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Assessing	the	efficiency	of	maintenance	operators:	a	case	study	of	turning	railway	wheelsets	on	an	
under-floor	wheel	lathe		

Andrade,	A.	R.1,2	and	Stow,	J.	M.3		

Abstract	

The	present	paper	assesses	the	technical	efficiency	of	different	operators	turning	railway	wheelsets	on	a	

under-floor	wheel	lathe.	This	type	of	lathe	is	a	Computer	Numerical	Control	(CNC)	machine	used	to	turn	

wheelsets	in-situ	on	the	train.	As	railway	wheels	are	turned,	a	certain	amount	of	the	wheel	diameter	is	

lost	to	restore	the	tread	profile	and	full	flange	thickness	of	the	wheel.	The	technical	efficiencies	of	the	

different	wheel	lathe	operators	are	assessed	using	a	Stochastic	Frontier	Analysis	(SFA),	whilst	controlling	

for	other	explaining	variables	such	as	the	flange	thickness	and	the	occurrence	of	rolling	contact	fatigue	

(RCF)	defects,	wheel	flats	and	cavities.	Different	model	specifications	for	the	SFA	are	compared	with	Linear	

Mixed	Model	 (LMM)	 specifications,	 showing	 that	 the	 SFA	model	 exhibits	 a	 better	 Akaike	 Information	

Criterion	(AIC).	

Keywords:	Technical	Efficiency;	Railway	maintenance;	Stochastic	Frontier	Analysis;	Linear	Mixed	Models;	

Performance	modelling.			

1- Introduction	

An	important	factor	in	the	life-cycle	of	a	railway	wheelset	is	the	turning	maintenance	operations.	Turning	

is	conducted	using	an	under-floor	wheel	lathe	while	the	wheelset	remains	in-situ	on	the	vehicle.	Wheels	

are	typically	turned	to	restore	the	shape	of	the	tread	profile	(which	changes	due	to	wear)	and	to	remove	

tread	damage	such	as	rolling	contact	fatigue,	wheel	flats	and	cavities.	Turning	may	be	undertaken	at	fixed	

mileage	 intervals	 or	 using	 a	 condition-based	 strategy.	 However,	 as	 the	 wheel	 reaches	 a	 minimum	

diameter	–	the	scrap	diameter,	turning	is	no	longer	possible	and	the	wheel	has	to	be	renewed.	Therefore,	

in	order	to	maximise	wheelset	life,	wheel	lathe	operators	should	try	to	remove	the	minimum	amount	of	

diameter	possible,	whilst	removing	all	tread	defects	and/or	restoring	the	original	wheel	profile.	
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In	generic	terms,	a	railway	wheel	lathe	can	be	regarded	as	a	maintenance	system	in	which	humans	and	

machines	interact,	i.e.	the	operators	interact	with	the	wheel	lathe.	This	‘maintenance	system’	receives	as	

input	the	wheel	condition	pre-turning,	including	the	wear	and	damage	defects	suffered	during	operation	

and	the	pre-turning	diameter	(𝐷"#$),	as	well	as	the	technician/operator	and	their	attitude	and	experience;	

and	 it	 provides	 as	 output:	 the	 wheel	 condition	 post-turning,	 namely	 its	 final/post-turning	 diameter	

(𝐷"%&').	The	diameter	loss	due	to	turning	(∆𝐷))	is	then	the	difference	between	the	pre-turning	diameter	

and	the	post-turning	diameter,	i.e.	∆𝐷) = 𝐷"#$ − 𝐷"%&',	and	it	is	a	measure	that	can	be	used	to	assess	

how	efficient	a	wheel	operator	is	in	the	turning	operation	controlling	for	any	other	influencing	factor.	The	

wheel	 lathe	operator	decides	how	much	material	 to	 remove	whilst	 the	 lathe	will	 advise	how	much	 is	

required	to	restore	the	profile.	When	removing	damaged	material,	the	operator	has	to	decide	how	much	

to	remove	to	get	underneath	the	damaged	material.	

Two	research	questions	can	be	formulated:	i)	which	factors	may	contribute	to	explain	the	variability	 in	

the	 diameter	 loss	 due	 to	 turning?	 and	 ii)	 controlling	 for	 those	 factors,	 do	 different	 operators	 exhibit	

significant	differences	in	their	performance	using	the	wheel	lathe?	

To	answer	these	research	questions,	we	made	use	of	a	Stochastic	Frontier	Analysis	(SFA)	model,	which	is	

a	common	statistical	model	in	economics,	management	and	business	sciences	for	benchmarking.	This	was	

then	compared	with	a	Linear	Mixed	Model	(LMM)	to	understand	the	effect	of	variability	in	the	decisions	

taken	 by	 different	 technicians	 on	 the	 statistical	modelling	 of	 diameter	 loss	 due	 to	 turning.	 The	main	

advantage	of	using	SFA,	comparing	with	other	benchmarking	techniques,	 is	 that	 it	allows	a	separation	

between	noise	and	inefficiency1.			

