al. (2013), Dias
and Nunes (2014) and Gil et al. (2015).

We start by testing Gil et al. (2012) incomplete Gamma function ratios against a selected
benchmark.

We proceed to compare Dias and Nunes (2014) algorithm to compute the Marcum and
Nuttall Q-function against the tight bounds proposed by Sun et al. (2010).

Finally, we test the non-central chi-square distribution function and its related functions
under the option pricing models of CEV and JDCEV. Firstly, under the CEV framework, we
compare for speed and accuracy the call option prices computation of 2,500 contracts using
Benton and Krishnamoorthy (2003) and Gil et al. (2015) to compute the cumulative density
function of a non-central chi-square function against a benchmark based on Kniisel (1986)
and Kniisel and Bablok (1996) and the stopping approach therein. Lastly, and under the
JDCEV framework, we compare for speed and accuracy the put option prices computation of
2,500 contracts using Gil et al. (2013) and Dias and Nunes (2014) to compute the truncated
moments and raw moments of a non-central chi-square function against a benchmark based
on Carr and Linetsky (2006, Lemma 5.1) and the stopping approach in Kniisel and Bablok
(1996).

All the experiments in this section were conducted using Fortran 90 running on UNIX
GNU compiler (version 5.2.0) or Matlab (version 16a), both running on a 1.8 GHz Intel
Core 15 personal computer. We truncated all the iterative procedures with an error tolerance
of 1E-15.
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Table 6.1: Differences in incomplete Gamma function values using Gil ef al. (2012) method against Matlab.

Method MaxAE MaxRE RMSE MeanAE

G12 (P(a,z)) 3.00E-15 3.73E-13 2.70E-16 7.68E-17
GI12 (Q(a,z)) 3.00E-15 5.64E-14 2.71E-16 2.71E-16

Summary of the comparison of 40,000 pairs of values for the ratios P(a,z) = ~y(a,z)/I'(a) and Q(a,x) =
I'(a,z)/T(a), computed for the range of parameters (z,a) € (0,50) x (0, 50).

6.1 Incomplete Gamma function ratios

In this section, we test Gil et al. (2012) (G12) Fortran 90 IncgamFI incomplete Gamma
function ratios module. These have a central role in the computation of Marcum and Nuttall
Q-function and related algorithms presented earlier and tested in the subsequent sections. As
we rely on Gil et al. (2012) package interchangeably with Matlab gammainc function for
the computation of these rations, we find it relevant to test it against each other.

The results in table (6.1) show that both methods agree on a double precision of 1E-15,

required in the subsequent chapters.

6.2 Marcum and Nuttall functions and related truncated

moments results

We compare the accuracy of Dias and Nunes (2014) method against the recent work of Sun
et al. (2010) and the references therein.

Sun et al. (2010) provide tighter bounds for Marcum and Nuttall Q-functions than the
ones provided in the literature!. The authors prove that the relative errors of the bounds
converge to 0 as b — 0 and provide numerical results that show that the absolute relative
errors are less than 5% in most of the cases. Although the bounds proposed by the authors
are proven to be quite tight, Dias and Nunes (2014) provide an algorithm to compute these
functions always comprised inside these bounds.

In the following sections, we follow the combination of parameters followed by Sun et
al. (2010) to replicate their proposed bounds and their relation to Dias and Nunes (2014)

algorithm for the computation of the Marcum and Nuttall Q-functions?.

ISee, for instance, Annamalai and Tellambura (2001), Li and Kam (2006), Sun and Zhou (2008), Kapinas
et al. (2009) and Baricz and Sun (2009).
2We provide the Matlab code in Appendix A.
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Figure 6.1: Numerical results for @, (a,b) and the proposed bounds versus b for a € {1,2.5,4} and v = 2.
(a) The bounds Q,,_ 151 (a,b), QPN (a,b), Q,_vpi(a,b) and Q,_yp2(a,b). The bounds Q,_ 1 p2(a,b),
QPN (a,b), Q,—uns(a,b) and Q, v pa(a,b)

6.2.1 The bounds of the Marcum Q-function

We compare Sun et al. (2010) proposed bounds for the normalized Nuttall Q-Function of
the order p, v > 0 with existing bounds and with Dias and Nunes (2014) algorithm for the
selected parameters.

Fig. 6.1 shows the bounds of @), (a,b) with different values of a, i.e., a € {1,2.5,4},
when v = 2. Fig. 6.2 plots the values of @), (a, b) for different values of v, i.e., v € {2,5, 8},
when a = 2. Fig. 6.3 addresses the numerical results for the proposed bounds for v with

non-integer order, i.e., v € {1.8,5.1}, when a = 1.8.

6.2.2 The bounds of the Nuttall Q-function

For the bounds of the normalized Nuttall Q-function, Fig. 6.4 shows the bounds of Q,, ,(a, b)
and its bounds versus b for different values of a, i.e.,a = 1,3, when 4y = 4 and v = 2. Fig. 6.5
shows the bounds of Q,, ,(a, b) with non-integer order, where 4t — v = 2, v = 1.7,5.2 and

a=1.
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6.3 Option pricing model results

6.3.1 CEV results

After extensive computational experiments, Larguinho ef al. (2013) concluded that the
Gamma series method is an appropriate choice for the benchmark of the non-central chi-
square distribution function computation. Furthermore, the authors conduct thorough testing
on alternative methods to compute the non-central chi-square function at the statistic level
and option pricing and hedging under the CEV model. Both distribution approaches point
Benton and Krishnamoorthy (2003) as offering the best speed-accuracy trade-off for pricing
and hedging options under the CEV model. Our study will compare the efficiency of the
aforementioned Benton and Krishnamoorthy (2003) (BK03) method against the recent Gil
et al. (2014) (G14), while having the Gamma series method serving as benchmark, to under-
stand how quick and accurate those competing methods are for the purpose of pricing and
hedging under the CEV method®. We concentrate our analysis on call options although the
same reasoning could be extended to put option contracts. We rely on the 2500 randomly
generated option contract parameters described in Larguinho et al. (2013), and further con-

siderations therein, leaving us with 2474 option contracts to test*. Since CPU time for a

3We provide the Fortran code in Appendix B.
4Option contracts with 2z > 5000 and 2y > 5000 were excluded since it is well known — see for instance
Schroder (1989) — that speed, overflow and underflow problems could arise when 2z and 2y are very large.
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Figure 6.3: Numerical results for the bounds of @, (a,b) with non-integer order, where v = 1.8,5.1 and
a = 1.8 Crosses: Dias and Nunes (2014) algorithm. Dashed line: previous bounds. Solid line: some of Sun
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single run on the 2474 contract set is very small, we have performed the analysis 1000 times
for the whole set of contracts.

For the Gamma series method, we have considered the stopping approach described in
Kniisel and Bablok (1996) and Kaniisel (1986). Caution has been taken to perform the se-
ries summation in the backward and forward direction for P,(z,y) and Q,(x,y) to avoid
numerical cancellation errors.

We have tested the maximum error in the computation of the incomplete Gamma func-
tion ratios P(a,z) = v(a,x)/I'(a) and Q(a, z) = I'(a, x)/T'(a) while using Gil et al. (2012)
IncgamFI, subroutine incgam, to compute the cumulative distribution function of y? ac-
cording to series expansions in equations (5.4) and (5.7) in chapter 5. Using the relations
in Gil et al. (2012, Egs. 2.8 to 2.10), implemented in subroutine checkincgam, we have a
maximum error of 1.44E-13 and an error of less than 1E-16, 1E-15 and 1E-14 for 56.4%,
93.6% and 99.9% of the cumulative distribution functions respectively, for the whole set of
2474 contracts (4948 non-central chi-square distribution functions).

We have written a Fortran 90 module called GammaKnueselBablok that defines a pri-
mary function as the smallest of P,(x,y) and Q,(x,y) to be computed first and a secondary
function to be computed based on the relation P,(z,y) + Q,(z,y) = 1. Following Gil et
al. (2014), the transition in the (z,y) quarter plane from small values of (), (z,y) to values
close to unity occurs for large values of u, x,y across the line y = = + u, and above this
line in the (z,y) quarter plane, (), (x,y) is taken as the primary function. Below this line,

the complementary function P,(z,y) is taken as the primary function, thus avoiding serious
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cancellation problems that can arise when P, (z, y) is simply computed as 1 —Q),,(z, y) when
Qu(z,y) is close to 1.

For the BKO3 iterative approach, we have used a maximum of 10,000 iterations in the
convergence procedure, while adhering to a 1E-15 demanded accuracy.

For the G14 approach, we have used the GammaCHI module as provided by Gil et al.
(2015).

Table 6.2 shows values for the differences in call option prices under the CEV assump-
tion using the iterative procedure of Benton and Krishnamoorthy (2003) (BK03) and Gil
et al. (2014) (G14) compared against the benchmark based on the Gamma series approach,
which took 758.00 seconds to compute 1000 times the whole set of 2474 call option prices.
MaxAE, MaxRE, RMSE, MeanAE, and k2 denote, respectively, the maximum absolute er-
ror, the maximum relative error, the root mean absolute error, the mean absolute error, and
the number of times the absolute difference between the two methods exceeds $0.01.

The results in table 6.2 show that G14 is roughly 25% faster than BK03 method while
being more accurate. Both methods return k; = 0.

We can conclude that G14 offers a best speed-accuracy trade-off over the BK03 method,
poising itself as a relevant finding for future work aiming to value option contracts under the

one-dimensional CEV model.
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Table 6.2: Differences in call option prices using each alternative method for computing the non-central chi-
square distribution compared against a benchmark based on the Gamma series approach.

Method MaxAE MaxRE RMSE MeanAE CPUtime ko

BKO03  3.21E-10 1.08E-09 1.15E-11 1.68E-12 12.37 0
Gl4 8.82E-11 3.74E-13 2.66E-12 5.90E-13 9.11 0

Summary of the differences in call option prices under the CEV model using the iterative procedures of Benton
and Krishnamoorthy (2003) and Gil et al. (2014) compared against a benchmark based on the Gamma series
approach, which took a CPU time of 758.00 seconds to compute 1000 times the whole set of 2474 call option
prices. The second rightmost column of the table reports the CPU time for computing 1000 times the 2474 call
option prices under each alternative method. MaxAE, MaxRE, RMSE, MeanAE, and k2 denote, respectively,
the maximum absolute error, the maximum relative error, the root mean absolute error, the mean absolute error,
and the number of times the absolute difference between the two methods exceeds $0.01.

