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Assessing the efficiency of maintenance operators: a case study of turning railway wheelsets on an
under-floor wheel lathe

Andrade, A. R.*?and Stow, J. M.}
Abstract

The present paper assesses the technical efficiency of different operators turning railway wheelsets on a
under-floor wheel lathe. This type of lathe is a Computer Numerical Control (CNC) machine used to turn
wheelsets in-situ on the train. As railway wheels are turned, a certain amount of the wheel diameter is
lost to restore the tread profile and full flange thickness of the wheel. The technical efficiencies of the
different wheel lathe operators are assessed using a Stochastic Frontier Analysis (SFA), whilst controlling
for other explaining variables such as the flange thickness and the occurrence of rolling contact fatigue
(RCF) defects, wheel flats and cavities. Different model specifications for the SFA are compared with Linear
Mixed Model (LMM) specifications, showing that the SFA model exhibits a better Akaike Information
Criterion (AIC).

Keywords: Technical Efficiency; Railway maintenance; Stochastic Frontier Analysis; Linear Mixed Models;

Performance modelling.

1- Introduction

An important factor in the life-cycle of a railway wheelset is the turning maintenance operations. Turning
is conducted using an under-floor wheel lathe while the wheelset remains in-situ on the vehicle. Wheels
are typically turned to restore the shape of the tread profile (which changes due to wear) and to remove
tread damage such as rolling contact fatigue, wheel flats and cavities. Turning may be undertaken at fixed
mileage intervals or using a condition-based strategy. However, as the wheel reaches a minimum
diameter — the scrap diameter, turning is no longer possible and the wheel has to be renewed. Therefore,
in order to maximise wheelset life, wheel lathe operators should try to remove the minimum amount of

diameter possible, whilst removing all tread defects and/or restoring the original wheel profile.
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In generic terms, a railway wheel lathe can be regarded as a maintenance system in which humans and
machines interact, i.e. the operators interact with the wheel lathe. This ‘maintenance system’ receives as
input the wheel condition pre-turning, including the wear and damage defects suffered during operation
and the pre-turning diameter (DP"¢), as well as the technician/operator and their attitude and experience;
and it provides as output: the wheel condition post-turning, namely its final/post-turning diameter
(DP°St), The diameter loss due to turning (AD7) is then the difference between the pre-turning diameter
and the post-turning diameter, i.e. AD;y = DP"® — DP9t and it is a measure that can be used to assess
how efficient a wheel operator is in the turning operation controlling for any other influencing factor. The
wheel lathe operator decides how much material to remove whilst the lathe will advise how much is
required to restore the profile. When removing damaged material, the operator has to decide how much

to remove to get underneath the damaged material.

Two research questions can be formulated: i) which factors may contribute to explain the variability in
the diameter loss due to turning? and ii) controlling for those factors, do different operators exhibit

significant differences in their performance using the wheel lathe?

To answer these research questions, we made use of a Stochastic Frontier Analysis (SFA) model, which is
a common statistical model in economics, management and business sciences for benchmarking. This was
then compared with a Linear Mixed Model (LMM) to understand the effect of variability in the decisions
taken by different technicians on the statistical modelling of diameter loss due to turning. The main
advantage of using SFA, comparing with other benchmarking techniques, is that it allows a separation

. . .. 1
between noise and inefficiency".

The main novelty of the present paper is the application of SFA in the risk and reliability area in a
mechanical system, by showing that SFA provides a better fit than LMM, which are complex models
currently being used in statistically modelling wear and damage of railway wheelsets’. Therefore, the
paper provides an example of why risk and reliability researchers should start paying attention to SFA as

an alternative technique to statistically model the degradation of mechanical components in a system.

The outline of this paper is as follows: this first section introduces the need to assess the technical
efficiency of different wheel lathe operators in statistical modelling of the diameter loss due to turning,
whereas the second section provides some background on the SFA topic. The third section discusses the
statistical methods used in this paper, namely SFA and LMM, and the fourth section provides details on a

sample dataset from a wheel lathe. Then, section fifth applies SFA and LMM models to a, comparing



several model specifications for the SFA and LMM approaches. Finally, the last section highlights the main

conclusions and some directions for future research.

2- A brief background

The assessment of technical efficiency has its roots in the economic literature under the topics of
benchmarking and quantitative performance evaluation. Many studies have been published in areas like
economics, operation research, management and business, and though this is a mature topic in economic
literature, it is not common in mechanical engineering and especially in modelling physical phenomena in

general, or in the context of human-machine interaction in a maintenance system.

