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Abstract— Stability has been considered an important proper-

ty for evaluating clustering solutions. Nevertheless, there are 

no conclusive studies on the relationship between this property 

and the capacity to recover clusters inherent to data (“ground 

truth”). This study focuses on this relationship, resorting to 

experiments on synthetic data generated under diverse scena-

rios (controlling relevant factors) and experiments on real data 

sets. Stability is evaluated using a weighted cross-validation 

procedure. Indices of agreement (corrected for agreement by 

chance) are used both to assess stability and external valida-

tion. The results obtained reveal a new perspective so far not 

mentioned in the literature. Despite the clear relationship be-

tween stability and external validity when a broad range of 

scenarios is considered, the within-scenarios conclusions de-

serve our special attention: faced with a specific clustering 

problem (as we do in practice), there is no significant relation-

ship between clustering stability and the ability to recover data 
clusters 

Keywords- Clustering; external validation; stability.   

I. INTRODUCTION  

Stability has been recognized as a desirable property of a 

clustering solution – e.g. [1].  A clustering solution is said to 

be stable if it remains fairly unchanged when the clustering 
process is subject to minor modifications such as, alternative 

parameterizations of the algorithm used, introducing noise 

in the data or considering different samples. In order to eva-

luate stability, the agreement between the different cluster-

ing results originated by such minor modifications is meas-

ured. Several indices of agreement (IA), such as the adjusted 

Rand [2], are commonly used for this end. 

Some authors warn of a possible misuse of the property 

of clustering stability noting that the goodness of this prop-

erty in the evaluation of clustering results is not theoretically 

well founded: “While it is a reasonable requirement that an 

algorithm should demonstrate stability in general, it is not 
obvious that, among several stable algorithms, the one 

which is most stable leads to the best performance” –[3], 

p.1.  Bubeck et al. express a similar concern: “While model 

selection based on clustering stability is widely used in prac-

tice, its behavior is still not well-understood from a theoreti-

cal point of view” - [4], p.436.  

This study aims to contribute to clarify the role of sta-

bility in the evaluation of clustering results. We focus on the 

relationship between clustering stability and its external 

validity i.e. agreement with “ground truth” – the true clus-

ters’ structures that are “a priori” known.  

In order to obtain new insights we consider diverse ex-

perimental scenarios and analyze diverse clustering results 

referred to 546 data sets.  Synthetic data sets (540), generat-
ed under 18 different scenarios, provide straightforward  

clustering external evaluation and enable to control for di-

verse relevant factors such as the number of clusters, bal-

ance and overlapping – e.g. [5], [6], [7]. The use of 6 real 

data sets from the UCI Machine Learning Repository [8], 

complements the experimental analysis. 

II. ON CLUSTERING STABILITY 

A. Why stabilty? 

Clustering stability, along with cohesion-separation, are 
commonly referred as desirable properties of a clustering 

solution. Cohesion-separation is intrinsically related with 

the concept of clustering and it can be related with the clus-

ters' external validity - Milligan and Cooper [5] and Ven-

dramin [6]. 

The value of stability is clearly related with the need to 

provide a useful clustering solution, since an inconsistent 

one would hardly serve practical purposes. On the other 

hand, the theoretical value of stability is yet to be unders-

tood. 

Literature contributions on stability are discussed in 

Luxburg [9] and Ben-David and Luxburg [3], for example. 
These are specifically related with the capacity to recover 

the "right" number of clusters and to K-Means results. 

Another perspective of stability is offered in [10] by mea-

suring the consistency with which a particular cluster ap-

pears in replicated clustering - cluster-wise stability.  

The lack of a systematical relationship between clusters 

validity and stability is occasionally pointed out by diverse 

studies - e.g [11]. Thus, a systematical study of the relation-

ship between stability and clustering external validity is in 

order. 