6.3.2 JDCEV results

In this section we perform tests of Dias and Nunes (2014) and Gil et al. (2013) Nuttall
function iterative algorithms for the computation of option prices under Carr and Linetsky
(2006) framework. We choose to compute put over call option prices to include the re-
covery part of the European-style contract defined in equations (4.16) and (4.17), and the
respective raw moment. Since Gil et al. (2013) only offers the computation of @pvv()\, x)
through Gil et al. (2013, Eq. 9), and as we rely on the relations defined in equations
(5.25) and (5.26) to compute the truncated moments defined in equations (4.10) and (4.11),

we have computed European-style call option prices and we have used the put call-parity
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(S, K, T) = py (S, K,T) = ek awdn)g _ ¢fi" rwdw) [ that arises from the identity de-
fined in equation (5.26), to compute its counterpart put contract.

For the definition of the data-set to be used in the tests, we have followed the method
described in Broadie and Detemple (1996). For simplicity, we have tested 2,500 options
contracts following a time-homogeneous model with randomly distributed constant param-
eters. We have fixed the spot price S = 100 and, with uniform probability within each
interval, the strike price K € [70, 130], time to maturity 7" € [0.1, 1.0] with probability 0.75
and T € |1.0,5.0] with probability 0.25. For the instantaneous volatility parameter defined
in Carr and Linetsky (2006, Eq. 4.1), we have made the local volatility vary with uniform
probability o € [0.1,0.6] and fixed 3 = —1. For the default intensity function parameters
defined in Carr and Linetsky (2006, Eq. 4.2), we set the sensitivity of the default arrival rate
to vary uniformly ¢ € [0, 1] and b € [0, 0.02]. These parameters have been chosen to satisfy
the condition p + v >= 0, remarked in Carr and Linetsky (2006, Lemma 5.1).

The choice of a benchmark relies upon the computation of the Gamma series defined in
equations (5.25) and (5.26) truncated to ensure a 1 — 15 accuracy using a stopping rule
similar to the one proposed by Kniisel and Bablok (1996), that we have implemented in a
Fortran 90 routine thetaGammaSeries. The incomplete Gamma functions used in the series
summation are the ones provided in Gil et al. (2012) module IncgamFI.

For the G13 approach, we have used the NuttallF module’ for the computation of the
Nuttal Q-function and respective truncated moments, in terms of incomplete Gamma func-
tion ratios as described in Gil et al. (2013, Eq. 9).

Different approaches have been used to compute the raw moments of equation (4.17).
For the benchmark based in the Gamma series routine thetaGammasSeries, we defined the
raw moment as the sum of two truncated moments as defined in equation (5.28). For the ap-

proaches of G13 and DN14, we have relied on M (p; v, ) = liﬁ)lq)+1(p, x; v, A) presented in
Dias and Nunes (2016, Eq. 40) and so we have computed M (p; v, \) as ® 1 (p, realmin; v, \),

where realmin is the machine epsilon®.

Table (6.3) shows values for the differences in put option prices under the JDCEV as-
sumption using the iterative procedure of Gil et al. (2013) (G13) and Dias and Nunes (2014)
(DN14) compared against the benchmark based on the Gamma series approach, which took
600.00 seconds to compute 1000 times the whole set of 2500 put option prices. MaxAE,
MaxRE, RMSE, MeanAE, and k2 denote, respectively, the maximum absolute error, the

SKindly provided by the authors and including revised versions for efficiency of the IncgamFI module for
the computation of the incomplete Gamma function ratios used in Gil et al. (2013, Eq. 9).
®We provide the Fortran code in Appendix C.
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Table 6.3: Differences in put option prices using each alternative method for computing the truncated moments
of the non-central chi-square distribution compared against a benchmark based on the Gamma series approach.

Method MaxAE MaxRE RMSE MeanAE CPU time ks

G13 295E+01 1.92E+02 2.85E+00 0.45E+00 400.0 166
DN14 8.15E-11 3.41E-10 4.29E-12 1.32E-12 130.0 0

Summary for the computation values of European-style put option prices under the time-homogeneous JDCEV
model for the parameter constellation S = 100 and, with uniform probability within each interval, K €
[70,130], T € [0.1, 1.0] with probability 0.75 and T' €]1.0, 5.0] with probability 0.25, ¢ € [0.1,0.6], 8 = —1,
¢ € [0,1] and b € [0,0.02] (the parameters have been chosen to satisfy the condition p + v >= 0). The
computational results are obtained via the implementation of the explicit solutions (4.11), (4.17) and (4.16)
using the iterative procedures of Dias and Nunes (2014) and Gil et al. (2013) compared against a benchmark
based on the Gamma series approach, which took a CPU time of 600.00 seconds to compute 1000 times the set
of 2,500 put option prices. The second rightmost column of the table reports the CPU time for computing 1000
times the 2,500 put option prices under each alternative method. MaxAE, MaxRE, RMSE, MeanAE, and k2
denote, respectively, the maximum absolute error, the maximum relative error, the root mean absolute error, the
mean absolute error, and the number of times the absolute difference between the two methods exceeds $0.01.

maximum relative error, the root mean absolute error, the mean absolute error, and the num-
ber of times the absolute difference between the two methods exceeds $0.01.

The results in table 6.3 show that DN14 is roughly 70% faster than G13 method while
being more accurate. While DN 14 never exceeds the difference of $0.01 against the bench-
mark, G13 returns ky = 166, representing 7% of contracts exceeding the pre-defined thresh-
old. Inspection of the input parameters reveal that for high values of the non-centrality
parameter (A > 80), G13 results significantly diverge from the benchmark.

We can conclude that DN14 offers a best speed-accuracy trade off over the G13 method.
Furthermore, as we have defined input parameters for the JDCEV framework believed to
be consistent with those used in the practice, and considering the differences observed in
G13 against the benchmark, we find G13 method less suitable for the computation of option
prices under this framework. On the other hand, DN14 poises itself as an efficient and

accurate approach to use under the studied option pricing framework.
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Chapter 7

JDCEYV Hedge Ratios

In this section we offer new analytical solutions for the JDCEV delta hedge ratios for the
recovery parts of the put — offered in Ruas ef al. (2013, Eqs. 38 and 40) using Kummer
confluent hypergeometric functions of the first kind — resorting to the series solutions in

equation (5.37) for the derivation of p-th moment about zero of a random variable X ~
2
X*(v, A).

7.1 Delta of the recovery part of the put (4.17), under the

fractional recovery of treasury assumption

85 Sto T
oty 250 (0

20 ™
~ 1 K(K) . 2%*(S,)
2T (=g 0 28 )

where M is the p-th moment about zero of a random variable X ~ x?(v, \) as defined in the

0SP (S, K, T) ﬁe_(r+b)(T—to) (5’72(&0))2'1‘3

series solution (5.37) and,

M(po\) =20 (2'—12)! e (7.2)
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7.2 Delta of the recovery part of the put (4.19), under the

fractional recovery of face value assumption

aptD (Sto, K, T) T e—(r+b)(u—to) .%'2(5,5 ) ﬁ 1 .TQ(St )
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2‘£|+1 1 . xQ(Sto)
)7 (v (g 2)

(14191 191250 249137 (- L - 106, 25 )
(7.3)

where M is the p-th moment about zero of a random variable X ~ x?(v, \) as defined in the

series solution (5.37) and M is as defined in equation (7.2).
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Chapter 8
Conclusions

With this work we have tested the recent offerings in the literature to compute the non-central
chi-square distribution and its related functions under the CEV option pricing model of Cox
(1975) and the JDCEV framework of Carr and Linetsky (2006). We gave particular emphasis
to the work of Sun et al. (2010), Gil et al. (2012), Gil et al. (2013), Dias and Nunes (2014),
Gil et al. (2014) and Gil et al. (2015).

We started by testing Gil et al. (2012) (G12) Fortran 90 IncgamFI incomplete Gamma
function ratios module. As we relied on Gil et al. (2012) package interchangeably with
Matlab gammainc function for the computation of these rations, we found it relevant to test
it against each other. The results showed that both methods agree on a double precision of
1E-15 accordance, required in the subsequent tests.

We have computed call option prices under the CEV framework for 2,474 contracts,
using the iterative procedure of Benton and Krishnamoorthy (2003) (BKO03) and Gil et al.
(2014) (G14) compared against the benchmark based on the Gamma series approach to com-
pute non-central chi-square distribution function. The results show that G14 is roughly 25%
faster than BKO3 method while being more accurate. Both methods return no significant
differences against a pre-defined threshold of $0.01. We conclude that G14 offers a best
speed-accuracy trade off over the BK03 method, poising itself as a relevant finding for fu-
ture work aiming to value option contracts under the one-dimensional CEV model.

We have computed put option prices under the JDCEV framework for 2,500 contracts,
using the iterative procedure of Gil et al. (2013) (G13) and Dias and Nunes (2014) (DN14),
compared against a benchmark based on a Gamma series approach. The results show that
DN14 is roughly 70% faster than G13 while being more accurate. While DN14 never ex-

ceeds the difference of $0.01 against the benchmark, G13 returns 7% of contracts exceeding
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that pre-defined threshold. Inspection of the input parameters reveal that for high values of
the non-centrality parameter (A > 80), G13 returns widely inaccurate results. We can con-
clude that DN 14 offers a best speed-accuracy trade off over the G13 method. Furthermore, as
we have defined input parameters for the JDCEV framework believed to be consistent with
those used in the practice, and considering the the differences observed in G13 against the
benchmark, we find G13 method less suitable for the computation of option prices under this
framework. On the other hand, DN14 poises itself as a very efficient and accurate approach
to use under the studied option pricing framework.

Additionally, we have tested Dias and Nunes (2014) algorithm against Sun et al. (2010)
proposed tight bounds for the computation of the marcum and Nuttall Q-function. Overall,
we conclude that Dias and Nunes (2014) results lie exactly inside these newly proposed tight
bounds, corroborating the robustness of Dias and Nunes (2014) algorithm.