In the economic literature, the classical reference on this topic is Farrell®> who proposed a method to
measure productive efficiency. The introduction of the SFA as a robust statistical method was put forward
twenty years later in 1977. According to Kumbhakar and Lovell*, SFA was first proposed by Meeusen and
Broeck®, Aigner et al.® and Battese and Corra’. These SFA models specified two error components: i) a first
component associated with statistical/measurement noise and ii) a second non-negative component
associated with technical inefficiency. These three different SFA models were distinct in the sense that
they specified different distributions for the second error component: an exponential®, a half-normal’ and

both distributions®.

In transportation systems, some references on measuring technical efficiency using SFA can be found in
various contexts. For the airway system, Michaelides et al.?2 explored SFA for international air carriers,
analysing a dataset of the world’s largest network airlines and comparing estimates of technical efficiency
using SFA and Data Envelopment Analysis (DEA). Scotti et al.? analysed the role of airport competition on
the technical efficiency of 38 Italian airports by applying an SFA approach. For the road transport system,
Welde and Odeck'® compared the technical efficiency of road toll companies operating in Norway, using
both SFA and DEA techniques. Filippini et al."™* used SFA to assess differences in levels of cost efficiency of
bus lines operated under competitively tendered contracts versus performance-based negotiated
contracts in Swiss public transport. For the railway system, Smith*? applied the SFA technique to estimate
the efficiency gap between Network Rail and other European rail infrastructure managers to provide a
quantitative basis for fair regulation. Farsi et al."> applied several statistical models, including the SFA
technique to measure cost efficiency in Swiss railways for a panel of 50 railway companies operating over
a 13-year period. Other applications of SFA can also be found in a literature review on the economic
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performance of waste management ~.



To the best of our knowledge, the SFA method to statistically compare the performance of different
machine operators in a maintenance system has not been applied before, and it provides an opportunity
to compare it with other statistical models such as LMM. Moreover, free access to R packages™ called
Benchmarking and Ime4 has equipped researchers and practitioners with routines to conduct SFA' and to
estimate LMM™® in a straightforward way. The next section provides details on these two statistical

techniques.

3- Statistical methods

This section discusses the statistical methods used to model the diameter loss due to turning (AD7),

namely a) SFA and b) LMM.

a. SFA

SFA is a method typically used in benchmarking, especially in economic literature to assess the technical
efficiency of different firms/agents. In simple terms, given a set of data (typically an output and some
input), the basic research question is to find a frontier, above which it is technically impossible to increase
the output for that level of input. This is called a ‘production frontier’. SFA is a method used to assess
technical efficiency of different agents in producing some outputs provided a certain amount of inputs.
An agent or a firm, as it is usually referred to in microeconomics literature, will be more efficient if it
produces maximum output with the least inputs needed. Therefore, the central idea of SFA is to try to
define a frontier of efficiency, where each agent would be 100% efficient and cannot be more efficient
than that level, i.e. the outputs are maxima for the same level of inputs, or the inputs are minima for the

same level of output.

SFA includes two stochastic terms: i) a term v associated with some measurement errors and the
stochastic nature of a production function, and ii) a term u associated with possible inefficiency of a given

agent or firm. The SFA model will then assume the following expression:

yvi=fXlB) +vi—u; (1)

In which: y; is the dependent variable (output) that we are interested in modelling for observation i; X;
are the explaining/independent variables; § are parameters describing the parametric functional form f;
v; is the random measurement error for observation i and u; is an error for observation i associated with

inefficiency.



Some assumptions on the error terms v and u must be made. They are assumed to be independent and
the inefficiency term u assumes only nonnegative values, i.e. u follows a one-sided distribution. The most
typical assumptions are that v; is normally distributed with mean zero and a certain variance, i.e.
v;~N (0, 52) and u; is half-normally distributed, i.e. u;~N, (0, d2). In case u; = 0 then the firm or agent

is 100% efficient, whereas if u; > 0, there is some inefficiency.

