Clustering stability and ground truth: numerical experiments

Maria José Amorim Mathematical Department ISEL and ISCTE-IUL Lisbon, Portugal mjamorim@adm.isel.pt

margarida.cardoso@iscte.pt validity i.e. agreement with "ground truth" - the true clus-

Margarida G. M. S. Cardoso

Business Research Unit and Department of Quantitative

Methods for Management and Economics. ISCTE-IUL

Lisbon, Portugal

Abstract— Stability has been considered an important property for evaluating clustering solutions. Nevertheless, there are no conclusive studies on the relationship between this property and the capacity to recover clusters inherent to data ("ground truth"). This study focuses on this relationship, resorting to experiments on synthetic data generated under diverse scenarios (controlling relevant factors) and experiments on real data sets. Stability is evaluated using a weighted cross-validation procedure. Indices of agreement (corrected for agreement by chance) are used both to assess stability and external validation. The results obtained reveal a new perspective so far not mentioned in the literature. Despite the clear relationship between stability and external validity when a broad range of scenarios is considered, the within-scenarios conclusions deserve our special attention: faced with a specific clustering problem (as we do in practice), there is no significant relationship between clustering stability and the ability to recover data clusters

Keywords- Clustering; external validation; stability.

I. Introduction

Stability has been recognized as a desirable property of a clustering solution – e.g. [1]. A clustering solution is said to be stable if it remains fairly unchanged when the clustering process is subject to minor modifications such as, alternative parameterizations of the algorithm used, introducing noise in the data or considering different samples. In order to evaluate stability, the agreement between the different clustering results originated by such minor modifications is measured. Several indices of agreement (IA), such as the adjusted Rand [2], are commonly used for this end.

Some authors warn of a possible misuse of the property of clustering stability noting that the goodness of this property in the evaluation of clustering results is not theoretically well founded: "While it is a reasonable requirement that an algorithm should demonstrate stability in general, it is not obvious that, among several stable algorithms, the one which is most stable leads to the best performance" -[3], p.1. Bubeck et al. express a similar concern: "While model selection based on clustering stability is widely used in practice, its behavior is still not well-understood from a theoretical point of view" - [4], p.436.

This study aims to contribute to clarify the role of stability in the evaluation of clustering results. We focus on the relationship between clustering stability and its external ters' structures that are "a priori" known.

In order to obtain new insights we consider diverse experimental scenarios and analyze diverse clustering results referred to 546 data sets. Synthetic data sets (540), generated under 18 different scenarios, provide straightforward clustering external evaluation and enable to control for diverse relevant factors such as the number of clusters, balance and overlapping - e.g. [5], [6], [7]. The use of 6 real data sets from the UCI Machine Learning Repository [8], complements the experimental analysis.

ON CLUSTERING STABILITY

A. Why stabilty?

Clustering stability, along with cohesion-separation, are commonly referred as desirable properties of a clustering solution. Cohesion-separation is intrinsically related with the concept of clustering and it can be related with the clusters' external validity - Milligan and Cooper [5] and Vendramin [6].

The value of stability is clearly related with the need to provide a useful clustering solution, since an inconsistent one would hardly serve practical purposes. On the other hand, the theoretical value of stability is yet to be unders-

Literature contributions on stability are discussed in Luxburg [9] and Ben-David and Luxburg [3], for example. These are specifically related with the capacity to recover the "right" number of clusters and to K-Means results. Another perspective of stability is offered in [10] by measuring the consistency with which a particular cluster appears in replicated clustering - cluster-wise stability.

The lack of a systematical relationship between clusters validity and stability is occasionally pointed out by diverse studies - e.g [11]. Thus, a systematical study of the relationship between stability and clustering external validity is in order.

B. Cross-Validation

In order to evaluate clustering stability cross-validation can be used. Cross-validation referred to unsupervised analysis, as described in [12], can be summarized into 5 main steps- Table 1.

TABLE 1. GENERAL CROSS-VALIDATION PROCEDURE

Step	Action	Output
1	Perform training-test Samplesplit	Training and test samples
2	Cluster training sample	Clusters in the training sample
3	Build a classifier using the training sample supervisedby clusters' labels; use the classifier in the test sample.	Classes in the test sample
4	Cluster the test sample	Clusters in the test sample
5	Obtain a contingency tablebetween clusters and classesin the test sample and calculate indices.	Indices of agree- ment values, indicators of stability

This clustering cross-validation procedure deserves, however, some remarks:

- Referring to step 3 [13] point out that "by selecting an inappropriate classifier, one can artificially increase the discrepancy between solutions (...) the identification of optimal classifiers by analytical means seems unattainable. Therefore, we have to resort to potentially suboptimal classifiers in practical applications", (p.1304-1305);
- In addition, the train-test split (step 1) requires sufficient sample size.

