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Functoriality and K-theory for GL,(R)
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Abstract. We investigate base change and automorphic induction C/R at the level of K-
theory for the general linear group GLy(R). In the course of this study, we compute in
detail the C*-algebra K-theory of this disconnected group. This article is the archimedean
companion of our previous article [12].

1. INTRODUCTION

In the general theory of automorphic forms, an important role is played
by base change and automorphic induction, two examples of the principle of
functoriality in the Langlands program [5]. Base change and automorphic
induction have a global aspect and a local aspect [1]. In this article, we focus
on the archimedean case of base change and automorphic induction for the
general linear group GL,,(R), and we investigate these aspects of functoriality
at the level of K-theory.

For GL,(R) and GL,(C) we have the Langlands classification and the as-
sociated L-parameters [10]. We recall that the domain of an L-parameter of
GL,(F) over an archimedean field F is the Weil group Wr. The Weil groups
are given by

We = C* and Wr = <]>(C><
where j2 = —1 € CX, je = ¢j for all ¢ € C*. Base change is defined by
restriction of L-parameter from Wx to We.

An L-parameter ¢ is tempered if ¢(Wp) is bounded. Base change therefore
determines a map of tempered duals.

Let X.,Y be locally compact Hausdorff spaces, let X, Y™ be their one-
point compactifications. A map f : X — Y is continuous at infinity if it is
the restriction of a continuous map from X+ to Y+. The K-theory groups K°
and K are contravariant functors from the category of locally compact Haus-
dorff spaces whose morphisms are maps continuous at infinity to the category
of abelian groups, see [13, Prop. 2.6.10]. Now the tempered dual of GL,, (F)
with F' = R or C is a locally compact Hausdorff space. It seems natural to fuse
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together the Langlands functoriality which occurs in base change and automor-
phic induction with the K-theory functoriality. In this article, we accordingly
study base change and automorphic induction at the level of K-theory.

We outline here the connection with the Baum—Connes correspondence.
Let F denote R or C and let G = G(F) = GL,(F). Let C}(G) denote the
reduced C*-algebra of G. The Baum—Connes correspondence is a canonical
isomorphism [2, 6, 11]

pr : KST(BG(F) — K.CHG(F)),

where EG(F) is a universal example for proper actions of G(F).

The noncommutative space C(G(F)) is strongly Morita equivalent to the
commutative C*-algebra Co(A? (F')) where Al (F) denotes the tempered dual
of G(F), see [14] and [15, §1.2]. As a consequence of this, we have

K.CHG(F)) = K* Al (F).
This leads to the following formulation of the Baum—Connes correspondence:
KEY)(EG(F)) = K* Al (F).
Base change and automorphic induction C/R determine maps
BCe/w : A, (R) = A7, (C)
and
AZcr = A} (C) — A5, (R).
This leads to the following diagrams:

KSO(BG(C) —5— KA (C)

| Js.

KSP(BGR)) —— K AL (R)
and
KS®(EGR)) —“— K* AL, (R)

l [

KSO(EG(C) —5— K+ AL (C),

where the left-hand vertical maps are the unique maps which make the dia-
grams commutative.

In Section 2 we describe the tempered dual A (F) as a locally compact
Hausdorff space.

In Section 3 we compute the K-theory for the reduced C*-algebra of GL,, (R).
The real reductive Lie group GL,(R) is not connected. If n is even, our for-
mulas show that we always have nontrivial K and K!. We also recall the
K-theory for the reduced C*-algebra of the complex reductive group GL,(C),
see [14].
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In Section 4 we recall the Langlands parameters for GL,, over archimedean
local fields, see [10].

In Section 5 we compute the base change map BC : AL (R) — AL (C) and
prove that BC is a continuous proper map. At the level of K-theory, base
change is the zero map for n > 1 (Theorem 5.5) and is nontrivial for n =1
(Theorem 5.7).

In Section 6, we compute the automorphic induction map AZ : A% (C) —

L (R). Contrary to base change, at the level of K-theory, automorphic in-
duction is nontrivial for every n (Theorem 6.3).

In Section 7, where we study the case n = 1, base change for K! creates a

map

R(U(L)) — R(Z/2Z),

where R(U(1)) is the representation ring of the circle group U(1) and R(Z/2Z)
is the representation ring of the group Z/27Z. This map sends the trivial char-
acter of U(1) to 1®e, where ¢ is the nontrivial character of Z/2Z, and sends all
the other characters of U(1) to zero. Moreover, this map has an interpretation
in terms of K-cycles. The K-cycle

(Co(R), L*(R),i d/dx)

is equivariant with respect to C* and R*, and therefore determines a class
Jo € KE(EC*) and a class @ € KF (ER*). On the left-hand side of
the Baum—Connes correspondence, base change in dimension 1 admits the
following description in terms of Dirac operators:

dc = (P, P)-

This extends the results of [12] to archimedean fields.
We have, according to the Connes—Kasparov correspondence, the following
isomorphism:

K. CL(GLn(R)) = Ko,y (R™),

n)

the equivariant K-theory of R™ with respect to the standard action of the
orthogonal group O(n). This isomorphism opens the way to computing the
K-theory of C}(GL,(R)) via equivariant K-theory: this program is carried
out in the paper by Echterhoff and Pfante [8]. Our method of computing the
K-theory of C(GL,,(R)) is quite different, as we have to keep track of the
Langlands parameters.

