Journal of Information Systems Engineering & Management, 1:4 (2016), 51
ISSN: 2468-4376 ec i

http:/ /www.lectitojournals.com

Supporting GUI Exploration through USS Tool

José Luis Silval", J. D. Ornelas?, J. C. Silva3

! Instituto Universitario de Lisboa (ISCTE-IUL), PORTUGAL
2Universidade da Madeira, PORTUGAL
3nstituto Politécnico do Cavado e do Ave, (EST-DIGARC), PORTUGAL

*Corresponding Author: jose.lsilva@m-iti.org

Citation: Silva, J. L., Ornelas D., J., Silva, J. C., (2016) Supporting GUI Exploration through USS
Tool, Journal of Information Systems Engineering &> Management, 1:4 (2016), 46.

doi: http://dx.doi.org/10.20897 /lectito.201651

Received: June 13, 2016; Accepted: October 19, 2016; Published: November 8, 2016

ABSTRACT

Advances in usability and design techniques (e.g. user-centered design) try to facilitate the use of interactive
systems. However, users still have to adapt to interactive systems, i.c. they have to learn the steps required to
accomplish a task either by trial and error or by obtaining help. While advanced users are usually able to adapt
without much effort this is far from being the case with beginners. Some interactive systems offer different
interaction styles in an attempt to meet the needs of all types of user but this is not the case with all interactive
systems. In this sense, we present an approach to support the use of any interactive system making use of
enriched models and picture-driven computing to achieve tasks automation. The USS tool (User Support
System) is the basis to the adaptation of interactive systems accordingly to the users’ needs. The approach
provides the foundation for the addition of help (based on demonstration) to any graphical user interfaces
(GUI) facilitating learning and use. The work is illustrated by a case study and completed with a preliminary
user evaluation which provides insights about the validity of the approach.

Keywords: Interactive systems, Picture-driven computing, Automation, Task Modeling, User support system

INTRODUCTION

The concept of interactivity is recent, it comes from physics and have been incorporated by other fields of

knowledge. In the computer field, interactivity comes against a new conversational dimension of information,
translated by a bi-directionality. In this sense, there is a separation between who sends and who receives the message.
In the case of an interactive system, a dialogue communication is established in the exchange.

Interactive systems have undergone significant developments, much due to the constant advances that

technology has been targeted. Progress has taken place to explore new forms of interaction that become increasingly

Copyright © 2016 by Author/s and Licensed by Lectito BV, Netherlands. This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://dx.doi.org/10.20897/lectito.201651

Journal of Information Systems Engineering & Management, 1:4 (2016), 51

simple/easy to use by usets in general (Knabe K., 1995). Interactive systems can be desctibed as systems that allow
continuous communication (transfer of information) between a computer and a user (Piyawadee Sukaviriya et al.,

1990).

There are many ways and means of interaction between man and machine that have been applied, through the
traditional command line interface, graphical user interfaces, the style interaction question-answer, keyboard, mouse,
voice recognition, touch screen, etc. With regard to interaction styles, the most common is the menu, while the
question-answer method, although simple and self-explanatory, is suitable only for users with low level of expertise.
However, despite continuous progress both in terms of usability and intuitiveness, users (especially those with low
skills) of interactive systems continue to encounter many challenges. One of them is due the fact that several systems
do not take into account the needs of each user profile and the context in which they are inserted to adapt to them.
To facilitate the use of interactive systems new solutions have emerged, such as context-sensitive help, tutorials, and
new paradigms such as 3DUI (3 Dimension User Interface) that uses for instance a Kinect as input and a CAVE as
output. However, none of the solutions proves fully adequate. It is true that users learn faster through tutorials
illustrated by screenshots than to just read the text (Guy A. Boy, 1998), but users have many difficulties in locating
the interface element in tutorials (O. Al-Shara and A. Dix., 2004). Users find themselves forced to adapt to different
systems in order to meet their needs. They have to search for information (help manuals) or use the method of trial
and error to learn how to interact with the system or to know what steps must follow to complete a given task.
Thus, any improvement considering user support in the use of interactive systems lead to important contributions
in this area.

The work presented here provides users with an innovative method of interacting with any existing interactive
system. The approach is based on enriched tasks models and picture-driven computing and aims to solve usability
problems and improve efficiency while interacting with GUIs (using automated tasks). At this point, due to the
interest in knowing the behavior of the interactive systems, task models, identifying the interaction between the user
and the system, represent an ideal starting point to achieve the goal of this project.

The approach applies to different contexts, and provides a tool for developers, which easily allows the automatic
creation of scripts. The results of the approach permits, even users with little or no knowledge of Information
Technology (IT), to perform the required tasks. Typically, users have to learn how to perform tasks by reading
information (e.g. help and support) or by exploration (trial and error). The work presented in this paper aims to
provide the basis for an innovative method for users to interact with any developed interactive system, independently
of the Operating System and without requiring access to the application source code. The main goal is to enable an
effective adaptation of interactive systems for users (beginners in particular) that would result in an increase in the
system’s usability and a decrease in the prior user knowledge required.

This paper presents USS, a tool that provides the basis for improving user interaction with GUISs, solving several
usability and efficiency problems via task automation, enriched task models and picture-driven computing. An initial
version of this paper was published in (Ornelas, J. D. et al., 2016b). The current paper extends the previous paper
by articulating the User Support System approach more thoroughly. It describes and illustrates the approach in more
detail by means of a more complex case study. Additionally, an evaluation and corresponding results are also
presented and discussed.

The article is structured as follows: Section 2 describes background concepts and presents some related studies;
Section 3 presents the implemented approach; Section 4 presents a simple application of the approach used to
simplify the explanation of the implementation and makes it easier to understand. Section 5 illustrates the work by
means of a case study and a user evaluation with respective results. Finally, discussion and conclusions are presented
in Sections 6 and 7.

