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ABSTRACT 
 
It is intended, in this work, to present the Kuhn-Tucker theorem with the consideration of infinite inequali-

ties. So the mathematical fundaments of this result, not so important in Mathematical Programming but a very 
challenging problem from the mathematical point of view, are presented in a very simple way. It is shown how this 
result can be obtained in the context of real Hilbert spaces using the separation theorems. 
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1. INTRODUCTION 
 
As an application of convex sets separation theorems, in real Hilbert spaces, see (1-3), the Kuhn-Tucker’s 

theorem with the consideration of infinite inequalities is presented. 
But consider first an important property of the real Hilbert spaces convex continuous functionals: 
 
Theorem 1.1. 
A continuous convex functional in a Hilbert space has minimum in any limited closed convex set.  
 
Demonstration: 
If the space is of finite dimension, obviously the condition of the convexity for the set is not needed. In 

spaces of infinite dimension, note that if {ݔ௡} is a minimizing sequence, so, as the sequence is bounded, it is 
possible to work with a weakly convergent sequence and there is weak lower semi continuity, see for instance 
(4): lim݂(ݔ௡) ≥  .calling f (.) the functional, where x is the weak limit, and consequently the minimum is f(x) ,(ݔ)݂
As a closed convex set is weakly closed, x belongs to the closed convex set∎. 

 
 Now it is possible to establish a basic result characterizing the minimal point of a convex functional 

constrained by convex inequalities: the Kuhn-Tucker’s theorem, see for instance (5), object of the next section. A 
finite number of inequalities will considered, for now, and note that there is no need of imposing any continuity 
conditions, see (1). 

 
2. KUHN-TUCKER’S THEOREM 
 
Theorem 2.1. (Kuhn-Tucker) 
 
Be ݂(࢞), ௜݂(࢞), ݅ = 1, … , ݊, convex functionals defined in a convex subset C of a Hilbert space. 
Consider the problem 

min
௫∈஼

݂(࢞)

(࢞)௜݂ :ܾݑݏ  ≤ 0, ݅ = 1, … , ݊.
 

 
Be ࢞଴ a point where the minimum, supposed finite, is reached. 
 
Suppose also that for each vector u in ܧ௡ (Euclidean space of dimension n), non-null and such that ݑ௞ ≥ 0, 

there is a point x in C such that 
 

෍ ௞ݑ ௞݂(࢞)
௡

௞ୀଵ

< 0 (2.1) 

 
where ݑ௞ are the coordinates of u. 
 
Thus, 
 
i) There is a vector v, with non negative coordinates ݒ௞, such that 
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min
࢞∈஼

൝݂(࢞) + ෍ ௞ݒ ௞݂(࢞)
௡

௞ୀଵ

ൡ = ݂(࢞଴) + ෍ ௞ݒ ௞݂(࢞଴) = ݂(࢞଴), (2.2)
௡

௞ୀଵ

 

 
ii)For any vector u in ܧ௡ with non negative coordinates (it is also said: belonging to the positive cone of ܧ௡) 
 

݂(࢞) + ෍ ௞ݒ ௞݂(࢞) ≥
௡

௞ୀଵ

݂(࢞଴) + ෍ ௞ݒ ௞݂൫࢞଴ ≥ ݂(࢞଴)൯ + ෍ ௞ݑ ௞݂(࢞଴).
௡

௞ୀଵ

 (2.3)
௡

௞ୀଵ

 

 
Demonstration: 
Be the sets A and B in ܧ௡ାଵ: 
 

:ܣ {࢟ = ଴ݕ) , ଵݕ , … , (௡ݕ ∈ :௡ାଵܧ ଴ݕ ≥ ݂(࢞), ௞ݕ ≥ ௞݂(࢞)for some ࢞ in ܥ, ݇ = 1, … , ݊. },  
 
 

:ܤ {࢟ = ଴ݕ) , ଵݕ , … , (௡ݕ ∈ :௡ାଵܧ ଴ݕ < ,(଴ݔ)݂ ௜ݕ < 0, ݅ = 1, … , ݊. }. 
 
 
It is easy to verify that A and B are convex sets in ܧ௡ାଵ, disjoint. 
 