After our article was posted on the arXiv, Chao and Wang sent us their
article [7]. Their work and ours were done independently. There is some
overlap, but we would like to describe the main differences. Their account
of base change is different, as they place an emphasis on Galois-fixed points.
In the context of the Connes—Kasparov isomorphism, they succeed in securing
base change on maximal compact subgroups [7, §7.2]. On the other hand, their
work does not include automorphic induction.
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2. ON THE TEMPERED DUAL OF GL,

Let FF = R. In order to compute the K-theory of the reduced C*-algebra
of GL,,(F) we need to parametrize the tempered dual A% (F') of GL,, (F). Our
key reference for the representation theory of GL,(R) is Knapp [10].

Let M be a standard Levi subgroup of GL,(F), i.e. a block-diagonal sub-
group. Let °M be the subgroup of M such that the determinant of each
block-diagonal is +1. Denote by

X(M)=M/°M
the group of unramified characters of M, consisting of those characters which
are trivial on "M
Let W(M) = N(M)/M denote the Weyl group of M. It acts on the discrete
series Fy(°M) of ° M by permutations.
Now, choose one element o € Eo(°M) for each W (M)-orbit. The isotropy
subgroup of ¢ is defined to be

Wo(M) ={weWM)|wo=0c}.

Take one standard Levi subgroup M from each conjugacy class of Levi sub-
groups and one discrete series o from each W (M)-orbit and form the disjoint

union

|| x(nyywo(n)y =1 | || X(M)/Wo(M).

[M,0] [M] [o]€eEa(°M)
The disjoint union has the structure of a locally compact Hausdorff space and
is called the Harish-Chandra parameter space.

Proposition 2.1. There ezists a bijection

|| X)W, (M) — ALR),
[M,0o] - ) -
X7 = gL, ®),mn (X7 ®1),
where x%(x) := x(z)o(x) for all z € M.

In view of the above bijection [15, §1.2], we will denote the Harish-Chandra
parameter space by A‘ (R).

We will see now the particular features of the archimedean case, starting
with GL,(R). Since the discrete series of GL,(R) is empty for n > 3, we only
need to consider partitions of n into 1’s and 2’s.

This allows us to decompose n as n = 2q + r, where ¢ is the number of 2’s
and 7 is the number of 1’s in the partition. To this decomposition we associate
the partition

n=(2,...,2,1,...,1),
——

which corresponds to the Levi subgroup
M = GL3(R) x -+ x GL2(R) x GL1 (R) x --- x GL1(R).

q T
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Varying ¢ and r, we determine a representative in each equivalence class of
Levi subgroups. The subgroup °M of M is given by

"M = SLE(R) x -+ x SLE(R) x SLE(R) X -+ x SLE(R),

q T

where
SLn(R) = {g € GLyu(R) | |det(g)| = 1}.
In particular, SL¥ (R) = {+1} = Z/2Z.
The representations in the discrete series of SLE (R), denoted by D for
¢ €N (¢ > 1) are induced from SLa(R) (see [10, p.399]):
De =g (r) sL,(m) (D)),

where Dj acts in the space

{f : H — C | f analytic, ||f||* = / |f (2) Pyt dady < oo}.

Here, H denotes the Poincaré upper half plane. The action of g = (‘g g) is
given by
az +c

D (9)(F(2)) = (b + )~ (20,

More generally, an element o from the discrete series EQ(OM ) is given by
U:Dgl®---®Deq®7‘1®"'®Tr,

where Dy, (£; > 1) are discrete series representations of SLi (R) and 7; is a
representation of SLT(R) & Z/27Z, i.e. id = (z + z) or sgn = (z — z/|z|).
Finally, we will compute the unramified characters X (M), where M is the
Levi subgroup associated to the partition n = 2q + r.
Let € GLy(R). Any character of GLy(R) is given by

x(det(z)) = (sgn(det(x)))¢|det(2)|”, e=0,1,t€R
and it is unramified provided that
x(det(g)) = x(£1) = (£1)° =1 for all g € SLI(R).

This implies € = 0 and any unramified character of GL2(R) has the form

(1) x(x) = |det(z)|" for some t € R.

Similarly, any unramified character of GL;(R) = R* has the form

(2) &(x) = |z|"  for some t € R.