BACKGROUND

A brief description of some concepts is presented in this section to provide the reader with the basis for
understanding the developed work. Related studies are described in the last subsection.

A. Task Automation

In Human-Computer Interaction the automation aims to simplify task execution by, for instance, reducing the
number of steps/actions the user has to perform. Task automation might always appear to be beneficial but too
much automation might lead to bad results (Guy A. Boy., 1998). To avoid such situation, the understanding of what
should or should not be automated is fundamental. Célia Martinie et al., (2011b) presented an approach to this end.
Their work is based on task models to identify which tasks a user can perform in an interactive system and

© 2016 by author/s

Journal of Information Systems Engineering & Management, 1:4 (2016), 51

consequently the best automation level. Due to the complexity of frequent interactions these advances are not
enough and users still need to have some previous knowledge to perform a task efficiently in an interactive system.

Ideally tasks are identified and consequently modeled in the eatly phases of the development process. However,
in systems already developed and/or without access to their source code other approaches must be considered (e.g.
picture-driven computing). Parasuraman et al. (2000) states that the automation can be performed at various stages
of the interaction and on different classes of functions (i.e. acquisition, analysis, decision and execution). The
automation of these classes might lead to varying implications in terms of performance, trust and cost. In regard to
implementation the automation can be implemented with sctipts or macros and can vary in its degree of complexity
from no automation to full automation (where user participation is not required).

Task models are hierarchical representations of the tasks that a user can perform in an interactive system and
describe how each task can be performed. The two most recognized notations and therefore most frequently used
to model tasks are: HAMSTERS (Racim et al., 2014) (Human-centered Assessment and Modeling to Support Task
Engineering for Resilient Systems) and CTT (ConcurTaskTrees) (Li, Jiao et al. 2010). On one hand the HAMSTERS
tool is an open source solution dealing with both small case studies (laboratory) and real situations (business) and
requiring very little training/learning time. It is inspited by existing notations and tools, combining the advantages
of all of them. The tool allows:

1) the addition of conditions for the execution of tasks;

2) the representation of information flow between tasks;

3) the simulation of task sequence execution.

On the other hand, the CTT notation is the most common approach to task analysis, being widely used both at
the academic and industrial level. The CTTE (ConcurTaskTrees Environment) tool allows for the introduction of
informal textual description of a uset case/scenario and supports simultaneous tasks, metric calculation, task
performance evaluation and interactive simulation.

With regard to the stated features and after a trial period with both tools, CTT was chosen mainly because of its
compatibility with complementary tools (in particular the MARIAE) that can be useful at a later stage of the work
(as will be seen later).

B. Picture-Driven Computing

Before the application of automation to a system the identification of the tasks to automate is required. This is
a procedure that can be done at different stages of the development process of the target software, as well as in
legacy systems. In the latter case, where it is not possible to have access to application’s source code, there is a need
for an alternative way to carry out automation tasks. In those situations Picture-Driven Computing is seen as a viable
alternative (Chang, Tsung-Hsiang et al, 2010). This new paradigm offers software developers a fully logical
alternative. The approach uses computer vision algorithms to analyze instantly the content and evolution of a
graphical user interface (Silva, J. C. et al., 2014).

As stated by Kourousias et al. (2010), the picture-driven computing paradigm can be a good ally for accessibility
design (refers to the design of products or services for people with disabilities) of computer systems. This ensures
access without help and indirect access with technologies to support people (Phillips, Betsy, and Hongxin Zhao.
1993).

Sikuli (Tom Yeh et al. 2009) is a picture-driven computing tool that uses image recognition to identify and control
GUI components. The software allows users to develop scripts that work on graphical user interfaces, through the
use of screenshots of these GUIs, and allowing visual scripting and automation of actions on any graphical interface.
Alternative solutions to Sikuli are Automa, RIATest and Eggplant Functional.

Automa (Lund, A.M., 2001)) is a tool for Windows that automates repetitive tasks on interactive systems. The
tool allows for workstation control using simple commands such as "start", "click" and "write". The sequence of
input commands can be stored in a file which can be reproduced in different ways, by clicking on a button within a
specified range or from a test management tool.

RIATest (Automate testing of web applications, 20106) is an automation tool for GUI tests. It is capable of
automating any item on the screen, which is accessible through the Windows Ul Automation API. The tool
identifies an application's GUI elements through the Object Inspector, using simple but powerful location features.
The tool allows the user to pause the execution of a script, edit it, and then continue, without restarting the execution.

Finally, Eggplant Functional tool (eggPlant range, Test automation tools, 2016) executes functional test
automation, using an approach based on patterns of pictures. The tool enables the writing of tests in a very intuitive
way. It uses sophisticated recognition algorithms to locate objects on the screen and thus control the device and
perform the interaction in the same way that a user does. This approach allows the test of any technology on any
platform to be made from the user perspective. For example, to click on the "OK" button the program analyzes the

3
© 2016 by author/s

Journal of Information Systems Engineering & Management, 1:4 (2016), 51

screen through image recognition algorithms, finds the button and then triggers an event at the system level to click
on the button.