The	 main	 novelty	 of	 the	 present	 paper	 is	 the	 application	 of	 SFA	 in	 the	 risk	 and	 reliability	 area	 in	 a	

mechanical	 system,	 by	 showing	 that	 SFA	 provides	 a	 better	 fit	 than	 LMM,	which	 are	 complex	models	

currently	being	used	 in	 statistically	modelling	wear	 and	damage	of	 railway	wheelsets2.	 Therefore,	 the	

paper	provides	an	example	of	why	risk	and	reliability	researchers	should	start	paying	attention	to	SFA	as	

an	alternative	technique	to	statistically	model	the	degradation	of	mechanical	components	in	a	system.				

The	 outline	 of	 this	 paper	 is	 as	 follows:	 this	 first	 section	 introduces	 the	 need	 to	 assess	 the	 technical	

efficiency	of	different	wheel	lathe	operators	in	statistical	modelling	of	the	diameter	loss	due	to	turning,	

whereas	the	second	section	provides	some	background	on	the	SFA	topic.	The	third	section	discusses	the	

statistical	methods	used	in	this	paper,	namely	SFA	and	LMM,	and	the	fourth	section	provides	details	on	a	

sample	dataset	 from	a	wheel	 lathe.	 Then,	 section	 fifth	 applies	 SFA	and	 LMM	models	 to	 a,	 comparing	



several	model	specifications	for	the	SFA	and	LMM	approaches.	Finally,	the	last	section	highlights	the	main	

conclusions	and	some	directions	for	future	research.	

2- A	brief	background	

The	 assessment	 of	 technical	 efficiency	 has	 its	 roots	 in	 the	 economic	 literature	 under	 the	 topics	 of	

benchmarking	and	quantitative	performance	evaluation.	Many	studies	have	been	published	in	areas	like	

economics,	operation	research,	management	and	business,	and	though	this	is	a	mature	topic	in	economic	

literature,	it	is	not	common	in	mechanical	engineering	and	especially	in	modelling	physical	phenomena	in	

general,	or	in	the	context	of	human-machine	interaction	in	a	maintenance	system.	

In	 the	economic	 literature,	 the	 classical	 reference	on	 this	 topic	 is	 Farrell3	who	proposed	a	method	 to	

measure	productive	efficiency.	The	introduction	of	the	SFA	as	a	robust	statistical	method	was	put	forward	

twenty	years	later	in	1977.	According	to	Kumbhakar	and	Lovell4,	SFA	was	first	proposed	by	Meeusen	and	

Broeck5,	Aigner	et	al.6	and	Battese	and	Corra7.	These	SFA	models	specified	two	error	components:	i)	a	first	

component	 associated	 with	 statistical/measurement	 noise	 and	 ii)	 a	 second	 non-negative	 component	

associated	with	technical	inefficiency.	These	three	different	SFA	models	were	distinct	in	the	sense	that	

they	specified	different	distributions	for	the	second	error	component:	an	exponential5,	a	half-normal7	and	

both	distributions6.		

In	transportation	systems,	some	references	on	measuring	technical	efficiency	using	SFA	can	be	found	in	

various	contexts.	For	 the	airway	system,	Michaelides	et	al.8	explored	SFA	for	 international	air	carriers,	

analysing	a	dataset	of	the	world’s	largest	network	airlines	and	comparing	estimates	of	technical	efficiency	

using	SFA	and	Data	Envelopment	Analysis	(DEA).	Scotti	et	al.9	analysed	the	role	of	airport	competition	on	

the	technical	efficiency	of	38	Italian	airports	by	applying	an	SFA	approach.	For	the	road	transport	system,	

Welde	and	Odeck10	compared	the	technical	efficiency	of	road	toll	companies	operating	in	Norway,	using	

both	SFA	and	DEA	techniques.	Filippini	et	al.11	used	SFA	to	assess	differences	in	levels	of	cost	efficiency	of	

bus	 lines	 operated	 under	 competitively	 tendered	 contracts	 versus	 performance-based	 negotiated	

contracts	in	Swiss	public	transport.	For	the	railway	system,	Smith12	applied	the	SFA	technique	to	estimate	

the	efficiency	gap	between	Network	Rail	and	other	European	rail	 infrastructure	managers	to	provide	a	

quantitative	basis	 for	 fair	 regulation.	 Farsi	 et	 al.13	 applied	 several	 statistical	models,	 including	 the	SFA	

technique	to	measure	cost	efficiency	in	Swiss	railways	for	a	panel	of	50	railway	companies	operating	over	

a	 13-year	period.	Other	 applications	of	 SFA	 can	also	be	 found	 in	 a	 literature	 review	on	 the	economic	

performance	of	waste	management	14.		



To	 the	 best	 of	 our	 knowledge,	 the	 SFA	method	 to	 statistically	 compare	 the	 performance	 of	 different	

machine	operators	in	a	maintenance	system	has	not	been	applied	before,	and	it	provides	an	opportunity	

to	compare	it	with	other	statistical	models	such	as	LMM.	Moreover,	free	access	to	R	packages15	called	

Benchmarking	and	lme4	has	equipped	researchers	and	practitioners	with	routines	to	conduct	SFA1	and	to	

estimate	 LMM16	 in	 a	 straightforward	 way.	 The	 next	 section	 provides	 details	 on	 these	 two	 statistical	

techniques.	

