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Abstract. Fault detection and fault tolerance represent two of the most

important and largely unsolved issues in the field of multirobot systems. Efficient,

long-term operation requires an accurate, timely detection, and accommodation of

abnormally behaving robots. Most existing approaches to fault-tolerance prescribe

a characterisation of normal robot behaviours, and train a model to recognise

these behaviours. Behaviours unrecognised by the model are consequently labelled

abnormal or faulty. Multirobot systems employing these models do not transition

well to scenarios involving temporal variations in behaviour (e.g., online learning

of new behaviours, or in response to environment perturbations). The vertebrate

immune system is a complex distributed system capable of learning to tolerate

the organism’s tissues even when they change during puberty or metamorphosis,

and to mount specific responses to invading pathogens, all without the need

of a genetically hardwired characterisation of normality. We present a generic

abnormality detection approach based on a model of the adaptive immune system,

and evaluate the approach in a swarm of robots. Our results reveal the robust

detection of abnormal robots simulating common electro-mechanical and software

faults, irrespective of temporal changes in swarm behaviour. Abnormality detection
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is shown to be scalable in terms of the number of robots in the swarm, and in terms

of the size of the behaviour classification space.
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1. Introduction

The field of multirobot systems (MRS) has expanded rapidly since its advent in the

late 1980s [1, 2], with groups of robots coordinating to perform a wide variety of tasks,

ranging from exploration and foraging [3, 4], to site construction, and warehouse-

management [5, 6, 7]. The coordination of robots in a MRS is a major challenge

because the robot behaviour depends not only on interactions with the immediate

environment but also on the behaviour of other robots. A centralised control

approach may not always be feasible due to computational and/or communication

constraints on robots (e.g., [8, 9]). Distributed control, on the other hand, is often

complicated to realise because the behavioural rules for the individual units cannot

be easily derived from a desired macroscopic behaviour (e.g., [10, 11, 12]). In

the design of large-scale distributed MRS, several researchers have therefore taken

inspiration from nature, e.g., aggregation of amoeba into slime mold [13], quorum

sensing and communication in bacteria [14], division of labour in social insects

such as ants and honey bees (e.g., [4, 3, 15]), and the adaptive immune system

in vertebrates (e.g., [16, 17, 18]).

The individual robots of a MRS are susceptible to failure, such as electronic

faults on the robot platform, electro-mechanical faults in the robot’s sensor and

actuation devices, and bugs in the software controlling the robot. Consequent

to the wide variety of intricate inter-robot interactions affecting robot behaviour,

the prediction and modelling of potential faults to an individual robot is a major

challenge. A straightforward approach to fault detection involves the addition of

special-purpose hardware to detect some of the common faults (e.g., torque and

position sensors for robotic manipulators [19]). However, the additional hardware

can greatly increase the cost and complexity of the individual robot platform, and

it is therefore preferably avoided in the design of large-scale MRS. Furthermore, the

multitude of individual robots constituting a large-scale MRS (e.g., robot swarms),

does not inherently result in a fault-tolerant system [20]. Explicit fault-detection

systems are therefore critical to enhance the autonomy and operating capacity of

MRS.

The engineering of fault-detection systems for robots is a well-studied problem,

and can be broadly classified into endogenous and exogenous models. In endogenous

fault detection, robots proprioceptively detect and monitor faults in their individual

behaviour (e.g., [21, 22, 23, 24]). In most of these models, artificial neural networks
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and radial basis functions are trained to detect faults based on the input-output

relationship of the focal component. These approaches have been successfully used

to detect faults in components such as, actuator joints of a robotic manipulator [19],

wheels [22], and treels (wheels with tracks) [21] of a mobile robot. The large majority

of endogenous fault detection models are built on the assumption that the normal (no

faults present) operating behaviour of the robot is known, and can be characterised

beforehand. Consequently, the models are trained to recognise prescribed normal

behaviour, and behaviours not recognised by the model are labelled abnormal.