Lastly, we offered new analytical solutions for the JDCEV delta hedge ratios for the
recovery parts of the put resorting to a series solutions for the derivation of p-th moment

about zero of a random variable X ~ y?(v, \).
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Appendix A

Sun et al. (2010) Matlab code

A.1 Sun et al. (2010) Marcum Q-function

A.1.1 Sunetal (2010) eq. (42) and eq. (38)

function [q]=marcum_q(nu,a,b)
if a==0
%Sun2010 eq. 42
gq=(gammainc ((b"2) /2 ,nu, *upper’ )*gamma(nu))/gamma(nu) ;
elseif (a>0 && b>=0)
%Sun2010 eq.38
suml=0;
for k=0:(nu—1.5)
sum2=0;
for q=0:k
sum3=0;
for i=0:(2xq)

sum3=sum3 +((1/((axb) " (2xq—i)*factorial (i)))*((—1)"ixexp((—(b—a)"2)/2)—

exp((—(b+a)"2)/2)));
end
sum2=sum2+((((—1)"q)*factorial (2xq))/( factorial (k—q)*factorial (q))*sum3);
end
suml=suml+((b"(2x*xk)) /(2" k)*sum2);
end
q=0.5xerfc ((b+a)/(sqrt(2)))+0.5xerfc ((b—a)/(sqrt(2)))+((1/(axsqrt(2*pi)))*suml);
end
end
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A.1.2 Sunetal. (2010) eq. (52)

function [gq]=marcum_q-lowerl (nu,a,b)

nul=floor (nu+0.5)+0.5;

nu2=floor (nu—0.5)+0.5;

9%Sun2010 eq.52

q=(marcum_q(nul ,a,b) " (nu—nu2))*(marcum-q(nu2,a,b) " (nul—nu));
end

A.1.3 Sunetal. (2010) eq. (61)

function [q]=marcum_q_-lower2(nu,a,b)
nul=floor (nu+0.5)+0.5;
nu2=floor (nu—0.5)+0.5;
%Sun2010 eq.61
gq=marcum_q(nu,0,b)+(((marcum_q(nul,a,b)—marcum_q(nul ,0,b)) " (nu—nu2)) *((marcum_q(nu2,a,b
)—marcum_q(nu2,0,b)) "(nul—nu)));
end

A.1.4 Sunetal. (2010) eq. (55)

function [q]=marcum_q-upperl (nu,a,b)

nul=floor (nu+0.5)+0.5;

nu2=floor (nu—0.5)+0.5;

9Sun2010 eq.55

q=(marcum_q(nul ,a,b)"(nul—nu+1))/(marcum_q(nul+1,a,b) " (nul—nu));
end

A.1.5 Sunetal. (2010) eq. (56)

function [q]=marcum_q_-upper2(nu,a,b)
nul=floor (nu+0.5)+0.5;
nu2=floor (nu—0.5)+0.5;
%Sun2010 eq. 56
q=(marcum_q(nu2,a,b) " (nu—nu2+1))/(marcum_q(nu2—1,a,b) " (nu—nu2));
end

A.1.6 Sunetal. (2010) eq. (62)

function [q]=marcum_q-upper3(nu,a,b)
nul=floor (nu+0.5)+0.5;
%Sun2010 eq.62
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g=marcum_q(nu,0,b)+(((marcum_q(nul ,a,b)—marcum_q(nul ,0,b)) " (nul—nu+1))/(( marcum_q(nul
+1,a,b)—marcum_q(nul+1,0,b)) "(nul—nu)));
end

A.1.7 Sunetal. (2010) eq. (63)

function [q] = marcum_q-upper4(nu,a,b)
nu2=floor (nu—0.5)+0.5;
%Sun2010 eq.63
g=marcum_q(nu,0,b)+(((marcum_q(nu2,a,b)—marcum_q(nu2,0,b)) " (nu—nu2+1))/(( marcum_q(nu2
—1,a,b)—marcum_q(nu2—1,0,b))"(nu—nu2)));
end

A.2 Sun et al. (2010) Nuttall Q-function

A.2.1 Sunetal (2010) eq. (49)

function [q]=std_nuttall_q (mu,nu,a,b)
m=mu+0.5;
n=nu+0.5;
%Sun2010 eq. 49
suml=0;
for k=0:(n—1)
suml=suml +(((pochhammer(n—k,n—1)*(2xa)" k) /( factorial (k)))*term_-i(m,n,k,a,b));
end
g=((((=1)*m) *((2%a) (—=n+0.5))) /(sqrt (pi)))*suml;
end

A.2.2 Sunetal. (2010) eq. (68)

function [q]=std_nuttall_q-lower (mu,nu,a,b)

mul=floor (mu+0.5)+0.5;

mu2=floor (mu—0.5)+0.5;

nul=floor (nu+0.5)+0.5;

nu2=floor (nu—0.5)+0.5;

%Sun2010 eq. 68

q=(std_nuttall_q (mul,nul,a,b) " (nu—nu2))*(std_nuttall_q (mu2,nu2,a,b) " (nul—nu));
end

65




w

A.2.3 Sunetal. (2010) eq. (69)

function [q]=std_nuttall_q_-upperl (mu,nu,a,b)

mul=floor (mu+0.5)+0.5;

mu2=floor (mu—0.5)+0.5;

nul=floor (nu+0.5)+0.5;

nu2=floor (nu—0.5)+0.5;

90Sun2010 eq.69

q=(std_nuttall_q (mul,nul,a,b) " (nul—nu+1))/(std_nuttall_q (mul+1,nul+1,a,b)" " (nul—nu));
end

A.2.4 Sunetal. (2010) eq. (70)

function [q]=std_nuttall_q_upper2 (mu,nu,a,b)

mul=floor (mu+0.5)+0.5;

mu2=floor (mu—0.5)+0.5;

nul=floor (nu+0.5)+0.5;

nu2=floor (nu—0.5)+0.5;

%Sun2010 eq.70

q=(std_nuttall_q (mu2,nu2,a,b) (nu—nu2+1))/(std_nuttall_q (mu2—1,nu2—1,a,b) " (nu—nu2));
end

A.2.5 Sunetal. (2010) eq. (50)

function i=term_i(m,n,k,a,b)
%Sun2010 eq.50
suml=0;

for 1=0:(m-n+k)
suml=suml+(binomial (mn+k,1)*2"((1—1)/2)*a” (mn+k—1) *x((gamma((1+1)/2)+((—1) " (m—n—I
—1))*gammainc ((b+a) “2/2 ,(1+1)/2, upper’ )*gamma((1+1)/2))—sgn(b—a) "(1+1) *x(gamma
((1+1)/2)—gammainc ((b—a) "2/2 ,(1+1)/2, upper’ )xgamma((1+1)/2))));
end
i=((—1)"(k+1))*suml;
end
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Appendix B

CEYV Fortran code

B.1 Code to test the different algorithms to compute CEV

20
21

2
23
24
25
2

option prices

PROGRAM testEuropeanCEV

USE EuropeanCEV_jcd

IMPLICIT NONE

INTEGER, PARAMETER :: r8 = KIND(0.0d0)

REAL(r8) :: p, x, n, lambda, start, finish, k2_threshold

REAL(r8) :: EuropeanCallGamma, EuropeanPutGamma, EuropeanCallBK, EuropeanPutBK,
EuropeanCallGST , EuropeanPutGST, &

EuropeanCallJCD , EuropeanPutJCD, incgam_delta, incgam_deltal , incgam_delta2

INTEGER :: theta, maxitr, i, j, ierrl, ierr2

INTEGER, parameter :: iul=1234

INTEGER, parameter :: iu2=1235

INTEGER, parameter :: iu3=1236
REAL(r8), PARAMETER :: errtol=1.e—15_r8; ! demanded accuracy
REAL(r8), dimension(2474) :: Call.BK, Put.BK, Call.GST, Put_.GST, Call_.Gamma, Put_.Gamma

, Call.JCD, PutlJCD, &
Call_ BK_AE, Put BK_AE, Call. GST_AE, Put.GST_AE, Call.JCD_AE, Put JCD_AE, &
Call_ BK_k2, Put.BK_k2, Call.GST_k2, Put.GST_k2, Call.JCD_k2, Put.JCD_ k2, &
Call.BK_RE, Put.BK_RE, Call.GST_-RE, Put.GST_-RE, Call.JCD_RE, Put.JCD_RE.&
Call_.BK_SQE, Put.BK_SQE, Call.GST_-SQE, Put.GST_-SQE, Call. JCD_SQE, PutJCD_SQE.&
Call_ BK_RMSE, Put BK.RMSE, Call.GST_-RMSE, Put.GST_-RMSE, Call.JCD_RMSE, PutJCD_RMSE, &
Call_.GST.incgam_deltal , Call_.GST.incgam_delta2 , Put_.GST_incgam_deltal ,
Put_GST_incgam_delta2
REAL(r8), dimension(4) :: GST.incgam_delta_maxval
REAL(r8), dimension(2474) :: VecContractNr, VecSpot, VecStrike, Vectau, Vecbeta, Vecr,
Vecq, Vecdelta
!we need to export files from Excel as Windows formatted text
OPEN(10,FILE="VecContractNr. txt’)
OPEN(11 ,FILE="VecSpot. txt’)
OPEN(12 ,FILE="VecStrike.txt"’)
OPEN(13 ,FILE="Vectau. txt’)
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27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47

48
49
50
51
52

53

54
55
56
57

58
59
60
61
62

63
64
65
66
67

OPEN(14 ,FILE="Vecbeta. txt’)
OPEN(15 ,FILE="Vecr. txt’)
OPEN(16 ,FILE="Vecq. txt’)
OPEN(17 ,FILE="Vecdelta. txt’)

DO i=1, 2474
READ(10,x%)
READ(11 ,%)
READ(12,x%)
READ(13,x)
READ(14 %)
READ(15 ,%)

VecContractNr(i);
VecSpot(i);
VecStrike (i);
Vectau(i);
Vecbeta(i);
Vecr(i);

READ(16,%) Vecq(i);
READ(17,%) Vecdelta(i);

ENDDO

DO i=10, 17
CLOSE(1i)