 

B. Cross-Validation 

In order to evaluate clustering stability cross-validation 

can be used. Cross-validation referred to unsupervised anal-
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ysis, as described in [12], can be summarized into 5 main 

steps- Table 1. 
 

TABLE 1. GENERAL CROSS-VALIDATION PROCEDURE 
Step Action Output 

1 
Perform training-test 

Samplesplit 

Training and test  

samples 

2 Cluster training sample 

Clusters in the 

training  

sample 

3 

Build a classifier using the training 

sample supervisedby clusters' labels; 

use theclassifier in the test sample. 

Classes in the test  

sample 

4 Cluster the test sample 
Clusters in the test 

sample 

5 

Obtain a contingency tablebetween 

clusters and classesin the test sample 

and calculate indices. 

Indices of agree-

ment 

values, indicators 

of stability 

 

This clustering cross-validation procedure deserves, 

however, some remarks: 

 Referring to step 3 [13] point out that “by selecting 

an inappropriate classifier, one can artificially in-

crease the discrepancy between solutions (…) the 
identification of optimal classifiers by analytical 

means seems unattainable. Therefore, we have to 

resort to potentially suboptimal classifiers in prac-

tical applications”, (p.1304-1305); 

 In addition, the train-test split (step 1) requires suf-

ficient sample size. 

In this work, we resort to the weighted cross-validation 

procedure proposed in [11] to evaluate the stability of clus-

tering solutions. The “weighted training sample” considers 

unit weights for training observations (50% in the data sets 

considered) and almost zero weights to the remaining (test) 

observations. The “weighted test sample” reverses this 
weights’ allocation. The use of weighted samples over-

comes the need for selecting a classifier when performing 

cross-validation. Furthermore, sample dimension is not a 

severe limitation for implementing clustering stability eval-

uation, since the Indices of agreement values are based on 

the entire (weighted) sample, and not in a holdout sample. 

C. Adjusted agreement between partitions 

In order to measure the agreement between two parti-

tions we can resort to indices of agreement (𝐼𝐴). In the lite-

rature, multiple 𝐼𝐴 can be found – e.g. [14], [15]. They are 

generally quantified based on the cells values of the contin-

gency table between the two partitions being compared - 𝑃𝐾 

and 𝑃𝑄with 𝐾and 𝑄 clusters (respectively). 

 Among the 𝐼𝐴, the Rand index  (𝑅𝑎𝑛𝑑) is, perhaps, the 
most well-known - [16]. 

 

𝑅𝑎𝑛𝑑 𝑃𝐾 , 𝑃𝑄 = 
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Where 𝑛𝑘𝑞  are the cells values of the contingency table, 

and 𝑛𝑘+ and 𝑛+𝑞  are the corresponding row totals and col-

umn totals, respectively. 
It quantifies the proportion of pairs of observations that 

both partitions agree to join in a group or to separate into 

different groups. Since agreement between partitions can 

occur by chance, [2] propose an adjusted version of𝑅𝑎𝑛𝑑us-

ing its expected value under the hypothesis of agreement by 

chance (𝐻𝑜): 
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(2) 
 

Then this 𝐼𝐴 is adjusted according with the general for-

mula: 

𝐼𝐴𝑎 𝑃
𝐾 , 𝑃𝑄 = 
 

𝐼𝐴 𝑃𝐾 , 𝑃𝑄 − 𝐸𝐻0 𝐼𝐴 𝑃𝐾 , 𝑃𝑄  

𝑀𝑎𝑥 𝐼𝐴 𝑃𝐾 , 𝑃𝑄  − 𝐸𝐻0 𝐼𝐴 𝑃𝐾 , 𝑃𝑄  
 . 