C. Related Work

The work of Eagan et al. (2011) enables the reduction of the gap between what is provided by an application
and what is expected by the users. Their approach allows the modification of the interface and behavior of an
application at run time without source code access. Another related work is that of Yeh et al. (2011) that provides
help to GUI users at run time. Célia Martinie et al. (2011a) presented an approach to provide contextual help about
sequences of actions to be performed in order to make a given task available. Pangoli et al. (1995) developed an
approach to obtain task-oriented help from the user interface specification. Other bodies of work (e.g. (Piyawadee
Sukaviriya and James D. Foley., 1990)) have looked at the automation of the creation of graphical illustrations (as it
can be time-consuming and expensive) for teaching users about a software application. Users learn more quickly by
following tutorials illustrated by screenshots than by reading only text (Harrison, S. M., 1995) but they often have
difficulty in locating the interface element present in the tutorial (Knabe, K., 1995). Some works address this
difficulty (e.g. (Bergman, L. et al. 2005) but none execute the help in the interface; in other words, they do not
provide help in automating the execution of the desired task.

Palanque et al. (1993) looked at the generation of contextual help by adding annotation to the Petri net model
used to build the GUIL His work addressed the generation of context-sensitive help from a model of Petri nets
dialogue, by adding network notes. This method allows the analysis and verification of the dialogue specification in
order to verify the interface behavior, and even automatically generate a contextual help system. Paterné et al. (1995)
describes another approach, i.e. a task-oriented approach that supports the automatic generation of help. The help
information is structured according to user tasks (which are associated with interaction objects). The Ul drawing is
made, based on the specification of tasks involving the user view of the system functionality. This is used to produce
the design of the Ul and help.

Several approaches providing contextual help to users were presented however, in this work we are interested in
a different kind of help. Our focus is to provide automated/assistive execution of tasks instead of providing
contextual help. The next sections describe the approach, its application to a case study and its preliminary evaluation
with end users.

THE APPROACH

The manual creation of Sikuli script for each interactive system is not a viable solution (time-consuming process)
for adapting GUIs to user needs. Task models are usually available from the eatly phases of development. Using
this fact, we have developed a tool (designed to be used by developers) enabling the automatic generation of
parameterized Sikuli scripts from enriched task models. The automatic creation of Sikuli scripts is the main challenge
for the adaptation of interactive systems to users. In this section a description of each phase of the approach is
presented:

A, the presentation of the rules for the enrichment of the task model required for the
automatic script creation;

B. the steps to create the scenatios that complement the script creation process;
C. the algorithm used for the script creation process.

A. Task Model Enrichement

The original task models do not possess enough information for the script creation to be accomplished. Part of
the missing information is the screenshots required by Sikuli scripts. For this purpose a notation was developed for
inclusion of the screenshot location in the deseription field of each task (see Figure 1). The information was added to
this field because it does not interfere with the interpretation and execution of the model. Another purpose of the
description field is to include additional information of the Sikuli function to be used in the resulting script (e.g.
waiting times, dialog messages, etc.).

Besides the inclusion of additional information in the description field of relevant tasks the names of the tasks
must be adjusted according to the Sikuli script. For example, to show a popup window, the name of the task must
start with the popup reserved word followed by the name of the task. In the same way a set of rules have been
developed for every possible situation and have to be satisfied for a correct enrichment of the task model. Those
rules are presented in the remaining text of this subsection.

© 2016 by author/s

Journal of Information Systems Engineering & Management, 1:4 (2016), 51

" &1 Task Properties

General r Objects |/ Time Performance

- Task Properties
ldentifier: |F'ress Replace
Hame: |F'ress Replace

Category: interaction E -

Type: n Edit types

Frequency: -

Platform: Pda [| Desktop [| Mobile [| Vvocal [|| others
Context: |

“img = replace.png”

Description:

Figure 1 - CTTE task properties (description field)

The following description will present the rules to be used for:
i) the attribution of the names of the tasks (INawe field);
i) the information added to the tasks (Description field).

The Sikuli function associated to each rule and a desctiption of when/how the rule should be used is also presented.

Table 1. Click functions

Rule Sikuli function Description Value of the Description field
Press <task> click(img) Used for a click (left mouse button) on The name of the image e.g:
an element (e.g. /¢ parameter) “img = name.png”
PressR <task> rightClick (i) Used for a click (right mouse button) The name of the image e.g:
on an element (e.g. /g parameter) “img = name.png”
PressD <task> doubleClick(zg) Used for a double click on an element The name of the image e.g:
(e.g. img parameter) “img = name.png”
5

© 2016 by author/s

Journal of Information Systems Engineering & Management, 1:4 (2016), 51

Table 1. Function for data introduction/edition

Rule

Sikuli function

Description

Value of the
Description field

Enter <task >

text = input();

paste(zmg, text);

Used to ask the user to manually
insert data (fext parameter) in a
specific field (e.g. #g parameter)

The name of the
image e.g.:
“img = name.png”

EnterPassw passwd = input(“Introduce Used to ask the user to manually The name of the
<task> password”, hidden=True); insert a password in a specific field image e.g.:
paste(izg, passwd); (2mg parameter) “img = name.png”
EnterSemiAuto paste(input(text)) Used to ask the user to manually The text to be
<task> insert data indicating what is inserted in the dialog
expected (fext parameter) window to ask the
information (fexi)
EnterAuto paste(text + Key ENTER) Used for automatic data The text to be
<task> introduction provided (fex?) introduced (fex?)
EnterKey type(key) Used to automatically press a key or The key, e.g. :
<task> manual text introduction Key.F11
EnterCopy Type(“c”, Used to copy text selected The name of the
<task> KeyModifier. CTRL) image e.g.:
“img = name.png”
TextPaste Paste(img, Used to paste to a specific field The name of the
<task> Env.getClipboard()) (img) a copied text image e.g.:

“img = name.png”

Table 2. Waiting functions

Rule Sikuli function Description Value of the
Description field
WaitAppear <task> Wait(img, 10) Used to wait 10 seconds until anName of the image:

image (im9) appears on the screen “img = nome.png”

