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Clustering stability and ground truth: numerical experiments
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Abstract— Stability has been considered an important proper-
ty for evaluating clustering solutions. Nevertheless, there are
no conclusive studies on the relationship between this property
and the capacity to recover clusters inherent to data (“ground
truth”). This study focuses on this relationship, resorting to
experiments on synthetic data generated under diverse scena-
rios (controlling relevant factors) and experiments on real data
sets. Stability is evaluated using a weighted cross-validation
procedure. Indices of agreement (corrected for agreement by
chance) are used both to assess stability and external valida-
tion. The results obtained reveal a new perspective so far not
mentioned in the literature. Despite the clear relationship be-
tween stability and external validity when a broad range of
scenarios is considered, the within-scenarios conclusions de-
serve our special attention: faced with a specific clustering
problem (as we do in practice), there is no significant relation-
ship between clustering stability and the ability to recover data
clusters

Keywords- Clustering; external validation; stability.

. INTRODUCTION

Stability has been recognized as a desirable property of a
clustering solution —e.g. [1]. A clustering solution is said to
be stable if it remains fairly unchanged when the clustering
process is subject to minor modifications such as, alternative
parameterizations of the algorithm used, introducing noise
in the data or considering different samples. In order to eva-
luate stability, the agreement between the different cluster-
ing results originated by such minor modifications is meas-
ured. Several indices of agreement (1A), such as the adjusted
Rand [2], are commonly used for this end.

Some authors warn of a possible misuse of the property
of clustering stability noting that the goodness of this prop-
erty in the evaluation of clustering results is not theoretically
well founded: “While it is a reasonable requirement that an
algorithm should demonstrate stability in general, it is not
obvious that, among several stable algorithms, the one
which is most stable leads to the best performance” —[3],
p-1. Bubeck et al. express a similar concern: “While model
selection based on clustering stability is widely used in prac-
tice, its behavior is still not well-understood from a theoreti-
cal point of view” - [4], p.436.

This study aims to contribute to clarify the role of sta-
bility in the evaluation of clustering results. We focus on the
relationship between clustering stability and its external
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validity i.e. agreement with “ground truth” — the true clus-
ters’ structures that are “a priori” known.

In order to obtain new insights we consider diverse ex-
perimental scenarios and analyze diverse clustering results
referred to 546 data sets. Synthetic data sets (540), generat-
ed under 18 different scenarios, provide straightforward
clustering external evaluation and enable to control for di-
verse relevant factors such as the number of clusters, bal-
ance and overlapping — e.g. [5], [6], [7]. The use of 6 real
data sets from the UCI Machine Learning Repository [8],
complements the experimental analysis.

Il. ON CLUSTERING STABILITY

A. Why stabilty?

Clustering stability, along with cohesion-separation, are
commonly referred as desirable properties of a clustering
solution. Cohesion-separation is intrinsically related with
the concept of clustering and it can be related with the clus-
ters' external validity - Milligan and Cooper [5] and Ven-
dramin [6].

The value of stability is clearly related with the need to
provide a useful clustering solution, since an inconsistent
one would hardly serve practical purposes. On the other
hand, the theoretical value of stability is yet to be unders-
tood.

Literature contributions on stability are discussed in
Luxburg [9] and Ben-David and Luxburg [3], for example.
These are specifically related with the capacity to recover
the "right" number of clusters and to K-Means results.
Another perspective of stability is offered in [10] by mea-
suring the consistency with which a particular cluster ap-
pears in replicated clustering - cluster-wise stability.

The lack of a systematical relationship between clusters
validity and stability is occasionally pointed out by diverse
studies - e.g [11]. Thus, a systematical study of the relation-
ship between stability and clustering external validity is in
order.

B. Cross-Validation

In order to evaluate clustering stability cross-validation
can be used. Cross-validation referred to unsupervised anal-
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ysis, as described in [12], can be summarized into 5 main
steps- Table 1.