 

(3) 
 

The adjusted index  𝐼𝐴𝑎   is thus null when agreement 

between partitions occurs by chance. Some 𝐼𝐴  are based on 

the concepts of entropy and information. Among these𝐼𝐴, 

Mutual Information (𝑀𝐼) is particularly well-known: 

𝑀𝐼 𝑃𝐾 , 𝑃𝑄 =   
𝑛𝑘𝑞

𝑛
log⁡ 

𝑛𝑘𝑞
𝑛𝑘+𝑛+𝑞

𝑛

 

𝑄

𝑞=1

𝐾

𝑘=1

. (4) 
 

 

Vinh et al., [14], advocate a strategy similar to that of [2] 

to adjust 𝑀𝐼  for agreement by chance. These authors also 
advocate the use of a particular mutual information form 

resorting to joint entropy 𝐻 𝑃𝐾 , 𝑃𝑄  – ([17], [18]): 

𝑀𝐼𝐻 𝑃𝐾 , 𝑃𝑄 =
𝑀𝐼 𝑃𝐾 , 𝑃𝑄 

𝐻 𝑃𝐾 , 𝑃𝑄 
, (5) 

 

where  

𝐻 𝑃𝐾 , 𝑃𝑄 = −  
𝑛𝑘𝑞

𝑛
log⁡ 

𝑛𝑘𝑞

𝑛
 

𝑄

𝑞=1

𝐾

𝑘=1

 . (6) 
 

 

In order to investigate agreement between two parti-

tionswe resort to the adjusted indices 𝑅𝑎𝑛𝑑𝑎 𝑃
𝐾 , 𝑃𝑄  

and𝑀𝐼𝐻𝑎 𝑃
𝐾 , 𝑃𝑄 . They offer different perspectives on 

agreement – paired agreement and simple agreement [19]. 

These views are meant to provide useful insights when re-

ferring to external validation (comparison between the clus-

tering solution and the “true” cluster structure) or to the 

evaluation of stability (comparison between two clustering 

solutions deriving from minor modifications in the cluster-

ing process). 
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III. NUMERICAL EXPERIMENTS 

A. Synthetic data 

The pioneer study of Milligan and Cooper, [5], estab-

lished the use of synthetic data to support the external vali-

dation of clustering structures. In this general setting, clus-

tering solutions are to be compared with a priori known 

classes associated with the generated data sets. Since then, 

several works referring to external validation of clustering 

solutions have developed this line of work trying to over-

come some drawbacks of this first study such as using the 

“right number of clusters” to quantify external validity is 

limited in scope, [6]. In addition, overlap between clusters 
should be properly quantified on the generation of experi-

mental data sets [20].   

The present research considers three main design factors 

for the generation of synthetic data sets:  

 balance  (1- clusters are balanced having equal or 

very similar numbers of observations; 2- clusters 

are unbalanced) 

 number of clusters (K=2, 3,4) 

 clusters separation (1- poor; 2-moderate; 3- good). 

The 18 resulting scenarios are named after the previous 

coding – for example, the scenario with balanced clusters 
(1), 3 clusters (3) and moderate separation (2) is termed 

“132”. 

The first design factor is operationalized as follows: ba-

lanced settings have classes with similar dimensions and for 

unbalanced settings classes have the following a priori 

probabilities orweights: a) 0.30 and 0.7 when K=2; b) 0.6, 

0.3 and 0.1 when K=3; c) 0.5, 0.25, 0.15 and 0.10 when 

K=4.  

The increasing number of clusters is associated with in-

creasing number of variables (2, 3 and 4 latent groups with 

2, 3 and 4 Gaussian distributed variables) and, in order to 

deal with this increasing complexity, we consider data sets 
with 500, 800 and 1100 observations, respectively. 

The following measure of overlap between the classes 𝑘 

and 𝑘’ is adopted, [21]: 

ωkk′ = ωk|k′ + ωk′ |k   , (7) 

 

where 𝜔k′ |k is the misclassification probability that the ran-

dom variable 𝑋originated from the kth component is mista-

kenly assigned to the k’th component and 𝜔k|k′  is defined 

similarly. 

