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Abstract 

This paper discusses the use of Linear Mixed Models (LMM) and Generalized Linear Mixed Models 

(GLMM) to predict the wear and damage trajectories of railway wheelsets for a fleet of modern 

multiple unit trains. The wear trajectory is described by the evolution of the wheel flange thickness, 

the flange height and the tread diameter; whereas the damage trajectory is assessed through the 

probabilities of various types of wheel tread damage such as rolling contact fatigue, wheel flats and 

cavities occurring. Different model specifications are compared based on an information criterion. 

1. Introduction  

Statistical modelling of degradation processes provides a quantitative basis to assess the 

maintenance and renewal needs of a given system. In the railway system, train operating companies 

spend a significant part of their maintenance budget on wheelsets. Railway wheelsets are crucial to 

ensure safety and passenger comfort and thus, their dimensions must comply with technical 

specifications regarding their shape and wheel diameter1. Wheel profiles evolve with use due to 

wear and damage phenomena. This paper discusses the use of statistical models to predict the 

evolution of wear and damage trajectories for a sample of railway wheels from a fleet of modern 

multiple units, using data which are routinely collected by maintenance depots and, therefore, can 

be applied to any fleet of vehicles. 

Improved statistical modelling to predict wear and damage trajectories of railway wheelsets may 

provide a better estimate of the expected wheelset life-cycle, as well as supporting wheelset 

maintenance decision making during its life-cycle. Note that our aim in applying the following 

statistical models is not to be able to predict wear and damage per se, but to understand which 

factors/effects might contribute to explain the variability in these predictions. If we can control this 

variability better then we could think about making better decisions in wheel maintenance. 



A wheelset is composed of two wheels linked with a rigid axle. The outer rim profile of the wheel has 

two main parts: the tread and the flange. A comprehensive degradation model for a wheel would 

assess the evolution of the following geometrical variables throughout the life cycle of the wheel:  

i) the wheel diameter (𝐷);  

ii) the flange thickness (𝐹𝑡);  

iii) the flange height (𝐹ℎ).  

It would also need to account for other damage defects that may occur during the wheel’s life cycle, 

such as rolling contact fatigue (RCF), wheel flats and cavities. These can significantly shorten a 

wheel’s life as they often require a large reduction in the wheel diameter in order to remove the 

damaged material.  

Figure 1 provides a schematic representation of the flange thickness and the flange height measures 

and the tread datum position (70 mm measured from the flange back and A = 13 mm for UK profiles 

or A = 10 mm for EN profiles). 

So far, section 1 introduced the need to statistically model the wear and damage trajectories of 

railway wheelsets. The outline of the rest of this paper is as follows: section 2 briefly reviews past 

research on this topic, followed by an overview of the statistical methods used, namely Linear Mixed 

Model and Generalized Linear Mixed Model in section 3. Section 4 applies such models to the wear 

and damage trajectories of railway wheelsets and compares several model specifications. Finally, the 

main conclusions and some directions for further research are given in section 5. 

2. Background  

Statistical modelling of wear and damage trajectories of railway wheelsets is not a common 

approach when studying wear and damage of railway wheelsets. Most studies do not introduce 

probabilistic issues in their modelling. In fact, only some studies were found that use a statistical 

modelling approach2,3,4, although none of these studies use the LMM and the GLMM discussed here. 

More recently, Wang et al5 recently published a data-driven model to optimize the re-profiling 

strategy of metro wheel using as a case study the Guangzhou Metro Line, mainly focusing on the 

deterioration due to wear and without considering the damage trajectory/defects. Lin and Asplund6 

also used more complex Weibull frailty models to model lifetime data for a sample of locomotive 

wheels. They also conducted a statistical descriptive analysis of the impact wheel turning (also 

known as re-profiling) in the main wheel shape parameters. 



Molyneux-Berry and Bevan7 associated the observed damage types and wheel locations with the 

vehicle running conditions. Their study required a more detailed monitoring of the shape and length 

of RCF cracks in wheels than is currently done by most wheel maintainers. It also reports that leading 

wheelsets suffered more rapid RCF damage than other wheelsets and that smaller diameter wheels 

suffer more rapid RCF damage. Nevertheless, these observations are not supported by any statistical 

test and tend to be more of a ‘feeling’ rather than a hypothesis that is statistically tested with 

evidence from the data, controlling for other variables that influence the occurrence of such defects. 

Bevan et al.8 have discussed the optimisation of wheelset maintenance taking into account not only 

the costs associated with wheelsets but also associated with the rail component, combining the 

perspective of train operating companies and the infrastructure manager, respectively. Our paper 

builds on this previous research and intends to understand the different behaviour in the wear and 

damage trajectories of different wheelsets using a statistical approach based on LMM and GLMM. 

For GB mainline railways, Railway Group Standard GM/RT 2466 provides the wheel profile limits for 

the flange thickness (𝐹𝑡
𝑙𝑖𝑚) and the flange height (𝐹ℎ

𝑙𝑖𝑚) for a given tread profile. The standard 

specifies a minimum value for the flange thickness and a maximum value for the flange height. If a 

wheel infringes these limits, then wheel turning is needed in order to restore the full profile and 

both flange thickness and height to their initial values (or reasonably close to the initial values 

depending on the lathe’s accuracy). Making the decision to turn a wheel imposes a loss in the wheel 

diameter (∆𝐷𝑇). Once the wheel reaches its scrap diameter (𝐷𝑠), the vehicle must be removed from 

service and the wheelset replaced. 

Regarding other international experiences, Pascual and Marcos9 reported on the US experience of 

Talgo on wheel wear management of ‘high-speed’ passenger trains. Talgo developed a maintenance 

program called Total Logistic Care (TLC) that keeps the flange thickness within an ‘optimal’ range of 

operation instead of waiting until the wheel is out of the specifications. The French train operating 

company SNCF bases their maintenance rules on a risk management system (called REX10) that 

attempts to combine quantitative data with perceptions and experience of the wheel maintainers, 

(thus adding a subjective dimension to risk assessment) in order to tackle organisational issues with 

multiple decision-makers and multiple criteria. Nevertheless, no specific information on the 

statistical modelling of wear and damage trajectories were found. 

Finally, Ferreira et al.11 from a statistical perspective, in which the authors distinguish operating 

conditions (referring to wheel position, i.e. whether the axle is outer or inner, without giving 

information on whether it is a motored or a trailer) and Ekberg et al.12, Pombo et al.13 and Nia et al.14 

provide mechanical engineering models that consider physical quantities (e.g. vertical wheel load, 



diameter of the wheel, radius of the railhead, residual stresses, longitudinal and transverse contact 

stresses, etc), and which can be integrated in multibody dynamics simulations.  

3. Linear Mixed Models and Generalized Linear Mixed Models 

This section discusses the statistical methods used to model the wear and damage trajectories of 

railway wheelsets, namely Linear Mixed Models (LMM) and Generalized Linear Mixed Models 

(GLMM). 

- Linear Mixed Models   

Linear Mixed Models (LMM) are flexible linear models that can tackle the fixed effects of different 

controlling variables (𝑿𝑖𝜷) in the expected mean of the dependent variable, as well as the random 

effects associated with some factor or group (𝒁𝒊𝒃𝒊). In mathematical terms, if one considers a single 

grouping level, LMMs can be formulated according to Galecki and Burzykowski15 as: 

𝒚𝑖 = 𝑿𝑖𝜷 + 𝒁𝒊𝒃𝒊 + 𝜺𝒊 

In which: 𝒚𝑖 is the dependent variable for group i, 𝑿𝑖 is the design matrix for that group i, 𝜷 is the 

slope parameter and 𝜺𝒊 is the residual error for group i. 𝒁𝒊 are the matrix of covariates and 𝒃𝒊 is the 

corresponding random effects for each group i. 