In the case that the output of the system (y;) is not in the form ‘the more, the better’ as in a typical
production function, but instead is in the form ‘the less, the better’, a simple transformation y; = —y;
can be applied to the original dependent variable y; so that the new variable y; is in the form ‘the more,
the better’. For the case under analysis, we will see that the output (i.e. the diameter loss due to turning)
is in the form ‘the less, the better’, so the simple transformation will be applied. The results are presented

in the original form for the output diameter loss due to turning (AD7), i.e. in the form ‘the less, the better’.

b. LMM

LMM are flexible linear models that can tackle the fixed effects of different controlling variables (X;B) in
the expected mean of the dependent variable (y;), as well as the random effects associated with some
factor or group (Z;b;). In mathematical terms, if one considers a single grouping level, LMMs can be

formulated as®®:
Yi=XiB+Zb;+¢g (2)

In which: y; is the dependent variable for group i, X; is the design matrix for that group i, 8 is the slope
parameter and g; is the residual error for group i. Z; is the matrix of covariates corresponding to random

effects and b; are the corresponding random effects for each group i.
Some assumptions then have to be made on the random components:
bi"‘N(O, D), Si"’N(O, Ri)l with bi 1 &; (3)

The random effects associated with a given group (b;) and the residual error for each group (g;) are
normally distributed with zero mean and co-variance matrices equal to D and R; respectively. Both error
terms are assumed to be independent between each other (for the same group i and between different

groups). Additionally, the co-variance matrices are specified with an unknown scaling parameter ¢?:

D =0%D and R; =0?*R; (4)



Some additional constraints on the matrices D and R; have to be made to guarantee identifiability™,
which are usually simplifications leading to choices of the matrices D and R; that are multiples of the

identity matrix.

The main difference between these two statistical methods is that the LMM approach provides the
‘average’ production function, whereas the SFA approach estimates the frontier that is only achievable if

there are no inefficiencies.

4- Sample description

The sample refers to a set of railway wheels that were maintained at a single depot on an under-floor
wheel lathe. The dataset was collected in a railway maintenance depot from a fleet of modern multiple
units, in the time period between December 2006 and July 2012 (i.e. a 7-year period), representing a total
of 6,246 observations of railway turned wheelsets. All modern multiple unit have exactly three vehicles,
and each vehicle has eight wheels (i.e. four wheelsets). For further details, the reader is referred to our

. . 2
previous work on wear and damage of railway wheelsets”.

Table 1 provides the variables, their description and some statistics of the dataset collected. The
dependent variable is the diameter loss due to turning (ADt) and the remaining variables are used as
independent/explaining variables or factors, namely: flange thickness pre-turning (F;), occurrences of
Rolling Contact Fatigue (RCF), of cavities (CAV) and of wheel flats (FLAT), mileage since last turning,
wheelset type (motored, internal or leading trailer), unit number (in a total of 51 units), vehicle type (in 3
types: Driving Motor Composite (DMC), Motor Second (MS), Driving Motor Second (DMS)) and the month

of measurement (in a total of 68 months).

5- Applying SFA and LMM

This section starts with a brief description of the sample of turning records at the wheel lathe and then
applies the SFA and LMM statistical methods described above to the sample in order to assess the

technical efficiencies of the wheel lathe operators.

Several model specifications were run to provide a basis for comparison between SFA and LMM models:
4 model specifications for SFA (M0.SFA-AD; up to M3.SFA-AD+) and 7 model specifications for LMM
(MO.LMM-AD+ up to M6.LMM-ADy). For the SFA, each model specification sequentially adds more
explaining variables, i.e. first model only considers the flange thickness (F;), the second model adds the

occurrence of damage defects (Yrcr, Yrrar, Ycav), the third model adds the wheelset type (W;) and the



fourth model adds some interaction terms with mileage since turning and damage defects (M XYgcp,
MXYgpar, M XY 4y). Similarly, for the LMMs each specification sequentially adds fixed effects and random
effects, i.e. the first model also only considers the flange thickness (F;) as a fixed effect, the second model
adds the occurrence of wheel tread damage and the wheelset type (Yrcr, Yrrar, Ycav, We) as fixed effects,
the third model adds the technician (T) as a random effect, the fourth model adds the month of
measurement (M,,) as a random effect, the fifth model adds the unit (U) as a random effect, the sixth
model adds the vehicle (V) as a random effect. The final seventh LMM model specification also adds the
interaction terms with mileage since turning and damage defects (M XYgcp, MXYpp a7, M XY 4y ) for a fair
comparison with the fourth SFA model specification, i.e. so that models M3.SFA-AD; and M6.LMM-AD,
have exactly the same explaining variables. Table 2 provides details on each of the estimated model and

‘goodness-of-fit’ statistics for easier comparison.

Several ‘goodness-of-fit’ measures are computed for both models. The Log-likelihood value and the -2
Restricted Log-likelihood value are computed for the SFA and LMM models, respectively, and the Akaike
Information Criterion (AIC) value is computed for all model specifications. The AIC is used for comparing
between different SFA and LMM model specifications. It combines a goodness-of-fit measure with a
measure of model complexity, i.e. the -2 Log-likelihood plus 2 times the number of parameters. AIC
provides a criterion to compare different models, in which the preferred model is the one with the lowest

AIC value.