3- Statistical	methods	

This	 section	 discusses	 the	 statistical	methods	 used	 to	model	 the	 diameter	 loss	 due	 to	 turning	 (∆𝐷)),	

namely	a)	SFA	and	b)	LMM.	

a. SFA	

SFA	is	a	method	typically	used	in	benchmarking,	especially	in	economic	literature	to	assess	the	technical	

efficiency	of	different	 firms/agents.	 In	simple	terms,	given	a	set	of	data	 (typically	an	output	and	some	

input),	the	basic	research	question	is	to	find	a	frontier,	above	which	it	is	technically	impossible	to	increase	

the	output	for	that	 level	of	 input.	This	 is	called	a	 ‘production	frontier’.	SFA	is	a	method	used	to	assess	

technical	efficiency	of	different	agents	in	producing	some	outputs	provided	a	certain	amount	of	inputs.	

An	agent	or	a	 firm,	as	 it	 is	usually	 referred	 to	 in	microeconomics	 literature,	will	be	more	efficient	 if	 it	

produces	maximum	output	with	the	least	inputs	needed.	Therefore,	the	central	idea	of	SFA	is	to	try	to	

define	a	frontier	of	efficiency,	where	each	agent	would	be	100%	efficient	and	cannot	be	more	efficient	

than	that	level,	i.e.	the	outputs	are	maxima	for	the	same	level	of	inputs,	or	the	inputs	are	minima	for	the	

same	level	of	output.	

SFA	 includes	 two	 stochastic	 terms:	 i)	 a	 term	 𝑣	 associated	 with	 some	 measurement	 errors	 and	 the	

stochastic	nature	of	a	production	function,	and	ii)	a	term	𝑢	associated	with	possible	inefficiency	of	a	given	

agent	or	firm.	The	SFA	model	will	then	assume	the	following	expression:	

𝑦/ = 𝑓 𝑋/ 𝛽 + 𝑣/ − 𝑢/ 						(1)	

In	which:	𝑦/ 	is	the	dependent	variable	(output)	that	we	are	interested	in	modelling	for	observation	𝑖;	𝑋/ 	

are	the	explaining/independent	variables;	𝛽	are	parameters	describing	the	parametric	functional	form	𝑓;	

𝑣/ 	is	the	random	measurement	error	for	observation	𝑖	and	𝑢/ 	is	an	error	for	observation	𝑖	associated	with	

inefficiency.		



Some	assumptions	on	the	error	terms	𝑣	and	𝑢	must	be	made.	They	are	assumed	to	be	independent	and	

the	inefficiency	term	𝑢	assumes	only	nonnegative	values,	i.e.	𝑢	follows	a	one-sided	distribution.	The	most	

typical	 assumptions	 are	 that	 𝑣/ 	 is	 normally	 distributed	 with	 mean	 zero	 and	 a	 certain	 variance,	 i.e.	

𝑣/~𝑁(0, 𝜎;<)	and	𝑢/ 	is	half-normally	distributed,	i.e.	𝑢/~𝑁>(0, 𝜎?<).	In	case	𝑢/ = 0	then	the	firm	or	agent	

is	100%	efficient,	whereas	if	𝑢/ > 0,	there	is	some	inefficiency.	

In	 the	case	 that	 the	output	of	 the	system	 (𝑦/)	 is	not	 in	 the	 form	 ‘the	more,	 the	better’	as	 in	a	 typical	

production	function,	but	instead	is	in	the	form	‘the	less,	the	better’,	a	simple	transformation	𝑦/A = −𝑦/ 	

can	be	applied	to	the	original	dependent	variable	𝑦/ 	so	that	the	new	variable	𝑦/A	is	in	the	form	‘the	more,	

the	better’.	For	the	case	under	analysis,	we	will	see	that	the	output	(i.e.	the	diameter	loss	due	to	turning)	

is	in	the	form	‘the	less,	the	better’,	so	the	simple	transformation	will	be	applied.	The	results	are	presented	

in	the	original	form	for	the	output	diameter	loss	due	to	turning	(∆𝐷)),	i.e.	in	the	form	‘the	less,	the	better’.	

b. LMM	

LMM	are	flexible	linear	models	that	can	tackle	the	fixed	effects	of	different	controlling	variables	(𝑿𝒊𝜷)	in	

the	expected	mean	of	the	dependent	variable	(𝒚𝒊),	as	well	as	the	random	effects	associated	with	some	

factor	 or	 group	 (𝒁𝒊𝒃𝒊).	 In	mathematical	 terms,	 if	 one	 considers	 a	 single	 grouping	 level,	 LMMs	 can	be	

formulated	as16:	

𝒚𝒊 = 𝑿𝒊𝜷 + 𝒁𝒊𝒃𝒊 + 𝜺𝒊						(2)	

In	which:	𝒚𝒊	is	the	dependent	variable	for	group	𝑖,	𝑿𝒊	is	the	design	matrix	for	that	group	𝑖,	𝜷	is	the	slope	

parameter	and	𝜺𝒊	is	the	residual	error	for	group	𝑖.	𝒁𝒊	is	the	matrix	of	covariates	corresponding	to	random	

effects	and	𝒃𝒊	are	the	corresponding	random	effects	for	each	group	𝑖.	