Some assumptions then have to be made on the random components:  

𝒃𝒊~𝛮(𝟎,𝓓), 𝜺𝒊~𝛮(𝟎,𝓡𝒊), with 𝒃𝒊 ⊥ 𝜺𝒊 

The random effects associated with a given group (𝒃𝒊) and the residual error for each group (𝜺𝒊) are 

normally distributed with zero mean and co-variance matrices equal to 𝓓 and 𝓡𝒊 respectively. Both 

error terms are assumed to be independent between each other (for the same group i and between 

different groups). Additionally, the co-variance matrices are specified with an unknown scale 

parameter 𝜎2:  

𝓓 = 𝜎2𝑫  and   𝓡𝒊 = 𝜎2𝑹𝒊 

Some additional constraints on the matrices 𝑫 and 𝑹𝒊 have to be made to guarantee identifiability15. 

These constraints are usually simplifications leading to choices of the matrices 𝑫 and 𝑹𝒊 that are 

multiples of the identity matrix. 

- Generalized Linear Mixed Models 



Generalized Linear Mixed Model (GLMM) allow the definition of probability distributions different 

from the Gaussian/Normal distribution, like Binomial or Poisson distributions, which are particular 

useful to model discrete dependent variables. GLMM requires the definition of a distribution from 

the exponential family and the definition of a link function that would relate the mean value of the 

dependent variable with the linear predictor. We will not provide more details on the GLMMs for 

the general case and instead refer the interested reader to some references16,17,18, which discuss the 

specific GLMM used in this paper in more detail: the Mixed Logistic Model, defined through the 

Binomial distribution and the ‘logit’ link function. The choice of this particular model (and the ‘logit’ 

link function) had to do with the author’s familiarity with it rather than a fundamental theoretical 

reason. Alternative link functions (e.g. ‘probit’ or ‘cloglog’) were tested but did not offer substantial 

improvement in the information criterion. For instance, the probability of a positive response for the 

dependent variable 𝑌𝑅𝐶𝐹, i.e. the probability that an RCF defect (𝑝𝑅𝐶𝐹) occurs can be computed as: 

𝑝𝑅𝐶𝐹𝑗 =
1

1 + 𝑒−(∑ 𝛽𝑖𝑋𝑖𝑗𝑖 )
 

Where: 𝑝𝑅𝐶𝐹𝑗 is the probability of the occurrence of an RCF defect to wheelset 𝑗; 𝛽𝑖 are the slope 

parameters associated with each covariate 𝑖 and 𝑋𝑖𝑗  are the values for each covariate 𝑖 and wheelset 

𝑗. 

The term in parenthesis (i.e. ∑ 𝛽𝑖𝑋𝑖𝑗𝑖 ) can then be enhanced to account for random effects 

associated with some other factors, as was done previously for the Linear Mixed Models, though this 

time, it is no longer a normal distribution with an ‘identity’ link function, but a binomial distribution 

with a ‘logit’ link function. 

LMMs and GLMMs are particularly useful because one might be interested in specifying a random 

effect associated with train unit or month of measurement, and identifying which one of them might 

be more influential in the variability of a particular geometrical measure of wheel degradation. Of 

course, one might also want to control for some fixed effects that do not vary for different groups 

and may contribute to the mean effect, like mileage since turning or wheelset type. 

The next section will apply the models described above to the main dependent variables describing 

the wear and damage trajectories of a railway wheelset. All the following statistical models were 

estimated using the ‘lme4’ package for the R software code19,20. 

4. Statistical modelling 



This section conducts an exploratory statistical analysis on wear and damage trajectories of different 

wheelsets from a fleet of modern multiple unit trains. Firstly, it provides a general description of the 

analysed sample and then applies different specifications of the LMM and the GLMM in order to find 

the most suitable statistical models to predict the main geometrical variables describing wear and 

damage trajectories of a wheelset. 

The database analysed compiles wheel data from December 2006 up to July 2012 (i.e. a 7-year 

interval) from a single fleet of train (i.e. it only contains trains of one type or class). Each unit has 3 

vehicles, and each vehicle has 8 wheels (i.e. 4 wheelsets). Figure 2 provides a schematic 

representation of a three car unit. 

This wheel database contained the following information: unit number, unit running miles 

(cumulative mileage), vehicle type (DMC, DMS and MS), date, wheelset position (ws1, ws2, …, ws12), 

wheelset type (Motored, Internal or Leading trailer), event (i.e. brake disk skimming, initiation, post-

turning, pre-turning, wheel set change), name of the technician performing the work, tread diameter 

(𝐷) pre-turning and post-turning, flange thickness (𝐹𝑡) and flange height (𝐹ℎ) pre-turning and post-

turning, and condition (i.e. cavities, flats, Ok, pitting/hardspots, RCF, rollover, small cavities, small 

flats, toe radius build up, turn for mileage). 

Table 1 provides an overview of the variables in the database used in the LMM and the GLMM, their 

description and type, as well as some statistics.  

The following statistical analysis was split into two parts:  

A. On the wear trajectory, i.e. on the evolution of the geometrical measures of the wheel 

profile, such as the change in the flange thickness (∆𝐹𝑡), the change in the flange height 

(∆𝐹ℎ), the change in the tread diameter due to wear (∆𝐷) and the diameter loss due to 

turning (∆𝐷𝑇); 

B. On the damage trajectory, i.e. on the occurrence of other wheel tread defects, such as 

rolling contact fatigue (𝑌𝑅𝐶𝐹), wheel flats (𝑌𝐹𝐿𝐴𝑇) and cavities (𝑌𝐶𝐴𝑉). Only these defects were 

included in this study, because the other ones (mentioned above) are much less common 

than RCF, flats or cavities. 

4.1. On the wear trajectory 

Figure 3 exhibits several observations of the change in the flange height (∆𝐹ℎ) associated with a 

certain mileage since turning (𝑀). If a cubic polynomial line is used to fit the data, i.e. 𝛽0 + 𝛽1𝑀+

𝛽2𝑀
2 + 𝛽3𝑀

3, there is still a lot of variability around this cubic line that remains unexplained. The 



natural research question would be identifying which factors contribute most to this variability and 

analysing whether there are other statistically significant covariates, apart from the mileage since 

turning (𝑀), which exhibit a statistically significant fixed effect. This is the motivation for the 

following exploratory statistical analysis and actually for using LMMs. 

Similarly, Figure 4 plots the change in the flange thickness (∆𝐹𝑡), with the associated mileage since 

turning (in miles). Both Figures 3 and 4 provide a cubic line fit with a lot of unexplained variability 

(R2=0.3619 and R2=0.119). 

Linear Mixed Models (LMMs) were then specified for all of the following dependent variables in 

order to assess the wheelset life-cycle: 

i) The change in the flange thickness – ∆𝐹𝑡 

ii) The change in the flange height – ∆𝐹ℎ 

iii) The change in the tread diameter due to wear – ∆𝐷 

iv) The diameter loss due to turning – ∆𝐷𝑇  

For each dependent variable (from i) to iv)), several model specifications were estimated using as 

explaining variables: the mileage since turning (𝑀), the wheel diameter (𝐷), the unit (𝑈), the vehicle 

(𝑉) identifications, the month of measurement (𝑀𝑛), the wheelset type (𝑊) and the technician (𝑇) 

responsible for the maintenance decision. 