TABLE 1. GENERAL CROSS-VALIDATION PROCEDURE

Step Action Output
1 Perform training-test Training and test
Samplesplit samples
Clusters in the
2 Cluster training sample training
sample

Build a classifier using the training
3 sample supervisedby clusters' labels;
use theclassifier in the test sample.

Classes in the test
sample

4 Cluster the test sample Clusters in the test

sample
Obtain a contingency tablebetween Indlcersng;tagree-
5 clusters and classesin the test sample P~
S values, indicators
and calculate indices. L
of stability

This clustering cross-validation procedure deserves,
however, some remarks:

— Referring to step 3 [13] point out that “by selecting
an inappropriate classifier, one can artificially in-
crease the discrepancy between solutions (...) the
identification of optimal classifiers by analytical
means seems unattainable. Therefore, we have to
resort to potentially suboptimal classifiers in prac-
tical applications”, (p.1304-1305);

— In addition, the train-test split (step 1) requires suf-
ficient sample size.

In this work, we resort to the weighted cross-validation
procedure proposed in [11] to evaluate the stability of clus-
tering solutions. The “weighted training sample” considers
unit weights for training observations (50% in the data sets
considered) and almost zero weights to the remaining (test)
observations. The “weighted test sample” reverses this
weights’ allocation. The use of weighted samples over-
comes the need for selecting a classifier when performing
cross-validation. Furthermore, sample dimension is not a
severe limitation for implementing clustering stability eval-
uation, since the Indices of agreement values are based on
the entire (weighted) sample, and not in a holdout sample.

C. Adjusted agreement between partitions

In order to measure the agreement between two parti-
tions we can resort to indices of agreement (IA4). In the lite-
rature, multiple 14 can be found — e.g. [14], [15]. They are
generally quantified based on the cells values of the contin-
gency table between the two partitions being compared - PX
and P@with Kand Q clusters (respectively).

Among the 14, the Rand index (Rand) is, perhaps, the
most well-known - [16].

Rand(PX,P?) =

( )+22k 1 Zq- (nkq) k= l(nk+) So- (nﬂ). @

(2)

Where n,, are the cells values of the contingency table,
and ny, and n,, are the corresponding row totals and col-
umn totals, respectively.

It quantifies the proportion of pairs of observations that
both partitions agree to join in a group or to separate into
different groups. Since agreement between partitions can
occur by chance, [2] propose an adjusted version ofRandus-
ing its expected value under the hypothesis of agreement by
chance (H )'

k(M) 7O Mg
EHoZZ nkq kl(z)(g) q—l(z)_ o

Then this 1A is adjusted according with the general for-
mula:

1A,(PX,PQ) =

IA(PX, PQ) — E,o [IA(PK, P9)] ®)
Max[IA(P¥, PQ)] — Epo [IA(PK, PO

The adjusted index (IA4,) is thus null when agreement
between partitions occurs by chance. Some IA are based on
the concepts of entropy and information. Among theselA,
Mutual Information (M1) is particularly well-known:

K @Q
ny, Mk
MI(PX,PQ) = Z Z T‘?logu{nhﬁﬂ ) (4)
k=1q=1 n

Vinh et al., [14], advocate a strategy similar to that of [2]
to adjust MI for agreement by chance. These authors also
advocate the use of a particular mutual information form
resorting to joint entropy H(PX, P?) — ([17], [18]):

MI(PX, P?)
K poy__"~N ' 7
MIH(PX,PQ) H(PF. PO (5)
where
kK Q
n
H(PK,PQ)=—ZZ: kqlog" . (6)
k=1q=1 n

In order to investigate agreement between two parti-
tionswe resort to the adjusted indices Rand,(PX,P?)
andMIH,(P¥,P?). They offer different perspectives on
agreement — paired agreement and simple agreement [19].
These views are meant to provide useful insights when re-
ferring to external validation (comparison between the clus-
tering solution and the “true” cluster structure) or to the
evaluation of stability (comparison between two clustering
solutions deriving from minor modifications in the cluster-
ing process).
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11. NUMERICAL EXPERIMENTS

A. Synthetic data

The pioneer study of Milligan and Cooper, [5], estab-
lished the use of synthetic data to support the external vali-
dation of clustering structures. In this general setting, clus-
tering solutions are to be compared with a priori known
classes associated with the generated data sets. Since then,
several works referring to external validation of clustering
solutions have developed this line of work trying to over-
come some drawbacks of this first study such as using the
“right number of clusters” to quantify external validity is
limited in scope, [6]. In addition, overlap between clusters
should be properly quantified on the generation of experi-
mental data sets [20].