Given a block diagonal matrix diag(gi,...,gq w1,...,wy) € M, where g; €

GL2(R) and w; € GL;(R), we conclude from (1) and (2) that any unramified
character x € X (M) is given by

x(diag(g1,- .-, 9q, w1, - .-, Wr))
= |det(g1)|”1 ---|det(gq)|“q . |w1|itq+1 ... |wr|itq+r,
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for some (t1,...,tq+r) € RIT". We can denote such element x € X (M) by
X(t1,....tq1r)- We have the following result.

Proposition 2.2. Let M be a Levi subgroup of GL,(R), associated to the
partition n = 2q + r. Then, there is a bijection

X(M) =R xq,

Let us consider now GL,,(C). The tempered dual of GL,(C) comprises the
unitary principal series in accordance with Harish-Chandra [9]. The corre-
sponding Levi subgroup is a maximal torus 7" 2 (C*)™. Denote by U the
standard unipotent subgroup of GL,,(C). The principal series representations
are given by

et = iaq,ru(0 ® 1),

where 0 =01 ® --- ® 0, and 0;(z) = (z/|z|)£j|z|gj (¢; € Z and t; € R), with
|zlc = 2Z = |2]2, see [10, p.405].
An unramified character is given by

21
X = |z1fg x - x |zalgm,

Zn

and we can represent x as X(,,....t,)- Lherefore, we have the following result.

Proposition 2.3. Denote by T the standard maximal torus in GL,,(C). There
s a bijection
X(T) _>er X(t1,.otn) = (t17'~'7tn)~

The Weyl group W is the symmetric group S,, and acts on R™ by permuting
the components.

3. K-THEORY FOR GL,

Using the Harish-Chandra parametrization of the tempered dual of GL,,(R)
and GL, (C) (recall that the Harish-Chandra parameter space is a locally com-
pact Hausdorff topological space), we can compute the K-theory of the reduced
C*-algebras CGL, (R) and C;GL,(C).

3.1. K-theory for GL, (R). We exploit the strong Morita equivalence de-
scribed in [15, §1.2]. We note in passing that, in the proof of this strong Morita
equivalence, the following ingredient is crucial: each tempered representation
of GL,(R), i.e. each unitary representation of GL,(R) which is unitarily in-
duced via parabolic induction from a discrete series representation of a Levi
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subgroup is irreducible, see [10, p.401]. We infer that

(3) K (CFGLa(R)) = K7 (| ] x(80)/W, (1))

(M,o)

= P KX )/ Wo(M))

(M’U)
= D KIR™ /W, (M)),
(41,0)

where nj; = g+ r if M is a representative of the equivalence class of the Levi
subgroup associated to the partition n = 2¢ + r. Hence the K-theory depends
on n and on each Levi subgroup.

For a given Levi subgroup M and a discrete series o of M, the isotropy
subgroup W, is a subgroup of the Weyl group W (M), which is in turn a
subgroup of the symmetric group S,. The isotropy subgroup has the form
Spy X --- xSy, and acts on R™ by permuting the components. Write

R™ 2 R™ x R™ x .-« x R™ x R*7™M 771,
If n =ny +--- + ng then we simply have R™ 2 R™ x ... x R",
The group Sy, x --- x 5y, acts on R™ as follows:

e S,, permutes the components of R"* leaving the remaining fixed;
e S,, permutes the components of R”? leaving the remaining fixed;

and so on. If n > ny + - -+ + ni the components of R"~" =" ~" remain fixed.
This can be interpreted, of course, as the action of the trivial subgroup. As a
consequence, one identifies the orbit spaces

R™/(Spy X +o+ X Sp ) ER™M/S,, x -+ x R™ /S, x RVTMT 70,
To compute the K-theory (3) we have to consider the following orbit spaces:
e R™ in which case W, (M) is the trivial subgroup of the Weyl group W (M );
o R"/(Sp, X -+ x8y,), where W,(M) =5, X +-+x Sy, CW(M) (see the
examples below).
The K-theory for R® may be summarized as follows:

KI(R") = Z ifn=j(mod?2),
10 otherwise.

Lemma 3.2. Forn > 1, one has K’(R"/S,) =0, j =0,1.

Proof. We consider the action of the symmetric group W = S,, on R". The
subspace
{t(1,...,1) |t e R}
is fixed by W, and the orthogonal subspace
ti={(x1,....,2n) |21+ + 2, =0}

is W-invariant. It follows that R™/S, ~ R x t/W. The action of W on t
is precisely the action of W on the Lie algebra t of the standard maximal
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torus T of the Lie group SL,(R). The closure C of a chamber C C t is a
fundamental domain for the action of W, see [4, Chap. 5, §3]. The quotient
t/W is homeomorphic to C. Then we have

R"/W ~R x C.
Now C is a closed simplicial cone with vertex at the origin of R™. It has the

topological type of a half-space in Euclidean space. Hence the K-theory of C'
is trivial. The lemma follows immediately from the Kiinneth theorem applied

to R x C. O
Lemma 3.3. One has K?(R"/(Sy, X -++ X Sp,)) =0, j = 0,1, where Sy, X
oo X Sy, C Sy, unlessng = -+ =np = 1.