Some of the models explored were specified using mileage since turning (𝑀) as an explaining 

variable with three terms: a linear, a quadratic and a cubic term. The main reason to include this 

variable in a polynomial form resulted from the fact that its shape mimics a qualitative behaviour 

that is considered reasonable to quantify different stages of wear: i) an initial stage with high wear 

rate, ii) a normal stage with much lower wear rate and iii) a final stage with increasingly higher wear 

rate1. The other five nominal variables or factors (𝑇, 𝑊, 𝑈, 𝑉, 𝑀𝑛) were used to specify random 

effects for different groups identified by those factors, except the wheelset type (𝑊) that was used 

to specify fixed effects. For instance, the factor ‘Wheelset type’ (𝑊) identifies three different groups: 

the group of motored wheelsets, the group of leading trailer wheelsets (non-motored wheelsets at 

the outer ends of the 3-vehicle set which are often thought to suffer more RCF damage) and the 

group of internal trailer wheelsets.     

                                                           
1 The final stage with increasing higher rate (iii)) might not be a real effect, and in fact there are too few data 

points for mileage since turning higher than 200,000 miles. However, the estimates for all coefficients of the 

3rd order polynomial are statistically significant.  



In LMM with several factors, there are typically two ways of modelling random effects with multiple 

groups: i) crossed random effects and ii) nested random effects. The nested random effects take the 

assumption that particular random effects within a group are ‘nested’, i.e. are specific to a member 

of another group. For instance, say one is interested in modelling the wheelset degradation from a 

wheelset in a given vehicle. Then, one might consider random effects of wheelset position nested 

within each vehicle type, or one might not consider the random effect of wheelset position within 

each vehicle type and instead model these random effects in a crossed manner. In this paper, only 

the crossed random effects were considered because no statistically significant increase in 

information was found when nested random effects were considered. Different model specifications 

were assessed and compared based on a ‘goodness of fit’ measure: the -2 Restricted Log Likelihood. 

The reason why we conducted model comparison using the Restricted Maximum Likelihood (REML) 

criterion for model selection had to do mostly with the fact that lme4 package fits the model using 

that same criterion21. Note that the Akaike Information Criterion (AIC) is used solely to compare 

models with different Fixed Effects (FE) and without Random Effects (RE), whereas the REML 

criterion is used to compare models with the same Fixed Effects but different random effects (RE). 

For a deeper discussion on the use of different criteria in model comparison in LMM, see Müller et 

al.22, namely on the lack of consensus on how to approach model selection in LMM.  

Table 2 identifies the Fixed Effects (FE) and Random Effects (RE) included in each model specification 

(M0-M5c). In terms of Variance structure for the RE, the variances for the different groups defined 

by a factor were assumed to be the same (i.e. the simpler Variance Component structure was 

assumed - VC - a multiple of the identity matrix). For instance, for the groups defined by the factor 

Vehicle (𝑉), the variance for the group of DMC (Driving Motor Composite type) vehicles, the variance 

for the group of DMS (Driving Motor Second type) vehicles and the variance for the group of MS 

(Motor Second type) vehicles, are all considered the same. 

Different model specifications were tested and only a few are included in the paper. It should be 

noted that all models with different combinations of factors for the random effects (all combinations 

of three/four factors) were analysed. However, only those that presented better results in terms of 

the information criterion (the -2 Restricted Log Likelihood values) are presented for an increasing 

number of factors (i.e. model M2a with one factor up to model M4a with three factors). In this way, 

one can identify which are the factors that add more variability around the expected mean (i.e. 

controlling for different values for the fixed effects). For the fixed effects, models M0 and M0c use 

the most important fixed effects (𝑀 and 𝐹𝑡 respectively) and other models use all the statistically 

significant variables for each dependent variable. 



For instance, the specification of model M3a would result in the following expression: 

𝑦𝑚𝑢𝑖 = 𝛽0 + 𝛽𝑀. 𝑀𝑚𝑢𝑖 + 𝛽𝑀2 .𝑀𝑚𝑢𝑖
2 + 𝛽𝑀3 .𝑀𝑚𝑢𝑖

3 + 𝛽𝑊.𝑊 + 𝑏0𝑚 + 𝑏0𝑢 + 𝜀𝑚𝑢𝑖 

Where 𝑚 indexes the month of measurement (𝑚 = 1,2,… ,𝑁), 𝑢 indexes the unit (𝑢 = 1,2,… , 𝑛) 

and 𝑖 indexes the individual measurement of that wheel (𝑖 = 1,2, … , 𝑁′). Therefore, the model M3a 

considered for Fixed Effects the 3rd order polynomial on mileage since turning (M) with linear, 

quadratic, cubic and the intercept terms, as well as the wheelset type (𝑊), and it also adds two 

crossed random effects: month of measurement (𝑀𝑛) and unit (𝑈). In terms of Variance assumptions 

for model M3a, the crossed random effects - 𝑏0𝑚 and 𝑏0𝑢 that are added to the intercept 𝛽0, are 

assumed to be normally distributed with zero mean, i.e. 𝑁(0, 𝑑𝑀𝑛) and 𝑁(0, 𝑑𝑈), respectively, and 

independent of each other. Finally, 𝜀𝑚𝑢𝑖 is the traditional normally distributed random error, i.e. 

𝑁(0, 𝜎2), which is also independent from 𝑏0𝑚 and 𝑏0𝑢. 

Regarding the other models shown in Table 2: models M0 (M0 and M0c) are the simplest models 

only with an intercept and a slope parameter (for covariate 𝑀 and covariate 𝐹𝑡 respectively); models 

M1 are the reference models without any random effect considered; model M2 add solely a random 

effect term defined by the factor month of measurement (𝑀𝑛); model M3a is described above, 

whereas model M3b excludes the cubic term of the fixed effect for the mileage since turning, when 

compared with M3a. Models M4 (a and b), when compared to models M3 (a and b), add a random 

effect term defined by the factor vehicle (V); whereas models (M1c-M5c) for the dependent variable 

diameter loss due to turning (∆𝐷𝑇) also consider the fixed effects associated with the binary 

variables (𝑌𝑅𝐶𝐹, 𝑌𝐹𝐿𝐴𝑇 and 𝑌𝐶𝐴𝑉) describing the occurrence of the associated damage defect and add 

a random effect term associated with the factor technician (T).  

The decision to model wheel degradation at the wheelset level and not at the wheel level should be 

clarified at this point. This modelling approach was taken as the degradations of wheels from the 

same axle (i.e. wheelset) are very correlated and maintenance decisions due to parity, where wheels 

are turned solely to match diameters between axles on a bogie or vehicle, were not considered for 

this fleet.  

The following discusses some results of the estimated models specified above in Table 2 for each 

dependent variable i) to iv):  

i) The change in the flange thickness – ∆𝐹𝑡 

The first dependent variable to be analysed is the change in the flange thickness (∆𝐹𝑡) compared to 

the initial flange in a new profile (e.g. profile P8:  𝐹𝑡 = 28.5 mm). As previously shown in Figure 3, 



there is a lot of variability around the 3rd order polynomial to describe the evolution of the change in 

the flange thickness with mileage since turning. This variability is then explored again through a 

LMM, comparing the different specifications discussed previously (models M0-M4a). Table 3 

provides the Restricted Maximum Likelihood (REML) estimates for the parameters of the models 

tested. Model M4a-∆𝐹𝑡 shows the minimum value for the information criterion (-2 Restricted Log 

Likelihood). Note that all coefficients are statistically significant at the 5% significance level for all 

fixed effects. The random effects associated with the factor month of measurement (𝑀𝑛) exhibit a 

higher variance, followed by the factors unit (𝑈) and vehicle (𝑉). Comparing their variances with the 

total variance (𝜎2 + 𝑑𝑀𝑛
+ 𝑑𝑈 + 𝑑𝑉 = 0.06337), we find out that the measurement noise still 

captures 65.7%, the factor month of measurement (𝑀𝑛) captures 30.5%, the factor unit (𝑈) captures 