However, while such approaches provide some interesting results of robust fault

detection and fault tolerance, they may not easily transition to different and varying

characterisations of normality in collective systems. Transitions in normal behaviour

can occur in scenarios wherein robots change their behaviour through online learning,

or in response to variations in the environment. In addition, the prior information

on the characterisation of normal operating behaviour may not always be available

to the system designer. In summary, the endogenous fault detection capabilities of

the robot tend to be designed rather specifically to the particular behaviour of the

target system, under a specific set of task parameters.

Exogenous fault detection (e.g., [25, 26, 27, 28, 29]) refers to the capacity of

one robot can detect the presence of faults in other, physically separated robots.

Some faults are difficult to detect endogenously by the robot, such as mechanical

failures consequent to a broken connection to a power source, or software bugs in

the robot controller. Alternatively, while the robot may be able to proprioceptively

detect faults, the fault itself might disable the robot’s communication and capability

to alert other robots or a human operator. Consequently, in exogenous fault

detectors, the multiplicity of robots in MRS allows the robots to robustly and

explicitly detect the presence of faults in one another. Fault detection in MRS

composed of a limited number of relatively complex robots has been extensively

studied in the past (e.g., [25, 26, 27, 28, 29]). For instance, a high degree of fault

tolerance was achieved by cooperating teams of robots utilising the ALLIANCE

software architecture [25], consequent to a mathematical modelling of the robot’s

motivation to perform different tasks, and an adaptive task selection based on

these motivation. In other approaches (e.g., MURDOCH [26, 27] and TraderBots

[28]), fault detection and fault tolerance was built into an explicit inter-robot

communication process used by the robots to negotiate task allocation. However,

in all these approaches, successful fault detection required prior knowledge of the
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various tasks to be performed, and their corresponding measures of performance.

Furthermore, these fault-detection approaches were designed for MRS consisting of

a limited number of tightly-coupled, and relatively complex robots.

The deployment of large-scale MRS would require scalable and completely

distributed algorithms for fault detection, if they are to achieve a high level of fault

tolerance. Christensen et al. [30] proposed one such approach for MRS swarms,

inspired by synchronised flashing behaviour of fireflies, in which failed robots were

exogenously detected by other operational members of the swarm. However, by

nature of the underlying model, only faults involving a complete robot failure could

be detected. The effect of such faults on the MRS collective behaviour has been

shown to be relatively benign [31]. By contrast, robots plagued with partial failures

have a far greater potential of disrupting the MRS behaviour [20]. In other work,

Lau et al. [16, 32] investigated the detection of errors due to faults in a cooperative

foraging MRS operating in a dynamic environment. Various statistical classifiers and

kernel density estimation functions were applied to the number of pucks foraged by

individual robots, to detect outliers (caused by robot faults). While this approach

successfully detected errors with a low false-positive rate and latency time, the faults

considered were limited to the wheels of the simulated foraging robot. Additionally,

a prior knowledge of the behaviour of the robot was required to design the fault-

detection system.

An interesting analogy can be made between fault-detection systems and the

adaptive immune system. The adaptive immune system too has to allow the body’s

cells and tissues to function normally, while mounting an immune response or

attacking what may be abnormal cells or tissues (e.g., infected cells, and cancerous

cells) [33]. The characteristics of these abnormalities and that of the normal cells and

tissues are in principle open-ended, and therefore differ from current approaches to

endogenous and exogenous fault detection in robots. Experimental evidence indicates

that the tolerance exhibited by the immune system results from the dynamics

and interactions between specific regulatory and effector T-cells (e.g., [34]). The

decentralised nature of these intercellular interactions imparts a high degree of

robustness for fault detection, without the need of a genetically hardwired record

of what normal tissues should look like.