WaitT <task> Wait(time) Used to wait a specified time (tize) Waiting time, e.g. :
13 1 O’ 2
WaitDisappear <task> waitVanish(img) Used to wait until somethingThe name of the image:

disappear from the screen

“img = nome.png”

Table 3. Modal window functions

Rule Sikuli function Description Value of the Description
field
Popup <task> Popup(msg) Used to show a modal The information to show,
window and specity it e.g.:
content (msg) “Invalid operation”
PopAsk <task> popAsk(msg) Used to show a modal The question to ask.

window with a question
(msg) with Yes/No answer

“message”

Table 4. While cicle

Rule Sikuli function Description Value of the
Description field
FindW <task> While not exists (img) Used to inspect the screen | The name of the image:

until the identification of an
element

“imag = nome.png”

© 2016 by author/s

Journal of Information Systems Engineering & Management, 1:4 (2016), 51

Table 5. Conditional expression (if/else)

Rule Sikuli function Description Value of the Description
field
YesNo_IF <task> If(text): Used to verify if the answerThe name of the Boolean

(using the popAsk function)variable:
of the user is true or false text
ShowM <task> If exists(img): Used to verify if an elementThe name of the image:
(img) is visible in the screen “img = nome.png”
_IF <task> - Used to indicate the task to-
execute if the condition is true
_LastIF <task> - Used to indicate the last task-
to be executed within the
condition
_firstELSE <task> Else: Used to indicate the task to-
execute if the condition is
false
_ELSE <task> - Used to indicate the task to be-
executed if the condition is
false
_LastELSE <task> - Used to indicate the last task-
to be executed within the
condition

Table 6. Functions to open/close an application

Rule Sikuli function Description Value of the Description
field

OpenApp <task> App.open(path) Open an application from a The path:
provided location (path) Path

CloseApp <task> App.close(path) Close an application from a The path:
provided path Path

FocusApp <task> App.focus(title) Focus an application by Title of the application to
indication the title of it focus: title

The application of the described rules enables the enrichment of the task models for the purpose of the
automatic Sikuli script creation. After the enrichment of the task model the second phase of the script creation
process (i.e. scenario selection) can start. In the following subsection the description of the second phase of the
process is described.

B. Scenario Selection

From a task model, alternative sequences of steps might be executed to perform a task. There is consequently a
need to identify the sequence to be used in the automation. Two methods were identified to solve this issue. The
first is based on the use of a functionality of the CTTE, i.e. the generation of Presentation Task Set List (can be seen
as a finite state machine) from the task model. The second is based on a functionality of MARIAE (simulation of
task execution) that enables the simulation of task models and the selection of scenatios (see Figure 2). As the first
method was rejected for technical reasons (inconsistency of the system states generated) the second method was
the one selected. This method consists of selecting the scenarios by performing a manual simulation of the task
model to be automated. The simulation generates an XML file with the ordered sequence of steps accomplished.
An example of a generated XML file (for the task of finding a word in the Notepad) is presented in the Figure 3.
This file together with the enriched task model is the input required for the task automation to take shape via the
execution of the script created.

© 2016 by author/s

Journal of Information Systems Engineering & Management, 1:4 (2016), 51

B x
File Edit

Enabled Tasks

[interactive Simulation - Enabled Tasks |

(7 Option Borders

5 Press Box @

Press Shadow Optiori Borders
Press 3D
Press Color

Press Apply

Press Ok
-4 Enter Text @

oreters Dialdg Enter Text
— 1=! S — @
Press Structure Wait Structure Tuctdfe Options
S 3%5 >3 @

Press Page Borders Wait Page Borders e Borders

.
@ =

BCL Options Press Ot Close BordersPag

=3 =
=

[> —[> JR— =

e s e~ R
Press Borders et Sattn Bt Shy Press Apply Sell o phy
— — % — i

Fress Box Press Shadow Press 200 Press Color - Show Color Select Press Text Press Paragraph

< >

als elos (@

Task Objects
Task Preconditions

Commands

Task Postronditions - Enabled

Task Postconditions - Executed

Figure 2 MARIAE (task simulator interface)

E?xml version="1.8" encoding="UTF-8" standalone='"yes"?>
<scenarioType xmlns="http://giove.isti.cnr.it/ctt/scenario” modelId="Option Find">
{step executed task="Press Edit">
<completed_task name='"Press Edit" lewel="2"/>
<fstep>
{step executed task="Press Find">
<completed_task mame='"Press Find" lewvel="2"/>
<Jstepy
{step executed task="EnterSemiAuto wordFind">
<completed_task mame="Set Options Find" lewel="'3"/>
<completed_task mame="EnterSemifiuto wordFind" Llewvel="4"/>
<fstep>
{step executed task="Press findHext'>
<completed_task mame="Press findMext” lewel="3"/>
<fstep>
{step executed task="ShowH MsgAckCantFindWord">
<completed_task mame="ShowH MsgAckCantFindWord" level=""5"/>
<fstepr
{step executed task="Press Ok HsgAckCantFindWord">
<completed_task mame="Process HModalWindow' lewel="5"/>
<completed_task mame="Press Ok HsgAckCantFindWord" Lewel="&6"/>
<fstep>
{step executed task="Close HMsgAckCantFindWord">
<completed_task mame="Scan Find Attributes” level="2"/>
<completed_task mame="Check Replace Result™ lewel="'3"/>
<completed_task mame="tsgAckCantFindWord" level=""4"/>
<completed_task mame="Close HMsgAckCantFindWord" level=""5"/>
<fstepr
{step executed task="Press Cancel Replace">
<completed_task mame=""Finish Replace"” lewel="2"/>
<completed_task mame="Press Cancel Replace™ level="3"/>
<fstep>
<step executed_task=""Close Replace>
<completed_task mame="Option Find" level="0"/>
<completed_task mame="Start Find Dialog™ lewel="1"/>
<completed_task mame="Close Replace" lewel="'2"/>
{fstep>
</scenarioType’>

Figure 3 MARIE task execution simulation (generated XML file)

C. Sikuli Script Creation Process

As stated previously the process requires an entiched task model together with the scenatio of the task to be
automated. The process is comprised of the following phases:

1. Extraction of relevant task names and associated images from the task model;

© 2016 by author/s

Journal of Information Systems Engineering & Management, 1:4 (2016), 51

2. Extraction, from the scenario, of the order of steps required to execute the task;
3. Automatic creation of the Sikuli script based on the extracted information from phases 1 and 2.