3.5% and finally the factor vehicle (𝑉) captures 0.3% of the total variance. 

ii) The change in the flange height – ∆𝐹ℎ 

The second dependent variable that needs to be statistically modelled is the change in flange height 

(∆𝐹ℎ) compared to the initial flange on a new profile (e.g. profile P8: 𝐹ℎ = 30 mm). As previously 

shown in Figure 4, there is a lot of variability around the 3rd order polynomial to describe the change 

in the flange height with mileage since turning. This variability is then explored again through a LMM, 

comparing the same specifications tested previously (models M0-M4a). Table 4 provides the REML 

estimates for the parameters of the models. Model M4a-∆𝐹ℎ shows the minimum value for the 

information criterion (-2 Restricted Log Likelihood). Note that all coefficients are statistically 

significant at the 5% significance level for all fixed effects. The random effects associated with the 

factor month of measurement (𝑀𝑛) exhibit a higher variance, followed by the factors unit (𝑈) and 

vehicle (𝑉). Comparing their variances with the total variance (𝜎2 + 𝑑𝑀𝑛
+ 𝑑𝑈 + 𝑑𝑉 = 0.09217), we 

find out that the measurement noise still captures 61.4%, the factor month of measurement (𝑀𝑛) 

captures 31.4%, the factor unit (𝑈) captures 5.8% and finally the factor vehicle (𝑉) captures 1.4% of 

the total variance. 

iii) The change in the tread diameter –  ∆𝐷 

The third dependent variable that needs to be modelled is the change in the tread diameter due to 

wear (∆𝐷). Typically, in life-cycle calculations one tends to consider a wear rate, i.e. the change in 

the tread diameter over a certain time or mileage interval. Figure 5 plots the change in the tread 

diameter with the associated mileage since turning, as well as a 2nd order polynomial curve to fit this 

data. As Figure 5 shows, there is a lot of variability around this 2nd order polynomial curve, and thus 

LMMs were used in a similar manner to that discussed above. Model specifications contained in 



Table 2 were explored (models M0-M4b), though this time, without the cubic term, as it did not 

provide any significant additional explaining power to the fixed effects terms. Table 5 provides the 

REML estimates for the parameters of the models explored. Model M4b-∆𝐷 shows the minimum 

value for the information criterion (-2 Restricted Log Likelihood). Note that all coefficients are 

statistically significant at the 5% significance level for all fixed effects. The random effects associated 

with the factor month of measurement (𝑀𝑛) exhibit a higher variance, followed by the factors unit 

(𝑈) and vehicle (𝑉). Comparing their variances with the total variance (𝜎2 + 𝑑𝑀𝑛
+ 𝑑𝑈 + 𝑑𝑉 =

0.81644), we find out that the measurement noise still captures 82.6%, the factor month of 

measurement (𝑀𝑛) captures 12.3%, the factor unit (𝑈) captures 3.6% and finally the factor vehicle 

(𝑉) captures 1.5% of the total variance. 

iv) The diameter loss due to turning –  ∆𝐷𝑇 

Finally, the last dependent variable on the wear trajectory is the diameter loss due to turning (∆𝐷𝑇). 

This variable together with the previous dependent variables - ∆𝐹ℎ, ∆𝐹𝑡 and ∆𝐷 - complete the 

overall predictive model for the evolution of the main geometric variables to assess the wheelset 

life-cycle on the wear trajectory. 

A discussion based on a geometrical argument may show that the diameter loss due to turning (∆𝐷𝑇) 

might be approximated reasonably well with a linear relation with the flange thickness (𝐹𝑡)
15. By 

assuming that the flange will wear with a constant flange angle (qR=68°-70°), a 1 mm reduction in 

flange thickness (i.e. a 1 mm horizontal shift) will translate into a 1mm×tan(qR) of reduction in radius 

(i.e. a 2.48-2.75 mm vertical shift), or approximately 5.00 mm of diameter loss. In fact, the wheel 

Tread Damage Guide23 puts forward a ‘rule of thumb’ on the assessment of the loss of diameter: ‘it 

is typically about five times the flange wear (depending on the flange angle and shape)’. Although it 

is possible to find particular wheels in which no other damage defects, like RCF or wheel flats, has 

occurred, and where this relation demonstrates a good agreement, in the general case there is a lot 

of variability around this linear relation. 

Other covariates may contribute to explain the variability between the diameter loss due to turning 

(∆𝐷𝑇) and the flange thickness. For instance, the technicians’ experience may contribute to explain 

this variability, and thus the random effects associated with factor technician (𝑇) may capture a large 

amount of the variance. Moreover, other factors contribute to additional loss of diameter, such as 

the need to remove tread defects (e.g. RCF, wheel flats and cavities). 

Model specifications contained in Table 2 were explored (models M0c-M4c), though this time, 

without the cubic and quadratic terms, as they did not provide any significant additional explaining 



effect. Table 6 provides the REML estimates for the parameters of the models explored. Model M5c-

∆𝐷𝑇 shows the minimum value for the information criterion (-2 Restricted Log Likelihood). Note that 

all coefficients are statistically significant at the 5% significance level for all fixed effects. The random 

effects associated with the factor technician (𝑇) exhibit a higher variance, followed by the factors 

month of measurement (𝑀𝑛), unit (𝑈) and vehicle (𝑉). Comparing their variances with the total 

variance (𝜎2 + 𝑑𝑇 + 𝑑𝑀𝑛
+ 𝑑𝑈 + 𝑑𝑉 = 12.93047), we find out that the factor technician (𝑇) 

captures 48.9% and the measurement noise captures 39.1%, the factor month of measurement (𝑀𝑛) 

captures 8.7%, the factor unit (𝑈) captures 1.9% and finally the factor vehicle (𝑉) captures 1.4% of 

the total variance. 

It is important to note that the rule of thumb on the linear relation between diameter loss due to 

turning (∆𝐷𝑇) and the flange thickness (𝐹𝑡) of -5.0 mm/mm of flange wear is quantified as -0.317 

mm/mm in the model M0c and -1.367 in the final model M5c. This means that the estimated models 

are quantifying the effect of the flange wear only as -1.367 mm/mm of flange wear, and not as -5.0 

mm/mm of flange wear as the rule of thumb would indicate. Moreover, the diameter loss due to 

turning is affected by the occurrence of damage defects (i.e. considering the quantities derived in for 

model M5c), an additional loss of 3.265 mm for the RCF defect, an additional loss of 1.517 mm for a 

wheel flat and an additional loss of 2.839 mm for cavities. 

This LMM for the diameter loss due to turning (∆𝐷𝑇) needed further research, especially because it 

falls into another type of statistical model used to assess technical frontiers – the Stochastic Frontier 

Analysis, similar to the one provided by the rule of thumb discussed above. This research work is 

reported elsewhere24, focusing on the variability between the different wheel lathe operators. This 

resulted from the observation above that the factor technician captured even more variance than 

the measurement noise.  

4.2. On the damage trajectory 

The previous models have focused on the prediction of the main geometrically dependent variables, 

i.e. the changes in the flange thickness (∆𝐹𝑡), flange height (∆𝐹ℎ) and tread diameter (∆𝐷) and the 

diameter loss due to turning (∆𝐷𝑇), without considering the occurrence of other type of defects in 

the wheel, namely defects associated with the damage trajectory. In order to have a comprehensive 

degradation model that couples other failure modes, such as the occurrence of rolling contact 

fatigue (RCF) defects or wheel flats, one would need to assess the probability of such defects 

occurring given other explaining variables that may influence them through a GLMM. 