In this work, we resort to the weighted cross-validation procedure proposed in [11] to evaluate the stability of clustering solutions. The "weighted training sample" considers unit weights for training observations (50% in the data sets considered) and almost zero weights to the remaining (test) observations. The "weighted test sample" reverses this weights' allocation. The use of weighted samples overcomes the need for selecting a classifier when performing cross-validation. Furthermore, sample dimension is not a severe limitation for implementing clustering stability evaluation, since the Indices of agreement values are based on the entire (weighted) sample, and not in a holdout sample.

C. Adjusted agreement between partitions

In order to measure the agreement between two partitions we can resort to indices of agreement (IA). In the literature, multiple IA can be found – e.g. [14], [15]. They are generally quantified based on the cells values of the contingency table between the two partitions being compared - P^K and P^Q with K and Q clusters (respectively).

Among the *IA*, the Rand index (*Rand*) is, perhaps, the most well-known - [16].

$$Rand(P^K, P^Q) =$$

$$\frac{\binom{n}{2} + 2\sum_{k=1}^{K} \sum_{q=1}^{Q} \binom{n_{kq}}{2} - \sum_{k=1}^{K} \binom{n_{k+}}{2} - \sum_{q=1}^{Q} \binom{n_{+q}}{2}}{\binom{n}{2}}.$$
 (1)

Where n_{kq} are the cells values of the contingency table, and n_{k+} and n_{+q} are the corresponding row totals and column totals, respectively.

It quantifies the proportion of pairs of observations that both partitions agree to join in a group or to separate into different groups. Since agreement between partitions can occur by chance, [2] propose an adjusted version of Rand using its expected value under the hypothesis of agreement by chance (H_a) :

$$E_{H_0} \left[\sum_{k=1}^{K} \sum_{q=1}^{Q} \binom{n_{kq}}{2} \right] = \frac{\sum_{k=1}^{K} \binom{n_{k+}}{2} \times \sum_{q=1}^{Q} \binom{n_{+q}}{2}}{\binom{n}{2}}.$$
 (2)

Then this *IA* is adjusted according with the general formula:

$$IA_{\alpha}(P^{K}, P^{Q}) =$$

$$\frac{IA(P^{K}, P^{Q}) - E_{H0}[IA(P^{K}, P^{Q})]}{Max[IA(P^{K}, P^{Q})] - E_{H0}[IA(P^{K}, P^{Q})]}.$$
(3)

The adjusted index (IA_a) is thus null when agreement between partitions occurs by chance. Some IA are based on the concepts of entropy and information. Among these IA, Mutual Information (MI) is particularly well-known:

$$MI(P^{K}, P^{Q}) = \sum_{k=1}^{K} \sum_{q=1}^{Q} \frac{n_{kq}}{n} \log^{\frac{1}{2}} \left(\frac{n_{kq}}{\frac{n_{k+1} + q}{n}} \right).$$
(4)

Vinh et al., [14], advocate a strategy similar to that of [2] to adjust MI for agreement by chance. These authors also advocate the use of a particular mutual information form resorting to joint entropy $H(P^K, P^Q) - ([17], [18])$:

$$MIH(P^K, P^Q) = \frac{MI(P^K, P^Q)}{H(P^K, P^Q)},$$
(5)

where

$$H(P^{K}, P^{Q}) = -\sum_{k=1}^{K} \sum_{q=1}^{Q} \frac{n_{kq}}{n} \log^{\frac{1}{2}} \left(\frac{n_{kq}}{n} \right).$$
 (6)

In order to investigate agreement between two partitionswe resort to the adjusted indices $Rand_a(P^K, P^Q)$ and $MIH_a(P^K, P^Q)$. They offer different perspectives on agreement – paired agreement and simple agreement [19]. These views are meant to provide useful insights when referring to external validation (comparison between the clustering solution and the "true" cluster structure) or to the evaluation of stability (comparison between two clustering solutions deriving from minor modifications in the clustering process).