In this paper, we present an approach based on the adaptive immune system for

exogenous fault detection in large-scale multirobot systems. The main advantages of

the proposed approach are that (i) the different behaviours and their characterisation
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(normal or abnormal) is learned online and need not be known beforehand, (ii) the

approach is completely decentralised and does not rely on task negotiation (or

knowledge of tasks), and (iii) detection is not limited to robots experiencing

complete failure or any other limited set of faults. Our system is based on the

crossregulation model (CRM) [35, 36, 37], which is a mathematical model that

captures the robust maintenance of immunological tolerance by allowing the system

to discriminate between antigens based solely on their density and persistence in the

environment. The system is able to tolerate body antigens (the molecular components

of body tissues) that are characteristically persistent and abundant, and to mount

an immune response to foreign pathogens, that are characterised as being neither

persistent nor abundant. In our fault-detection approach, each robots executes an

independent instance of the CRM. Previously, we have studied a computationally

costly CRM implementation was used directly from [35], for a preliminary assessment

of abnormality detection in small-sized MRS [38, 18]. In this study, we present a

simplified CRM implementation for decentralised detection of abnormally behaving

robots, suitable for large-scale MRS (tested with up to 100 robots). Abnormalities

are exhibited with fault-simulating behaviours, such as a robot moving continually

in a straight line to mimic a sensor fault. The MRS demonstrates a reliable

detection of an introduced abnormally behaving agent, that is surrounded by robots

performing typical swarm behaviours (aggregation, flocking, dispersion or homing),

and irrespective of multiple temporal changes in the behaviour of the rest of the

swarm. Our model is capable of scaling both in terms of the number of robots in

the swarm, and in terms of the dimensionality of the space of behavioural features in

which the normal and abnormal behaviours are classified. Finally, resilience of the

CRM to stochastic variations in behaviour is demonstrated with a comparison of our

results with a threshold-based model for normal-abnormal behaviour classification.

The rest of the paper is organised as follows: first, we describe the

CRM (Section 2), and approximations to enhance the scalability of the

model (Section 3). We then present the distributed embodiment of the CRM in a

MRS (Section 4). In Section 5, we report the results of our experiments for different

swarm behaviours and under different introduced faults. We vary the swarm size and

the number of primitive features used to encode agent behaviour, and we provide

a performance comparison of the CRM with a threshold-based model for behaviour

classification. Finally, we discuss our approach to fault detection and highlight the

conclusions of this study (Section 6).
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2. Crossregulation model

The viability of multicellular organisms is consequent to two general principles [39].

Firstly, the persistence of any cell lineage requires that its cells continually interact

with the other cell types in the multicellular organism. Cells that fail to interact with

other cells eventually die. Secondly, the growth of a cell population involves density-

dependent feedback mechanisms controlling individual cell proliferation (division).

These feedback mechanisms may involve (i) indirect interactions among cells such as

a competition for limited growth factors, and (ii) direct interactions, such as contact

inhibition. These two principles are the foundation of the crossregulation model, and

have been justified extensively in Carneiro et al. [35]. Below, we outline the model

and highlight its key properties that are later embodied distributedly in a multiagent

system.

The CRM describes the population dynamics of cells of the adaptive immune

system, based on three mutually interacting cell types: (i) antigen presenting

cells (APCs) that display the antigen on their surface. Individual APCs have a

fixed number of sites (s) on which effector and regulatory cells can form conjugates;

(ii) effector cells TE that can potentially mount an immune response which, depending

on receptor specificity, can be directed to foreign pathogens or to self-antigens; and

(iii) regulatory cells TR that suppress proliferation of TE cells with similar specificities.

Furthermore, the APCs are classified into different sub-populations of equivalent

APCs, with each APC in a sub-population presenting the same antigen on its surface.

Similarly, effector and regulatory cells are also classified into different sub-populations

or clones according to their specificity.