Tables 3 and 4 show the estimates for the parameters of all SFA and LMM model specifications,
respectively. Regarding Table 3, all variables are statistically significant at the 5% significance level for all
model specifications, except for the parameter associated with motored wheelsets (Byot0r-)- The flange
thickness (F;) has a negative effect, i.e. the lower the flange thickness, the more diameter a wheel will
lose due to turning; whereas the damage defects (Yrcr, Yrrar, Ycay) have a positive effect, i.e. the
occurrence of tread damage increases the diameter lost due to turning. Note that the damage defects
have all positive interaction terms with mileage since turning, i.e. the diameter loss required to remove
tread damage increases as the mileage since turning increases. Furthermore, the scale parameters show

that the term associated with inefficiency provides a higher value of variance than the term associated

with random noise, i.e. g, > g, resulting into a value for A = % higher than 1. This shows that the error
v

component associated with inefficiency (u;) dominates the variability around the mean of the diameter

loss due to turning, controlling for the explaining variables.



Figure 1 provides a contrast between the SFA specified in model M3.SFA-ADr, an Ordinary Least Square
(OLS) estimation without considering inefficiency terms and a Corrected Ordinary Least Square (COLS)
approach. The OLS and COLS have the same slopes, though the COLS line is shifted to the minimum
diameter loss observed. A box-and-whisker plot is presented in Figure 2, for the total residual above the
SFA line for different technicians based on the residuals estimated from model M3.SFA-ADy. One
interesting finding from the statistical modelling regards the variability between wheel lathe operators.
The model showed that, whilst three of the operators removed very similar amounts of material above
the minimum possible (around 2.0 mm diameter on average), one operator (number ‘3’) removed
significantly more (more than an average of 10.0 mm). The model is constructed to carefully control for
other factors which would influence the minimum possible value to remove. For example, if operator ‘3’
was considered the most experienced and therefore given the most damaged wheels to turn. As the wheel
damage types, depths, times of turning etc. were found to be similar for all operators, the analysis
therefore suggests that there is an underlying difference in the turning approach adopted by operator ‘3.
This has the potential to significantly affect the overall wheelset life. Indeed the lathe operator was found
to be one of the most statistically significant factors in amount of material removed at turning. Although
it is beyond the scope of this paper, it would be interesting to investigate whether wheels turned by
Operator ‘3’ subsequently had shorter or longer intervals to next turning. It may be that removing more
material is more effective in ensuring that RCF damage is fully removed preventing early recurrence.
Alternatively it may be that operator ‘3’ removed more material than necessary shortening the wheels

life.

In microeconomics literature, it is also common to represent the same box-and-whisker plot for different
agents/firms but measuring technical efficiency (i.e. e ~%i). Figure 3 represents the technical efficiency of

the different wheel lathe operators.

All the LMM models shown in Table 4 exhibited statistically significant estimates at the 5% significance
level, except for the parameter associated with motored wheelsets (Su0t0r) for the model M6.LMM-AD .
The factor associated with different technicians (T) was the random effect that showed the greatest
variability, followed by the random effects associated with month of measurement (M,,), unit (U) and

vehicle (V).

Finally, comparing model M6.LMM-AD; with model M3.SFA-ADr, the best SFA model has a lower AIC
value (27083.64), than the best LMM models with an AIC of 28157.69. This indicates that the SFA model

performed better than the LMM model. The finding suggests that using an error component structure



associated with inefficiencies, by mathematically adding a one-sided distribution, may considerably

enhance the statistical models, even when comparing with a complex statistical model like the LMM.

6- Conclusions and further research

This paper provided evidence of the importance of modelling the performance of different wheel lathe
operators in the maintenance of railway wheelsets. By applying an SFA model, we were able to identify
the technical efficiency of each wheel lathe operator, when compared to a ‘best practice’ frontier, and
thus, isolate the bias due to inefficiencies of each operator, while controlling for other factors that
contribute to explain the variability of the diameter loss due to turning. It also highlights the need to
provide lathe operators with clear guidance and training so that they understand the effect of their
decisions on wheel life. Therefore, current maintenance managers should apply this technique to identify
maintenance operators, which might be able to improve their performance, and recommend them

specific training.