III. NUMERICAL EXPERIMENTS

A. Synthetic data

The pioneer study of Milligan and Cooper, [5], established the use of synthetic data to support the external validation of clustering structures. In this general setting, clustering solutions are to be compared with *a priori* known classes associated with the generated data sets. Since then, several works referring to external validation of clustering solutions have developed this line of work trying to overcome some drawbacks of this first study such as using the "right number of clusters" to quantify external validity is limited in scope, [6]. In addition, overlap between clusters should be properly quantified on the generation of experimental data sets [20].

The present research considers three main design factors for the generation of synthetic data sets:

- balance (1- clusters are balanced having equal or very similar numbers of observations; 2- clusters are unbalanced)
- number of clusters (K=2, 3,4)
- clusters separation (1- poor; 2-moderate; 3- good).

The 18 resulting scenarios are named after the previous coding – for example, the scenario with balanced clusters (1), 3 clusters (3) and moderate separation (2) is termed "132".

The first design factor is operationalized as follows: balanced settings have classes with similar dimensions and for unbalanced settings classes have the following *a priori* probabilities orweights: a) 0.30 and 0.7 when K=2; b) 0.6, 0.3 and 0.1 when K=3; c) 0.5, 0.25, 0.15 and 0.10 when K=4.

The increasing number of clusters is associated with increasing number of variables (2, 3 and 4 latent groups with 2, 3 and 4 Gaussian distributed variables) and, in order to deal with this increasing complexity, we consider data sets with 500, 800 and 1100 observations, respectively.

The following measure of overlap between the classes k and k' is adopted, [21]:

$$\omega_{kk'} = \omega_{k|k'} + \omega_{k'|k} , \qquad (7)$$

where $\omega_{k'|k}$ is the misclassification probability that the random variable Xoriginated from the kth component is mistakenly assigned to the k'th component and $\omega_{k|k'}$ is defined similarly.

In order to generate the datasets within the scenarios, we capitalize on the recent contribution in [21] and use the R MixSimpackage to generate structured data according to the finite Gaussian mixture model:

$$\sum_{k=1}^{K} \lambda_k \phi(\underline{x}; \, \underline{\mu}_k, \Sigma_k), \tag{8}$$

where $\phi(\underline{x}; \underline{\mu}_k, \Sigma_k)$ is a multivariate Gaussian density of the k^{th} component with mean vector $\underline{\mu}_k$ and covariance matrix Σ_k . Therefore,

$$\omega_{\mathbf{k}'|\mathbf{k}} = P\left[\lambda_{\mathbf{k}'} \, \varphi\left(\underline{\mathbf{x}}; \, \underline{\mu}_{\mathbf{k}'}, \Sigma_{\mathbf{k}'}\right) > \lambda_{\mathbf{k}} \, \varphi\left(\underline{\mathbf{x}}; \, \underline{\mu}_{\mathbf{k}}, \Sigma_{\mathbf{k}}\right) | \underline{\mathbf{x}} \sim N_{p}\left(\underline{\mu}_{\mathbf{k}}, \Sigma_{\mathbf{k}}\right) \right]. \tag{9}$$

Based on this measure, we consider three degrees of overlap in the experimental scenarios: 1) $\omega_{kk'}$ is around 0.6 for poorly separated clusters; 2) $\omega_{kk'}$ is around 0.15 for moderately separated; 3) $\omega_{kk'}$ is around 0.02 for well separated classes. These thresholds are indicated in [21].

For each of the referred 18 scenarios, we generate 30 datasets and run our experiments by:

- clustering each data set;
- evaluating stability of the clustering solution (seeII.A and II.C);
- evaluating clustering external validity based on the a priori known classes (see II.C);
- correlating results from stability and external validity to assess the role of the stability property.

The Rmixmod package is used for clustering purposes [22]. EM algorithm is found to be particularly suited for the clustering tasks at hand, since the data generated follow a finite Gaussian mixture model. We use the general Gaussian mixture model - $[P_K L_K B_K]$ in [23].

The first results obtained are summarized in Table 2 and Table 3. They reveal the pertinence of the design factors:stability and external validity increase with the increase in separation, the IA being close to zero when separation is poor and near one when well separated clusters are considered. In general, the adjusted Rand index and mutual information values illustrate the same underlying reality, although the MIH_a values provide a more conservative view of the degree of agreement between two partitions.

The general results referring to the relationship between stability and agreement with ground truth (inter experimental scenarios), are illustrated in Figure 1 and Figure 2. The corresponding Pearson correlation values are 0.958 and 0.933, respectively, indicating a high linear correlation between stability and external validity (both measured by MIH_a in Figure 1 and $Rand_a$ in Figure 2. These results corroborate the general theory on the relevance of the property of stability in the evaluation of clustering solutions.