The dynamics of the T-cell population is regulated by the following density-

dependent feedback mechanisms: (i) effector and regulatory cells that are unable to

interact with APCs are slowly lost by cell death; (ii) the proliferation of effector and

regulatory cells requires interactions with APCs and depends on interactions these

T-cells make with each other. Proliferation of the TE cell population is promoted

by the absence of regulatory cells on the APC. In contrast, TR can only proliferate

following co-conjugation with effector cells on the same APC. Additionally, TE and

TR cells interact indirectly by competition for access to limited conjugation sites on

APCs.
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2.1. Mathematical formulation of the model

The dynamics of the interactions between effector and regulatory cells, with APCs

is described by a set of ordinary differential equations in the following variables:

(i) the number of effector Ei and regulatory Ri T-cells of clonal type i, where

i ∈ {1, 2 . . .N} and N is the number of T-cell clones; (ii) the number of APCs

Aj , where j ∈ {1, 2 . . .M} and M is the number of different antigen types; (iii) the

number of conjugates Cij formed between effector and regulatory cells from clone i

and APC from population j.

For the effector Ei and regulatory Ri cells of clone i, we have:

dEi

d t
= πEE

∗
i − δEi (1)

dRi

d t
= πRR

∗
i − δRi (2)

where the involved quantities are defined in Table 1. In this parameter table, the

CRM parameters representing the number of binding sites on an APC (s), and the

seed population of T-cells (E0 and R0), are set based on our previous experiments in

using the model for robust and online classification [38, 40, 18]. The remaining CRM

parameters of T-cell-APC interactions (γc and γd), and T-cell proliferation and death

rates (πE , πR and δ), can be reduced to two key composite parameters representing

effective growth rates of effector and regulatory T-cells, that define the parameter

regimes of the model (details in Sec. 2.2, and [36]). These model parameters are

set from knowledge of the underlying biology; wherein, the T-cell-APC interaction

rates are known to be orders of magnitude faster than T-cell proliferation and death

rates [35].

The equations for Ei (eq. 1) and Ri (eq. 2) have two terms. The first term

represents the proliferation of activated effector E∗
i and regulatory R∗

i cells, and the

second term accounts for the death of T-cells, which is assumed to be at constant

rate. In the simulations, we generate all T-cell clones with similar initial conditions

i.e., ∀i, Ei(0) = E0 and Ri(0) = R0.

The density of activated TE and TR cells of each clone are computed in a stepwise

manner. Let us consider the interactions between the i-th T-cell clone and the j-th

APC population. The dynamics of the conjugates Cij is described by the following

equation:
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Table 1: Parameters of the crossregulation model.

Param. Description Value (a.u.)

Aj Density of APCs of sub-population j −

s Maximum number of T-cells that can bind to an
APC

3

E0 Seed density of effector cells 10

R0 Seed density of regulatory cells 10

Ei Density of effector cells of clone i −

Ri Density of regulatory cells of clone i −

Ti Density of T-cells of clone i Ei + Ri

Cij Density of conjugates between Ti and Aj −

γc Conjugation rate of T-cells to APCs 10−1

γd Deconjugation rate of T-cells from APCs 10−1

πE Proliferation rate of effector cells 10−3

πR Proliferation rate of regulatory cells 0.7× 10−3

δ Death rate of effector and regulatory cells 10−6

dCij

d t
= γcθij

(

Ti −
M
∑

j=1

Cij

)(

Ajs−
N
∑

i=1

Cij

)

− γdCij (3)

where Ti = Ei + Ri, and γc and γd involve the conjugation and deconjugation

rates between APCs and T-cells, respectively (parameters in Table 1). In the above

equation, new conjugates are formed by the free T-cells of clone i with the available

sites on APCs of population j at rate γc. The conjugation rate is also controlled by

the affinity θij , between the T-cells and APCs. The existing conjugates dissociate

at rate γd. As the conjugation and deconjugation of T-cells from the APCs is a

fast process with respect to the overall T-cell population dynamics, we numerically

integrate to the quasi-steady state values of the conjugates, by the Euler-Heun

adaptive step method [41].