The present research considers three main design factors
for the generation of synthetic data sets:

— balance (1- clusters are balanced having equal or
very similar numbers of observations; 2- clusters
are unbalanced)

— number of clusters (K=2, 3,4)

— clusters separation (1- poor; 2-moderate; 3- good).

The 18 resulting scenarios are named after the previous
coding — for example, the scenario with balanced clusters
(1), 3 clusters (3) and moderate separation (2) is termed
“132”.

The first design factor is operationalized as follows: ba-
lanced settings have classes with similar dimensions and for
unbalanced settings classes have the following a priori
probabilities orweights: a) 0.30 and 0.7 when K=2; b) 0.6,
0.3 and 0.1 when K=3; c) 0.5, 0.25, 0.15 and 0.10 when
K=4.

The increasing number of clusters is associated with in-
creasing number of variables (2, 3 and 4 latent groups with
2, 3 and 4 Gaussian distributed variables) and, in order to
deal with this increasing complexity, we consider data sets
with 500, 800 and 1100 observations, respectively.

The following measure of overlap between the classes k
and k’ is adopted, [21]:

Wy = W T O (7

where wy is the misclassification probability that the ran-
dom variable Xoriginated from the kth component is mista-
kenly assigned to the k’th component and wy ¢ is defined
similarly.

In order to generate the datasets within the scenarios, we
capitalize on the recent contribution in [21] and use the R
MixSimpackage to generate structured data according to the
finite Gaussian mixture model:

K

D M o5, ®)
k=1

where ¢ (x; ., Z;) is a multivariate Gaussian density of the
K™ component with mean vectory, and covariance matrix

%, Therefore,
Wy |k =

P [Akwb (5; gkuEk’) > ©)
Ao (5; Ui Zk) |x ~N, (Ek’zk)]'

Based on this measure, we consider three degrees of
overlap in the experimental scenarios: 1) wy, is around 0.6
for poorly separated clusters; 2) wye is around 0.15 for
moderately separated; 3) w is around 0.02 for well sepa-
rated classes. These thresholds are indicated in [21].

For each of the referred 18 scenarios, we generate 30 da-
tasets and run our experiments by:

— clustering each data set;

— evaluating stability of the clustering solution

(seell.A and 11.C);
— evaluating clustering external validity based on the
a priori known classes (see 11.C);

— correlating results from stability and external valid-

ity to assess the role of the stability property.

The Rmixmod package is used for clustering purposes
[22]. EM algorithm is found to be particularly suited for the
clustering tasks at hand, since the data generated follow a
finite Gaussian mixture model. We use the general Gaussian
mixture model - [PxLBx] in [23].

The first results obtained are summarized in Table 2 and
Table 3. They reveal the pertinence of the design fac-
tors:stability and external validity increase with the increase
in separation, the 1A being close to zero when separation is
poor and near one when well separated clusters are consi-
dered. In general, the adjusted Rand index and mutual in-
formation values illustrate the same underlying reality, al-
though the MIH, values provide a more conservative view
of the degree of agreement between two partitions.

The general results referring to the relationship between
stability and agreement with ground truth (inter experimen-
tal scenarios), are illustrated in Figurel and Figure 2. The
corresponding Pearson correlation values are 0.958 and
0.933, respectively, indicating a high linear correlation be-
tween stability and external validity (both measured by
MIH,in Figurel and Rand,inFigure 2. These results corro-
borate the general theory on the relevance of the property of
stability in the evaluation of clustering solutions.