ENDDO

!'File to store results
OPEN (unit=iul , file="test_europeanCEV_FORTRAN .csv” ,action="write” ,status="replace”)
WRITE (iul ,”(’ Contract’,’,’,’ Call (Gamma)’,’,’,’ Put (Gamma)’,’,’,’ Call (BKO03)’,’,’,’ Put
(BK03) ’,’,’,’ Call (Gl4)’,’,’,’Put (Gl4)’,’,’,’ Call (JCDI16)’,’,’,’ Put (JCDI16)
>,’,7,  Call (BKO03) AE’,’,’,’Put (BKO03) AE’,’,’,’ Call (Gl4) AE’,’,’,’ Put (Gl4) AE
.7, ., Call (JCD) AE’,’,’,’Put (JCD) AE’,’,’,’ Call (BKO03) k2’,’,’,’Put (BKO03) k2
L7, Call (G14) k27,7, , Put (Gl4) k2° ,’,’,’Call (JCD) k2°,’,’,’Put (JCD) k2
>,7,7, Call GST.incgam_deltal *,”,’,” Call GST_.incgam_delta2’,’,’,’ Put
GST_incgam_deltal >, ,”,” Put GST_incgam_delta2 ’:)”) !headers
! Compute call and Put prices for different methods and store in csv file (
test_europeanCEV_FORTRAN . csv )
! k2 threshold in $
k2 _threshold = 0.01_r8;
ICALL cpu_time(start)
DO j=1, 2474
! Knuesel and Bablok (1996) stopping approach to compute cdfgamNC Gamma Series
approach
CALL europeanCEVCall(VecSpot(j),VecStrike(j),Vectau(j),Vecr(j),Vecq(j), Vecdelta(j)
,Vecbeta(j),3,errtol , .TRUE., EuropeanCallGamma, incgam-_deltal , incgam_delta2);
Call_-Gamma(j) = EuropeanCallGamma;
Call_.GST_.incgam_deltal (j) = incgam_deltal;
Call_GST_.incgam_delta2(j) = incgam_delta2;
CALL europeanCEVPut(VecSpot(j),VecStrike(j),Vectau(j),Vecr(j),Vecq(j), Vecdelta(j),
Vecbeta(j),3,errtol , .TRUE., EuropeanPutGamma, incgam_deltal , incgam_delta2);
Put_Gamma(j) = EuropeanPutGamma;
Put_GST_incgam_deltal (j) = incgam_deltal;
Put_GST_incgam_delta2(j) = incgam_delta2;
! Benton and Krishnamoorthy (2003, Algorithm 7.3)
CALL europeanCEVCall(VecSpot(j),VecStrike(j),Vectau(j),Vecr(j),Vecq(j), Vecdelta(j)
,Vecbeta(j),l,errtol , .FALSE., EuropeanCallBK, incgam_deltal , incgam_delta2);
incgam_deltal = —1;
incgam_delta2 = —1;
Call_BK(j) = EuropeanCallBK;
!'Absolute error
Call_.BK_AE(j) = ABS(EuropeanCallGamma — EuropeanCallBK);
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!Squared error — to later compute RMSE
Call_. BK_SQE(j) = Call_. BK_AE(j) *x 2;
!k2 considering threshold

IF (Call_.BK_AE(j) > k2_threshold) THEN

Call.BK_k2(j) = 1.0_r8;
ELSE

Call_.BK_k2(j) = 0.0 _r8;
END IF

!'Relative error
Call_ BK_RE(j) = Call_ BK_AE(j) / Call_.Gamma(j)

CALL europeanCEVPut(VecSpot(j),VecStrike(j),Vectau(j),Vecr(j),Vecq(j), Vecdelta(j),

Vecbeta(j),l,errtol , .FALSE., EuropeanPutBK, incgam_deltal , incgam_delta2);
incgam_deltal = —1;
incgam_delta2 = —1;
Put.BK(j) = EuropeanPutBK;
!'Absolute error
Put_BK_AE(j) = ABS(EuropeanPutGamma — EuropeanputBK) ;
!Squared error — to later compute RMSE
Put.BK_SQE(j) = Put.BK_LAE(j) #*x 2;
!k2 considering threshold
IF (Put.BK_AE(j) > k2_threshold) THEN

Put_BK_k2(j) = 1.0_r8;
ELSE

Put_BK_k2(j) = 0.0 _r8;
END IF

!I'Relative error
Put_ BK_RE(j) = Put.BK_AE(j) / Put_.Gamma(j)
! Gil, Segura & Temme (2014, GammaCHI package, cdfgamNC)

CALL europeanCEVCall(VecSpot(j),VecStrike(j),Vectau(j),Vecr(j),Vecq(j), Vecdelta(j)
,Vecbeta(j),2,errtol , .FALSE., EuropeanCallGST, incgam_deltal , incgam_delta2);

incgam_deltal = —1;

incgam_delta2 = —1;

Call_.GST (j) = EuropeanCallGST;

!'Absolute error

Call_.GST_AE(j) = ABS(EuropeanCallGamma — EuropeanCallGST);

!Squared error — to later compute RMSE

Call_.GST_SQE(j) = Call.GST_-AE(j) *x*x 2;

k2 considering threshold

IF (Call.GST_AE(j) > k2_threshold) THEN
Call_GST_k2(j) = 1.0_r8;

ELSE
Call_GST_k2(j) = 0.0_r8;

END IF

!'Relative error

Call_.GST_RE(j) = Call.GST_AE(j) / Call_.Gamma(j)

CALL europeanCEVPut(VecSpot(j),VecStrike(j),Vectau(j),Vecr(j),Vecq(j), Vecdelta(j),

Vecbeta(j),2,errtol , .FALSE., EuropeanPutGST, incgam_deltal , incgam_delta2);
incgam_deltal = —1;
incgam_delta2 = —1;
Put_.GST(j) = EuropeanPutGST;
!'Absolute error
Put_.GST_AE(j) = ABS(EuropeanPutGamma — EuropeanputGST);
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!Squared error — to later compute RMSE
Put_GST_SQE(j) = Put_.GST_AE(j) *x 2;
!k2 considering threshold

IF (Put_.GST_AE(j) > k2_threshold) THEN

Put_.GST_k2(j) = 1.0_r8;
ELSE

Put_.GST_k2(j) = 0.0_r8;
END IF

!'Relative error
Put_ GST_RE(j) = Put.GST_AE(j) / Put_.Gamma(j)
! JCD2016
CALL europeanCEVCall(VecSpot(j),VecStrike(j),Vectau(j),Vecr(j),Vecq(j), Vecdelta(j)
,Vecbeta(j) ,4,errtol , .FALSE., EuropeanCallJCD, incgam_deltal , incgam_delta2);
incgam_deltal = —1;
incgam_delta2 = —1;
Call_.JCD (j) = EuropeanCallJCD;
!'Absolute error
Call.JCD_AE(j) = ABS(EuropeanCallGamma — EuropeanCallJCD);
!Squared error — to later compute RMSE
Call.JCD_SQE(j) = Call.JCD_AE(j) *x 2;
k2 considering threshold
IF (Call.JCD_AE(j) > k2_threshold) THEN
Call_JCD_k2(j) = 1.0_r8;
ELSE
Call_JCD_k2(j) = 0.0_r8;
END IF
!'Relative error
Call_JCD_RE(j) = Call.JCD_AE(j) / Call_.Gamma(j)
CALL europeanCEVPut(VecSpot(j),VecStrike(j),Vectau(j),Vecr(j),Vecq(j), Vecdelta(j),
Vecbeta(j) ,4,errtol , .FALSE., EuropeanPutJCD, incgam_deltal , incgam_delta2);
incgam_deltal = —1;
incgam_delta2 = —1;
Put_.JCD(j) = EuropeanPutJCD;
!'Absolute error
Put_JCD_AE(j) = ABS(EuropeanPutGamma — EuropeanputJCD);
!Squared error — to later compute RMSE
Put_.JCD_SQE(j) = PutlJCD_AE(j) =*x 2;
k2 considering threshold
IF (Put JCD_AE(j) > k2_threshold) THEN

Put_.JCD_k2(j) = 1.0_r8;
ELSE

Put_.JCD_k2(j) = 0.0_r8;
END IF

!'Relative error

Put_ JCD_RE(j) = Put JCD_AE(j) / Put.Gamma(j)

WRITE (iul ,”(i4.0,’,’,f35.30,",",f35.30,",",f35.30,",”,f35.30 &

,’,’,35.30,,",f35.30,”,",f35.30,",",1f35.30,",”,f35.30,",°,1f35.30,",",f35

.30,’,’,f35.30,",,1f35.30,",",f35.30, *,’,f2.0,”,’,f2.0,’,’,f2.0,"," ,f2
.0,7,7,f2.0,”,”,f2.0,",,es23.16,",",es23.16,",",es23.16,", 7 ,es23.16:)”) j,
Call_Gamma(j), Put_.gamma(j), Call.BK(j), Put-BK(j), Call_.GST(j), Put.GST(j),
Call.JCD(j), PutJCD(j), Call.BK_AE(j), Put.BK_AE(j), Call.GST_-AE(j),
Put_.GST_AE(j), Call.JCD_AE(j), PutlJCD_AE(j), Call.BK_k2(j), Put-BK_k2(j),
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Call_.GST_k2(j), Put.GST_k2(j),

Call_.GST_incgam-_deltal (j),

), Put_.GST_.incgam_delta2(j)
ENDDO
!'Max .

functions ratios P(a,x)

GST_incgam_delta_maxval (1)

GST.incgam_delta_maxval (2)

GST_incgam_delta_maxval (3)

GST_incgam_delta_maxval (4)
! and Q(a,x))
PRINT ’ (” Gil,
x)):7)’
PRINT ’ (”Max.
GST_incgam_delta_maxval);

Segura & Temme (2012,

error (direct

PRINT °(7”)°

! Compute MaxAE, MaxRE, RMSE and MeanAE
PRINT ’ ("MaxAE:")"’

PRINT ’ (”BK Call MaxAE = 7,es23.16)°
PRINT ’ (”BK Put MaxAE = 7,es23.16)°
PRINT °(”GST Call MaxAE = ”,es23.16)°
PRINT ° (”GST Put MaxAE = 7,es23.16)°
PRINT °(”JCD Call MaxAE = ”,es23.16)"
PRINT ’ (”JCD Put MaxAE = 7,es23.16)°
PRINT ' (7”)°