Four dependent variables were created to control for the occurrence of rolling contact fatigue (RCF) 

defects (𝑌𝑅𝐶𝐹), the occurrence of wheel flats (𝑌𝐹𝐿𝐴𝑇) and the occurrence of cavities (𝑌𝐶𝐴𝑉). All these 

three variables are binary, i.e. they are equal to one if that defect is present for a given wheel and 

equal to zero otherwise. 

Generalized Linear Mixed Models (GLMMs) were then specified for all of the following dependent 

variables in order to assess the wheelset life-cycle: 

i) The occurrence of a rolling contact fatigue (RCF) defect – 𝑌𝑅𝐶𝐹 

ii) The occurrence of a wheel flat defect – 𝑌𝐹𝐿𝐴𝑇 

iii) The occurrence of a cavity defect – 𝑌𝐶𝐴𝑉 

Table 7 summarises the Generalized Linear Mixed Models developed for each dependent variable 

(𝑌𝑅𝐶𝐹, 𝑌𝐹𝐿𝐴𝑇 and 𝑌𝐶𝐴𝑉) with the fixed effects (FE), the random effects (RE) and their respective 

variance structure. Models investigated included as fixed effects (FE): the mileage since turning (𝑀), 

the tread diameter (𝐷) and the wheelset type (𝑊). Random effects investigated included terms 

associated with the factors month of measurement (𝑀𝑛), unit (𝑈) and vehicle (𝑉). Regarding the 

variance structure associated with each random effect, the simpler structure was again defined (i.e. 

variance component - VC - a multiple of the identity matrix), not allowing different variances for 

different groups defined by that factor. 

i) The occurrence of a rolling contact fatigue (RCF) defect – 𝑌𝑅𝐶𝐹 

Table 8 provides the Maximum Likelihood (ML) estimates for the parameters of the models explored 

for estimating the occurrence of a rolling contact fatigue defect (M0’-M4’a). In all the RCF defect 

probability models, the slope parameters associated with each fixed effect have the same sign, i.e. 

the mileage since turning (𝑀) seems to have a mathematically positive effect in the occurrence of 

RCF defects, whereas the wheel diameter (𝐷) seems to have a mathematically negative effect in the 

occurrence of RCF defects (the smaller the diameter, the more likely that RCF defects will occur). 

Nevertheless, there are some significant differences in the magnitude of the coefficients associated 

with each fixed effect in the model without random effects (M0) and the other models (M1’a-M4’a). 

The models show that the position of the wheelset in the train (i.e. the wheelset type – 𝑊) also has 

an effect on the probability of RCF occurring. The trailer wheelsets at the outer ends of the set (i.e. 

leading trailer) tend to have a higher probability of RCF occurring than other trailer or motored 

wheelsets. These have a lower RCF defect probability, controlling for the wheel diameter (𝐷) and the 

mileage since turning (𝑀). Model M4’a-𝑝𝑅𝐶𝐹 shows the minimum value for the information criterion 

(AIC). Note that all coefficients are statistically significant at the 5% significance level for all fixed 



effects. The random effects associated with the factor month of measurement (𝑀𝑛) exhibit a higher 

variance, followed by the factors unit (𝑈) and vehicle (𝑉). 

ii) The occurrence of a wheel flat defect – 𝑌𝐹𝐿𝐴𝑇 

Table 9 provides the ML estimates for the parameters of the models explored for estimating the 

occurrence of a wheel flat defect (M0’-M4’a). It was found that the effect of the wheel diameter (𝐷) 

was no longer statistically significant and it was left out of the set of variables included as fixed 

effects. The probability of wheel flats occurring seems to decrease with mileage since turning (𝑀), 

and the trailer wheelsets at the outer ends of the set (i.e. leading trailer) seem to have higher 

probability of occurrence of a wheel flat when compared to other wheelsets (i.e. motor and internal 

trailer), controlling for the effect of mileage since turning (𝑀). Model M4’a-𝑝𝐹𝐿𝐴𝑇 shows the 

minimum value for the information criterion (AIC). Note that all coefficients are statistically 

significant at the 5% significance level for all fixed effects and again the random effects associated 

with the factor month of measurement (𝑀𝑛) exhibit a higher variance, followed by the factors unit 

(𝑈) and vehicle (𝑉). 

iii) The occurrence of a cavity defects – 𝑌𝐶𝐴𝑉 

Finally, Table 10 provides the ML estimates for the parameters of the models tested to estimate the 

occurrence of a cavities (M0’-M4’b). Both fixed effects associated with mileage since turning (𝑀) and 

with wheel diameter (𝐷) exhibit statistically significant estimates which are both negative, indicating 

that the probability of cavities occurring decreases with higher mileage since turning (𝑀) and 

increases for smaller wheel diameters (𝐷). Model M3’b-𝑝𝐶𝐴𝑉 shows the minimum value for the 

information criterion (AIC), with very similar coefficients to the model M4’b-𝑝𝐶𝐴𝑉. The random effect 

associated with factor vehicle (𝑉) does not capture any variability (√𝑑𝑉 = 0.000). Note that all 

coefficients are statistically significant at the 5% significance level for all fixed effects, except for the 

motored wheelsets (𝛽𝑀𝑜𝑡𝑜𝑟), and again the random effects associated with the factor month of 

measurement (𝑀𝑛) exhibit a higher variance, followed by the factors unit (𝑈) and vehicle (𝑉). 

5. Conclusion and further research 

This paper explored the use of Linear Mixed Models (LMM) and Generalized Linear Mixed Models 

(GLMM) to predict the wear and damage trajectories of railway wheelsets. For the modern multiple 

unit fleet investigated, the findings suggest that the changes in the flange thickness, the change in 

the flange height and the change in the wheel diameter due to wear are mainly dependent on the 

mileage since last turning (𝑀). Mileage since turning is also a statistically significant variable to 

model the occurrence of rolling contact fatigue, wheel flats and cavities. The factor month of 



measurement (𝑀𝑛) exhibits a high variance in every model, which is likely to be due to adhesion 

variations (i.e. lower in Autumn), whereas the technician operating the lathe (𝑇) assumes particular 

importance in the modelling of diameter loss due to turning. Moreover, wheels with smaller 

diameters are more likely to develop rolling contact fatigue and cavity defects. It was also found that 

rolling contact fatigue defects and wheel flats are more likely to occur in wheelsets in the leading 

trailer position (i.e. the wheelsets at the extreme outer ends of the unit), controlling for other fixed 

effects, than on wheelsets elsewhere on the train.    

The statistical models described in this paper provide a quantitative basis for future simulation 

exercises to optimise maintenance and renewal of train wheelsets. Applying the statistical methods 

described in this paper can provide significant insights into the effects of the various degradation 

modes on wheelset life. The data used is typically collected during normal maintenance and wheel 

turning and, therefore, our models can be applied to any fleet of vehicles. 

The use of LMM and GLMM in statistical modelling of wheel degradation is particularly useful if one 

wants to conduct a life-cycle cost study as it provides a straightforward simulation mechanism to 

control for the variability within and between different groups, in this case different vehicles and 

units in a fleet. A further step on the use of these models has already been taken by applying them 

to examine the potential cost reductions associated with introducing a new maintenance strategy, 

called ‘economic tyre turning’25. 

A future step which could provide a more comprehensive understanding on this topic is to apply the 

same statistical analysis to other fleets running in different routes and with other wear conditions 

(e.g. more flange wear than tread wear, freight vehicles). 
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Figure 1 – Flange height (Fh) and flange thickness (Ft) 
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Figure 2 – Schematic representation of a three car unit (DMC, MS and DMS) and with 
four axle positions each (AP1-AP4). 



 

Figure 3 – Change in the flange height (∆𝑭𝒉 in mm) with mileage since turning (in miles). 