The comparison between the SFA models and LMM models showed that the error component structure
that tackles technical inefficiencies provides a significant enhancement in the AIC value. This suggests that
the application of statistical techniques, such as SFA, previously applied in economic analysis can also

prove useful in modelling physical phenomena.

For further research, it would be interesting to add more variables describing the attitudes and experience
of the different technicians, trying to answer for instance whether or not more experienced technicians
perform better than others. Moreover, it would also be useful to conduct further analysis on whether
turning more material off might be beneficial in preventing the re-occurrence of RCF damage and cavities.
In that sense, we recommend an extension of the assessment of technicians’ performance, which would
necessarily imply collecting other sources of data (not available in our sample), more usual in research
areas like human-computer interaction, human factors and usability engineering. Finally, we believe that
the combination of mixed factors with SFA models through a hierarchical Bayesian model might provide
even better results, but this is a step for the future, in which a good starting point is Griffin and Steel®’,

which could be combined with a previous work®®,
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Figure 2 — Box-and-whisker” plot for the total residual (i.e. v; — u;) (in mm) for different wheel lathe operators/technicians.

* The box-and-whisker is a typical plot in statistics that helps to show the variability of a given sample. The box refers

to the first (Q1) and third (Q3) quartiles, and the line in the box marks the median value (i.e. the second quartile —
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Figure 3 - Technical Efficiency (i.e. e ') for different wheel lathe operators/technicians.

Q2). The whiskers go from the lower limit (Q1-1.5xIQR) to the upper limit (Q3+1.5xIQR), in which IQR is the
interquartile range, i.e. the difference between Q3 and Q1 (IQR=Q3-Q1). The observations that go outside the

whiskers range are considered outliers and are identified as simple points.



Variables Description Type Mean | St. Dev. Min Max

ADy Diameter loss due to turning (in mm) Continuous | 7.5253 2.7696 0.037 27.443

F, Flange thickness pre-turning (in mm) Continuous | 27.782 0.2596 26.66 28.98
Yrcr 1 if a Rolling Contact Fatigue (RCF) defect occurred, 0 otherwise. Binary 0.1002 0.3003 1
Yeav 1 if a cavity defect occurred, 0 otherwise. Binary 0.0195 0.1384 1
Yerar 1 if a wheel flat defect occurred, 0 otherwise. Binary 0.1313 0.3377 1

M Mileage since turning (in 1000 miles) Continuous | 111.54 50.67 0.02 235.98
T Technician (4 different operators/technicians) Nominal - - - -
w Wheelset type (3 types: motored, internal or leading trailer) Nominal - - - -
U Unit number (51 units) Nominal - - - -
% Vehicle type (3 types: DMC, MS and DMS) Nominal - - - -
M Month of measurement (68 months) Nominal - - - -

S

Table 1 - Variables, their description, type and some statistics for a total of 6,246 observations.



Log

-2 Restricted

Number of

Model Explaining Variables Likelihood | Log Likelihood | parameters (df) AIC
MO.SFA F, -13900.79 - 4 27809.58
MI1.SFA Fo, Yacrs Yeoars Yeay -13606.70 - 7 27227.40
M2.SFA Fo, Yacrs Yeoars Yeavs We -13566.25 - 9 27150.50
M3.SFA Fo, Yacrs Years Yeavs W MXYacrs MXYrpams MXYeny 113529.82 - 12 27083.64
MOLMM |5t . . 3 30455.72
MLLMM | (B Fe Yeer Year: Year. We . . 8 2923351
M2LMM |5 f;)YRCF’ Yrvar: Yeav, We - 29041.38 9 29059.38
FE: F,, Y, Y, Y, W,
M3.LMM 6 Yecr. Yrvar: Yoar. We - 28441.62 10 28461.62
RE: (T, M)
FE: F,, Y, Y, Y, W,
M4.LMM 6 Yeer. Yrvar: Yoav. We - 28289.20 1 28311.20
RE: (T, M,,, U)
FE: F,, Y, Y, Y, W,
M5.LMM & Yeer. Yrvar: Yoar. We - 28168.70 12 28192.70
RE: (T, M,,, U, V)
M6.LMM | FE: Fe Yecr, Yevar: Yeav, We, MXYpcp, MXYp1ar, MXYeay, RE: - 28127.69 15 28157.69

(T, M, U, V)

Table 2 - Explaining variables and comparison of the fit statistics from different models estimated for the dependent variable

diameter loss due to turning (AD7). Note 1: All models included an intercept constant value (B,). Note 2: For the LMM
models, the Fixed Effects (FE) are presented first and the Random Effects (RE) are included in parenthesis.