Some	assumptions	then	have	to	be	made	on	the	random	components:		

𝒃𝒊~𝛮(𝟎,𝓓),	𝜺𝒊~𝛮(𝟎,𝓡𝒊),	with	𝒃𝒊 ⊥ 𝜺𝒊						(3)	

The	 random	effects	 associated	with	 a	 given	 group	 (𝒃𝒊)	 and	 the	 residual	 error	 for	 each	 group	 (𝜺𝒊)	 are	

normally	distributed	with	zero	mean	and	co-variance	matrices	equal	to	𝓓	and	𝓡𝒊	respectively.	Both	error	

terms	are	assumed	to	be	independent	between	each	other	(for	the	same	group	𝑖	and	between	different	

groups).	Additionally,	the	co-variance	matrices	are	specified	with	an	unknown	scaling	parameter	𝜎<:	

𝓓 = 𝜎<𝑫		and			𝓡𝒊 = 𝜎<𝑹𝒊						(4)	



Some	additional	 constraints	on	 the	matrices	𝑫	 and	𝑹𝒊	 have	 to	be	made	 to	guarantee	 identifiability16,	

which	are	usually	simplifications	 leading	to	choices	of	 the	matrices	𝑫	and	𝑹𝒊	 that	are	multiples	of	 the	

identity	matrix.	

The	 main	 difference	 between	 these	 two	 statistical	 methods	 is	 that	 the	 LMM	 approach	 provides	 the	

‘average’	production	function,	whereas	the	SFA	approach	estimates	the	frontier	that	is	only	achievable	if	

there	are	no	inefficiencies.	

4- Sample	description	

The	sample	refers	to	a	set	of	railway	wheels	that	were	maintained	at	a	single	depot	on	an	under-floor	

wheel	lathe.	The	dataset	was	collected	in	a	railway	maintenance	depot	from	a	fleet	of	modern	multiple	

units,	in	the	time	period	between	December	2006	and	July	2012	(i.e.	a	7-year	period),	representing	a	total	

of	6,246	observations	of	railway	turned	wheelsets.	All	modern	multiple	unit	have	exactly	three	vehicles,	

and	each	vehicle	has	eight	wheels	(i.e.	four	wheelsets).	For	further	details,	the	reader	is	referred	to	our	

previous	work	on	wear	and	damage	of	railway	wheelsets2.							

Table	 1	 provides	 the	 variables,	 their	 description	 and	 some	 statistics	 of	 the	 dataset	 collected.	 The	

dependent	variable	 is	 the	diameter	 loss	due	to	 turning	 (∆DQ)	and	the	remaining	variables	are	used	as	

independent/explaining	 variables	 or	 factors,	 namely:	 flange	 thickness	 pre-turning	 (𝐹'),	 occurrences	 of	

Rolling	 Contact	 Fatigue	 (RCF),	 of	 cavities	 (CAV)	 and	 of	 wheel	 flats	 (FLAT),	 mileage	 since	 last	 turning,	

wheelset	type	(motored,	internal	or	leading	trailer),	unit	number	(in	a	total	of	51	units),	vehicle	type	(in	3	

types:	Driving	Motor	Composite	(DMC),	Motor	Second	(MS),	Driving	Motor	Second	(DMS))	and	the	month	

of	measurement	(in	a	total	of	68	months).	

5- Applying	SFA	and	LMM		

This	section	starts	with	a	brief	description	of	the	sample	of	turning	records	at	the	wheel	lathe	and	then	

applies	 the	 SFA	 and	 LMM	 statistical	 methods	 described	 above	 to	 the	 sample	 in	 order	 to	 assess	 the	

technical	efficiencies	of	the	wheel	lathe	operators.		

Several	model	specifications	were	run	to	provide	a	basis	for	comparison	between	SFA	and	LMM	models:	

4	model	 specifications	 for	 SFA	 (M0.SFA-∆𝐷) 	 up	 to	M3.SFA-∆𝐷))	 and	 7	model	 specifications	 for	 LMM	

(M0.LMM-∆𝐷) 	 up	 to	 M6.LMM-∆𝐷)).	 For	 the	 SFA,	 each	 model	 specification	 sequentially	 adds	 more	

explaining	variables,	i.e.	first	model	only	considers	the	flange	thickness	(𝐹'),	the	second	model	adds	the	

occurrence	of	damage	defects	(𝑌TUV,	𝑌VWX),	𝑌UXY),	the	third	model	adds	the	wheelset	type	(𝑊')	and	the	



fourth	model	 adds	 some	 interaction	 terms	with	mileage	 since	 turning	 and	 damage	 defects	 (𝑀×𝑌TUV,	