Proof. Tt suffices to prove the lemma for R™/(S,, X Sp,). The general case
follows by induction on k.

Now, R"/(Sn, X Sp,) =& R™/S,, x R"™™ /S, . Applying the Kiinneth
formula and Lemma 3.2, the result follows. O

We give now some examples by computing K;C*GL,(R) for small n.
Example 3.4. We start with the case of GL;(R). We have
M=R*, °M=17/22, W(M)=1 and X(M)=R.
Hence,
AIR)= || R/I=RUR,
0e(Z/2Z)
and the K-theory is given by
K;C:GL;(R) = K7(A{(R)) = K/(RUR)

; ; 7ZoZ ifj=1,
=K'R)®e K’'(R) =
®) ®) {0 if 7 =0.
Example 3.5. For GL2(R) we have two partitions of n = 2 and the following
data
Partition M oM W(M) X(M) o¢cEy(°M)
240 GLy(R) SLy(R) 1 R c=D/,leN
1+1 (R*)?  (2/27)* Z/2Z R2 0=T1Q T2

with 7, € Z/—Z\Z ~ {id,sgn}. Then the tempered dual is parametrized as
AR) = | | X)W, (M) = (| R) U (R?/S2) U (R?/S3) UR?,
(M,o) £eN
and the K-theory groups are given by
K;C;GLy(R) = K7(Ay(R))
= (PKI®R) o K(R?) =

LeN

PByenZ ifj=1,
z if j = 0.
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The general case of GL,,(R) will now be considered. It can be split into two
cases: n even and n odd.

Case 1: n = 2m even.

Suppose n is even. For every partition n = 2¢ + r, either W,(M) = 1 or
Wo(M) £ 1. It W,(M) # 1 then R™™ /W, (M) is an orbit space for which
the K-groups K° and K! both vanish. This happens precisely when r > 2
because there are exactly two distinct discrete series representations of Z/2Z
and therefore we have only two partitions, corresponding to the choices of r = 0
and r = 2, which contribute to the K-theory with nonzero K-groups:

Partition M M W (M)

2m GLy(R)™ SL; (R)™ Sm
2(m —1) +2 GLa(R)™ 1 x (R*)?2 SLQjE(]R)m_1 X (Z)27)? Sp_1x(Z)27)

We also have

X(M)=R™ for n = 2m,
X(M)=R™! forn=2(m—1)+2.
For the partition n = 2m (r = 0), an element o € E5(°M) is given by
0=Dp ® - @D, by > > Ly, £; € N,
For the partition n = 2(m —1)+2 (r = 2), an element o € Eo(°M) is given by

m)

o= 'Dgl [ ®’Dem_1 ® id ® sgn, by > > ém—l, l; € Nm_l.
Therefore, the tempered dual has the form
AR =, ®) = (L] rYu( [ rR™uc
L1> >l >>0

m—1

with ¢;, é} € N and where C is a disjoint union of orbit spaces as in Section 3.
Note that the strictly decreasing condition is required in order to pick only one
discrete series from each Weyl group orbit.

Theorem 3.6. Suppose n = 2m is even. Then the K-groups are

K,;CGL,(R) = Do, L if j=m (mod2),
e De,>..ne,, L otherwise

with £; € N. If m =1 then K;C;GL2(R) = Z.

Case 2: n=2q+ 1 odd
If n is odd, only one partition contributes to the K-theory of GL,(R) with
nonzero K-groups:
Partition M M W(M) X(M)
2¢+1 GLy(R)7! x RX SLI(R)! x (Z/2Z) S,  R¢TT

An element o € FE2(°M) is given by

oDy @ @Dy, @, > >l b N, T € DT,
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And the tempered dual is
AR = A8, ®) = (L] R uc
01> >l.e
with ¢; € N and ¢ € Z/2Z. The space C is a disjoint union of orbit spaces as
in Section 3.

Theorem 3.7. Suppose n = 2q+ 1 is odd. Then the K-groups are
Z ifj=q+1 (mod?2),

K,;C:GL,(R) = ®€1>'”>€4’5
" 0 otherwise

with £; € N and € € Z/2Z. Here, we use the following convention: if ¢ = 0
then the direct sum is @y /97 L = L & L.

We conclude that the K-theory of C*GL,(R) depends on essentially one

parameter ¢ = | %] which gives the maximum number of 2’s in the partitions

of n into 1’s and 2’s.

3.8. K-theory for GL,, (C). Let °T be the maximal compact subgroup of
the maximal torus T’ of GL,,(C). Let o be a unitary character of °T. We note
that W = W(T) and W, = W,(T). If W, = 1 then we say that the orbit
W - o is generic.

Theorem 3.9. The K-theory of C*GL,(C) admits the following description.
If n = j (mod2) then K; is free abelian on countably many generators, one
for each generic W-orbit in the unitary dual of °T, and K11 = 0.