The densities of activated effector E∗
i and regulatory R∗

i cells can now be

calculated, for all T-cell clones i. Conjugated effector cells are activated in the

absence of regulatory cells on the same APC. In contrast, conjugated regulatory

cells can only be activated if at least one effector cell is simultaneously conjugated

to the same APC. Given the conjugate density Cij at quasi-steady state, the density

of conjugated effector and regulatory cells is calculated proportional to the relative

frequency of TE and TR cells in the clone. For the conjugated effector Ecij and
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regulatory Rcij cells of clone i at APC population j, we have:

Ecij =
CijEi

Ti

and Rcij =
CijRi

Ti

Finally, for the number of activated effector E∗
i and regulatory R∗

i cells, we have:

E∗
i =

M
∑

j=1

Pe(Aj, Ecj , Rcj)Ecij (4)

R∗
i =

M
∑

j=1

Pr(Aj , Ecj, Rcj)Rcij (5)

where the function Pe is the probability that an effector cell is conjugated with no

neighbouring regulatory cell at the same APC. Pr is the probability that a regulatory

cells is conjugated with an APC that has at least one effector cell conjugated

simultaneously. Additionally, Ecj andRcj are the total number of conjugated effector

and regulatory cells on the APC sub-population j:

Ecj =

N
∑

i=1

Ecij and Rcj =

N
∑

i=1

Rcij

The probability functions Pe and Pr can be reduced to the following expressions,

based on a multinomial approximation [42] that is valid given that the total number

of sites (summed over all the APCs) is much larger than the number of sites per

APC. For three binding sites (s = 3) on each APC, we have:

Pe(Aj , Ecj, Rcj) =
(Rcj − 3Aj)

2

9A2
j

(6)

Pr(Aj, Ecj , Rcj) =
(6Aj − Ecj)Ecj

9A2
j

(7)

Utilising the probability functions Pe and Pr, the density of activated effector

and regulatory cells is calculated (eq. 4 and 5). Finally, for each T-cell clone i, the

population of effector Ei (eq. 1), and the population of regulatory Ri (eq. 2) cells,

are updated.
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2.2. Behaviour of the cell population

The population dynamics behaviour exhibited by the CRM is governed by two

key composite parameters representing the effective growth rates of TE and TR

cell populations [36]. These two parameters are directly proportional to the basic

parameters controlling population growth i.e., conjugation constant (γc), affinity

between T-cell and APCs (θij), proliferation rates of effector and regulatory cells (πE

and πR), and the density of APCs (Aj). The effective growth rate of the T-cells is also

inversely proportional to the death rate (δ) of the corresponding population. The

composite TE and TR growth parameters define four parameter regimes according to

the resulting cell population behaviour. Three parameter regimes result in a single

stable state that may correspond to either: (i) extinction of all T-cells (TE = 0,

TR = 0), (ii) immune state (TE > TR, TR = 0), or (iii) tolerant state (TE < TR, TE > 0).

The fourth parameter regime corresponds to a bistable system where both immune

and tolerant states are stable. A detailed analysis of these four parameter regimes is

provided in Leon et al. [36].

In the present study, the parameter values of the CRM have been set so that

at very low APC densities, the stable state corresponds to extinction of all T-

cells (A < aE , Figure 1a). Furthermore, at low APC densities, the system evolves

into a single immune state, composed only of effector cells (aE ≤ A < aR, Figure 1a).

Finally, at a relatively high density of APCs, the system is bistable (A ≥ aR,

Figure 1a) and can evolve either into an equilibrium state consisting predominantly

of effector cells (immune state), or into a state composed largely of regulatory

cells (tolerant state). The system develops into the regulatory cell dominated tolerant

state, provided that the seeding population has sufficient TR cells. By contrast, if TR
cells are initially underrepresented, the TE cells will competitively exclude the former

from the system. Consequently, the CRM is able to discriminate between antigens

based on their abundance in the environment.