In order to generate the datasets within the scenarios, we 

capitalize on the recent contribution in [21] and use the R 

MixSimpackage to generate structured data according to the 

finite Gaussian mixture model: 
 

 𝜆𝑘𝜙(𝑥; 𝜇𝑘 , 𝛴𝑘)

𝐾

𝑘=1

, (8) 
 

 

where 𝜙(𝑥; 𝜇𝑘 , Σ𝑘) is a multivariate Gaussian density of the 

kth component with mean vector𝜇𝑘  and covariance matrix 

Σ𝑘 . Therefore, 

ωk′ |k =

𝑃  λk′ ϕ x; μk′ , Σk′  >

λkϕ x;𝜇𝑘 , Σk |𝑥 ~𝑁𝑝  μk , Σk  . 

(9) 

 

Based on this measure, we consider three degrees of 

overlap in the experimental scenarios: 1) ωkk′  is around 0.6 

for poorly separated clusters; 2)  ωkk′  is around 0.15 for 

moderately separated; 3)  ωkk′  is around 0.02 for well sepa-
rated classes. These thresholds are indicated in [21]. 

For each of the referred 18 scenarios, we generate 30 da-

tasets and run our experiments by:  

 clustering each data set; 

 evaluating stability of the clustering solution 

(seeII.A and II.C);  

 evaluating clustering external validity based on the 

a priori known classes (see II.C); 

 correlating results from stability and external valid-

ity to assess the role of the stability property. 
The Rmixmod package is used for clustering purposes 

[22]. EM algorithm is found to be particularly suited for the 

clustering tasks at hand, since the data generated follow a 

finite Gaussian mixture model. We use the general Gaussian 

mixture model - [PKLKBK] in [23]. 

The first results obtained are summarized in Table 2 and 

Table 3. They reveal the pertinence of the design fac-

tors:stability and external validity increase with the increase 

in separation, the 𝐼𝐴 being close to zero when separation is 

poor and near one when well separated clusters are consi-

dered. In general, the adjusted Rand index and mutual in-

formation values illustrate the same underlying reality, al-

though the 𝑀𝐼𝐻𝑎 values provide a more conservative view 

of the degree of agreement between two partitions. 

The general results referring to the relationship between 

stability and agreement with ground truth (inter experimen-

tal scenarios), are illustrated in Figure1 and Figure 2. The 

corresponding Pearson correlation values are 0.958 and 

0.933, respectively, indicating a high linear correlation be-

tween stability and external validity (both measured by 

𝑀𝐼𝐻𝑎 in Figure1 and 𝑅𝑎𝑛𝑑𝑎 inFigure 2. These results corro-
borate the general theory on the relevance of the property of 

stability in the evaluation of clustering solutions. 

A completely different view is however provided intra-

scenarios,yielding very low correlations between stability 

and external validity – see Table 4. Within a specific scena-

rio - the “real deal” for any clustering analysis practitioner - 

the correlation between external validity and stability is 

negligible. Both the adjusted Rand and the adjusted Mutual 

Information lead to the same conclusion. Only two excep-

tions contradict this rule: scenarios “232” and “143”.  
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B. Real data 

The agreement between ground truth and stability is also 

subject to inspection in six data sets of the UCI Machine 

Learning Repository [8] – see Table 5 for a brief summary 

of these data sets. In addition to the design factors previous-

ly  
 

TABLE 2 - ADJUSTED RAND INDEX VALUES CORRESPONDING 

TO EXTERNAL VALIDITY AND TO STABILITY (VALUES 

AVERAGED OVER 30 DATASETS). 