Proof. We exploit the strong Morita equivalence described in [14, Prop. 4.1].
We have a homeomorphism of locally compact Hausdorff spaces:

AL(C) = | | X(T)/W(T)
o]

by Harish-Chandra’s Plancherel theorem for complex reductive groups [9], and
the identification of the Jacobson topology on the left-hand side with the nat-
ural topology on the right-hand side, as in [14]. The result now follows from
Lemma 3.2. O

Remark 3.10. Note that [o] = [T, o] is labeled by ¢; > -+ > £, with ¢; € Z.
Moreover, W, (T) is trivial if and only if £1 > -+ > £,,.
4. LANGLANDS PARAMETERS FOR GL,,
The Weil group of C is simply
We = C*,
and the Weil group of R can be written as disjoint union

Wr = C* U C*,
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where j2 = —1 and jcj~! = ¢ (¢ denotes complex conjugation). We shall use
this disjoint union to describe the representation theory of Wrg.
An L-parameter is a continuous homomorphism

¢ : Wr — GL,(C)

such that ¢(w) is semisimple for all w € Wp.

L-parameters are also called Langlands parameters. Two L-parameters are
equivalent if they are conjugate under GL,,(C). The set of equivalence classes of
L-parameters is denoted by G,,. The set of equivalence classes of L-parameters
whose image is bounded is denoted by G .

Let F be either R or C. Let A,,(F) (resp. A% (F)) denote the smooth dual
(resp. tempered dual) of GL,,(F). The local Langlands correspondence is a
bijection

Gn(F) = A, (F).
When we restrict to bounded parameters, we obtain a bijection which we will
denote by pLy:
FLn Gy (F) — AL(F)

L-parameters for We. A 1-dimensional L-parameter for W¢ is a character
of C*:

PRV
xeal?) = (1) @ et

where |2|> = |z|c = 27, £ € Z and t € C. The unitary characters are therefore
given by

Xe.it (T,eie) _ r2itei69
with t € R and ¢ € Z.

L-parameters for Wg. The 1-dimensional L-parameters for Wg are as
follows:

(+:1)(z) = |2l and (+,8)(j) =1,
(= t)(2) = |z[z and (+,)(j) = ~1L.

We may now describe the local Langlands correspondence for GL(1, R):
(+.8) > 10 [ (= 8) = sgn® b

The Weil group Wgr admits 2-dimensional irreducible representations, de-
noted by ¢g¢ with £ € Z, £ # 0, and t € R. They are defined in [10, (3.3)]:

= (40 S - 0 )

We will need one crucial property, namely

(4) Gotlwe = Xet © X—et
and the single equivalence
Vet =Pyt
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According to [10, (3.4)], the L-parameter ¢y ;; corresponds, via the Lang-
lands correspondence, to the discrete series:

@eit = Dy @ |det(")[f, with ¢ €N, ¢t€R.

Lemma 4.1 ([10]). Every finite-dimensional semisimple representation ¢ of
Wr is fully reducible, and each irreducible representation has dimension one
or two.

5. BASE CHANGE

We may state the base change problem for archimedean fields in the follow-
ing way. Consider the archimedean base change C/R. We have W C Wx and
there is a natural map

Res%ﬁ : Gn(R) = G, (C)

called restriction. By the local Langlands correspondence for archimedean
fields (see [5, p.236, Thm. 3.1] and [10]), there is a base change map

BC: A,(R) —» A,(C)
such that the following diagram commutes:

An(R) —E5 5 4,(C)

TRE” T‘CE”
Wi
ResW§

Gn(R) ——— G, (C).

Arthur and Clozel’s book [1] gives a full treatment of base change for GL,,.
The case of archimedean base change can be captured in an elegant formula
[1, p. 71]. We briefly review these results.

Given a partition n = 2g 4+ let x; (i = 1,...,¢) be a ramified character
of C* and let & (j = 1,...,7) be a ramified character of R*. Since the x;’s
are ramified, x;(z) # x7(2) = x:(Z), where 7 is a generator of Gal(C/R). By
Langlands classification [10], each x; defines a discrete series representation
m(xi) of GL2(R), with w(x;) = 7w(x7). Denote by 7(x1,---,Xq,&1;---,& ) the
generalized principal series representation of GL,(R):

(5) W(Xla"'axqvé.la"'vgf’)
=iqL, ®),MN(T(X1) @ @ 7(xg) ®E1 @ - ®E @ 1).

The base change map for the generalized principal series representation is given
by induction from the Borel subgroup B(C) (see [1, p. 71]):

BC(TF) = iGLn(C)7B(C)(X17XIv e 'anaXZafl © Na ce af"“ © N)a

where N = N¢/g : C* — R* is the norm map defined by z + 2Z.
We illustrate the base change map with two simple examples.
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Example 5.1. For n = 1, base change is simply composition with the norm
map

BC: AL(R) — AL(C), BC(x)=yxoN.