Since both task model and the scenario are represented by XML files, a library (i.e. XPath Parser) was used to
extract the relevant information. After this step an algorithm was developed to manipulate the extracted information
and generate the desired script.

Before the development of the algorithm the information present in both files was analyzed and the useful one
for our goal identified. Consequently, from the task model (first file) only the elements Nawe and Description (see
Figure 4) were considered. As explained in the Task model enrichment subsection the content of the field <Name>
will produce the respective Sikuli function. Alternatively, the field <Description> can have different types of data
which will produce different results depending of the rule used.

<Task Tdentifier="Openhpp Skype" Category="application" Iteratiwve="false"
<Name>Openipp SEype</HName>
<Descripticn>C: /Program Files (x86) /Skype/Phone/Skype</Descripticns>
<Temporallperator name="SequentizalBnabling" />
<Parent name="Skype makeCall"/>
<3iblingRight neme="WaltT SkypeWindow"/>

</Task>

Figure 4. Excerpt of a file representing an enriched task model

In the second file (see Figure 5), containing the sequence of executed steps to complete the chosen task, the
clement required was the <step> element (in particular its attribute “executed_task”). This attribute contains the
name of each step and should be compared against the names present in the task model to verify their compatibility.

<3tep exscuted task="Enter ContactHame":>
<completed_task name="Enter ContactName" level="2"/>

</atep>

<3tep exscuted task="Press Contact">
<completed_task name="Option Find" lewvel="1"/>
<completed_task name="Press Contact" lewvel="2"/>

<fatep>
Figure 5. Excerpt of a file representing a scenario

To put in practice the stated analysis and proceed with the extraction of the relevant information present in the
XML files an approach based on the XPath Parser and JAVA was used. The XPath (XML Path Language) enables
the extraction of information present in a XML file. For this purpose, a set of XPath expressions were used.

After getting the required data for the Sikuli script creation, an algorithm able to manipulate this information
and generate the Sikuli script was implemented. Firstly, the algorithm compares the names of the tasks model against
the names of the scenario and save them in the order the tasks are executed. Secondly, an iterative reading of the
names is made to i) verify which of the rules is being used and ii) obtain the corresponding Sikuli functions. This
process is used to create the script. Additionally, some lines of code which are in common for all scripts (e.g. error
treatments) are also automatically added.

In Figure 6, an overview of the generic process applied in the context of a small example is presented. An
automation script (i.e. Sikuli script) is the result of the process (right side of the figure). A partial description of the
concrete CTT model was used and the resulting script is described in the following section.

© 2016 by author/s

10

Journal of Information Systems Engineering & Management, 1:4 (2016), 51

—>

Pregs Replace Show Replace Scan Rep) 4ottt
-

G—
SetQp niII rjace”

2] 1

L B T b =
Enter replaceFofvhat Press matchCaseR bool Prass FindNext Replace Press firsELSE Replace Press Repiate
e LS e EEXEES

ng

EnterfindwhatR
—

0

i)

Cloge Replace

Automation Script

1 >
Ly ReplaceResulfMgtepad

Show MsgAckGantFindword Procege
—

=

Bresg Ok MsgAckCantFindword

Close MsoAckCantFindword

| Enriched Task Model I o % . click(et |)
/m\ sclick(Rephce. |)
@ - ﬁ oo T
8 e Entertext wait(e —
.
T \ aux3 = input(" Enter word ")
E—— =0 = & . X

type(Fndwhat | ,aux3)

aux4 = input("Enter word ")

'type(Replace with , aule)

vat|)
click([Fndnea ||)
if exists(.6.):

7 click()

else:

click()

click(

click(| Caned |)

v

Press Glose MsgAckCantFindWord

V

Interactive Systems
User Support

Figure 6. Overview of the script creation process applied to the Replace task of the Notepad example
ILUSTRATION OF THE APPROACH - THE NOTEPAD EXAMPLE

This section is intended to illustrate the application of the approach with a small example to facilitate the
understanding of the process. The Notepad editor is used world-wide and is relatively easy to use for the vast
majority of users. However, newcomers to Information Technology systems might find it difficult to accomplish
some tasks, mainly because they have not done something similar in their previous experience. The replace task was
the one used to illustrate the application of the approach and understanding of the process.

A. The Replace Task

The CTT model of Figure 6 represents the steps that must be performed to accomplish the task of replacing
words in the Notepad. A brief explanation of the task modeled is desctibed by considering a part (see Figure 7) of
the whole CTT model of Figure 6.

e /
B &

Press Replace Show Replace
Figure 6. task of the Replace task model

An Interaction Task (Press Replace) that represents the interaction of the user with the application (the user has
to press the Replace button) and an Application Task (Show Replace), representing the realization of a task by the
application (the application shows the result of interaction made by the user), are represented. These tasks are
connected by a CTT seguential enabling temporal operator (>>) meaning that the task on the right of the operator
starts when the execution of the task on the left is finished. This is represented in the resulting script (see right side
of Figure 6) with a sequence of two commands (Click and Waif). The Click command performs a click on the element
represented by the image passed as argument. The Wait command waits for the image passed as argument to appear.
In this case the image is the Replace modal window (see right side of Figure 6) that appears as a consequence of the
user click on the Replace button. Other operators and types of task are used in the task model. These are translated
to the script in a similar way.