A completely different view is however provided intrascenarios, yielding very low correlations between stability and external validity – see Table 4. Within a specific scenario - the "real deal" for any clustering analysis practitioner - the correlation between external validity and stability is negligible. Both the adjusted Rand and the adjusted Mutual Information lead to the same conclusion. Only two exceptions contradict this rule: scenarios "232" and "143".

B. Real data

The agreement between ground truth and stability is also subject to inspection in six data sets of the UCI Machine Learning Repository [8] – see Table 5 for a brief summary of these data sets. In addition to the design factors previously

TABLE 2 - ADJUSTED RAND INDEX VALUES CORRESPONDING TO EXTERNAL VALIDITY AND TO STABILITY (VALUES AVERAGED OVER 30 DATASETS)

Rand _a			rnal val		Stability		
		K=2	K=3	K=4	K=2	K=3	K=4
	Poor	0.055	0.038	0.041	0.111	0.118	0.085
Balanced	Moder.	0.728	0.388	0.624	0.865	0.652	0.688
	Good	0.963	0.943	0.855	0.987	0.979	0.918
Unbalanced	Poor	0.097	0.211	0.133	0.053	0.280	0.166
	Moder.	0.765	0.690	0.820	0.864	0.822	0.898
	Good	0.962	0.980	0.887	0.981	0.991	0.949

TABLE 3 - MUTUAL INFORMATION ADJUSTED VALUESCORRESPONDING TO EXTERNAL VALIDITY AND TO STABILITY (VALUES AVERAGED OVER 30 DATASETS).

MIH_a		External validity			Stability		
		K=2	K=3	K=2	K=3	K=2	K=3
Balanced	Poor	0.046	0.024	0.031	0.073	0.054	0.073
	Moder.	0.458	0.263	0.449	0.700	0.465	0.578
	Good	0.865	0.832	0.707	0.949	0.931	0.833
Unbalanced	Poor	0.048	0.093	0.070	0.036	0.189	0.124
	Moder.	0.477	0.440	0.569	0.660	0.613	0.732
	Good	0.850	0.920	0.694	0.922	0.957	0.840

TABLE 4 - INTRA-SCENARIOS PEARSON CORRELATIONS BETWEEN STABILITY AND AGREEMENT FOR SYNTHETIC DATA.

		MIH_a			Rand _a			
		K=2	K=3	K=4	K=2	K=3	K=4	
Balanced	Poor	0.143	-0.018	-0.129	-0.079	-0.155	-0.303	
	Mod.	0.122	0.264	-0.015	0.068	0.215	0.111	
	Good	0.084	0.222	0.527	0.046	0.177	0.624	
Unbalanced	Poor	0.329	0.126	0.172	0.367	-0.42	-0.079	
	Mod.	-0.003	0.593	0.084	0.085	0.666	0.084	
	Good	-0.151	0.272	0.245	-0.084	0.159	0.218	

considered, we also quantify normalized entropy (ranging from 0 to 1 that indicates classes' uniform distribution).

Since the real data sets are diverse, we attempt to recover their clustering structures resorting to different clustering

algorithms - namely the Hartigan K-Means (KM) algorithm [24], the Expectation Maximization (EM) [25] and the Stochastic EM (SEM) [26]. We resort to the EM and the SEM algorithms implemented in the Rmixmod package using the general Gaussian mixture model - $[P_{\rm K}L_{\rm K}B_{\rm K}]$ in [23].

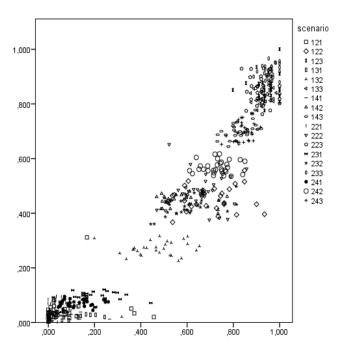


FIGURE1. INTER-SCENARIOS PEARSON CORRELATION BETWEEN STABILITY (YY') AND AGREEMENT WITH GROUND TRUTH (XX'): THE $\text{MIH}_{A}(P^{K}, P^{Q})$ PERSPECTIVE