Example 5.2. For n = 2, there are two different kinds of representations, one
for each partition of 2. According to (5), 7(x) corresponds to the partition
2 =240 and 7(&, &) corresponds to the partition 2 =14 1. Then the base
change map is given, respectively, by

BC(m(x)) = iqLy(c),Bc) XX )s

and
BC(m(&1,82)) = iaLy),B(c) (€10 N, & 0 N).

5.3. The base change map. Now, we define base change as a map of topolog-
ical spaces and study the induced K-theory map. A continuousmap f: X — Y
between topological spaces is proper if f~!(K) is a compact subset of X for
every compact subset K of Y. If f is a proper map between locally com-
pact Hausdorfl spaces then f is continuous at infinity, see [13, Prop. 2.6.4].
So proper maps are morphisms in the category of locally compact Hausdorff
spaces, see [13, Prop. 2.6.6].

Proposition 5.4. The base change map BC : AL (R) — A’ (C) is a continuous
proper map.

Proof. First, we consider the case n = 1. As we have seen in Example 5.1,
base change for GL(1) is the map given by BC(x) = x o N for all characters
x € A{(R), where N : C* — R* is the norm map.

Let z € C*. We have

(6) BC(x)(2) = x(|=*) = |2*".
A generic element from A} (C) has the form

(AN e
(7) we) = () el

where ¢ € Z and t € R, as stated before. Viewing the Pontryagin duals
At (R) and A} (C) as topological spaces by forgetting the group structure, and
comparing (6) and (7), the base change map can be defined as the following
continuous map:

o: AL(R) 2R x (Z/2Z) — A{(C) 2R x Z,
x = (t,¢) — (2t,0).

A compact subset of R x Z in the connected component {¢} of Z has the form
K x {{} CR x Z, where K C R is compact. We have

@ if ¢ £ 0,

oI ) = {%K x{e} ife=0,

where ¢ € Z/2Z. Therefore ¢! (K x {f}) is compact and ¢ is proper.
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Case n > 1. Base change determines a map BC : AL (R) — A? (C) of topo-
logical spaces. Let X = X (M)/W,(M) be a connected component of Af, (R).
Then, X is mapped under BC into a connected component Y = Y (T') /W, (T
of AL (C). Given a generalized principal series representation

W(le"'?ané-la"'aé-’r)a

where the x;’s are ramified characters of C* and the ’s are ramified characters
of R*, then

BC(’/T) :iG7B(X17X71—7"'7Xq7X7q—7€1ON;"'7£TON)'

Here, N = Ng/g is the norm map and 7 is the generator of Gal(C/R).
We associate to 7 the usual parameters uniquely defined for each character
x and £. For simplicity, we write the set of parameters as a (g + r)-tuple:

(t, ) = (t1, ... tg,th, ..., 1) € RTTT = X(M).

Now, if w(x1,. .-, Xq,&1,---,&) lies in the connected component defined by
the fixed parameters (¢,¢) € Z% x (Z/2Z)", then

(t,t') € X(M) s (t,t,2t") € Y(T)
is a continuous proper map.
It follows that
BC: X(M)/Wy(M) = Y(T)/Wu (T)

is continuous and proper since the orbit spaces are endowed with the quotient
topology. O

Theorem 5.5. The functorial map induced by base change

K;(BC)

K;(CrGL(C)) K;(CrGL(R))

is zero for n > 1.

Proof. We start with the case n > 2. Let n = 2¢q 4+ r be a partition and M
the associated Levi subgroup of GL,(R). Denote by Xg(M) the unramified
characters of M. As we have seen, Xg(M) is parametrized by R9*". On the
other hand, the only Levi subgroup of GL,,(C) for n = 2¢ + r is the diagonal
subgroup Xc¢ (M) = (C*)2atr,

If ¢ = 0 then » = n and both Xg(M) and X¢(M) are parametrized by R".
But then in the real case an element o € Ey(°M) is given by

o =igL,®),P(X1® @ Xn),

with x; € m Since n > 3, there is always repetition of the x;’s. It follows
that the isotropy subgroups W, (M) are all nontrivial and the spaces R™/W,,
are orbit spaces for which the K-theory groups vanish, see Lemma 3.3.

If ¢ # 0, then Xg(M) is parametrized by R¢*t" and X¢(M) is parametrized
by R?%*" (see Propositions 2.2 and 2.3).

Base change creates a map

RITT R2q+r.
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Composing with the stereographic projections, we obtain a map
Satr S2q+r

between spheres. Any such map is nullhomotopic [3, Prop. 17.9]. Therefore,
the induced K-theory map

K7(8§20T) — KI(S7tT)
is the zero map.

Case n = 2. For n = 2 there are two Levi subgroups of GL2(R), namely
M; = GL3(R) and the diagonal subgroup M, =2 (R*)2. By Proposition 2.2,
X (M) is parametrized by R and X (Mz) is parametrized by R?. The maximal
torus T of GL3(C) is the diagonal subgroup (C*)2. From Proposition 2.3 we
have X (T) = R2.