Figure 4 – Change in the flange thickness (∆𝐅𝐭 in mm) with mileage since turning (in miles). 
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Figure 5 – Change in the Tread Diameter (𝚫𝐃 in mm) with mileage since turning – reduction due to wear 

only, effect of wheel turning not shown. 
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Variables  Description Type Mean Min Max 

∆𝐹𝑡 Change in the flange thickness (in mm) Continuous -0.7186 -1.836 0.484 

∆𝐹ℎ Change in the flange height (in mm) Continuous 0.9268 -0.06 2.395 

∆𝐷 Change in the wheel diameter due to wear (in mm) Continuous 1.8390 0.002 15.151 

∆𝐷𝑇 Wheel diameter loss due to turning (in mm) Continuous 7.5253 0.037 27.443 

𝑌𝑅𝐶𝐹  1 if a Rolling Contact Fatigue (RCF) defect occurred, 0 otherwise. Binary 0.1002 0 1 

𝑌𝐶𝐴𝑉  1 if a cavity defect occurred, 0 otherwise. Binary 0.0195 0 1 

𝑌𝐹𝐿𝐴𝑇  1 if a wheel flat defect occurred, 0 otherwise. Binary 0.1313 0 1 

𝑀 Mileage since turning (in 1000 miles) Continuous 111.54 0.02 235.98 

𝐷 Tread diameter pre-turning (in mm) Continuous 832.14 799.21 850.64 

𝐹𝑡  Flange thickness pre-turning (in mm) Continuous 27.782 26.66 28.98 

𝑇 Technician (4 different technicians) Nominal - - - 

𝑊 Wheelset type (3 types: motored, internal or leading trailer) Nominal - - - 

𝑈 Unit number (51 units) Nominal - - - 

𝑉 Vehicle type (3 types: DMC, MS and DMS) Nominal - - - 

𝑀𝑛 Month of measurement (68 months) Nominal - - - 

Table 1 – Variables, their description, type and some statistics. 

 

Dependent 

Variable 
Models Fixed Effects (FE) Random Effects (RE) 

Variance 

Structure 

∆𝐹𝑡 

M0 1, 𝑀 - - 

M1a 1, 𝑀, 𝑀2, 𝑀3, 𝑊 - - 

M2a 1, 𝑀, 𝑀2, 𝑀3, 𝑊 𝑀𝑛  VC 

M3a 1, 𝑀, 𝑀2, 𝑀3, 𝑊 𝑀𝑛, 𝑈  VC, VC 

M4a 1, 𝑀, 𝑀2, 𝑀3, 𝑊 𝑀𝑛, 𝑈, 𝑉 VC, VC, VC 

∆𝐹ℎ 

M0 1, 𝑀 - - 

M1a 1, 𝑀, 𝑀2, 𝑀3, 𝑊 - - 

M2a 1, 𝑀, 𝑀2, 𝑀3, 𝑊 𝑀𝑛  VC 

M3a 1, 𝑀, 𝑀2, 𝑀3, 𝑊 𝑀𝑛, 𝑈  VC, VC 

M4a 1, 𝑀, 𝑀2, 𝑀3, 𝑊 𝑀𝑛, 𝑈, 𝑉 VC, VC, VC 

∆𝐷 

M0 1, 𝑀 - - 

M1b 1, 𝑀, 𝑀2, 𝑊 - - 

M2b 1, 𝑀, 𝑀2, 𝑊 𝑀𝑛  VC 

M3b 1, 𝑀, 𝑀2, 𝑊 𝑀𝑛, 𝑈  VC, VC 

M4b 1, 𝑀, 𝑀2, 𝑊 𝑀𝑛, 𝑈, 𝑉 VC, VC, VC 

∆𝐷𝑇 

M0c 1, 𝐹𝑡 - - 

M1c 1, 𝐹𝑡, 𝑌𝑅𝐶𝐹 , 𝑌𝐹𝐿𝐴𝑇 , 𝑌𝐶𝐴𝑉  - - 

M2c 1, 𝐹𝑡, 𝑌𝑅𝐶𝐹 , 𝑌𝐹𝐿𝐴𝑇 , 𝑌𝐶𝐴𝑉  𝑀𝑛  VC 

M3c 1, 𝐹𝑡, 𝑌𝑅𝐶𝐹 , 𝑌𝐹𝐿𝐴𝑇 , 𝑌𝐶𝐴𝑉  𝑀𝑛, 𝑇  VC, VC 

M4c 1, 𝐹𝑡, 𝑌𝑅𝐶𝐹 , 𝑌𝐹𝐿𝐴𝑇 , 𝑌𝐶𝐴𝑉  𝑀𝑛, 𝑇, 𝑈 VC, VC, VC 

M5c 1, 𝐹𝑡, 𝑌𝑅𝐶𝐹 , 𝑌𝐹𝐿𝐴𝑇 , 𝑌𝐶𝐴𝑉  𝑀𝑛, 𝑇, 𝑈, 𝑉 VC, VC, VC, VC 

Table 2 – Linear Mixed Models explored for each dependent variable with Fixed Effects 

(FE) and Random Effects (RE) and respective Variance Structure. 



Model Label Parameter M0 - ∆𝐹𝑡 M1a - ∆𝐹𝑡 M2a - ∆𝐹𝑡 M3a - ∆𝐹𝑡 M4a - ∆𝐹𝑡 

Fixed Effects       

1 𝛽0 -0.5849 -0.3993 -0.4811 -0.4902 -0.4936 

  (0.007726) (0.01636) (0.02293) (0.02387) (0.02538) 

𝑀 𝛽𝑀 -0.001200 -0.009800 -0.00764 -0.007419 -0.007469 

  (6.307×10-5) (0.0005859) (0.0005382) (0.0005399) (0.0005391) 

𝑀2 𝛽𝑀2 - 7.410×10-5 6.006×10-5 5.792×10-5 5.778×10-5 

   (6.263×10-6) (5.700×10-6) (5.727×10-6) (5.719×10-6) 

𝑀3 𝛽𝑀3 - -1.728×10-7 -1.460×10-7 -1.397×10-7 -1.366×10-7 

   (1.94×10-8) (1.759×10-8) (1.768×10-8) (1.770×10-8) 

𝑊 𝛽𝑀𝑜𝑡𝑜𝑟 - 0.02230 0.03017 0.03161 0.03527 

   (0.008712) (0.007502) (0.007358) (0.007570) 

 𝛽𝑇𝑟𝑎𝑖𝑙𝑒𝑟 - 0.08001 0.08162 0.08248 0.08746 

   (0.00913) (0.007585) (0.007701) (0.008174) 

 𝛽𝐿𝑒𝑎𝑑𝑖𝑛𝑔 - 0b 0b 0b 0b 

Random Effects       

𝑀𝑛 √𝑑𝑀𝑛 - - 0.140 0.140 0.139 

       

𝑈 √𝑑𝑈 - - - 0.048 0.047 

       

𝑉 √𝑑𝑉 - - - - 0.015 

       

Scale 𝜎 0.253 0.244 0.209 0.204 0.204 

-2 Restricted Log Likelihood - - -1508.95 -1681.86 -1697.65 

AIC value 538.42 99.48 - - - 

Number of parameters 3 7 8 9 10 

Table 3 – Restricted Maximum Likelihood (REML) estimates for the parameters of models 
M0-M4a for the dependent variable: Change in the flange thickness (∆𝑭𝒕). 

a Approximate Standard Errors for Fixed Effects are included in parentheses. b This parameter is considered redundant. 