𝑀×𝑌VWX),	𝑀×𝑌UXY).	Similarly,	for	the	LMMs	each	specification	sequentially	adds	fixed	effects	and	random	

effects,	i.e.	the	first	model	also	only	considers	the	flange	thickness	(𝐹')	as	a	fixed	effect,	the	second	model	

adds	the	occurrence	of	wheel	tread	damage	and	the	wheelset	type	(𝑌TUV,	𝑌VWX),	𝑌UXY,	𝑊')	as	fixed	effects,	

the	 third	 model	 adds	 the	 technician	 (𝑇)	 as	 a	 random	 effect,	 the	 fourth	 model	 adds	 the	 month	 of	

measurement	(𝑀^)	as	a	random	effect,	the	fifth	model	adds	the	unit	(𝑈)	as	a	random	effect,	the	sixth	

model	adds	the	vehicle	(𝑉)	as	a	random	effect.	The	final	seventh	LMM	model	specification	also	adds	the	

interaction	terms	with	mileage	since	turning	and	damage	defects	(𝑀×𝑌TUV,	𝑀×𝑌VWX),	𝑀×𝑌UXY)	for	a	fair	

comparison	with	the	fourth	SFA	model	specification,	i.e.	so	that	models	M3.SFA-∆𝐷) 	and	M6.LMM-∆𝐷) 	

have	exactly	the	same	explaining	variables.	Table	2	provides	details	on	each	of	the	estimated	model	and	

‘goodness-of-fit’	statistics	for	easier	comparison.		

Several	‘goodness-of-fit’	measures	are	computed	for	both	models.	The	Log-likelihood	value	and	the	–2	

Restricted	Log-likelihood	value	are	computed	for	the	SFA	and	LMM	models,	respectively,	and	the	Akaike	

Information	Criterion	(AIC)	value	is	computed	for	all	model	specifications.	The	AIC	is	used	for	comparing	

between	 different	 SFA	 and	 LMM	model	 specifications.	 It	 combines	 a	 goodness-of-fit	measure	 with	 a	

measure	 of	model	 complexity,	 i.e.	 the	 -2	 Log-likelihood	 plus	 2	 times	 the	 number	 of	 parameters.	 AIC	

provides	a	criterion	to	compare	different	models,	in	which	the	preferred	model	is	the	one	with	the	lowest	

AIC	value.		

Tables	 3	 and	 4	 show	 the	 estimates	 for	 the	 parameters	 of	 all	 SFA	 and	 LMM	 model	 specifications,	

respectively.	Regarding	Table	3,	all	variables	are	statistically	significant	at	the	5%	significance	level	for	all	

model	specifications,	except	for	the	parameter	associated	with	motored	wheelsets	(𝛽a%'%#).	The	flange	

thickness	(𝐹')	has	a	negative	effect,	i.e.	the	lower	the	flange	thickness,	the	more	diameter	a	wheel	will	

lose	 due	 to	 turning;	 whereas	 the	 damage	 defects	 (𝑌TUV,	𝑌VWX),	𝑌UXY)	 have	 a	 positive	 effect,	 i.e.	 the	

occurrence	of	tread	damage	increases	the	diameter	lost	due	to	turning.	Note	that	the	damage	defects	

have	all	positive	interaction	terms	with	mileage	since	turning,	i.e.	the	diameter	loss	required	to	remove	

tread	damage	increases	as	the	mileage	since	turning	increases.	Furthermore,	the	scale	parameters	show	

that	the	term	associated	with	inefficiency	provides	a	higher	value	of	variance	than	the	term	associated	

with	random	noise,	i.e.	𝜎? > 𝜎;	resulting	into	a	value	for	𝜆 =
cd
ce
	higher	than	1.	This	shows	that	the	error	

component	associated	with	inefficiency	(𝑢/)	dominates	the	variability	around	the	mean	of	the	diameter	

loss	due	to	turning,	controlling	for	the	explaining	variables.	



Figure	1	provides	a	contrast	between	the	SFA	specified	in	model	M3.SFA-∆𝐷),	an	Ordinary	Least	Square	

(OLS)	estimation	without	considering	 inefficiency	 terms	and	a	Corrected	Ordinary	Least	Square	 (COLS)	

approach.	 The	OLS	 and	 COLS	 have	 the	 same	 slopes,	 though	 the	 COLS	 line	 is	 shifted	 to	 the	minimum	

diameter	loss	observed.	A	box-and-whisker	plot	is	presented	in	Figure	2,	for	the	total	residual	above	the	

SFA	 line	 for	 different	 technicians	 based	 on	 the	 residuals	 estimated	 from	 model	 M3.SFA-∆𝐷).	 One	

interesting	finding	from	the	statistical	modelling	regards	the	variability	between	wheel	lathe	operators.	

The	model	showed	that,	whilst	three	of	the	operators	removed	very	similar	amounts	of	material	above	

the	 minimum	 possible	 (around	 2.0	 mm	 diameter	 on	 average),	 one	 operator	 (number	 ‘3’)	 removed	

significantly	more	(more	than	an	average	of	10.0	mm).	The	model	is	constructed	to	carefully	control	for	

other	factors	which	would	influence	the	minimum	possible	value	to	remove.	For	example,	if	operator	‘3’	

was	considered	the	most	experienced	and	therefore	given	the	most	damaged	wheels	to	turn.	As	the	wheel	

damage	 types,	 depths,	 times	 of	 turning	 etc.	 were	 found	 to	 be	 similar	 for	 all	 operators,	 the	 analysis	

therefore	suggests	that	there	is	an	underlying	difference	in	the	turning	approach	adopted	by	operator	‘3’.	