So they can be separated, that is, it is possible to find ݒ௞ , ݇ = 0,1, … , ݊ such that  
 

inf
࢞∈஼

(࢞)଴݂ݒ + ෍ ௞݂(࢞) ≥ (଴ݔ)଴݂ݒ − ෍ |௞ݕ|௞ݒ
௡

௞ୀଵ

௡

௞ୀଵ

. (2.4) 

 
As (2.4) must hold for any |ݕ௞| , it is concluded that ݒ௞ , ݇ = 1, … , ݊ , is non negative. In particular 

approaching |ݕ௞| from zero it is obtained 
 

(଴ݔ)଴݂ݒ + ෍ ௞ݒ ௞݂

௡

௞ୀଵ

(࢞) ≥  (଴ݔ)଴݂ݒ

 
and as the ௞݂(ݔ଴) are non positive it follows that 
 

෍ ௞ݒ ௞݂(ݔ଴)
௡

௞ୀଵ

= 0. (2.5) 

 
Then it is shown that ࢜૙ must be positive 
In fact if the whole ݒ௞ , ݇ = 1, … , ݊ are zero, ݒ଴ cannot be zero, and from ݒ଴ݖ଴ ≥ ଴ݕ ଴ for anyݕ଴ݒ < (଴ݔ)݂ <

଴ݖ , it follows that ݒ଴ must be positive. 
Supposing now that not all the ݒ௞ are zero, k=1, …, n, there is an ࢞ ∈ ∑ such that ܥ ௞ݒ ௞݂(࢞)௡

௞ୀଵ < 0 (by 
hypothesis). But for any ݖ଴ greater or equal than ݂(࢞) it must be ݒ଴൫ݖ଴ − ൯(଴ݔ)݂ ≥ − ∑ ௞ݒ ௞݂(ݔ଴)௡

௞ୀଵ > 0, and so ݒ଴ 
must be positive. So, after (2.4) and putting ௞ܸ = ೡೖ

ೡబ
, ݇ = 1, … , ݊ it is obtained 

 

݂(࢞) + ෍ ௞ܸ ௞݂(࢞) ≥ (଴ݔ)݂ = (଴ݔ)݂ + ෍ ௞ܸ ௞݂(ݔ଴)
௡

௞ୀଵ

௡

௞ୀଵ

, 

 
resulting in consequence the remaining conclusions of the theorem∎. 
 
Observation:  
 
- A sufficient condition, obvious but useful, so that (2.1) holds is that there is a point x in C such that ௜݂(࢞) 

is lesser than zero for each ݅, ݅ = 1, … , ݊. 
 

Corollary 2.1. (Lagrange’s Duality Theorem) 
 
In the conditions of Kuhn-Tucker’s Theorem  
 

(଴ݔ)݂ = sup
࢛ஹ଴

inf
࢞∈஼

൭݂(࢞) + ෍ ௞ݑ ௞݂(࢞)
௡

௞ୀଵ

൱ . 

 
Demonstration: 
࢛ ≥ 0 means that the whole coordinatesݑ௞ , ݇ = 1, … , ݊, of u are non negative. The result is a consequence 

of the arguments used in the Theorem of Kuhn-Tucker demonstration: 
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- For any ࢛ ≥ 0 
 

inf
࢞∈஼

ቌ݂(࢞) + ෍ ௞ݑ

௡

௞ୀଵ
௞݂(࢞)ቍ ≤ (଴ݔ)݂ + ෍ ௞ݑ ௞݂(ݔ଴) ≤ (଴ݔ)݂

௡

௞ୀଵ

. 

 
- In particular for ݑ௞ =  ௞ݒ

inf
࢞∈஼

ቌ݂(࢞) + ෍ ௞ݒ

௡

௞ୀଵ
௞݂(࢞)ቍ ≥  .(଴ݔ)݂

 
then resulting the conclusion ∎. 
 
Observation:  
 
- This Corollary gives a process to determine the problem optimal solution.  
- If the whole ݒ௞ in expression (2.3) are positive, ݔ଴ is a point that belongs to the border of the convex set 

determined by the inequalities. 
- If the whole ݒ௞ are zero, the inequalities are redundant for the problem, that is: the minimum is the same 

as in the “free” problem (without the inequalities restrictions).  
 
3. KUHN-TUCKER’S THEOREM FOR INEQUALITIES IN INFINITE DIMENSION 
 
In this section, the situation resulting from the consideration of infinite inequalities will be studied. A 

possible approach is: 
 
- To consider a transformation F(x) from a real Hilbert space H to ܮଶ : space of the summing square 

functions sequences.  
- To consider the positive cone ℘, in ܮଶ , of the sequences which the whole terms are non-negative. 
- To consider the negative cone ℵ, in ܮଶ , of the sequences which the whole terms are non-positive. 
- To formalize the problem of the minimization of the convex functional f(x), constrained to ݔ ∈  ,convex ܥ

as in section 2, and (ݔ)ܨ ∈ ℵ, supposing that (ݔ)ܨ is convex. 
 