  



 

Model Label Parameter M0 - ∆𝐹ℎ M1a - ∆𝐹ℎ M2a - ∆𝐹ℎ M3a- ∆𝐹ℎ M4a - ∆𝐹ℎ 

Fixed Effects       

1 𝛽0 0.4754 0.3437 0.4749 0.4701 0.4791 

  (0.008881) (0.01883) (0.02720) (0.02923) (0.03597) 

𝑀 𝛽𝑀 0.004047 0.01193 0.008182 0.008148 0.008076 

  (7.249×10-5) (0.0006745) (0.0006406) (0.0006343) (0.0006305) 

𝑀2 𝛽𝑀2 - -9.597×10-5 -6.895×10-5 -6.872×10-5 -6.999×10-5 

   (7.210×10-6) (6.785×10-6) (6.728×10-6) (6.689×10-6) 

𝑀3 𝛽𝑀3 - 3.169×10-7 2.474×10-7 2.495×10-7 2.621×10-7 

   (2.236×10-8) (2.094×10-8) (2.078×10-8) (2.070×10-8) 

𝑊 𝛽𝑀𝑜𝑡𝑜𝑟 - 0.05269 0.03952 0.04157 0.03175 

   (0.01003) (0.008930) (0.008629) (0.008855) 

 𝛽𝑇𝑟𝑎𝑖𝑙𝑒𝑟 - -0.06832 -0.07586 -0.07648 -0.09271 

   (0.01051) (0.009354) (0.009031) (0.009582) 

 𝛽𝐿𝑒𝑎𝑑𝑖𝑛𝑔 - 0b 0b 0b 0b 

Random Effects       

𝑀𝑛 √𝑑𝑀𝑛 - - 0.166 0.170 0.170 

       

𝑈 √𝑑𝑈 - - - 0.073 0.073 

       

𝑉 √𝑑𝑉 - - - - 0.036 

       

Scale 𝜎 0.290 0.281 0.249 0.240 0.238 

       

-2 Restricted Log Likelihood - - 665.98 332.65 264.31 

AIC value 2278.83 1858.45 - - - 

Number of parameters 3 7 8 9 10 

Table 4 – Restricted Maximum Likelihood (REML) estimates for the parameters of models 
M0-M4a for the dependent variable change in the flange height (∆𝑭𝒉). 

a Approximate Standard Errors for Fixed Effects are included in parentheses. b This parameter is redundant. 

  



 

Model Label Parameter M0 - ∆𝐷 M1b - ∆𝐷 M2b - ∆𝐷 M3b - ∆𝐷 M4b - ∆𝐷 

Fixed Effects       

1 𝛽0 0.987 1.217 1.341 1.336 1.394 

  (0.02743) (0.04667) (0.06175) (0.06614) (0.09236) 

𝑀 𝛽𝑀 0.007639 0.001903 -0.0008263 -0.0006207 -0.0005329 

  (0.000224) (0.0008393) (0.0008682) (0.0008736) (0.0008854) 

𝑀2 𝛽𝑀2 - 2.890×10-5 2.609×10-5 3.967×10-5 3.560×10-5 

   (4.09×10-6) (4.228×10-6) (4.267×10-6) (4.382×10-6) 

𝑊 𝛽𝑀𝑜𝑡𝑜𝑟 - 0.06036 0.02628 0.02927 -0.01270 

   (0.03172) (0.03014) (0.02967) (0.03050) 

 𝛽𝑇𝑟𝑎𝑖𝑙𝑒𝑟 - -0.1496 -0.1580 -0.1611 -0.2277 

   (0.03326) (0.03159) (0.03107) (0.03302) 

 𝛽𝐿𝑒𝑎𝑑𝑖𝑛𝑔 -  0b 0b 0b 

Random Effects       

𝑀𝑛 √𝑑𝑀𝑛 - - 0.322 0.320 0.317 

       

𝑈 √𝑑𝑈 - - - 0.170 0.172 

       

𝑉 √𝑑𝑉 - - - - 0.111 

       

Scale 𝜎 0.897 0.888 0.840 0.825 0.821 

       

-2 Restricted Log Likelihood - - 15766.06 15629.8 15576.67 

AIC value 16367.6 16249.2 - - - 

Number of parameters 3 6 7 8 9 

Table 5 – Restricted Maximum Likelihood (REML) estimates for the parameters of models 
M0-M4b for the dependent variable change in the Tread Diameter (∆𝑫). 

a Approximate Standard Errors for Fixed Effects are included in parentheses. b This parameter is redundant. 

   

  



 

Model Label Parameter M0c - ∆𝐷𝑇 M1c - ∆𝐷𝑇 M2c - ∆𝐷𝑇 M3c - ∆𝐷𝑇 M4c - ∆𝐷𝑇 M5c - ∆𝐷𝑇 

Fixed Effects        

1 𝛽0 16.8587 34.48553 39.58786 45.9905 44.50749 46.51300 

  (3.7467) (3.50410) (3.64597) (3.99044) (3.97864) (3.9704) 

𝐹𝑡  𝛽𝐹𝑡 -0.3360 -0.98135 -1.12562 -1.35069 -1.29974 -1.36727 

  (0.1349) (0.12646) (0.12487) (0.13599) (0.13629) (0.13515) 

𝑌𝑅𝐶𝐹  𝛽𝑅𝐶𝐹 - 3.53981 3.61747 3.45374 3.38064 3.26511 

   (0.10808) (0.10705) (0.10805) (0.10723) (0.10677) 

𝑌𝐹𝐿𝐴𝑇 𝛽𝐹𝐿𝐴𝑇 - 1.50080 1.43816 1.45948 1.47444 1.51732 

   (0.09762) (0.09617) (0.10985) (0.10990) (0.10888) 

𝑌𝐶𝐴𝑉  𝛽𝐶𝐴𝑉 - 2.68745 2.90104 2.91918 2.87964 2.83966 

   (0.23063) (0.22731) (0.22543) (0.22390) (0.22174) 

𝑊 𝛽𝑀𝑜𝑡𝑜𝑟 - -0.44570 -0.42377 -0.47616 -0.49889 -0.59099 

   (0.09046) (0.08894) (0.08403) (0.08260) (0.08472) 

 𝛽𝑇𝑟𝑎𝑖𝑙𝑒𝑟 - -0.24949 -0.21310 -0.21884 -0.22938 -0.37037 

   (0.09476) (0.09322) (0.08808) (0.08652) (0.09170) 

 𝛽𝐿𝑒𝑎𝑑𝑖𝑛𝑔 - 0b 0b 0b 0b 0b 

Random Effects        

𝑇 √𝑑𝑇 - - 2.264 2.558 2.422 2.514 

        

𝑀𝑛 √𝑑𝑀𝑛 - - - 1.023 1.050 1.062 

        

𝑈 √𝑑𝑈 - - - - 0.489 0.500 

        

𝑉 √𝑑𝑉 - - - - - 0.423 

        

Scale 𝜎 2.769 2.510 2.467 2.318 2.273 2.248 

        

-2 Restricted Log Likelihood - - 29041.38 28441.62 28289.20 28168.70 

AIC value 30455.72 29233.51 - - - - 

Number of parameters 3 8 9 10 9 10 

Table 6 – Restricted Maximum Likelihood (REML) estimates for the parameters of models 
M0c-M5c for the dependent variable Diameter loss due to turning (∆𝑫𝑻). 

a Approximate Standard Errors for Fixed Effects are included in parentheses. b This parameter is redundant. 