Model Label Parameter | MO.SFA-AD; | M1.SFA-AD; | M2.SFA-AD; | M3.SFA-AD;

1 Bo 54.425 57.797 55.441 52.290
(2.3554) (2.4344) (2.5211) (2.0379)

F, Br, -1.794 -1.920 -1.829 -1.714
(0.0850) (0.0879) (0.0910) (0.0738)

Yrer Brer - 1.613 1.604 0.530
(0.0740) (0.0755) (0.2726)

YepaT Briat - 1.146 1.100 0.698
(0.0718) (0.0741) (0.1251)

Yeav Beaw - 1.452 1.495 0.684
(0.1720) (0.165) (0.3228)

W, Buotor - - -0.036 -0.059
(0.0631) (0.0736)

Brraiter - - -0.447 -0.462
(0.0693) (0.0812)

ﬁLeading - - Ob Ob

MXYpcr Bmxrcr - - - 0.009
(0.0021)

MXYppar BuxrLar - - - 0.006
(0.0015)

MXYcay Buxcav - - - 0.013
(0.0037)

Scale oy 0.5921 0.6881 0.6923 0.6884
Oy 4.0172 3.7159 3.6828 3.6610

A 6.784 5.400 5.319 5.318
(0.2619) (0.2030) (0.2084) (0.1697)

Log Likelihood -13900.79 -13606.70 -13566.25 -13529.82
AIC 27809.58 27227.40 27150.50 27083.64
Number of parameters (df) 4 7 9 12

Table 3— Estimates for the parameters of different models M0.SFA-M3.SFA for the dependent variable diameter loss due to

turning (ADy).




Model Label | Parameter | MO.LMM-AD; | M1.LMM-AD; | M2.LMM-AD; | M3.LMM-AD; | M4.LMM-AD; | M5.LMM-AD; | M6.LMM-AD;
Fixed Effects
1 Bo 16.8587 34.48553 39.58786 45.9905 44.50749 46.51300 38.36797
(3.7467) (3.50410) (3.64597) (3.99044) (3.97864) (3.97040) (4.00547)
Fy B, -0.3360 -0.98135 -1.12562 -1.35069 -1.29974 -1.36727 -1.12076
(0.1349) (0.12646) (0.12487) (0.13599) (0.13629) (0.13515) (0.13796)
Yrcr Brer - 3.53981 3.61747 3.45374 3.38064 3.26511 2.13286
(0.10808) (0.10705) (0.10805) (0.10723) (0.10677) (0.28118)
YeLar Brrar - 1.50080 1.43816 1.45948 1.47444 1.51732 1.09268
(0.09762) (0.09617) (0.10985) (0.10990) (0.10888) (0.15382)
Yeav Beav - 2.68745 2.90104 2.91918 2.87964 2.83966 1.30192
(0.23063) (0.22731) (0.22543) (0.22390) (0.22174) (0.38160)
w Buotor - -0.44570 -0.42377 -0.47616 -0.49889 -0.59099 -0.05067
(0.09046) (0.08894) (0.08403) (0.08260) (0.08472) (0.08282)
Brraiter - -0.24949 -0.21310 -0.21884 -0.22938 -0.37037 -0.54323
(0.09476) (0.09322) (0.08808) (0.08652) (0.09170) (0.09191)
Breading - 0° 0° 0° 0° 0° 0°
MXYgep Buixrcr - - - - - - 0.00958
(0.00213)
MXYppar Buiscerar - - - - - - 0.00544
(0.00155)
MXYguy Buixccav - - - - - - 0.02091
(0.00443)
Random Effects
T Jdr - - 2.264 2.558 2.422 2.514 2.278
M, Jdum - - - 1.023 1.050 1.062 1.049
U Jdy - - - - 0.489 0.500 0.501
v Jdy - - - - - 0.423 0.330
Scale o 2.769 2.510 2.467 2.318 2.273 2.248 2.237
-2 Restricted Log Likelihood - - 29041.38 28441.62 28289.20 28168.70 28127.69
AIC value 30455.72 29233.51 29059.38 28461.62 28311.20 28192.70 28157.69
Number of parameters (df) 3 8 9 10 11 12 15

Table 4 — Restricted Maximum Likelihood (REML) estimates for the parameters of models M0.LMM-M6.LMM for the
dependent variable Diameter loss due to turning (AD7).

® Approximate Standard Errors for Fixed Effects are included in parentheses. ® This parameter is redundant.