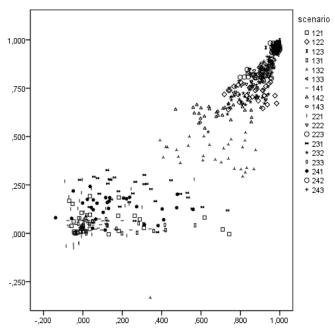


FIGURE 2. INTER-SCENARIOS PEARSON CORRELATION BETWEEN STABILITY (YY') AND AGREEMENT WITH GROUND TRUTH (XX'): THE ${\rm RAND_A}({\rm P^K},{\rm P^Q})$ PERSPECTIVE

TABLE 5 - REAL DATA SETS

Data set	n	Features	Classes	Normalized Entropy	Overlapping
Liver Disorders	345	6	C1 (145) C2 (200)	0.982	0.016
Wholesales	440	6	C1 (298) C2 (142)	0.907	0.111
Iris	150	4	Setosa (50) Versicolor (50) Virginica (50)	1.585	0.518
Wine recognition data	178	12	C1 (59) C2 (71) C3 (48)	1.567	0.002
Cars Silhouette	846	18	Bus (218) Saab (217) Opel (212) Van (199)	1.999067	0.044
User Modeling	258	5	Very-low (24) Low (83) Middle (88) High (63)	1.871	0.028

According to the results obtained (Table 6), the clustering solutions are generally stable, while agreement with ground truth varies appreciably. Thus, there is no relationship between stability and agreement with ground truth, the relationship under study appearing to be mainly dependent of the data set at hand.

IV. CONTRIBUTIONS AND PERSPECTIVES

In this work we analyze the pertinence of using stability in the evaluation of a clustering solution. In particular, we question the following: does the consistency of a clustering solution (resisting minor modifications of the clustering process) provide indication towards a greater agreement with the "ground truth" (true structure) of the data?

In order to address this issue, we design an experiment in which 540 synthetic data sets are generated under 18 different scenarios. Design factors considered are the number of clusters, their balance and overlap. In addition, different sample sizes and space dimensions are considered.

Through the use of weighted cross-validation, we enable the analysis of stability, [11]. We resort to adjusted indices of agreement (excluding agreement by chance) to measure agreement between two clustering solutions and also between a clustering solution and the "true" classes: we specifically use a simple index of agreement (IA) - the adjusted Mutual Information, [14] - and a paired IA - the adjusted Rand index [2].

A macro-view of the results does not contradict the current theory - there is a strong correlation between stability and external validity when the aggregate results are considered (all scenarios' results). However, when it comes to perform clustering analysis within a specific experimental scenario, what can we say about the same correlation? The conclusions derived in this study support the previously referred concerns referring to the relationship between stability and agreement

TABLE 6.- STABILITY AND GROUND TRUTH FOR REAL DATA

Data set	Algo- rithm	Agreement tru	Stability on Weighted- train/test		
	,	$Rand_a$	MIH_a	Rand _a	MIH_a
	KM	-0.005	-0.001	0.943	0.786
Liver	EM	-0.009	0.002	0.960	0.844
	SEM	-0.010	0.002	0.987	0.933
	KM	0.564	0.311	-0.032	0.005
Whole- sales	EM	0.427	0.245	0.843	0.609
Sares	SEM	0.427	0.251	0.851	0.621
	KM	0.730	0.608	0.924	0.786
Iris	EM	0.834	0.692	0.478	0.486
	SEM	0.834	0.699	0.478	0.486
Wine	KM	0.352	0.264	0.760	0.615
recogni- tion	EM	0.915	0.805	0.802	0.691
data	SEM	0.915	0.805	0.833	0.719
	KM	0.126	0.099	0.651	0.552
Cars	EM	0.143	0.102	0.601	0.521
	SEM	0.144	0.103	0.604	0.526
	KM	0.189	-0.217	0.474	-0.126
User Modeling	EM	0.372	0.118	0.574	0.245
Wiodeinig	SEM	0.372	-0.131	0.531	-0.013

with ground truth – there is an insignificant correlation between stability and external validity when it comes to a specific clustering problem.

Of course, it is still true that an unstable solution is, for this very reason, undesirable (otherwise which results should the practitioner consider?). However, in a specific clustering setting, there is clearly no credible link between the stability of a partition and its approximation to ground truth

This work contributes with a new perspective for a better understanding of the relationship between clustering stability and its external validity. To our knowledge, is the first time a study distinguishes between the macro view (all experimental scenarios considered) and the micro view (considering a specific clustering problem) and clearly differentiates the corresponding results.

In the future, stability results in discrete clustering should also be assessed and possible additional experimental factors (e.g. clusters' entropy)may also be considered.