This	has	the	potential	to	significantly	affect	the	overall	wheelset	life.	Indeed	the	lathe	operator	was	found	

to	be	one	of	the	most	statistically	significant	factors	in	amount	of	material	removed	at	turning.	Although	

it	 is	 beyond	 the	 scope	of	 this	paper,	 it	would	be	 interesting	 to	 investigate	whether	wheels	 turned	by	

Operator	‘3’	subsequently	had	shorter	or	longer	intervals	to	next	turning.	It	may	be	that	removing	more	

material	 is	more	 effective	 in	 ensuring	 that	 RCF	 damage	 is	 fully	 removed	 preventing	 early	 recurrence.	

Alternatively	it	may	be	that	operator	‘3’	removed	more	material	than	necessary	shortening	the	wheels	

life.		

In	microeconomics	literature,	it	is	also	common	to	represent	the	same	box-and-whisker	plot	for	different	

agents/firms	but	measuring	technical	efficiency	(i.e.	𝑒g?h).	Figure	3	represents	the	technical	efficiency	of	

the	different	wheel	lathe	operators.		

All	the	LMM	models	shown	in	Table	4	exhibited	statistically	significant	estimates	at	the	5%	significance	

level,	except	for	the	parameter	associated	with	motored	wheelsets	(𝛽a%'%#)	for	the	model	M6.LMM-∆𝐷).	

The	 factor	 associated	with	 different	 technicians	 (𝑇)	was	 the	 random	 effect	 that	 showed	 the	 greatest	

variability,	 followed	by	the	random	effects	associated	with	month	of	measurement	 (𝑀^),	unit	 (𝑈)	and	

vehicle	(𝑉).	

Finally,	comparing	model	M6.LMM-∆𝐷) 	with	model	M3.SFA-∆𝐷),	 the	best	SFA	model	has	a	 lower	AIC	

value	(27083.64),	than	the	best	LMM	models	with	an	AIC	of	28157.69.	This	indicates	that	the	SFA	model	

performed	better	than	the	LMM	model.	The	finding	suggests	that	using	an	error	component	structure	



associated	 with	 inefficiencies,	 by	 mathematically	 adding	 a	 one-sided	 distribution,	 may	 considerably	

enhance	the	statistical	models,	even	when	comparing	with	a	complex	statistical	model	like	the	LMM.			

6- Conclusions	and	further	research				

This	paper	provided	evidence	of	the	importance	of	modelling	the	performance	of	different	wheel	lathe	

operators	in	the	maintenance	of	railway	wheelsets.	By	applying	an	SFA	model,	we	were	able	to	identify	

the	technical	efficiency	of	each	wheel	lathe	operator,	when	compared	to	a	‘best	practice’	frontier,	and	

thus,	 isolate	 the	 bias	 due	 to	 inefficiencies	 of	 each	 operator,	 while	 controlling	 for	 other	 factors	 that	

contribute	 to	explain	 the	variability	of	 the	diameter	 loss	due	 to	 turning.	 It	 also	highlights	 the	need	 to	

provide	 lathe	 operators	 with	 clear	 guidance	 and	 training	 so	 that	 they	 understand	 the	 effect	 of	 their	

decisions	on	wheel	life.	Therefore,	current	maintenance	managers	should	apply	this	technique	to	identify	

maintenance	 operators,	 which	 might	 be	 able	 to	 improve	 their	 performance,	 and	 recommend	 them	

specific	training.	

The	comparison	between	the	SFA	models	and	LMM	models	showed	that	the	error	component	structure	

that	tackles	technical	inefficiencies	provides	a	significant	enhancement	in	the	AIC	value.	This	suggests	that	

the	application	of	 statistical	 techniques,	 such	as	SFA,	previously	applied	 in	economic	analysis	 can	also	

prove	useful	in	modelling	physical	phenomena.	

For	further	research,	it	would	be	interesting	to	add	more	variables	describing	the	attitudes	and	experience	

of	the	different	technicians,	trying	to	answer	for	instance	whether	or	not	more	experienced	technicians	

perform	better	than	others.	Moreover,	 it	would	also	be	useful	 to	conduct	further	analysis	on	whether	

turning	more	material	off	might	be	beneficial	in	preventing	the	re-occurrence	of	RCF	damage	and	cavities.	

In	that	sense,	we	recommend	an	extension	of	the	assessment	of	technicians’	performance,	which	would	

necessarily	imply	collecting	other	sources	of	data	(not	available	in	our	sample),	more	usual	in	research	

areas	like	human-computer	interaction,	human	factors	and	usability	engineering.	Finally,	we	believe	that	

the	combination	of	mixed	factors	with	SFA	models	through	a	hierarchical	Bayesian	model	might	provide	

even	better	results,	but	this	is	a	step	for	the	future,	in	which	a	good	starting	point	is	Griffin	and	Steel17,	

which	could	be	combined	with	a	previous	work18.	
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Figure	1	-	Comparison	between	OLS,	COLS	and	SFA	approaches.	

	

	

Figure	2	–	Box-and-whisker4	plot	for	the	total	residual	(i.e.	𝒗𝒊 − 𝒖𝒊)	(in	mm)	for	different	wheel	lathe	operators/technicians.	