PRINT ’ ("MaxRE:”) "’

PRINT ’(”BK Call MaxRE = ”,es23.16)°
PRINT ’ (”BK Put MaxRE = ”,es23.16)°
PRINT ’ (”GST Call MaxRE = ”7,es23.16)°
PRINT ’ (”GST Put MaxRE = ",es23.16)°
PRINT ’ (”JCD Call MaxRE = ”7,es23.16)°
PRINT ’ (”JCD Put MaxRE = 7,es23.16)°
PRINT °(7”)°

PRINT ° ("RMSE:”)’

PRINT ’(”BK Call RMSE = ”,es23.16)°
PRINT ’ (”BK Put RMSE = 7,es23.16)°
PRINT ’ (”GST Call RMSE = ”,es23.16)°
PRINT ° (”GST Put RMSE = ”,es23.16)°
PRINT ’ (”JCD Call RMSE = ”,es23.16)°
PRINT ’ (”JCD Put RMSE = ”,es23.16)’
PRINT ' (77)°

PRINT ’ (”MeanAE:”) "’

PRINT ’ (”BK Call MeanAE = ”,es23.16)°
PRINT ’ (”BK Put MeanAE = ”,es23.16)°
PRINT ’ (”GST Call MeanAE = ”,es23.16)°
PRINT °(”GST Put MeanAE = ”,es23.16)°
PRINT ’ (”JCD Call MeanAE = ”,es23.16)°
PRINT ’ (”JCD Put MeanAE = ",es23.16)°
PRINT °(7”)°

END PROGRAM testEuropeanCEV

Call_.GST_incgam_delta2(j),

error (direct computation) for Gil,

incomplete gamma functions

computation) =

Call_.JCD_k2(j), PutlJCD_k2(j),
Put_GST_.incgam_deltal (j

Segura & Temme (2012, incomplete gamma

MAXVAL( Call_.GST_incgam_deltal);
MAXVAL( Call_GST_incgam_delta2);
MAXVAL( Put_GST_.incgam_deltal);
MAXVAL( Put _GST_incgam_delta2);

ratios P(a,x) and Q(a,

”,es23.16)°  MAXVAL(

JMAXVAL( Call_BK_AE) ;
MAXVAL(Put_.BK_AE) ;
MAXVAL( Call_GST_AE) ;
MAXVAL(Put_GST_AE) ;
JMAXVAL( Call_JCD_AE) ;
MAXVAL(Put_JCD_AE) ;

,MAXVAL( Call_BK_RE) ;
,MAXVAL( Put_BK_RE) ;
JMAXVAL( Call_GST.RE) ;
JMAXVAL( Put_GST_RE) ;
JMAXVAL( Call_JCD_RE) ;
MAXVAL( Put_JCD_RE) ;

,SQRT(SUM( Call_BK_SQE) / SIZE(Call_.BK_SQE));
,SQRT(SUM(Put_BK_SQE) / SIZE(Put_.BK_SQE));
,SQRT(SUM( Call_.GST_SQE) / SIZE(Call_.GST_-SQE));
,SQRT(SUM(Put_GST_SQE) / SIZE(Put_.GST_SQE));
,SQRT(SUM( Call_JCD_SQE) / SIZE(Call.JCD_SQE)):
,SQRT(SUM( Put_JCD_SQE) / SIZE(Put_.JCD_SQE));

, SUM(Call_.BK_AE) / SIZE(Call BK_AE);

, SUM(Put_.BK_AE) / SIZE(Put_BK_AE);

, SUM(Call_.GST_AE) / SIZE(Call_.GST.AE);
, SUM(Put_GST_AE) / SIZE(Put_GST_AE);

, SUM(Call_JCD_AE) / SIZE(Call.JCD_AE);
SUM(Put_JCD_AE) / SIZE(Put_JCD_AE);
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B.2 Code to compute European CEYV call option prices

MODULE EuropeanCEV_jcd
USE GammaKnueselBablok
USE MarcumFunctionJCD
IMPLICIT NONE

INTEGER, PARAMETER :: r8 = KIND(0.0d0)

PRIVATE

PUBLIC :: europeanCEVCall, europeanCEVPut, bentonKrishF
CONTAINS

SUBROUTINE bentonKrishF(w, v, lambda, yy)
USE IncgamFI

REAL(r8), INTENT(IN) :: w
REAL(r8), INTENT(IN) :: v
REAL(r8), INTENT(IN) :: lambda
REAL(r8), INTENT(OUT) :: yy

REAL(r8), PARAMETER :: errtol=1.e—15_r8; ! demanded accuracy
REAL(r8) :: x, del, k, a, pp, qq, gamkf, gamkb, poikf, poikb,
error , remain, sum
INTEGER :: maxitr, i, ierr
LOGICAL :: active
maxitr = 10000; !/maximum number of iterations
!'Set:
Xx = 0.5_r8 *x w;
del = 0.5_r8 x lambda;
k = INT(del);
a =058 xv + k;
CALL incgam(a,x,pp,qq,ierr);
gamkf = pp;
gamkb = gamkf;
poikf = EXP(—del + k * LOG(del) — loggam(k + 1.0_r8));
poikb = poikf;
xtermf = EXP((a — 1.0_r8) % LOG(x) — x — loggam(a));
xtermb = xtermf *x x / a;
sum = poikf * gamkf;
remain = 1.0_r8 — poikf;
i =0;
active = .TRUE.;
DO WHILE (active .EQV. .TRUE.)
i =1+ 1;
xtermf = xtermfxx/(a + i — 1.0_r8);
gamkf = gamkf — xtermf;
poikf = poikfxdel/(k + i);
sum = sum + poikfxgamkf;
error = remainx*xgamkf;
remain = remain — poikf;
IF (i > k) THEN
IF ((error <= errtol) .OR. (i > maxitr)) THEN
yy = sum;
active = .FALSE.;

xtermf ,

xtermb ,
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ENDIF

ELSE
xtermb = xtermbx(a — i + 1.0_r8) / x;
gamkb = gamkb + xtermb;
poikb = poikb * (k — i + 1.0_r8) / del;
sum = sum + gamkb * poikb;

remain = remain — poikb;

IF ((remain <= errtol ) .OR. (i > maxitr)) THEN

yy = sum;
active = .FALSE.;
ENDIF
ENDIF
END DO

END SUBROUTINE bentonKrishF

SUBROUTINE europeanCEVCall(spot, strike , tau, intrate , divyield, delta, beta,
DistNC, errtol , check_-incgam, &
z, incgam_deltal , incgam_delta2)
USE GammaCHI
IMPLICIT NONE
REAL(r8), INTENT(IN) :: spot
REAL(r8), INTENT(IN) :: strike
REAL(r8), INTENT(IN) :: tau
REAL(r8), INTENT(IN) :: intrate
REAL(r8), INTENT(IN) :: divyield
REAL(r8), INTENT(IN) :: delta
REAL(r8), INTENT(IN) :: beta

INTEGER, INTENT(IN)
REAL(r8), INTENT(IN)
LOGICAL, INTENT(IN)

DistNC
errtol

check_incgam

REAL(1r8), INTENT(OUT) :: z

REAL(r8) , INTENT(OUT)

incgam_deltal

REAL(r8), INTENT(OUT)

REAL(r8) :: k, x, y, v, cdfl, cdf2, q, p, yy, fvalue, fcvalue, jcd-p, jcd_q

INTEGER :: ierr

k = 2.0_r8=«(intrate —divyield)/((delta*x2.0_r8)*(2.0_r8—beta)*x(EXP((intrate —divyield
)*(2.0 _r8—beta)*xtau)—1.0_r8));

x = k * (spot **x (2.0_r8 — beta)) * EXP((intrate — divyield) * (2.0_-r8 — beta) =*

tau);

incgam_delta2

y = k * strike xx (2.0_r8 — beta);
v =10_.r8 / (2.0_r8 — beta);
cdf1=0.0_r8;

cdf2=0.0_r8;

IF (beta < 2) THEN
SELECT CASE (DistNC)

CASE (1)
CALL BentonKrishF(2.0_-r8 x y, 2.0_r8 + 2.0_r8 x v, 2.0_r8 * x, yy);
cdfl = 1.0_r8 — yy;
CALL BentonKrishF(2.0_r8 * x, 2.0_r8 % v, 2.0_.r8 x vy, yy);
cdf2 = yy;

CASE (2)
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CALL cdfgamNC(2, 2.0_r8 + 2.0_r8 % v,2.0_r8 * x,2.0_r8 * vy, p, q, ierr)

5

cdfl = q;
CALL cdfgamNC(2, 2.0_r8 * v, 2.0_r8 =y, 2.0_r8 * x, p, q, ierr);
cdf2 = p;

CASE (3)

CALL Gammafunction(1.0_r8 + v, y, x, errtol, check_incgam, fvalue ,
fcvalue , incgam_deltal)

cdfl = fcvalue;

CALL Gammafunction(v,x,y, errtol , check_.incgam, fvalue, fcvalue,
incgam_delta2)

cdf2 = fvalue;

CASE (4)
CALL marcumpJCD(y, 1.0_r8 + v, x, jcd_p);

cdfl = 1.0_r8 — jcd_p;
CALL marcumpJCD(x, v, y, jcd-p);
cdf2 = jed-p;

END SELECT

ENDIF
IF (beta > 2) THEN
SELECT CASE (DistNC)
CASE (1)
CALL BentonKrishF (2.0 _r8 % x, —2.0_r8 * v, 2.0_r8 x vy, yy);
cdfl = 1.0.r8 — yy;
CALL BentonKrishF (2.0 _r8 x y, 2.0_.r8 — 2.0_r8 % v, 2.0_r8 * x, yy);

cdf2 = yy;
CASE (2)
CALL cdfgamNC(2, —2.0_.r8 % v, 2.0_r8 *xy, 2.0_r8 % x, p, q, ierr);
cdfl = q;
CALL cdfgamNC(2, 2.0_r8 — 2.0_r8 * v, 2.0_r8 % x, 2.0_r8 *y, p, q,
ierr);
cdf2 = p;
CASE (3)