REFERENCES

- Jain, A.K. and R.C. Dubes, Algorithms for clustering data. 1988: Englewood Cliffs, N.J.: Prentice Hall.
- Hubert, L. and P. Arabie, "Comparing partitions", Journal of Classification, Vol 2, 1985, pp. 193-218.
- Ben-David, S. and U.V. Luxburg, "Relating clustering stability to properties of cluster boundaries" in 21st Annual Conference on Learning Theory (COLT), Berlin: Springer, pp 379-390, July 2008.

- Bubeck, S., M. Meila, and U. von Luxburg, "How the initialization affects the stability of the k-means algorithm" ESAIM: Probability and Statistics, Vol 16, 2012, pp. 436-452.
- Milligan, G.W. and M.C. Cooper, "An examination of procedures for determining the number of clusters in a data set." Psychometrika, Vol 50, Issue 2, 1985, pp. 159-179.
- Vendramin, L., R.J. Campello, and E.R. Hruschka, "Relative clustering validity criteria: A comparative overview" Statistical Analysis and Data Mining, Vol 3, Issue 4, 2010, pp. 209-235.
- 7. Chiang, M.M.-T. and B. Mirkin, "Intelligent Choice of the Number of Clusters in K-Means Clustering: An Experimental Study with Different Cluster Spreads" Journal of Classification, Vol 27, 2010, pp. 3-40.
- Lichman, M. UCI Machine Learning Repository 2013; Available from: http://archive.ics.uci.edu/ml.
- Luxburg, U.v., "Clustering Stability: An Overview" Machine Learning, Vol 2, issue 3, 2009, pp. 235-274.
- Hennig, C., "Cluster-wise assessment of cluster stability" Computational Statistics & Data Analysis, Vol 52, 2007, pp. 258-271.
- Cardoso, M.G., K. Faceli, and A.C. de Carvalho, Evaluation of Clustering Results: The Trade-off Bias-Variability, in Classification as a Tool for Research., Springer, pp. 201-208, 2010.
- McIntyre, R.M. and R.K. Blashfield, "A nearest-centroid technique for evaluating the minimum-variance clustering procedure" Multivariate Behavioral Research, Vol 2, 1980, pp. 225-238.
- Lange, T., et al., "Stability based validation of clustering solutions" Neural Computation, Vol 16, 2004, pp. 1299-1323.
- Vinh, N.X., J. Epps, and J. Bailey, "Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance" The Journal of Machine Learning Research, Vol 11, 2010, pp. 2837-2854.
- 15. Warrens, M.J., "On similarity coefficients for 2× 2 tables and correction for chance", Psychometrika, Vol 73, Issue 3, 2008, pp. 487-502.
- Rand, W.M., "Objective criteria for the evaluation of clustering methods", Journal of the American Statistical Association, Vol 66, 1971, pp. 846-850.
- 17. Horibe, Y., "Entropy and correlation" Systems, Man and Cybernetics, IEEE Transactions, Vol 5, 1985, pp. 641-642.
- 18. Kraskov, A., et al., "Hierarchical clustering using mutual information", EPL (Europhysics Letters), Vol 70, Issue 2, 2005, pp. 278.
- Cardoso, M.G.M.S. Clustering and Cross-Validation. in IASC 07 - Statistics for Data Mining, Learning and Knowledge Extraction, Aveiro, Portugal, August 2007
- 20. Steinley, D. and R. Henson, "OCLUS: an analytic method for generating clusters with known overlap" Journal of Classification, Vol 22, Issue 2, 2005,pp. 221-250.
- 21. Maitra, R. and V. Melnykov, "Simulating data to study performance of finite mixture modeling and clustering algorithms" Journal of Computational and Graphical Statistics, Vol 19, 2010, pp. 354-376.
- Lebret, R., et al." Rmixmod: The r package of the model-based unsupervised, supervised and semi-supervised classification" 2012; Available from: http://cran.r-project.org/web/packages/Rmixmod/index.html

- 23. Biernacki, C., et al.," Model-Based Cluster and Discriminant Analysis with the MIXMOD Software" Computational Statistics and Data Analysis, Vol 51, 2006, pp. 587-600.
- 24. Hartigan, J.A., Clustering algorithms. 1975.
- Dempster, A.P., N.M. Laird, and D.B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm" Journal of the Royal Statistics Society. Series B (Methodological), Vol 39, 1977, pp. 1-38.
- 26. Celeux, G. and J. Diebolt, "The SEM Algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem" Computational Statistics Quarterly, Vol 2, 1985, pp. 73-8.