𝑹𝒂𝒏𝒅𝐚 
External validity Stability 

K=2 K=3 K=4 K=2 K=3 K=4 

Balanced 

Poor 0.055 0.038 0.041 0.111 0.118 0.085 

Moder. 0.728 0.388 0.624 0.865 0.652 0.688 

Good 0.963 0.943 0.855 0.987 0.979 0.918 

Unbalanced 

Poor 0.097 0.211 0.133 0.053 0.280 0.166 

Moder. 0.765 0.690 0.820 0.864 0.822 0.898 

Good 0.962 0.980 0.887 0.981 0.991 0.949 

 
TABLE 3 - MUTUAL INFORMATION ADJUSTED 

VALUESCORRESPONDING TO EXTERNAL VALIDITY AND TO 

STABILITY (VALUES AVERAGED OVER 30 DATASETS). 

 𝑴𝑰𝑯𝒂 
External validity Stability 

K=2 K=3 K=2 K=3 K=2 K=3 

Balanced 

Poor 0.046 0.024 0.031 0.073 0.054 0.073 

Moder. 0.458 0.263 0.449 0.700 0.465 0.578 

Good 0.865 0.832 0.707 0.949 0.931 0.833 

Unbalanced 

Poor 0.048 0.093 0.070 0.036 0.189 0.124 

Moder. 0.477 0.440 0.569 0.660 0.613 0.732 

Good 0.850 0.920 0.694 0.922 0.957 0.840 

 

 

TABLE 4 - INTRA-SCENARIOS PEARSON CORRELATIONS 

BETWEEN STABILITY AND AGREEMENT FOR SYNTHETIC DATA. 

 

𝑴𝑰𝑯𝒂  𝑹𝒂𝒏𝒅𝒂  

K=2 K=3 K=4 K=2 K=3 K=4 

Balanced 

Poor 0.143 -0.018 -0.129 -0.079 -0.155 -0.303 

Mod. 0.122 0.264 -0.015 0.068 0.215 0.111 

Good 0.084 0.222 0.527 0.046 0.177 0.624 

Unbalanced 

Poor 0.329 0.126 0.172 0.367 -0.42 -0.079 

Mod. -0.003 0.593 0.084 0.085 0.666 0.084 

Good -0.151 0.272 0.245 -0.084 0.159 0.218 

 

 

 

considered, we also quantify normalized entropy (ranging 

from 0 to 1 that indicates classes’ uniform distribution).  
Since the real data sets are diverse, we attempt to recov-

er their clustering structures resorting to different clustering 

algorithms - namely the Hartigan K-Means (KM) algorithm 

[24], the Expectation Maximization (EM) [25] and the Sto-

chastic EM (SEM)  [26]. We resort to the EM and the SEM 

algorithms implemented in the Rmixmod package using the 

general Gaussian mixture model - [PKLKBK] in [23]. 

 

 

FIGURE1.  INTER-SCENARIOS PEARSON CORRELATION 

BETWEEN STABILITY (YY’) AND AGREEMENT WITH GROUND 

TRUTH (XX’): THE MIHA PK , PQ  PERSPECTIVE 
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FIGURE 2. INTER-SCENARIOS PEARSON CORRELATION 

BETWEEN STABILITY (YY’) AND AGREEMENT WITH GROUND 

TRUTH (XX’): THE RANDA PK , PQ  PERSPECTIVE 
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TABLE 5 - REAL DATA SETS 

Data set n Features Classes 
Normalized 

Entropy 
Overlapping 

Liver 

Disorders 
345 6 

C1 (145) 

C2 (200) 

 

0.982 
0.016 

Wholesales 440 6 
C1 (298) 

C2 (142) 
0.907 

 

0.111 

Iris 150 4 

Setosa (50) 

Versicolor (50) 

Virginica (50) 

 

1.585 

 

0.518 

Wine 

recognition 

data 

178 12 

C1 (59) 

C2 (71) 

C3 (48) 

 

1.567 

 

 

0.002 

 

Cars  

Silhouette 
846 18 

Bus   (218) 

Saab (217) 

Opel (212) 

Van (199) 

 

1.999067 

 

0.044 

User 

Modeling 
258 5 

Very-low  (24) 

Low (83) 

Middle (88) 

High (63) 

1.871 

 

0.028 

 

 

According to the results obtained (Table 6), the clustering 

solutions are generally stable,while agreement with ground 

truth varies appreciably. Thus, there is no relationship be-
tween stability and agreement with ground truth, the rela-

tionship under study appearing to be mainly dependent of 

the data set at hand. 