																																																													
4	The	box-and-whisker	is	a	typical	plot	in	statistics	that	helps	to	show	the	variability	of	a	given	sample.	The	box	refers	

to	the	first	(Q1)	and	third	(Q3)	quartiles,	and	the	line	in	the	box	marks	the	median	value	(i.e.	the	second	quartile	–	



	

Figure	3	-	Technical	Efficiency	(i.e.		𝒆g𝒖𝒊)	for	different	wheel	lathe	operators/technicians.	

	 	

																																																													
Q2).	 The	 whiskers	 go	 from	 the	 lower	 limit	 (Q1-1.5×IQR)	 to	 the	 upper	 limit	 (Q3+1.5×IQR),	 in	 which	 IQR	 is	 the	

interquartile	 range,	 i.e.	 the	 difference	 between	Q3	 and	Q1	 (IQR=Q3-Q1).	 The	 observations	 that	 go	 outside	 the	

whiskers	range	are	considered	outliers	and	are	identified	as	simple	points.	



Variables  Description Type Mean St. Dev. Min Max 

∆𝐷) Diameter loss due to turning (in mm) Continuous 7.5253 2.7696 0.037 27.443 
𝐹'	 Flange thickness pre-turning (in mm) Continuous 27.782 0.2596 26.66 28.98 
𝑌TUV 1 if a Rolling Contact Fatigue (RCF) defect occurred, 0 otherwise. Binary 0.1002 0.3003 0 1 
𝑌UXY 1 if a cavity defect occurred, 0 otherwise. Binary 0.0195 0.1384 0 1 
𝑌VWX) 1 if a wheel flat defect occurred, 0 otherwise. Binary 0.1313 0.3377 0 1 
𝑀	 Mileage since turning (in 1000 miles) Continuous 111.54 50.67 0.02 235.98 
𝑇	 Technician (4 different operators/technicians) Nominal - - - - 
𝑊	 Wheelset type (3 types: motored, internal or leading trailer) Nominal - - - - 
𝑈	 Unit number (51 units) Nominal - - - - 
𝑉	 Vehicle type (3 types: DMC, MS and DMS) Nominal - - - - 
𝑀^	 Month of measurement (68 months) Nominal - - - - 

Table	1	–	Variables,	their	description,	type	and	some	statistics	for	a	total	of	6,246	observations.	

	

	

	 	



Model  Explaining Variables Log 
Likelihood 

-2 Restricted 
Log Likelihood 

Number of 
parameters (df) AIC 

M0.SFA        𝐹' -13900.79 - 4 27809.58 
M1.SFA 								𝐹', 𝑌TUV, 𝑌VWX), 𝑌UXY -13606.70 - 7 27227.40 
M2.SFA        𝐹', 𝑌TUV, 𝑌VWX), 𝑌UXY, 𝑊' -13566.25 - 9 27150.50 
M3.SFA        𝐹', 𝑌TUV, 𝑌VWX), 𝑌UXY, 𝑊', 𝑀×𝑌TUV, 𝑀×𝑌VWX), 𝑀×𝑌UXY -13529.82 - 12 27083.64 

M0.LMM FE: 𝐹' 
RE: - - - 3 30455.72 

M1.LMM FE: 𝐹', 𝑌TUV, 𝑌VWX), 𝑌UXY, 𝑊'  
RE: - - - 8 29233.51 

M2.LMM FE: 𝐹', 𝑌TUV, 𝑌VWX), 𝑌UXY, 𝑊'  
RE: (𝑇) - 29041.38 9 29059.38 

M3.LMM FE: 𝐹', 𝑌TUV, 𝑌VWX), 𝑌UXY, 𝑊'  
RE: (𝑇, 𝑀^) - 28441.62 10 28461.62 

M4.LMM FE: 𝐹', 𝑌TUV, 𝑌VWX), 𝑌UXY, 𝑊'  
RE: (𝑇, 𝑀^, 𝑈) - 28289.20 11 28311.20 

M5.LMM FE: 𝐹', 𝑌TUV, 𝑌VWX), 𝑌UXY, 𝑊'  
RE: (𝑇, 𝑀^, 𝑈, 𝑉) - 28168.70 12 28192.70 

M6.LMM FE: 𝐹', 𝑌TUV, 𝑌VWX), 𝑌UXY, 𝑊', 𝑀×𝑌TUV, 𝑀×𝑌VWX), 𝑀×𝑌UXY, RE: 
(𝑇, 𝑀^, 𝑈, 𝑉) - 28127.69 15 28157.69 

Table	2	–	Explaining	variables	and	comparison	of	the	fit	statistics	from	different	models	estimated	for	the	dependent	variable	
diameter	loss	due	to	turning	(∆𝑫𝑻).	Note	1:	All	models	included	an	intercept	constant	value	(𝛃𝟎).	Note	2:	For	the	LMM	

models,	the	Fixed	Effects	(FE)	are	presented	first	and	the	Random	Effects	(RE)	are	included	in	parenthesis.		