The CRM is also able to discriminate between antigens based on their persistence

in the environment, wherein the outcome of the model depends on the speed and

magnitude of the rise in APC density, relative to the proportion of TR cells present

in the seed population. In the bistable parameter regime, whatever the proportion

of TR cells, they may be diluted in forming co-conjugates with TE cells, if the influx

of APCs is sufficiently fast and large. Consequently, the TE cells would dominate the

population, resulting in an immune response (e.g., TR cell dilution at APC densities
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Figure 1: Equilibrium densities of E and R cell populations as a function of

APC density. (a) Bifurcation diagram of the CRM, representing all possible

equilibrium densities of T-cells (sum of variables, E +R), as a function of the APC

density (parameter A). (b) Equilibria that are actually reached by solving the system

with a fixed seed T-cell population (E0 = 4, R0 = 2, remaining parameter values in

Table 1).

exceeding 10, see Figure 1b). By contrast, if the APC influx is slow and gradual

enough, a fraction of TR cells in the responding population may slowly adapt its size

and control the expansion of TE cells, allowing for a tolerance response.

3. Simplified implementation of the crossregulation model

The numerical integration of the T-cell population is a recurrent two-step process

comprising of, (i) the integration of T-cell–APC conjugates to the quasi-steady state,

and (ii) utilising the conjugated T-cell densities to update the population of TE

and TR cells. The numerical integration of the conjugated cells can be avoided, and

consequently the computation burden of the model reduced using an approximated

analytic expression of the steady-state values of the conjugated cells Cij . This analytic

expression is valid in the special condition that T-cells are always in excess to APCs,

as proposed by [43]. In this section, we derive such an analytical expression, and
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highlight the properties of the resulting CRM implementation.

The dynamics of the conjugates Cij, between the i-th T-cell clone and the j-th

APC sub-population can be simplified by assuming that the total T-cell density is

in excess of the density of conjugated cells (i.e., for all T-cell clonal types i in the

population, Ti ≫
∑M

j=1Cij). Consequently, eq. 3 can be reduced to the following

equation:

dCj

d t
= γc

( N
∑

i=1

θijTi

)(

Ajs− Cj

)

− γdCj (8)

From eq. 8, the quasi-steady state density of the conjugated cells is calculated

as the following function, for each existing APC sub-population j:

Cj =
γcAjs

∑N
i=1 θijTi

γd + γc
∑N

i=1 θijTi

The total number of conjugated effector and regulatory cells on the APC sub-

population j is then calculated, proportional to the relative frequency of TE and TR

cells, and weighted by their affinity to the APC sub-population j. For the total

density of conjugated effector Ecj and regulatory Rcj cells at APC sub-population

j, we have:

Ecj = Cj

∑N

i=1 θijEi
∑N

i=1 θijTi

and Rcj = Cj

∑N

i=1 θijRi
∑N

i=1 θijTi

The total number of conjugated effector and regulatory cells on the APC sub-

population j is now factored into the different T-cell clones i in the population.

For the conjugated effector Ecij and regulatory Rcij cells of clone i at APC sub-

population j, we have:

Ecij = Ecj
θijEi

∑N
u=1 θujEu

and Rcij = Rcj
θijRi

∑N
u=1 θujEu

Finally, utilising eq. 4 and 5 to compute the density of activated effector E∗
i and

regulatory R∗
i cells respectively, for each T-cell clone i, the population of effector

Ei (eq. 1) and regulatory Ri (eq. 2) cells is updated.

In the implementation of the simplified CRM, the T-cell population is able

to discriminate between antigens based only on their abundance, and not on
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Figure 2: The simplified CRM’s equilibrium densities of E and R cell populations,

reached by solving the system for a fixed seed T-cell population (E0 = 4, R0 = 2,

remaining parameter values in Table 1).

their persistence in the environment (Figure 2). For the selected parameter

values (Table 1), at low APC densities, the system evolves towards a single immune

state composed only of effector cells. By contrast, at relatively high density of

APCs, the system exhibits bistability, and evolves into the regulatory cell dominated

tolerance state, provided that the seeding population has sufficient TR cells.