© 2016 by author/s

Journal of Information Systems Engineering & Management, 1:4 (2016), 51

A B3

File

Task Model file: | Search
Scenario file: | Search

|Enterscriptﬂ|e name

Create Script |

Figure 7. USS tool GUI

B. USS Graphical User Interface

The GUI of the USS tool is presented in Figure 8. It has two text boxes that must be filled with the paths to the
enriched task model and scenario files respectively. Then on pressing the Create Script button, the Sikuli script is
generated (with the name specified in the respective textbox). The generated script can then be used (just by
executing it) for the task automation of any interactive system. Developers can use the USS tool to create the scripts
associated with the widgets of a simplified version of any (or set of) existent GUIs. A discussion about the use of
USS is covered in the discussion section.

C. cript Execution
| Untitled - Notepad " Untitled - Notepad
File Format View Help File Edit Format View Help
e C _ : .
Abst Yo Culez [t | Abstract — Interactive svstems users still face
chal i ch
inty . ini Replace @
to < Cut Ctrl+X 53
o 4 Cop Ctrl+ 1 21 Find what: Find Next
This ©P] e
sity Paste Crl+V 3¢ z; Replace wih: Replace
usen
enri Delete Del < o Reolace Al
exan 1 ap
Find... Ctrl+F Cancel
- = [7] Match case
n
Replace... Ctrl+H

dj Untitled - Notepad
File Edit Format View Help

" Untitled - Notepad Abstract — Interactive systems users still fac
ch om
in{ Replace [®]

54

Replace ;c Find what:

Repl ith: | ey fi
Findwhat: how| ap| "Peee M| Sikulinput ==

Replace with: ap Enter word:

[7] Match cas hor

Figure 9. Initial steps of the script execution

File Edit Format View Help

Once Sikuli scripts have been generated, task automation can be performed. Figure 9 illustrates the initial
execution of the script automatically generated in this example. The execution of the first two ¢k commands of
the script (see right side of Figure 6) corresponds to the steps of the first image (upper left hand side) of the process
represented in Figure 9. The wait command matches the second image (upper right hand side). The instruction aux3
= input(“Enter word”) corresponds to the third image where Sikuli asks the user about the word to be replaced. After
the introduction of the word by the user (bow in this example — see last image of Figure 9) the next Sikuli script
instruction is executed (type) with the word provided as a parameter, as well as a screenshot of the location where
the input has to be introduced (Figure 6). This means that the word to be replaced is inserted in the replace modal
window. The execution of the script continues following a similar process resulting in the interpretation of the script
instructions. At the end, the task is automatically executed. However, as the execution of this task depends on
concrete values provided by the user (the word to be found and the word to be used in the substitution), the user
must provide them during the execution. Nevertheless, the advantages of the approach remain as the system adapts
to the user needs, helping them to complete the tasks. The example used is very simple, but we believe it facilitate
the understanding of the process. In the next section a case study and it evaluation are used to demonstrate the

benefits of the approach.
11

© 2016 by author/s

12

Journal of Information Systems Engineering & Management, 1:4 (2016), 51

CASE STUDY AND EVALUATION RESULTS

In the previous section a small example was presented mainly to facilitate the understanding of the process.
This section aims to present the benefits of this approach by means of a case study and its evaluation. Indeed,
Blender (http://www.blender.org), a 3D computer graphics software product used for creating animated films,
visual effects, art, 3D printed models, interactive 3D applications and video games was used for this purpose. As
happened to us, other Blender’s beginners might have difficulties even to realize the most basic tasks (e.g. to select
and move an object). To perform the tasks, besides having consulted the online software manual, some obstacles
remained (e.g. to locate elements in the interface) that made them difficult to execute. Based in this situation, a
Sikuli script was created using the USS tool. The use of the script aims to improve the user learning process and
efficiency to accomplish a task. The automatically generated script was then added to a developed Support System
(Ornelas, J.D. et al., 2016a) that help users to learn how to perform a task by watching it being automatically
executed. As a side note, the generated scripts are also used in the ISI tool (Silva, José Luis et al., 2016), enabling
the creation of a new Ul abstraction aiming at simplified user interaction.

In Figure 10 both Support System in the left hand side and Blender in the right hand side are presented to the
users. To perform or to learn how to perform a task, the user just has to select it from the Support System (double
click on the respective item) and the associated Sikuli script is then automatically executed. Therefore, this helps
users both in efficiency (the task is automatically executed) and learning (the user automatically learn how to
perform the task by watching it being executed).

In the evaluation, the task the users were asked to perform was to apply the cylindrical shape to a created Path
(see Figure 11). When the user asks for help for the execution of the task he/she is requested about whether or
not the Path is already created. If the Path is already created, a popup window asks the user to select the object
and the remaining steps are automatically executed. Otherwise a popup windows indicates that the Path will be
automatically created and ask the user to select the object for the automatic task execution of the rest.

We believe that the advantages of the proposed approach are made clearer with this case study as the system
adapts to the user needs, helping them to complete tasks and learn how to perform them. To sustain this claim
results of a preliminary evaluation with users are presented next.

Blender [C:\Users\Diogo\Documents\glass.blend] & =l

Introduza a tarefa que procura; v @ ObjectMode + @ 5 % +/&) L7 Global ¥ @m

[["] Case-Sensitive User Ortho All Scenes

Tarefas relacionadas:

Alterar para vista frontal, manualmente el
Alterar para vista frontal, com atalhos - Ajuda

Dar forma cilindrica a um 'Path’ existente - Ajuda
Guardar ficheiro do tipo .blend

Juntar 2 objectos, com a fungao Join - Ajuda

XYZ Euler

cenariclT B od..