CALL Gammafunction(—1.0_r8 * v,x,y, errtol, check_incgam, fvalue,
fcvalue , incgam_deltal)
cdfl = fcvalue;
CALL Gammafunction(1.0_r8 — v,y,x, errtol, check_incgam, fvalue,
fcvalue , incgam-_delta2)
cdf2 = fvalue;
CASE (4)
CALL marcumpJCD(x, —v, y, jcd_p);
cdfl = 1.0_.r8 — jcd_p;
CALL marcumpJCD(y, 1.0_r8 — v, x, jcd_p);
cdf2 = jed_p;
END SELECT
ENDIF
z = spot x EXP(—divyield % tau) *x cdfl — strike * EXP( —intrate % tau) x cdf2;
IF (check-incgam .EQV. .FALSE.) THEN

incgam_deltal = —1;
incgam_delta2 = —1;
END IF

END SUBROUTINE europeanCEVCall
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SUBROUTINE europeanCEVPut(spot, strike , tau, intrate , divyield, delta, beta, DistNC,
errtol , check_incgam, &
z, incgam_deltal , incgam_delta2)

USE GammaCHI

IMPLICIT NONE

REAL(r8), INTENT(IN) spot

REAL(r8), INTENT(IN) strike

REAL(r8), INTENT(IN) tau

REAL(r8), INTENT(IN) intrate

REAL(r8), INTENT(IN) divyield

REAL(1r8), INTENT(IN) delta

REAL(1r8), INTENT(IN) :: beta

INTEGER, INTENT(IN) DistNC

REAL(r8), INTENT(IN) errtol

LOGICAL, INTENT(IN) check_incgam

REAL(1r8), INTENT(OUT) :: z

REAL(r8), INTENT (OUT) incgam_deltal

REAL(r8), INTENT (OUT) incgam_delta2

REAL(r8) :: k, x, y, v, cdfl, cdf2, q, p, yy, fvalue, fcvalue, a, lambda, jcd_p,
jed_q

INTEGER :: ierr

k = 2.0_r8=«(intrate —divyield)/(delta *%x2.0_r8*(2.0_r8—beta)*(EXP((intrate —divyield)
*(2.0 _r8—beta)xtau)—1_r8));

x = k * (spot xx (2.0_r8 — beta)) x EXP((intrate — divyield) * (2.0_r8 — beta) x*
tau);

y = k * strike =xx (2.0_r8 — beta);

v=10_.r8 / (2.0_r8 — beta);

cdf1=0.0_r8;

cdf2=0.0_r8;

IF (beta <2) THEN
SELECT CASE (DistNC)

CASE (1)
CALL BentonKrishF(2.0_-r8 x y, 2.0_r8 + 2.0_r8 * v, 2.0_r8 * x, yy);
cdfl = yy;
CALL BentonKrishF(2.0_r8 * x, 2.0_r8 % v, 2.0_r8 * y, yy);
cdf2 = 1.0_r8 — yy;
CASE (2)
CALL cdfgamNC(2, 2.0_r8 + 2.0_r8 * v, 2.0_r8 * x, 2.0_r8 =y, p, q,
ierr);
cdfl = p;
CALL cdfgamNC(2, 2.0_r8 *x v, 2.0_r8 vy, 2.0_r8 % x, p, q, ierr);
cdf2 = q;
CASE (3)

CALL Gammafunction((2.0_r8 + 2.0_r8 x v) / 2.0_r8, (2.0_r8 *x y) / 2.0

r8, (2.0_r8 % x) / 2.0_r8, &
errtol , check_incgam, fvalue ,fcvalue, incgam_deltal)
cdfl = fvalue;

CALL Gammafunction( (2.0 _r8 % v) / 2.0_r8,
r8 % y) / 2.0_r8, errtol, &
check_incgam , fvalue ,fcvalue,

(2.0_r8 * x) / 2.0_r8,

incgam_delta2)

(2.0
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cdf2 = fcvalue;

CASE (4)
CALL marcumpJCD(y, 1.0_r8 + v, x, jcd_p);
cdfl = jed_p;

CALL marcumpJCD(x, v, y, jcd-p);
cdf2 = 1.0.r8 — jcd_p;
END SELECT
END IF

IF (beta >2) THEN
SELECT CASE (DistNC)

CASE (1)
CALL BentonKrishF (2.0 _r8 % x, —2.0_r8 % v, 2.0_r8 x vy, yy);
cdfl = yy;

CALL BentonKrishF(2.0_-r8 x y, 2.0_.r8 — 2.0_r8 x v, 2.0_r8 * x, yy);
cdf2 = 1.0.r8 — yy;

CASE (2)
CALL cdfgamNC(2, —2.0_r8 * v, 2.0_r8 *x vy, 2.0_r8 * x, p, q, ierr);
cdfl = p;

CALL cdfgamNC(2, 2.0_r8 =2.0_r8 * v, 2.0_r8 * x, 2.0_r8 * vy, p, q, ierr)

cdf2 = q;
CASE (3)

CALL Gammafunction(—1.0_r8 = v,x, y, errtol, check_.incgam, fvalue,
fcvalue , incgam_deltal)

cdfl = fvalue;

CALL Gammafunction(1.0_r8 — v, y, x, errtol, check_.incgam, fvalue,
fcvalue , incgam_delta2)

cdf2 = fcvalue;

CASE (4)
CALL marcumpJCD(x, —v, y, jcd-p);
cdfl = jed-p:

CALL marcumpJCD(y, 1.0_r8 — v, x, jcd-p);
cdf2 = 1.0.r8 — jcd-p;

END SELECT
ENDIF
z = — spot * EXP(—divyield * tau) * cdfl + strike x EXP(—intrate * tau) * cdf2;
IF (check_incgam .EQV. .FALSE.) THEN
incgam_deltal = —1;
incgam_delta2 = —1;
END IF

END SUBROUTINE europeanCEVPut

REAL FUNCTION Factorial (n)
IMPLICIT NONE
INTEGER, INTENT(IN) :: n

INTEGER :: i
REAL :: Ans
Ans = 1
DOi =1, n

Ans = Ans * i
END DO
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Factorial = Ans
END FUNCTION Factorial
END MODULE EuropeanCEV_jcd

B.3 Code to compute non-central chi-square function ac-

cording to Kniisel and Bablok (1996)

MODULE GammaKnueselBablok
USE IncgamFI
IMPLICIT NONE

INTEGER, PARAMETER :: r8 = KIND(0.0d0)
PRIVATE

PUBLIC :: Gammafunction, Ffunction, Fcfunction
CONTAINS

SUBROUTINE Gammafunction(a,x,lambda, errtol ,check_incgam , fvalue, fcvalue,
incgam_delta)
IMPLICIT NONE
REAL(r8), INTENT(IN) :: a
REAL(r8), INTENT(IN) :: x
REAL(r8), INTENT(IN) :: lambda
REAL(r8), INTENT(IN) :: errtol
LOGICAL, INTENT(IN) :: check_incgam
REAL(r8), INTENT(OUT) :: fvalue
REAL(r8), INTENT(OUT) :: fcvalue
REAL(r8), INTENT(OUT) :: incgam_delta
IF (x > (a + lambda)) THEN
CALL Fcfunction(a,x,lambda, errtol ,fcvalue, check_incgam,

incgam_delta);

fvalue = 1.0_r8 — fcvalue;
ELSE
CALL Ffunction(a,x,lambda,errtol ,fvalue, check_.incgam, incgam-_delta
)
fcvalue = 1.0_r8 — fvalue;
END IF

END SUBROUTINE Gammafunction

SUBROUTINE Ifunction(a,x,errtol ,ivalue)
IMPLICIT NONE
REAL(r8), INTENT(IN) :: a
REAL(r8), INTENT(IN) :: x
REAL(r8), INTENT(IN) :: errtol
REAL(r8), INTENT(OUT) :: ivalue
REAL(r8) :: fac, mult, b, ib
INTEGER :: z, n
I'choose n as the smallest positive integer such that fac < errtol
!'fac = 0;
n = 1;
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fac = errtol + 1
DO WHILE (fac > errtol)
IF (n == 1) THEN
fac = x / a ;
ELSE IF (n == 2) THEN
fac = x xx 2 / (a x (a + 1));

ELSE
mult = a % (a+1);
DOz =3 ,n
mult = (a + z — 1) *x mult;
END DO
fac = x *x n / (mult);
END IF
n=mn+1;
END DO
n=mn-1;

!'backward recursion to compute I
ib = 0;
DOz =1,
b=a+n-z;
ib = (x / b) x (1 + ib);
END DO
ivalue = ib;
END SUBROUTINE Ifunction

SUBROUTINE Jfunction (a,x,errtol ,jvalue)
IMPLICIT NONE

REAL(r8), INTENT(IN) :: a
REAL(r8), INTENT(IN) :: x
REAL(r8), INTENT(IN) :: errtol
REAL(r8), INTENT (OUT) jvalue
REAL(r8) :: fac, mult, b, jb
INTEGER :: z, n

!'choose n as the smallest positive integer such

!fac = 0;
n=1;
fac = errtol + 1

DO WHILE (fac > errtol)
IF (n == 1) THEN

fac = (a — 1) / x;
ELSE
mult = (a — 1)
DOz =2 ,n
mult = mult * (a — n);
END DO
fac = (mult) / (x %% n);
END IF
n=mn+1;
END DO
n=mn-1;
IF (n > (x + a)) THEN
END IF

that fac < errtol
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!forward recursion to compute J
jib = 1;
DOz =1, (n— 1)
b=a—n+ z;
jb =1 + ((b / x) * jb);
END DO
jvalue = jb;
END SUBROUTINE Jfunction

SUBROUTINE Ffunction(a,x,lambda,errtol ,fvalue, check_incgam, incgam_delta)

IMPLICIT NONE

REAL(r8), INTENT(IN) :: a

REAL(r8), INTENT(IN) :: x

REAL(r8), INTENT(IN) :: lambda

REAL(r8), INTENT(IN) :: errtol

REAL(r8), INTENT(OUT) :: fvalue

LOGICAL, INTENT(IN) :: check_incgam

REAL(r8), INTENT(OUT) :: incgam_delta

REAL(r8) :: i, p, q, cump, s2,s2_sum , qkl, tkl, tkl_p_1,
INTEGER :: ierr
REAL(r8), PARAMETER :: eps=0.5e—17_r8;
!'Compute k2 value
cump = 0.0_.r8;

i =0.0_r8;
DO
CALL incgam(lambda,i,p,q,ierr);
IF ((1.0_r8 — p) < errtol) THEN
EXIT
END IF
i =1+ 1.0_r8;
END DO
i=1—1.0_r8; !/ k2 — 1
s2 = 0.0_r8;
s2_sum = 0.0_r8;
DO