The model’s capability to discriminate between the antigens in the environment

based only on the density, allows for a reactive abnormality detection system. In the

resulting system, the abnormally behaving agents are detected immediately upon

their occurrence, and without any delay in allowing for the abnormality to establish

persistence in the swarm.

4. The CRM in a Multiagent System

In this section, we demonstrate how the CRM can be implemented for a distributed

embodied multiagent system in order to give the system the capacity to detect

abnormally behaving agents, while maintaining a tolerance towards normal swarm

behaviour. Behaviours that are abundant (performed by many agents in swarm) are

to be tolerated. By contrast, rare behaviours (exhibited by a single or few agents)
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are to be detected as abnormal behaviours that may be caused by a fault. We show

that the multiagent system is able to detect abnormally behaving agents, and adapt

online and tolerate different normal behaviours.

We assume that the agents can observe neighbouring robots over a certain period

of time with sufficient accuracy to characterise their behaviour. On real robots, the

sensory equipment necessary to facilitate observations is task-dependent. Movement-

centric behaviours, such as the traditional swarm behaviours used in this study, could

be characterised by robots equipped with relatively localisation hardware (e.g. an

infrared range and bearing system [44]), while for other robots and tasks in which

body posture is relevant, sensors such as depth cameras or laser scanners could be

used.

We use a stochastic, spatial, discrete-time multiagent system simulator. The

simulated environment is toroidal and has a size of 5 × 5 m2, and composed of 20

mobile agents of diameter 7.5 cm. Each agent has a maximum speed of 10 cm/s,

with a control cycle of 0.1 s, and performs the behaviour assigned to it at the start

of the simulation. During the simulation, each agent senses the behaviour of its ten

nearest neighbours, and runs an internal and individual instance of a CRM in order to

determine if the perceived behaviours of the neighbouring agents are to be tolerated

or not. In the private CRM instance running on each agent, different APC sub-

populations are associated with distinct perceived behaviours. The APCs stimulate

the growth of virtual TE and TR cell populations of different clonal types (eq. 1 and

2) to immune or tolerance stable states, to determine if the behaviours observed are

normal or abnormal, respectively.

Swarm behaviours: The normal swarm behaviours simulated are (a) disper-

sion, (b) aggregation, (c) flocking, and (d) homing towards a moving landmark. The

behaviours are implemented using a subsumption architecture [45]. According to

the designed architecture, the basic behaviour allows an agent with no neighbours to

perform a random walk. In dispersion, the agents move in the opposite direction of

the centre of mass of their neighbours (Figure 3a). By contrast, in aggregation, the

agents move towards the centre of mass of surrounding agents, but disperse away if

too close to their neighbours (Figure 3b). Similarly, homing agents move towards a

single prespecified agent that serves as a moving landmark, and move away if too

close to the landmark or to other agents (Figure 3c). The landmark agent for homing

is selected at random at the start of the experiment. Finally, in flocking (Figure 3d),

agents continually adjust their velocity to that of neighbouring agents. Furthermore,
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Table 2: Parameters of an agent

Param. Description Value

|~vmax| Maximum linear speed of agent 10 cm/s

|~v| Linear speed of agent −

ωmax Maximum change in direction
of agent per control cycle

π radians

ω Change in direction of agent
per control cycle

−

~u Average velocity of neighbours
in 60 cm range

−

φvu Direction of relative velocity to
neighbours in 60 cm range

arccos
(

~v·~u
|~v||~u|

)

radians

ni Number of neighbouring
agents in the inner range of
[0, 30] cm

−

no Number of neighbouring
agents in the outer range of
(30, 60] cm

−

W Length of the time window for
feature computation

45 s

p Distance traversed by the
agent in the past W s

−

flocking agents, aggregate towards and disperse from neighbours, if they are too far

away or close by, respectively.‡

Faulty behaviours: An agent may behave abnormally so as to: (a) move

continually in a straightly line (STRLN); (b) perform a random walk, with a

0.01 probability of changing to a new random direction each simulation control

cycle (RNDWK); (c) circle with diameter 10 cm around a fixed point (CIRCLE);

or (d) stop completely (STOP). These additional behaviours are introduced to

mimic: (a) software bugs and sensor faults in the agent controller (STRLN and

RNDWK); (b) motor malfunctions or blocked wheel (CIRCLE); and (c) a broken or

dead battery (STOP).