Unfortunately the Kuhn-Tucker’s theorem does not deal with this situation. 
Similarly to the demonstration of Theorem 2.1 define 

 
ܣ = ,ݕ)} :(ݖ ݕ ≥ ݖ ⋀ (ݔ)݂ − (ݔ)ܨ ∈ ℘ for any ݔ ∈  ,{ܥ

 
ܤ = ,ݕ)} :(ݖ ݕ < ∧ (଴ݔ)݂ ݖ  ∈ ℵ}, 

 
where ݔ଴ is a minimizing point, as before. But, now, A and B, even being disjoint, can not necessarily be 

separated if neither A nor B have interior points. And evidently ℵ has not interior points. 
 Another way, in order to establish a generalization, may be: 
 
- To consider a real Hilbert space I that encloses a closed convex cone ℘. 
- Given any two elements ݔ, ∋ ݕ ݔ ,ܫ ≥ ݔ if ݕ − ݕ ∈ ℘.  
It is a well defined order relation: if ݔ ≥ ݕ and ݕ ≥ ,ݖ ݔ − ݕ ∈ ℘ and ݕ − ݖ ∈ ℘; being ℘ a convex cone, 

ݔ) − (ݕ + ݕ) − (ݖ ∈ ℘, that is ݔ ≥  .ݖ
- So ℘ may be given by ℘ = ݔ} ∈ :ܫ ݔ ≥ 0} and may be called positive cone. 
- The negative cone ℵ will be given by ℵ = −℘ = ݔ} ∈ :ܫ ݔ ≤ 0}. 
 
Having as reference these order relation, it is possible to define a convex transformation in the usual way. 

If the cone ℵ  has a non-empty interior, a version of the Kuhn-Tucker’s theorem for infinite dimension 
inequalities may be established. 

 
Theorem 3.1. (Kuhn-Tucker in Infinite Dimension) 
 
Call C a convex subset of a real Hilbert space H and ݂(ݔ) a real convex functional defined in C.  
Be I a real Hilbert space with a convex closed cone ℘, with non-empty interior, and (ݔ)ܨ  a convex 

transformation from H to I – convex in relation with the order induced by the cone ℘. 
Consider ݔ଴, a minimizing of ݂(ݔ) in C, constrained to the inequality (ݔ)ܨ ≤ 0.  
Call ℘∗ = ,ݔ] :ݔ} [݌ ≥ 0, for any ݌ ∈ ℘} - the dual cone. 
Admit that given any ݑ ∈ ℘∗ it is possible to determine x in C such that [ݑ, [(ݔ)ܨ < 0. 
So, there is an element v in the dual cone ℘∗, such that for x in C 
  

(ݔ)݂ + ,ݒ] [(ݔ)ܨ ≥ (଴ݔ)݂ + ,ݒ] [(଴ݔ)ܨ ≥ (଴ݔ)݂ + ,ݑ]  ,[(଴ݔ)ܨ
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where u is any element of ℘∗. 
 
Demonstration: 
It is identical to the one of Theorem 2.1. Build A and B, subsets of ܧଵ ×  :ܫ
 

ܣ = {(ܽ, :(ݕ ܽ ≥ ,(ݔ)݂ ݕ ≥ ,(ݔ)ܨ for any ݔ in ܥ}, 
 

ܤ = {(ܽ, :(ݕ ܽ ≤ ,(଴ݔ)݂ ݕ ≤ 0}. 
 

In the real Hilbert space ܧଵ × ܣ these sets can be separated, since B has non-empty interior and ,ܫ ∩  has ܤ
not any interior point of B. So it is possible to find a number ܽ଴ and ݒ ∈ (ݔ)such that, for any x in C, ܽ଴݂ ܫ +
,ݒ] [(ݔ)ܨ ≥ ܽ଴݂(ݔ଴) − ,ݒ] ,ݒ] in ℘. As this inequality left side is lesser than infinite, it follows that ݌ for any [݌ [݌ ≥ 0, 
for any ݌ ∈  ℘ and so ݒ ∈ ℘∗. 

The remaining demonstration is a mere copy of the Theorem 2.1’ s∎. 
 
There is also a version in infinite dimension for the Lagrange’s Duality Theorem: 
 
 Corollary 3.1. (Lagrange’s Duality Theorem in Infinite Dimension) 
 
In the conditions of Kuhn-Tucker’s Theorem in Infinite Dimension  
 

(଴ݔ)݂ = sup
௩∈℘∗

inf
࢞∈஼

(ݔ)݂) + ,ݒ]  .([(ݔ)ܨ

 
4. CONCLUSIONS 
 
Through subtle, although conceptually complicated, generalization of Kuhn-Tucker’s theorem it was 

possible to present the mathematical fundaments of Kuhn-Tucker’s theorem in infinite dimension. It was 
necessary to define very carefully the domains to be considered: the Hilbert spaces and the adequate cones. And 
this is a really challenging problem from the mathematical point of view.  

In order to attain such an achievement it was necessary to use a lot of mathematical tools that may be 
considered in the scope of the functional analysis. So, as in (1), in Kolmogorov and Fomin (4) the chapters used 
were mainly III and IV; in Balakrishnan (5) 1 and 2; in Kantorovich and Akilov (6) II and IV; in Brézis (7) I and V; in 
Royden (8) 10; in Aubin (9) 1, 2, 3 and 4. 
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