Since K'(AL(C)) = 0 by Theorem 3.9, we only have to consider the K°
functor. The only contribution to K°(A%(R)) comes from Ms = (R*)? and we
have (see Example 3.5)

KY(AL(R)) = Z.
For the Levi subgroup My = (R*)?2, base change is
BC : AL(R) — AL(C),
7(&1,62) = gLy (©),B©) ({10 N, §2 0 N).

Therefore, it maps a class [t1,¢2], which lies in the connected component
(e1,€2), into the class [2ty,2t3], which lies in the connect component (0, 0).
In other words, base change maps a generalized principal series 7(£1, &) into
a component of A%(C) whose discrete factor is a nongeneric orbit. It follows
from Theorem 3.9 that

K°(BC) : K°(A3(R)) — K°(A5(C))
is the zero map. O

5.6. Base change in one dimension. In this section we consider base change
for GL1 .

Theorem 5.7. The functorial map induced by base change

K1 (CrGL(C)) 25 Ky (07 QL (R))

is given by K1(BC) = A oPr, where Pr is the projection of the zero component
of K}(AY(C)) into Z and A is the diagonal Z — 7. ® Z.

Proof. For GL;, base change
X € A1 (R) = x 0 Neyz € Aj(C)
induces a map
K1 (BC) : K'(A1(C)) = K'(Aj(R)).
Any character x € AY{(R) is uniquely determined by a pair of parameters
(t,e) € R x Z/2Z. Similarly, any character u € A% (C) is uniquely determined
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by a pair of parameters (¢,¢) € R x Z. The discrete parameter ¢ (resp. £) labels
each connected component of A} (R) = RUR (resp. A{(C) =, R).

Base change maps each component ¢ of A!(R) into the component 0 of
Al (C), sending t € R to 2t € R. The map t + 2t is homotopic to the identity.
At the level of K1, the base change map is given by K;(BC) = A o Pr, where
Pr is the projection of the zero component of K'(A}(C)) into Z and A is the
diagonal Z — Z & Z. d

6. AUTOMORPHIC INDUCTION

We begin this section by describing the action of Gal(C/R) on We = Cx.
Take x = x¢¢ € C* and let 7 denote the nontrivial element of Gal(C/R).
Then, Gal(C/R) acts on C* as follows:

Hence,

) = () 1= = ()l
and we conclude that
X,1(2) = X-2,(2)-
In particular,
X'=x & {=0¢s x=|
i.e., x is unramified.

Note that We C Wk, with index [Wg : W] = 2. Therefore, there is a
natural induction map

Inde/x : G1(C) — G(R).

By the local Langlands correspondence for archimedean fields [5, 10], there
exists an automorphic induction map AZ¢ g such that the following diagram
commutes:

AL (€) 2L A4(R)

t

Q
Q
X
)

Proposition 6.1. If ¢ £ 0, then

Indc/r(xe,t) >~ Inde/r(X—e,t) = et
If £ =0, then
IndC/R(XO,t) = (+7 2t) D (_a Zt)
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Proof. Tt is enough to use Frobenius reciprocity. We start with ¢ # 0, and
apply (4):
(Inde/r(xe,t)s pet) = (xet, Resc/r(wee))
= (Xe.t, X0t D X—0t) = 1,
(Inde/r(X-e.t), Pe.t) = (X—t.t, Resc/r(pet))
= (X—t.ts Xe,t DX—t,8) = 1,
(Indc/r(X0,t), (+52t)) = (X0, Resc/r(+,2t))
= (Xo,t, X0,t) = 1,
(Inde/r(x0.t), (= 2t)) = (x0.t, Resc/r(—,2t))
= (Xo,t,X0,t) = 1. O

6.2. The automorphic induction map. In the case of GLg,(R) we will
have to consider the discrete series representations

Djy ® |det(-)["* @ -+ @ Dy, @ |det(-)|"

on the Levi subgroup M = GL2(R) x -+ x GLa(R) € GL2,(R). Let P =
M N be the corresponding parabolic subgroup, and, using a classical notation,
denote by
Dye, ® [det()[" x -+ x Dy, @ |det(-)["
the corresponding irreducible tempered representations of GLg,(R) obtained
via parabolic induction.
In the same notation, denote by

Xeqyity X000 X Xl ity

the irreducible tempered representation of GL,,(C) coming via parabolic induc-
tion from the unitary character xo, it, ® - - - ® xe,, ,it, on the standard maximal
torus of GL,,(C).