@ Object Mode ¥

Figﬁre 8. Support System (left) and Blender (right)

Seven persons participated in the preliminary evaluation. Their age varied between 19 and 26 years, four of
them were male and two of the participants did not know the Blender software at all. Some instructions were given
to the participants (e.g. the task to be performed — as stated above) and after performing the task the participants

© 2016 by author/s

Journal of Information Systems Engineering & Management, 1:4 (2016), 51

were asked to answer a set of questions. The questionnaire (USS Questionnaire, 20106) filled in by participants after
the exercise addressed five aspects (as defined in the standard USE questionnaire (Lund, A.M., 2001)): participant
characterization; usefulness; ease of use; ease of learning; and user satisfaction. Subjects were asked to answer on
a 5 point Likert scale with values from 0 (strong disagree) to 5 (strong agree). The questionnaire included open
questions on the tool's strong and weak points, and enabled the participants to make any further comments they
wished.

In general, the questionnaires indicated a positive reaction to the approach, with all criteria obtaining a mode
of 3 or more. Participants found it useful (mode of 5), making them being more efficient (mode of 4), making
them to save time (mode of 3 and 4), easy to use (mode of 5) and are satisfied with it (mode of 4).

Overall the approach was found to provide results that met their goals in the proposed exercise. Beginners
seems to learn how to perform tasks more easily and advanced users seems to be more efficient.

e Do yeu create s Pash aad » shage fr that (69, Eesier Grele)?

final Result

Figure 9 — Partial scenario of the script execution (Blender’s task)

DISCUSSION

The decision about which task or which part of a task will be automated is the responsibility/decision of the
USS users (i.e. the developers). This decision will obviously influence the end user. It should be noted that the
execution of the generated scripts by end users of an application should be triggered by more descriptive widgets
(as happen in the Support System used in the case study presented) to avoid repeating part of the problems with the
original GUL

An aspect that influences the use of the tool is the use of task models. When the users of the USS tool are
developers of the system to be enhanced, they usually have access to the task models (developed in the eatly phases
of the development). Consequently, they have only to enrich them by following the rules, which are quite
straightforward. However, the development of task models that reflect the current behavior of the system might be
necessary when access to a developed version is not possible. When required this step might be time-consuming,
but the alternative would be to develop concrete Sikuli scripts manually for each task, which in the long term would
be even more time-consuming.

13
© 2016 by author/s

14

Journal of Information Systems Engineering & Management, 1:4 (2016), 51

This approach serves mainly as a basis for assisting beginners, without (or with little) knowledge about a GUI,
to perform a task. They do not need to know which button has to be pressed, textbox to be filled or the valid
sequence of steps required to accomplish a task. The case study used supports the use of Blender as the work and
previous knowledge required by users to accomplish the task was significantly reduced.

Some insights about the viability of the approach were obtained with the preliminary evaluation however, further
evaluations should be made with a larger sample to better understand its applicability and support the stated claims.

Some applications and Operating Systems (OS) offer the possibility to create Macros which also aims to the
automation of task execution (generally used for the execution of repetitive tasks). In comparison with our approach,
the use of Macros do not take control of the mouse/keyboard enabling users to be (in theory) more efficient.
However, when the task does not produce any feedback it might be more difficult for the user to know when it is
already done. Due to the fact the execution of the tasks is visible in our approach, an advantage is that it can be used
as a learning tool teaching the user how to perform the task. Additionally, all Macros run only on a specific
application or OS. The presented approach, besides being illustrated only with one single application, it is
(application/platform)-independent. This means that the automatically executed tasks can be inter-applications and
inter-OS (without need for any modification in USS tool). Finally, Macros cannot be parameterized (several scripts
have to be created) which represent a disadvantage in relation to our approach.

CONCLUSIONS

The current paper extends our previous paper (Ornelas, J. D. et al., 2016b) by describing the approach in more
detail and by illustrating it by means of a more complex case study. Additionally, an evaluation and corresponding
results are presented and discussed.

The use of interactive systems by beginners is often difficult (O. Al-Shara and A. Dix., 2004). Improvements in
usability, design and help systems are trying to address this issue but some problems still remain. This paper presents
the USS tool by means of a case study and illustrates its value by presenting the results of a preliminary evaluation
with users. The results of the evaluation provide some insights in line with the tool’s goal which aims to be the basis
for the adaptation of interactive systems to users through automation. The process used was described in detail and
results were presented and discussed. Besides some current limitations planned to be solved, this approach seems
to be potentially helpful for the use of interactive systems. Further evaluations of the tool with additional end users
but also developers are planned as future work to assess those insights.

ACKNOWLEDGMENTS

This work is funded by Fundacao para a Ciéncia e a Tecnologia (FCT) - UID/EEA/50009/2013. Thanks to the
participants of the evaluation made.

REFERENCES

Automate testing of web applications. (2016). Available at: http://www.cogitek.com/riatesthtml. (Accessed 5
October 20106).

Bergman, L., V. Castelli, T. Lau, and D. Oblinger. (2005). DocWizards: a system for authoring follow-me
documentation wizards. Proc. UIST?05, 191-200.

Célia Martinie, Philippe Palanque, David Navarre, Marco Winckler, and Erwann Poupart. (2011a). Model-based
training: an approach supporting operability of critical interactive systems. In Proceedings of the 3rd ACM
SIGCHI symposium on Engineering interactive computing systems (EICS '11). ACM, New York, NY, USA,
53-62.