IV. CONTRIBUTIONS AND PERSPECTIVES 

In this work we analyze the pertinence of using stability 

in the evaluation of a clustering solution. In particular, we 

question the following: does the consistency of a clustering 

solution (resisting minor modifications of the clustering 

process) provide indication towards a greater agreement 

with the “ground truth” (true structure) of the data? 

In order to address this issue, we design an experiment 
in which 540 synthetic data sets are generated under 18 

different scenarios. Design factors considered are the num-

ber of clusters, their balance and overlap. In addition, differ-

ent sample sizes and space dimensions are considered.  

Through the use of weighted cross-validation, we enable 

the analysis of stability, [11]. We resort to adjusted indices 

of agreement (excluding agreement by chance) to measure 

agreement between two clustering solutions and also be-

tween a clustering solution and the “true” classes: we specif-

ically use a simple index of agreement (IA)  - the adjusted 

Mutual Information, [14] - and a paired IA  - the adjusted 

Rand index [2]. 
A macro-view of the results does not contradict the cur-

rent theory - there is a strong correlation between stability 

and external validity when the aggregate results are consi-

dered (all scenarios’ results). However, when it comes to 

perform clustering analysis within a specific experimental 

scenario, what can we say about the same correlation? The 

conclusions derived in this study support the previously 

referred concerns referring to the relationship between sta-

bility and agreement  

 
TABLE 6.- STABILITY AND GROUND TRUTH FOR REAL DATA 

Data set 
Algo-

rithm 

Agreement with ground 

truth 

Stability on 

Weighted-

train/test 

Randa MIHa Randa MIHa 

Liver 

KM -0.005 -0.001 0.943 0.786 

EM -0.009 0.002 0.960 0.844 

SEM -0.010 0.002 0.987 0.933 

Whole-

sales 

KM 0.564 0.311 -0.032 0.005 

EM 0.427 0.245 0.843 0.609 

SEM 0.427 0.251 0.851 0.621 

Iris 

KM 0.730 0.608 0.924 0.786 

EM 0.834 0.692 0.478 0.486 

SEM 0.834 0.699 0.478 0.486 

Wine 

recogni-

tion 

data 

KM 0.352 0.264 0.760 0.615 

EM 0.915 0.805 0.802 0.691 

SEM 0.915 0.805 0.833 0.719 

Cars 

KM 0.126 0.099 0.651 0.552 

EM 0.143 0.102 0.601 0.521 

SEM 0.144 0.103 0.604 0.526 

User 

Modeling 

KM 0.189 -0.217 0.474 -0.126 

EM 0.372 0.118 0.574 0.245 

SEM 0.372 -0.131 0.531 -0.013 

 

with ground truth – there is an insignificant correlation be-

tween stability and external validity when it comes to a 

specific clustering problem. 

Of course, it is still true that an unstable solution is, for 

this very reason, undesirable (otherwise which results 

should the practitioner consider?). However, in a specific 

clustering setting, there is clearly no credible link between 

the stability of a partition and its approximation to ground 

truth. 
This work contributes with a new perspective for a better 

understanding of the relationship between clustering stabili-

ty and its external validity. To our knowledge, is the first 

time a study distinguishes between the macro view (all ex-

perimental scenarios considered) and the micro view (consi-

dering a specific clustering problem) and clearly differen-

tiates the corresponding results.  

In the future, stability results in discrete clustering 

should also be assessed and possible additional experimental 

factors (e.g. clusters’ entropy)may also be considered.  
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