CALL incgam(a + i,x,p,q,ierr);
!'Test for incomplete gamma function accuracy in
!Q(a+1,x)=0Q(a,x)+x " axexp(—x)/Gamma(a+1) and
!P(a+1,x)=P(a,x)—x"axexp(—x)/Gamma(a+1)
IF (check_incgam .eqv. .TRUE.) THEN
incgam_delta=—1;
delta = ABS(checkincgam(a + i,x,eps))
IF (delta>incgam_delta) THEN

incgam_delta = delta;
ENDIF
ELSE
incgam_delta = —1;
END IF
tkl_p-1 = s2; !As we are doing a backward recursion,
52
s2 = poisson(i, lambda) * p;

s2_sum = s2_sum + S2;

ival ,

tkl+1

delta

is

the previous
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tkl = s2; !the new tkl is the current s2
gkl = tkl_p_-1 / tkl;
IF (i == 0.0_r8) THEN

EXIT
END IF
i=1i—1.0_r8
END DO
fvalue = s2_sum;

END SUBROUTINE Ffunction

SUBROUTINE Fcfunction(a,x,lambda, errtol ,fvalue, check_incgam, incgam_delta)

IMPLICIT NONE
REAL(r8), INTENT(IN) :: a
REAL(r8), INTENT(IN) :: x
REAL(r8), INTENT(IN) :: lambda
REAL(r8), INTENT(IN) :: errtol
REAL(r8), INTENT(OUT) :: fvalue
LOGICAL, INTENT(IN) :: check-incgam
REAL(r8), INTENT(OUT) :: incgam_delta
REAL(r8) :: i, p, q, cump, s2,s2_sum , qkl, tkl, tkl_m_1, jval,
INTEGER :: ierr
REAL(r8), PARAMEIER :: eps=0.5e—17_r8;
!'Compute kI value
cump = 0.0_.r8;
i = 0.0_r8;

CALL incgam(lambda,i,p,q,ierr);
IF (p > errtol) THEN
EXIT
END IF
i =1+ 1.0_r8;
END DO
i=1i-— 1.0.r8;
s2 = 0.0_r8;
s2_sum = 0.0_r8;
DO
CALL incgam(a + i,x,p,q,lierr);
!'Test for incomplete gamma function accuracy in
!Q(a+1,x)=0(a,x)+x " axexp(—x)/Gamma(a+1) and
!P(a+1,x)=P(a,x)—x"axexp(—x)/Gamma(a+1)
IF (check.incgam .eqv. .TRUE.) THEN
incgam_delta=—1;
delta = ABS(checkincgam(a + i,x,eps))
IF (delta>incgam_delta) THEN

incgam_delta = delta;
ENDIF
ELSE
incgam_delta = —1;
END IF
tkl_m_1 = s2;
s2 = poisson(i, lambda) * q;

s2_sum = s2_sum + S2;

delta
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tkl = s2;
gkl = tkl / tkl_-m_1;
IF (qkl < 1.0_-r8) THEN
IF ((tkl / (1.0-r8 — qkl)) <= (errtol * s2_sum)) THEN
EXIT

END IF
END IF
i =1+ 1.0_r8
END DO
fvalue = s2_sum;
END SUBROUTINE Fcfunction

FUNCTION poisson (i, lambda) RESULT(p)
IMPLICIT NONE
REAL(r8), INTENT(IN) :: i
REAL(r8), INTENT(IN) :: lambda
REAL(r8) :: p
p = EXP(—lambda + i * LOG(lambda) — loggam(i + 1.0_r8));
END FUNCTION poisson

FUNCTION pfunction(a, x) RESULT(p)
IMPLICIT NONE
REAL(r8), INTENT(IN) :: a
REAL(r8), INTENT(IN) :: x
REAL(r8) :: p
p = (EXP(— x) * x %% (a — 1.0_r8)) / Gamma(a)
END FUNCTION pfunction

RECURSIVE FUNCTION Factorial (n) RESULT(Fact)
IMPLICIT NONE

REAL(r8) :: Fact

REAL(r8), INTENT(IN) :: n

IF (n == 0) THEN

Fact =1
ELSE

Fact = n * Factorial (n—1)
END IF

END FUNCTION Factorial
END MODULE GammaKnueselBablok
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Appendix C

JDCEY Fortran code

C.1 Code to test the different algorithms to compute JD-

23
24
25
26
27
28

CEYV option prices

PROGRAM testEuropeanJDCEV
USE NuttallFunctionJCD
USE NuttallTilde !/JCD2016
USE EuropeanJDCEV
USE NutallF
IMPLICIT NONE
INTEGER, PARAMETER :: r8 = KIND(0.0d0)
REAL(r8) :: spot, t0, beta, &
p-t0_0_GS, p-tO_-D_GS, p-t0O_-GS, p-t0_.0_.JCD, p_-t0_-D_JCD, p_-t0_JCD, p_-t0_.0_.GST, p-tO_D_GST,
p-t0O_GST, p-t0_-0_S, p_tO_D_S, p-t0O_S,finish, start, k2_threshold
REAL(r8), dimension(2500) :: k, T, intrate ,divyield, a, b, ¢
REAL(r8), dimension(2500) :: Put.GS, Put.JCD, Put.GST, Put JCD_AE, Put.GST_AE, Put_.S_AE,
Put_ JCD_k2, Put_.GST_k2, Put JCD_SQE, Put.GST_SQE, Put JCD_RE, Put.GST_RE
INTEGER :: i, j, nrun
INTEGER, parameter :: iu=20
OPEN(10,FILE="k. txt’)
OPEN(11 ,FILE="T. txt’)
OPEN(12 ,FILE="intrate . txt’)
OPEN(13 ,FILE="divyield.txt’)
OPEN(14 ,FILE="a. txt’)
OPEN(15,FILE="b. txt ")
OPEN(16 ,FILE="c. txt ")
DO i=1, 2500
READ(10,%) k(i);
READ(11,%) T(i);
READ(12,%) intrate (i);
READ(13,x) divyield (i);
READ(14 ,%) a(i);
READ(15,%) b(i);
READ(16,%) c(i);
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ENDDO

DO i=10, 16
CLOSE( i)
ENDDO

open (unit=iu, file="test_.EuropeanJDCEV_2.csv” ,action="write” ,status="replace”)
!'write the headers
write (iu,”(’ Contract Nr’,”,”,’P (GS)’,’,”,’P (JCD)"’,’,”,’P (GST)’ ,’,’,’P (JCD) AE
.7, P (GST) AE” ,’,’,’P (JCD) k2’,’,,’P (GST) k2°:)”)
!'Strike values
spot = 100.0_r8;
t0=0;
beta=—1.0_r8;
! k2 threshold in $
k2_threshold = 0.01_r8;
DO i=1, 2500 !size(K)
! Series solution (3.2) in Dias2014a (GS)

CALL europeanJ]DCEVPut(spot, K(i), T(i), tO, beta, intrate (i), divyield(i), a(i), b(i)

, ¢(i), 1, p-t0_0_-GS, p-t0O_-D_GS, p-t0_GS);
Put.GS(i) = p-t0_-GS;
! JCD algorithm in Dias2014a (DNI4)

CALL europeanJDCEVPut(spot, K(i), T(i), t0O, beta, intrate(i), divyield(i), a(i), b(i)

, ¢(i), 2, p-t0_.0.JCD, p-t0_-D_JCD, p-t0_.JCD);
Put JCD(i) = p-t0_.JCD;
Put_ JCD_AE(i) = ABS(Put_.GS(i) — Put.JCD(i));
!Squared error — to later compute RMSE
Put JCD_SQE(i) = Put JCD_AE(i) *x 2;
IF (Put.JCD_AE(i) > k2_threshold) THEN

Put_ JCD_k2(i) = 1.0_r8;
ELSE

Put_ JCD_k2(i) = 0.0 _r8;
END IF

!'Relative error
Put_ JCD_RE(i) = PutJJCD_AE(i) / Put.GS(i);
! Gil2013a NuttallF module (GST13)

CALL european]DCEVPut(spot, K(i), T(i), tO, beta, intrate (i), divyield(i), a(i), b(i)

, ¢(i), 3, p-t0O_.0O_.GST, p-tO_D_.GST, p-tO_GST);
Put_.GST (i) = p-tO_GST;
Put_.GST_AE(i) = ABS(Put_-GS(i) — Put.GST(i));
!Squared error — to later compute RMSE
Put_.GST_SQE(i) = Put.GST_-AE(i) x*x 2;
IF (Put.GST_AE(i) > k2_threshold) THEN
Put_.GST_k2(i) = 1.0_r8;
ELSE
Put_GST_k2 (i)
END IF
!'Relative error
Put_ GST_RE(i) = Put.GST_AE(i) / Put.GS(i);

0.0_r8;

write (iu,”(i4.0,’,’,es23.16,",7,es23.16,", ,es23.16,",  ,es23.16,"," ,es23.16 ,’,’, f2
.0,7,7,f2.0:)”) i, Put.GS(i), PutJCD(i), Put.GST(i), Put JCD_AE(i), Put.GST_AE (i

), Put JCD_k2(i), Put.GST_k2(i)
ENDDO
! Compute MaxAE, MaxRE, RMSE and MeanAE
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PRINT ’ ("MaxAE:”)’
PRINT ’ (”JCD Put MaxAE

PRINT ’ (”GST Put MaxAE =

PRINT ° (*”)°

PRINT ’ ("MaxRE:") "’
PRINT ’ (”JCD Put MaxRE

PRINT ’ (”GST Put MaxRE =

PRINT °(77)°

PRINT * ("RMSE:”) "’

PRINT ’(”JCD Put RMSE =

PRINT ’ (”GST Put RMSE =
PRINT * ()"

PRINT ’ (”MeanAE:”)’
PRINT ’ (”JCD Put MeanAE
PRINT ’ (”GST Put MeanAE
PRINT * (””)°