Célia Martinie, Philippe Palanque, Eric Barboni, Martina Ragosta. (2011b). Task-Model Based Assessment of
Automation Levels: Application to Space Ground Segments. IEEE International Conference on Systems, Man
and Cybernetics, Anchorage. IEEE Computer Society - Conference Publishing Services.

Chang, Tsung-Hsiang, Tom Yeh, and Robert C Miller. (2010). GUI Testing Using Computer Vision. Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, 1535-1544.

Drummond, Jon. (2009). Understanding interactive systems. Organised Sound 14.02, 124-133.

eggPlant range, Test automation tools. (2016). Available at: http://www.testplant.com/eggplant/. (Accessed 5
October 20106).

Grudin, Jonathan. (1991). Interactive systems: Bridging the gaps between developers and users. Computer 4. 59-
69.

Guy A. Boy. (1998). Cognitive function analysis for human-centered automation of safety-critical systems. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '98), Clare-Marie

© 2016 by author/s

Journal of Information Systems Engineering & Management, 1:4 (2016), 51

Karat, Arnold Lund, Joélle Coutaz, and John Karat (Eds.). ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, 265-272.

Harrison, S. M. (1995). A comparison of still, animated, or nonillustrated on-line help with written or spoken
instructions in a graphical user interface. Proc. CHI’95, 82-89.

James R. Eagan, Michel Beaudouin-Lafon, and Wendy E. Mackay. (2011). Cracking the cocoa nut: user interface
programming at runtime. In Proceedings of the 24th annual ACM symposium on User interface software and
technology (UIST '11). ACM, New York, NY, USA, 225-234.

Jenifer Tidwell. (2005). Designing Interfaces: Patterns for Effective Interaction Design. O’Reilly Media, Inc.

Knabe, K. (1995). Apple guide: a case study in user-aided design of online help. Proc. CHI’95 286-287.

Kourousias, George, and Silvio Bonfiglio. (2010). Picture-Driven Computing In Assistive Technology And
Accessibility Design. 1st International AGIS Conference, 210-218.

Li, Jiao and Liying, Feng and Qing, Xue and Shi, Zhang and Xu Yiliu, (2010). Interface Generation Technology
Based on Concur Task Tree", International Conference on Information, Networking and Automation
(ICINA), 350-354.

Lund, A.M. (2001). Measuring Usability with the USE Questionnaire. STC Usability SIG Newslett. 8(2).

Next generation GUT automation. (2016). Available at: http://www.getautoma.com/. (Accessed 5 October 2016).

O. Al-Shara and A. Dix. (2004). Graphical user interface development enhancer (guide).

Ornelas,].D., Silva,].C. and Silva, José¢ Luis. (2016a). Demonstration-based Help for Interactive Systems. In the
Proceedings of the 2nd International ACM Conference in HCI and UX, 2016, ACM, 125-128.

Ornelas, J. D., Silva, J.C. and Silva, José Luis. (2016b). USS: User support system. In the 11th Iberian Conference
on Information Systems and Technologies (CISTI). 1-6, AISTL.

Philippe A. Palanque, Rémi Bastide, Louis Dourte. (1993). Contextual Help for Free with Formal Dialogue Design.
HCI (2) 615-620.

Phillips, Betsy, and Hongxin Zhao. (1993). Predictors of assistive technology abandonment. Assistive Technology
5.1, 36-45.

Piyawadee Sukaviriya and James D. Foley. (1990). Coupling a UI framework with automatic generation of context-
sensitive animated help. In Proceedings of the 3rd annual ACM SIGGRAPH symposium on User interface
software and technology (UIST '90). ACM, New York, NY, USA, 152-166.

R. Parasuraman, T. B. Sheridan, and C. D. Wickens. (2000). A model for types and levels of human interaction
with automation. Trans. Sys. Man Cyber. Part A 30, 3, 286-297.

Racim Fahssi, Célia Martinie, Philippe Palanque. (2014). HAMSTERS: un environnement d'édition et de simulation
de modeles de tiches (Démo). Interaction Homme-Machine (IHM). ACM DL.

S. Pangoli and F. Paterndé. (1995). Automatic generation of task-oriented help. In Proceedings of the 8th annual
ACM symposium on User interface and software technology (UIST '95). ACM, New York, NY, USA, 181-187.

Silva, J. C., and J. L. Silva. (2014). A Methodology for GUI Layer Redefinition through Virtualization and
Computer Vision, Computational Science and Its Applications (ICCSA), 2014 14th International Conference
on, IEEE, 58-63.

Silva, José Lufs, Ornelas, Jorge Diogo and Silva, Jodo Catlos. (2016). Make it ISI: interactive systems integration
tool. In Proceedings of the 8th ACM SIGCHI Symposium on Engineering Interactive Computing Systems,
ACM, 245—250.

Tom Yeh, Tsung-Hsiang Chang, Bo Xie, Greg Walsh, Ivan Watkins, Krist Wongsuphasawat, Man Huang, Larry
S. Davis, and Benjamin B. Bederson. (2011). Creating contextual help for GUIs using screenshots. In
Proceedings of the 24th annual ACM symposium on User interface software and technology (UIST '11). ACM,
New York, NY, USA, 145-154.

Tom Yeh and Tsung-hsiang Chang and Robert C. Miller. (2009). Sikuli: Using GUI Screenshots for Search and
Automation. In Proceedings of the 22nd annual ACM symposium on User interface software and technology
(UIST '09). ACM, 183-192.

USS Questionnaire. (2016). Available for download here:
https://drive.google.com/file/d/0BwUAmY8OB1EUZ1V5MC1Na2xpQjA /view?usp=sharing

15
© 2016 by author/s