Define 7 (|¢;],t;) as follows:

Dy | ® |det|its i 0, 40,
7r<|ej|,tj>={ o1 2 1o J

1 @ |det|** x sgn @ |det|** if £; = 0.
Consider now the locally compact Hausdorff space
E(ll, .., [lnl) = {m(|t1],t1) x - X T(|ln],tn) | t1,y ..., tn € R}
which is a subspace of the tempered dual of GL2,(R), and the locally compact
Hausdorff space
T, ) =A{Xer,its X+ X X it | t1,.. ., tn €R}

which is a subspace of the tempered dual of GL,,(C).

Then the automorphic induction map AZ,, maps the space §(¢1,...,¢,)
bijectively onto the space &(|¢1],...,|¢s]) via the natural identification of the
coordinates tq,...,t,:

AT, F(0, . 00) =~ (], |0n]).
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We have the functorial K-theory map

(8) Ki(AZLy) « K7(€([a], -, [0n])) = K7 (3 (i, - - - s in))
whenever i1 = £41,...,i, = +4,.

Suppose first that the ¢; are all distinct, with none of them 0. Then
E(|la|,. .., 0n]) and F(¢1,...,¢,) are n-dimensional Euclidean spaces. In the
isomorphism (8), a generator for the left-hand side, denoted by §(¢1,...,¥4,),
will correspond to a generator for the right-hand side, denoted by (i1, ..., iy,).

The image of the generator 6(¢1, ..., ¢, ) under K;(AZ,) has 2" components,
which lie in the K-theory groups K7 (§(i1,...,in)) with iy =01, ..., i, = 2L,.

The component in K7 (§(i1,...,in)) is €(i1,...,4,). This is automorphic in-
duction at the level of K-theory.
Now we re-consider the space §(¢1,...,¢,). If two or more of the ¢; are

equal, then §(¢1,...,£,) is the Cartesian product of locally compact Hausdorff
spaces, each of which is either a symmetric product of real lines, or a Euclidean
space. Then we have K7 (§(¢1,...,4,)) =0 for j = 0,1 by Lemma 3.2 and the
Kiinneth theorem [13, Prop. 3.3.15]. So the map in (8) is the zero map.

This leaves one case to be considered, namely when some of the ¢; are equal
to 0. We start with the case when one of the ¢; is 0, say ¢; = 0. Define

X(0,...,4,])
= {1 ® |det|** x sgn @ |det|*™ x -« x 7(|ln|,tn) | S1,t1,---,tn € R}.
We then have an injective map
AT, :F(0,...,6,) = X(0,...,[l]).

The dimensions of these two Euclidean spaces are n and n + 1. The parity
difference implies that the induced K-theory map is the zero map.

If several of the ¢; are equal to 0, say £; = 0 for 1 < j < k, then we will
correspondingly have an injective map

AT, - F0,...,0,...,6,) = X(0,...,0,...,|0,]),
where X(0,...,0,...,]¢,|) denotes a space modelled on X(0,...,|¢,]) but in-
cluding the term
1 ® |det|?™! x sgn ® |det|?* x - x 1 ® |det|*** x sgn ® |det|*"*.

The space X(0,...,0,...,[¢,]) will be a Cartesian product of locally compact
Hausdorff spaces, each of which is either a symmetric product of real lines, or
a Fuclidean space. Such spaces are trivial in K-theory.

This leads to our final result. Let K;(.AZ,,) denote the functorial K-theory
map induced by automorphic induction.

Theorem 6.3. Consider the functorial map induced by automorphic induction

K;(C*GLan(R)) ), ko (C*GL,(C)).
Suppose that n = j (mod2), and let 0 < {1 < --- < {,. The K’-generator
0(1,...,L,) is determined by the discrete series representations Dy, , ..., Dy

n*
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The image of this generator under K;(AZ,) has 2™ components, which lie
in the K-theory groups K7(F(i1,...,in)) with i1 = +41,... 4, = +£,. The
component in KI(F(i1,...,in)) is €(i1, ... in).

7. K-CYCLE

The standard maximal compact subgroup of GL;(C) is the circle group
U(1), and the maximal compact subgroup of GL;(R) is Z/2Z. Base change
for K creates a map

R(U1)) = R(Z/2Z),
where R(U(1)) is the representation ring of the circle group U(1) and R(Z/2Z)
is the representation ring of the group Z/27Z. This map sends the trivial char-
acter of U(1) to 1 @ e, where ¢ is the nontrivial character of Z/2Z, and sends
all the other characters of U(1) to zero.

This map has an interpretation in terms of K-cycles. The real line R is a
universal example for the action of C* and R*. The K-cycle

(9) (Co(R), L*(R),id/dx)

is equivariant with respect to C* and R*. The actions are
C*xR—R, (z,y)loglz|+y,
R*xR =R, (z,9)+ loglz|+y.

The K-cycle (9) therefore determines a class e € K& (EC*) and a class
Jr € K (ER*). On the left-hand side of the Baum-Connes correspondence,
base change in dimension 1 admits the following description in terms of Dirac

operators:
dc — (P, Pr)-

It would be interesting to interpret the automorphic induction map at the
level of equivariant K-theory:
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