 

  



Dependent 

Variable 
Models Fixed Effects (FE) Random Effects (RE) 

Variance 

Structure 

𝑌𝑅𝐶𝐹  

M0’ 1, 𝑀, 𝐷 - - 

M1’a 1, 𝑀, 𝐷, 𝑊 - - 

M2’a 1, 𝑀, 𝐷, 𝑊 Mn VC 

M3’a 1, 𝑀, 𝐷, 𝑊 Mn, U VC, VC 

M4’a 1, 𝑀, 𝐷, 𝑊 Mn, U, V VC, VC, VC 

𝑌𝐹𝐿𝐴𝑇  

M0’ 1, 𝑀, - - 

M1’a 1, 𝑀, 𝐷 - - 

M2’a 1, 𝑀, 𝐷 Mn VC 

M3’a 1, 𝑀, 𝐷 Mn, U VC, VC 

M4’a 1, 𝑀, 𝐷 Mn, U, V VC, VC, VC 

𝑌𝐶𝐴𝑉  

M0’ 1, 𝑀 - - 

M1’b 1, 𝑀, 𝐷, 𝑊 - - 

M2’b 1, 𝑀, 𝐷, 𝑊 Mn VC 

M3’b 1, 𝑀, 𝐷, 𝑊 Mn, U VC, VC 

M4’b 1, 𝑀, 𝐷, 𝑊 Mn, U, V VC, VC, VC 

Table 7 – Generalized Linear Mixed Models explored for each dependent variable with 
Fixed Effects (FE) and Random Effects (RE) and respective Variance 

Structure. 

  



 

Model Label Parameter M0’ - 𝑝𝑅𝐶𝐹 M1’a - 𝑝𝑅𝐶𝐹 M2’a - 𝑝𝑅𝐶𝐹 M3’a - 𝑝𝑅𝐶𝐹 M4’a - 𝑝𝑅𝐶𝐹 

Fixed Effects       

1 𝛽0 13.1256 14.4409938 32.943999 32.552654 31.769104 

  (2.7931) (2.8364365) (4.23178) (4.311109) (4.287260) 

𝑀 𝛽𝑀 0.00515 0.0051057 0.009828 0.009727 0.012609 

  (0.00089) (0.0008927) (0.001107) (0.001166) (0.001264) 

𝐷 𝛽𝐷 -0.01916 -0.0201701 -0.043435 -0.043067 -0.042256 

  (0.00337) (0.0034274) (0.005127) (0.005217) (0.005168) 

𝑊 𝛽𝑀𝑜𝑡𝑜𝑟 - -1.0079563 -1.153113 -1.212075 -1.614640 

   (0.1146005) (0.125025) (0.127960) (0.142675) 

 𝛽𝑇𝑟𝑎𝑖𝑙𝑒𝑟 - -0.1747294 -0.224323 -0.265700 -0.783396 

   (0.1076079) (0.118458) (0.120790) (0.142534) 

 𝛽𝐿𝑒𝑎𝑑𝑖𝑛𝑔 - 0b 0b 0b 0b 

Random Effects       

𝑀𝑛 √𝑑𝑀𝑛 - - 1.435 1.450 1.486 

       

𝑈 √𝑑𝑈 - - - 0.612 0.636 

       

𝑉 √𝑑𝑉 - - - - 0.695 

       

 Log Likelihood -2002.272 -1949.875 -1684.64 -1648.79 -1589.64 

AIC value 4010.54 3909.7 3381.27 3311.59 3195.27 

Number of parameters 3 5 6 7 8 

Table 8 – Maximum Likelihood (ML) estimates for the parameters of models M1-M6 for 
the probability of occurrence Rolling Contact Fatigue defects (𝒑𝑹𝑪𝑭). 

a Approximate Standard Errors for Fixed Effects are included in parentheses. b This parameter is redundant. 

  



 

Model Label Parameter M0’ - 𝑝𝐹𝐿𝐴𝑇 M1’a - 𝑝𝐹𝐿𝐴𝑇 M2’a - 𝑝𝐹𝐿𝐴𝑇 M3’a - 𝑝𝐹𝐿𝐴𝑇 M4’a - 𝑝𝐹𝐿𝐴𝑇 

Fixed Effects       

1 𝛽0 -0.1323385 0.216073 -0.670410 -0.785132 -0.785229 

  (0.0730829) (0.110790) (0.291599) (0.338891) (0.412802) 

𝑀 𝛽𝑀 -0.0186813 -0.018777 -0.019327 -0.020149 -0.021362 

  (0.0007859) (0.000788) (0.001083) (0.001187) (0.001215) 

𝑊 𝛽𝑀𝑜𝑡𝑜𝑟 - -0.412531 -0.535233 -0.566112 -0.444594 

   (0.106822) (0.133944) (0.139108) (0.143837) 

 𝛽𝑇𝑟𝑎𝑖𝑙𝑒𝑟 - -0.424209 -0.496855 -0.524672 -0.353106 

   (0.112708) (0.139390) (0.144890) (0.155126) 

 𝛽𝐿𝑒𝑎𝑑𝑖𝑛𝑔 - 0b 0b 0b 0b 

Random Effects       

𝑀𝑛 √𝑑𝑀𝑛 - - 1.952 2.137 2.175 

       

𝑈 √𝑑𝑈 - - - 0.844 0.818 

       

𝑉 √𝑑𝑉 - - - - 0.398 

       

 Log Likelihood -2111.156 -2102.763 -1476.98 -1421.07 -1404.32 

AIC value 4226.3 4213.5 2963.96 2854.13 2822.64 

Number of parameters 2 4 5 6 7 

Table 9 – Maximum Likelihood (ML) estimates for the parameters of models M1-M6 for 
the probability of occurrence of flat wheels (𝒑𝑭𝑳𝑨𝑻). 

a Approximate Standard Errors for Fixed Effects are included in parentheses. b This parameter is redundant. 

  



Model Label Parameter M0’ - 𝑝𝐶𝐴𝑉 M1’ - 𝑝𝐶𝐴𝑉 M2’ - 𝑝𝐶𝐴𝑉 M3’b - 𝑝𝐶𝐴𝑉 M4’b - 𝑝𝐶𝐴𝑉 

Fixed Effects       

1 𝛽0 10.5855 9.251591 34.908354 47.736476 47.728031 

  (5.7617) (5.746094) (9.018025) (11.006983) (11.020602) 

𝑀 𝛽𝑀 -0.01530 -0.015278 -0.012384 -0.011628 -0.011614 

  (0.00179) (0.001791) (0.002209) (0.002635) (0.002637) 

𝐷 𝛽𝐷 -0.01579 -0.014027 -0.046076 -0.062783 -0.062787 

  (0.00697) (0.006949) (0.010906) (0.013314) (0.013330) 

𝑊 𝛽𝑀𝑜𝑡𝑜𝑟 - 0.064226 -0.077100 0.061992 0.064044 

   (0.244704) (0.265408) (0.282116) (0.282268) 

 𝛽𝑇𝑟𝑎𝑖𝑙𝑒𝑟 - -0.574918 -0.695272 -0.789285 -0.788606 

   (0.288857) (0.310097) (0.328704) (0.328855) 

 𝛽𝐿𝑒𝑎𝑑𝑖𝑛𝑔 - 0b 0b 0b 0b 

Random Effects       

𝑀𝑛 √𝑑𝑀𝑛 - - 1.748 2.291 2.299 

       

𝑈 √𝑑𝑈 - - - 1.327 1.334 

       

𝑉 √𝑑𝑉 - - - - 0.000 

       

Log Likelihood -557.189 -552.799 -490.859 -464.63 -468.63 

AIC value 1120.40 1115.6 993.72 943.25 945.25 

Number of parameters 3 5 6 7 8 

Table 10 – Maximum Likelihood (ML) estimates for the parameters of models M0’-M4’b 
for the probability of occurrence of cavities (𝒑𝑪𝑨𝑽). 

a Approximate Standard Errors for Fixed Effects are included in parentheses. b This parameter is redundant. 

 

 

 

 