	

	

	

	 	



Model Label Parameter M0.SFA-∆𝐷) M1.SFA-∆𝐷) M2.SFA-∆𝐷) M3.SFA-∆𝐷) 

1 𝛽o 54.425 57.797 55.441 52.290 
  (2.3554) (2.4344) (2.5211) (2.0379) 
𝐹'  𝛽Vp -1.794 -1.920 -1.829 -1.714 
  (0.0850) (0.0879) (0.0910) (0.0738) 

𝑌TUV  𝛽TUV - 1.613 1.604 0.530 

   (0.0740) (0.0755) (0.2726) 
𝑌VWX)  𝛽qrs' - 1.146 1.100 0.698 

   (0.0718) (0.0741) (0.1251) 
𝑌UXY  𝛽ts; - 1.452 1.495 0.684 

   (0.1720) (0.165) (0.3228) 
𝑊' 𝛽a%'%# - - -0.036 -0.059 

    (0.0631) (0.0736) 
 𝛽)#s/r$# - - -0.447 -0.462 
    (0.0693) (0.0812) 
 𝛽W$su/^v - - 0b 0b 

      
𝑀×𝑌TUV 𝛽a×TUV - - - 0.009 

     (0.0021) 
𝑀×𝑌VWX) 𝛽a×VWX) - - - 0.006 

     (0.0015) 
𝑀×𝑌UXY 𝛽a×UXY - - - 0.013 

     (0.0037) 
Scale 𝜎; 0.5921 0.6881 0.6923 0.6884 

 𝜎? 4.0172 3.7159 3.6828 3.6610 
 𝜆 6.784 5.400 5.319 5.318 
  (0.2619) (0.2030) (0.2084) (0.1697) 
Log Likelihood -13900.79 -13606.70 -13566.25 -13529.82 

AIC 27809.58 27227.40 27150.50 27083.64 
Number of parameters (df) 4 7 9 12 

Table	3–	Estimates	for	the	parameters	of	different	models	M0.SFA-M3.SFA	for	the	dependent	variable	diameter	loss	due	to	
turning	(∆𝑫𝑻).	

	

	 	



Model Label Parameter M0.LMM-∆𝐷) M1.LMM-∆𝐷) M2.LMM-∆𝐷) M3.LMM-∆𝐷) M4.LMM-∆𝐷) M5.LMM-∆𝐷) M6.LMM-∆𝐷) 

Fixed Effects         

1 𝛽o 16.8587 34.48553 39.58786 45.9905 44.50749 46.51300 38.36797 
  (3.7467) (3.50410) (3.64597) (3.99044) (3.97864) (3.97040) (4.00547) 
𝐹'  𝛽Vp -0.3360 -0.98135 -1.12562 -1.35069 -1.29974 -1.36727 -1.12076 
  (0.1349) (0.12646) (0.12487) (0.13599) (0.13629) (0.13515) (0.13796) 

𝑌TUV  𝛽TUV - 3.53981 3.61747 3.45374 3.38064 3.26511 2.13286 
   (0.10808) (0.10705) (0.10805) (0.10723) (0.10677) (0.28118) 

𝑌VWX)  𝛽VWX) - 1.50080 1.43816 1.45948 1.47444 1.51732 1.09268 
   (0.09762) (0.09617) (0.10985) (0.10990) (0.10888) (0.15382) 

𝑌UXY  𝛽UXY - 2.68745 2.90104 2.91918 2.87964 2.83966 1.30192 
   (0.23063) (0.22731) (0.22543) (0.22390) (0.22174) (0.38160) 

𝑊 𝛽a%'%# - -0.44570 -0.42377 -0.47616 -0.49889 -0.59099 -0.05067 
   (0.09046) (0.08894) (0.08403) (0.08260) (0.08472) (0.08282) 
 𝛽)#s/r$# - -0.24949 -0.21310 -0.21884 -0.22938 -0.37037 -0.54323 
   (0.09476) (0.09322) (0.08808) (0.08652) (0.09170) (0.09191) 
 𝛽W$su/^v - 0b 0b 0b 0b 0b 0b 
         

𝑀×𝑌TUV 𝛽𝑀×𝑅𝐶𝐹 - - - - - - 0.00958 
        (0.00213) 

𝑀×𝑌VWX) 𝛽𝑀×𝐹𝐿𝐴𝑇 - - - - - - 0.00544 
	        (0.00155) 

𝑀×𝑌UXY 𝛽𝑀×𝐶𝐴𝑉 - - - - - - 0.02091 
	        (0.00443) 

Random Effects         
𝑇 𝑑) - - 2.264 2.558 2.422 2.514 2.278 
         

𝑀^ 𝑑a^	 - - - 1.023 1.050 1.062 1.049 
         
𝑈 𝑑| - - - - 0.489 0.500 0.501 
         
𝑉 𝑑Y - - - - - 0.423 0.330 
         

Scale 𝜎 2.769 2.510 2.467 2.318 2.273 2.248 2.237 
         

-2 Restricted Log Likelihood - - 29041.38 28441.62 28289.20 28168.70 28127.69 
AIC value 30455.72 29233.51 29059.38 28461.62 28311.20 28192.70 28157.69 

Number of parameters (df) 3 8 9 10 11 12 15 
Table	 4	 –	 Restricted	 Maximum	 Likelihood	 (REML)	 estimates	 for	 the	 parameters	 of	 models	 M0.LMM-M6.LMM	 for	 the	
dependent	variable	Diameter	loss	due	to	turning	(∆𝑫𝑻).	

a	Approximate	Standard	Errors	for	Fixed	Effects	are	included	in	parentheses.	b	This	parameter	is	redundant.	

	