END PROGRAM testEuropeanJDCEV

= 7,es23.16)°  ,MAXVAL(Put_JCD_AE);

”,es23.16)°  ,MAXVAL(Put_.GST_AE);

= ”,es23.16)° MAXVAL(Put_.JCD_RE);

”,es23.16)°  MAXVAL(Put_.GST_RE);

”,es23.16)° ,SQRT(SUM(Put_JCD_SQE) / SIZE(Put.JCD_SQE));
”,es23.16)° ,SQRT(SUM(Put_.GST_SQE) / SIZE(Put_.GST.SQE));

= 7,es23.16)" , SUM(Put_.JCD_AE) / SIZE(Put.JCD_AE);
= 7,es23.16)° , SUM(Put_.GST_AE) / SIZE(Put_.GST_AE);

C.2 Code to compute European JDCEYV put option prices

MODULE European]DCEV
!USE GammaKnueselBablok
IMPLICIT NONE
INTEGER, PARAMETER
PRIVATE
PUBLIC :: european]DCEVCall,
CONTAINS

r8 = KIND(0.0d0)

europeanJDCEVPut

SUBROUTINE europeanJDCEVPut(spot, strike , T,

thetaFunc , p_t0_0, p-t0
USE ThetaFunctionJCD
USE NuttallTilde

USE ThetaGammaSeries
USE NutallF

IMPLICIT NONE
REAL(r8), INTENT(IN)
REAL(r8), INTENT(IN)
REAL(r8), INTENT(IN)
REAL(r8), INTENT(IN)
REAL(r8), INTENT(IN)
REAL(r8), INTENT(IN)
REAL(r8), INTENT(IN)
REAL(r8), INTENT(IN)
REAL(r8), INTENT(IN)
REAL(r8), INTENT(IN)
INTEGER, INTENT(IN)
REAL(r8), INTENT(OUT)

D, p-t0)

spot

strike

T

t0

beta

intrate

divyield

a

b

c
thetaFunc

p-t0_0

to,

beta ,

intrate ,

divyield, a, b,

c,
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REAL(r8), INTENT(OUT) :: p_-t0_D
REAL(r8), INTENT(OUT) :: p_-t0O
REAL(r8) :: x, k, delta_plus, tau, phil, phi2, phi3, phil.JCD, phil_GS ,phil_GST,
phi2_JCD, phi2_.GS, phi2_.GST, phi3_JCD, phi3_GS, phi3_GST, phi3_1, phi3_2, q, ql
, q2, MI, M2, c_t0
INTEGER :: ierr
x=(1.0_r8/ABS(beta))*(spot**xABS(beta));
k=(1.0_r8/ABS(beta))*(strike*xxABS(beta))+«EXP(—ABS(beta)*(intrate —divyield+b) x(T—t0)
)
delta_plus=((2.0 _r8x*c+1.0_r8)/(ABS(beta)))+2.0_r8;
IF ((intrate —divyield+b)==0) THEN
tau=(a*x%2.0_r8) *x(T—t0);
ELSE
tau=(a*x%2.0_r8/(2.0 _-r8xABS(beta)*(intrate —divyield+b))) *(1.0_r8—EXP(—2.0 _r8 «ABS
(beta)=x(intrate —divyield+b) *(T—t0)));
END IF
!'Computation of p-t0_D
SELECT CASE (thetaFunc)
CASE (1) ! Series solution (3.2) in Dias2014a
CALL thetaGammaSeriesFunction(—1.0_r8/(2.0 _-r8«ABS(beta)), x*%2.0_r8/tau,
delta_plus ,x*%2.0_r8/tau,1,phi3_1);
CALL thetaGammaSeriesFunction(—1.0_r8/(2.0 _-r8*ABS(beta)), x*%2.0_r8/tau,
delta_plus ,x*%2.0_r8/tau,—1,phi3_2);
phi3_GS = phi3_1 + phi3_2;
phi3 = phi3_GS;
CASE (2) ! JCD algorithm in Dias2014
CALL theta]CD(—1.0_r8/(2.0 _-r8+*ABS(beta)) ,TINY(0.0 _r8)=%1000.0_r8 , delta_plus
,x*%2.0_r8/tau,1,phi3_JCD);
phi3 = phi3_JCD;
CASE (3) ! Gil2013a NuttallF module
CALL nuttal (—1.0_r8/(2.0 -r8«ABS(beta)), delta_plus/2.0_r8 ,(x*%2.0_r8/tau)
/2.0_r8, TINY(0.0_-r8)%1000.0_r8, Ml, ierr);
phi3_GST = MI * 2x%(—1.0_r8/(2.0 _r8*ABS(beta)));
phi3 = phi3_GST;
END SELECT
q=EXP(—b*(T—t0) ) *((x*%2.0 _r8/tau) (1.0 _r8/2«ABS(beta)))*phi3;
p-t0O_D=strikexEXP(—intrate «(T—t0)) *(1.0_r8—q);
!'Computation of p_-t0_0
SELECT CASE (thetaFunc)
CASE (1) ! Series solution (3.2) in Dias2014a
CALL thetaGammaSeriesFunction (0.0 _r8 , k*%2.0_r8/tau,delta_plus ,x*%2.0_r8/
tau, 1, phil_.GS);
CALL thetaGammaSeriesFunction(—1.0_r8/(2.0 _-r8«xABS(beta)) ,k*%2.0_r8/tau,
delta_plus ,x*%2.0_r8/tau,l, phi2_GS);
phil = phil_GS;
phi2 = phi2_GS;

CASE (2) ! JCD algorithm in Dias2014a
CALL thetaJCD (0.0 _-r8, k*x%2.0_r8/tau,delta_plus ,x*%2.0_r8/tau, 1, phil_.JCD);
CALL theta]CD(—1.0-r8/(2.0 _-r8+*ABS(beta)) ,k**2.0_r8/tau, delta_plus ,x*%2.0
_r8/tau,l, phi2_JCD);
phil = phil_JCD;
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phi2 = phi2_JCD;
CASE (3) ! Gil2013a NuttallF module
! Compute Call option price to use theta+ (and its relation with Q_(eta,mu)
(x,y) — P_(eta,mu)(x,y) in unavailable for GST).

! Use Put—Call parity to compute put option price conditional on no default

! By using this approach we compute two less time a series expansions (M-q
above). We use put—call parity instead.
I'phil+
CALL nuttal (0.0_r8, delta_plus/2.0_r8, (x*%2.0_r8/tau)/2.0_r8, (k*%2.0_r8/
tau)/2.0 _r8 ,phil _GST, ierr);
I'phi2+
CALL nuttal (—1.0_r8/(2.0 _r8«ABS(beta)), delta_plus/2.0_r8, (x*%2.0_r8/tau)
/2.0 _r8, (kx*%2.0_r8/tau)/2.0_r8 ,phi2_GST, ierr);
phil = phil_GST;
phi2 = phi2_.GST * (2%%(—1.0_r8/(2.0 _-r8*xABS(beta))));
END SELECT
c_tO=EXP(—divyield «(T—t0))*spot*phil &
—EXP(—(intrate+b)x(T—t0))*strike x((x*%2.0 _r8/tau) **(1.0_r8/(2.0 _.r8 *xABS(beta))))x*
phi2;
! put—call parity
p-t0_0 = c_t0 + strike * EXP(—intrate *(T—t0)) — spot * EXP(—divyield *(T—t0)) —
p-t0_D;
!'Computation of p_t0
p-t0O=p_t0_0+p-t0_D;
END SUBROUTINE european]DCEVPut
END MODULE EuropeanJDCEV

C.3 Code to compute truncated moments benchmark ac-

cording to the Gamma series approach

MODULE ThetaGammaSeries
USE IncgamFI
IMPLICIT NONE

INTEGER, PARAMETER :: r8 = KIND(0.0d0)
PRIVATE

PUBLIC :: thetaGammaSeriesFunction
CONTAINS

SUBROUTINE thetaGammaSeriesFunction(p, x, n, lambda, theta, y)
! Series solution (3.2) in Dias2014a

USE GammaCHI

IMPLICIT NONE

REAL(r8), INTENT(IN) :: p
REAL(r8), INTENT(IN) :: x
REAL(r8), INTENT(IN) :: n
REAL(r8), INTENT(IN) :: lambda
INTEGER , INTENT(IN) :: theta

REAL(r8), INTENT(OUT) :: y
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39
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46
47
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49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

REAL(r8) :: sum, pp, qq, i, z, z-sum, tkl_-m_1,tkl, gkl
INTEGER :: ierr
REAL(r8), PARAMETER :: errtol=1.e—15_r8;

z = 0.0_r8;

Z_sum = 0.0_r8;
i = 0.0_r8;
DO

tkl_-m_-1 = z
z = (poisson(i, lambda / 2.0_r8) % Ifunction(n/2.0_r8 + i,
)
Z_sum = zZ_sum + Z;
tkl = z;
gkl = tkl / tkl_m_1;
IF ((tkl / gkl) > 0.0_r8) THEN
IF ((tkl / (qgkl)) <= (errtol x z_sum)) THEN
EXIT
END IF
END IF
i =1+ 1.0_r8;
END DO
y = (2.0_r8 *x p) * z_sum;
END SUBROUTINE thetaGammaSeriesFunction

FUNCTION poisson (i, lambda) RESULT(p)
IMPLICIT NONE
REAL(r8), INTENT(IN) :: i
REAL(r8), INTENT(IN) :: lambda
REAL(r8) :: p

p = EXP(—lambda + i * LOG(lambda) — loggam(i + 1.0_r8));

END FUNCTION poisson

FUNCTION Ifunction(a, x, p, theta) RESULT(r)
IMPLICIT NONE
REAL(r8), INTENT(IN) :: a
REAL(r8), INTENT(IN) :: x
REAL(r8), INTENT(IN) :: p
INTEGER, INTENT(IN) :: theta
REAL(r8) :: pp, qq, r
INTEGER :: ierr
CALL incgam(a+p,Xx,pp,qq,ierr);
IF (theta == —1) THEN

r = EXP(loggam (a+p) — loggam(a)) * pp;
ELSE

r = EXP(loggam (a+p) — loggam(a)) * qq;
END IF

END FUNCTION Ifunction

END MODULE ThetaGammaSeries

x / 2.0_r8, p,

theta
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