A completely different view is however provided intra-
scenarios,yielding very low correlations between stability
and external validity — see Table 4. Within a specific scena-
rio - the “real deal” for any clustering analysis practitioner -
the correlation between external validity and stability is
negligible. Both the adjusted Rand and the adjusted Mutual
Information lead to the same conclusion. Only two excep-
tions contradict this rule: scenarios “232” and “143”.
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B. Real data

The agreement between ground truth and stability is also
subject to inspection in six data sets of the UCI Machine
Learning Repository [8] — see Table 5 for a brief summary
of these data sets. In addition to the design factors previous-

ly
TABLE 2 - ADJUSTED RAND INDEX VALUES CORRESPONDING

TO EXTERNAL VALIDITY AND TO STABILITY (VALUES
AVERAGED OVER 30 DATASETS).

External validity Stability

Rand
* K=2 | K=3 | K=4 | K=2 | K=3 | K=4

Poor | 0.055 | 0.038 | 0.041 | 0.111 | 0.118 | 0.085

Balanced Moder. | 0.728 | 0.388 | 0.624 | 0.865 | 0.652 | 0.688
Good | 0.963 | 0.943 | 0.855 | 0.987 | 0.979 | 0.918

Poor | 0.097 | 0.211 | 0.133 | 0.053 | 0.280 | 0.166

Unbalanced | Moder. | 0.765 | 0.690 | 0.820 | 0.864 | 0.822 | 0.898

Good | 0.962 | 0.980 | 0.887 | 0.981 | 0.991 | 0.949

TABLE 3 - MUTUAL INFORMATION ADJUSTED
VALUESCORRESPONDING TO EXTERNAL VALIDITY AND TO
STABILITY (VALUES AVERAGED OVER 30 DATASETS).

External validity Stability

MIH,
K=2 | K=3 | K=2 | K=3 | K=2 | K=3

Poor | 0.046 | 0.024 | 0.031 | 0.073 | 0.054 | 0.073

Balanced Moder. | 0.458 | 0.263 | 0.449 | 0.700 | 0.465 | 0.578

Good | 0.865 | 0.832 | 0.707 | 0.949 | 0.931 | 0.833

Poor | 0.048 | 0.093 | 0.070 | 0.036 | 0.189 | 0.124

Unbalanced | Moder. | 0.477 | 0.440 | 0.569 | 0.660 | 0.613 | 0.732

Good | 0.850 | 0.920 | 0.694 | 0.922 | 0.957 | 0.840

TABLE 4 - INTRA-SCENARIOS PEARSON CORRELATIONS
BETWEEN STABILITY AND AGREEMENT FOR SYNTHETIC DATA.

MIH, Rand,

K=2 K=3 K=4 K=2 K=3 K=4

Poor | 0.143 | -0.018 | -0.129 | -0.079 | -0.155 | -0.303

Balanced Mod. | 0.122 | 0.264 | -0.015 | 0.068 | 0.215 | 0.111

Good | 0.084 | 0.222 | 0.527 | 0.046 | 0.177 | 0.624

Poor | 0.329 | 0.126 | 0.172 | 0.367 | -0.42 | -0.079

Unbalanced | Mod. | -0.003 | 0.593 | 0.084 | 0.085 | 0.666 | 0.084

Good | -0.151 | 0.272 | 0.245 | -0.084 | 0.159 | 0.218

considered, we also quantify normalized entropy (ranging

from 0 to 1 that indicates classes’ uniform distribution).
Since the real data sets are diverse, we attempt to recov-

er their clustering structures resorting to different clustering

algorithms - namely the Hartigan K-Means (KM) algorithm
[24], the Expectation Maximization (EM) [25] and the Sto-
chastic EM (SEM) [26]. We resort to the EM and the SEM
algorithms implemented in the Rmixmod package using the
general Gaussian mixture model - [PxLkB] in [23].
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TABLE 5 - REAL DATA SETS

Dataset | n |Features|  Classes ngi:g;d Overlapping TABLE 6.- STABILITY AND GROUND TRUTH FOR F;EAb_LI_lt)ATA

. ability on

- Agreement with ground .

Liver C1 (145) Algo- Weighted-

Disorders [°*°| O C2 (200) 0.982 0.016 Data set rit%m truth train/test
C1 (298) Randa MIH, Randa MIH,

Wholesales {440 6 0.907
C2 (142) 0.111 KM -0.005 -0.001 0.943 | 0.786
_ Setosa (50) Liver EM -0.009 0.002 0.960 | 0.844
Iris 150 4 Versicolor (50) 1.585 0.518
Virginica (50) SEM -0.010 0.002 0.987 | 0933
Wine C1 (59) o6 0002 Whle. KM 0.564 0.311 -0.032 | 0.005
recognition | 178 12 C2(71) ' ' sales EM 0.427 0.245 0.843 0.609
data C3(48) SEM 0.427 0.251 0851 | 0621
Care ‘g:;b ((gi%) KM 0.730 0.608 0924 | 0.786
Silhouette (846 18 Opel (212) | 1999067 0.044 Iris EM 0.834 0.692 0478 | 0.486
Van (199) SEM 0.834 0.699 0.478 | 0.486
Very-low (24) Wi
User  Lyesl Low (83) 1871 0.028 r ine. KM 0.352 0.264 0.760 | 0.615
Modeling Middle (88) o | EM 0.915 0.805 0.802 | 0.691
High (63) data SEM 0.915 0.805 0.833 | 0.719
According to the results obtained (Table 6), the clustering KM 0.126 0.099 0651 | 05%2
solutions are generally stable,while agreement with ground Cars EM 0143 0102 0601 | 0521
truth varies appreciably. Thus, there is no relationship be- SEM 0.144 0.103 0.604 | 0.526
tween stability and agreement with ground truth, the rela- KM 0.189 -0.217 0.474 | -0.126
tionship under study appearing to be mainly dependent of ML:jself EM 0372 0118 0574 | 0245
odeling

the data set at hand. SEM 0.372 -0.131 0531 | -0.013

V. CONTRIBUTIONS AND PERSPECTIVES

In this work we analyze the pertinence of using stability
in the evaluation of a clustering solution. In particular, we
question the following: does the consistency of a clustering
solution (resisting minor modifications of the clustering
process) provide indication towards a greater agreement
with the “ground truth” (true structure) of the data?

In order to address this issue, we design an experiment
in which 540 synthetic data sets are generated under 18
different scenarios. Design factors considered are the num-
ber of clusters, their balance and overlap. In addition, differ-
ent sample sizes and space dimensions are considered.

Through the use of weighted cross-validation, we enable
the analysis of stability, [11]. We resort to adjusted indices
of agreement (excluding agreement by chance) to measure
agreement between two clustering solutions and also be-
tween a clustering solution and the “true” classes: we specif-
ically use a simple index of agreement (IA) - the adjusted
Mutual Information, [14] - and a paired IA - the adjusted
Rand index [2].

A macro-view of the results does not contradict the cur-
rent theory - there is a strong correlation between stability
and external validity when the aggregate results are consi-
dered (all scenarios’ results). However, when it comes to
perform clustering analysis within a specific experimental
scenario, what can we say about the same correlation? The
conclusions derived in this study support the previously
referred concerns referring to the relationship between sta-
bility and agreement

with ground truth — there is an insignificant correlation be-
tween stability and external validity when it comes to a
specific clustering problem.

Of course, it is still true that an unstable solution is, for
this very reason, undesirable (otherwise which results
should the practitioner consider?). However, in a specific
clustering setting, there is clearly no credible link between
the stability of a partition and its approximation to ground
truth.

This work contributes with a new perspective for a better
understanding of the relationship between clustering stabili-
ty and its external validity. To our knowledge, is the first
time a study distinguishes between the macro view (all ex-
perimental scenarios considered) and the micro view (consi-
dering a specific clustering problem) and clearly differen-
tiates the corresponding results.

In the future, stability results in discrete clustering
should also be assessed and possible additional experimental
factors (e.g. clusters’ entropy)may also be considered.
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