Encoding of agent behaviour: We divide an agent’s behaviour into

three different classes: (i) the agent’s immediate environment (sensors), (ii) the

agent’s actions (actuators), and (iii) the agent’s response to events (sensorimotor

interactions). Behavioural features from each class are then used to characterise an

‡ Simulation source code can be downloaded from http://www.isr.ist.utl.pt/~dtarapore/

scalablefaultdetection.

http://www.isr.ist.utl.pt/~dtarapore/scalablefaultdetection
http://www.isr.ist.utl.pt/~dtarapore/scalablefaultdetection
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(a) Dispersion (b) Aggregation

(c) Homing towards moving landmark (d) Flocking

Figure 3: Examples of the normal behaviours exhibited by the swarm.
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agent’s behaviour. Individual features are encoded in Boolean form (present= 1,

absent= 0), and then concatenated to form a binary string, the feature vector (FV).

In our simulations, a FV comprises the concatenation of six features (F1, F2 . . . F6),

with two features from each behaviour class. The features are computed utilising the

behavioural information collected over a moving time window of W s. Consequently,

the computation of the FV is initiated after W s of the simulation.

The first two features, F1(τ) and F2(τ) at time τ , pertain to the agent’s

immediate environment, i.e., neighbours in proximity:

F1(τ) = 1 if

∑τ−W

t=τ U [ni(t)]

W
> 0.5 , otherwise F1(τ) = 0 (9)

F2(τ) = 1 if

∑τ−W

t=τ U [no(t)]

W
> 0.5 , otherwise F2(τ) = 0 (10)

where ni and no are the number of neighbours in the inner ([0, 30] cm), and

outer ((30, 60] cm) range, respectively. Furthermore, U [n] is the unit step function,

defined as:

U [n(t)] =

{

1, if n(t) > 0

0, otherwise

At time τ , the features F1(τ) and F2(τ) are set, if the agent has at least one

neighbour in range [0, 30] cm and (30, 60] cm, respectively, for the majority of the

past W s (see parameters in Table 2).

The next two features, F3(τ) and F4(τ), pertain to the agent’s motors. For these

two features, we have:

F3(τ) = 1 if p(τ) > 0.05W |~vmax| , otherwise F3(τ) = 0 (11)

F4(τ) = 1 if |~v(τ)| > 0.05|~vmax| , otherwise F4(τ) = 0 (12)

where, at time τ , p(τ) cm is the distance traversed by the agent in the past W s,

speed |~v(τ)| cm/s, and maximum speed |~vmax| cm/s. The feature F3(τ) is set, if p(τ),

exceeds 5% of the maximum distance that may be traversed by the agent in W s.

Similarly, F4(τ) is set, if |~v(τ)| cm/s exceeds 5% of the maximum agent speed. For

both features F3(τ) and F4(τ), the 5% threshold is set to compensate for stochastic

variation in agent behaviour.



Fault detection in multirobot system 19

Finally, for the last two features, F5(τ) and F6(τ), pertain to the agent’s

sensorimotor interactions. For these interactions, we define two sensorimotor

interaction events Sm and Sn, as follows:

Sm(τ) = U [ni(τ) + no(τ)] ∧ U [|ω′(τ)| − 0.03ω′
max

]

Sn(τ) = ¬U [ni(τ) + no(τ)] ∧ U [|ω′(τ)| − 0.03ω′
max

]

The above sensorimotor interaction event Sm(τ) is set, if the agent’s angular

acceleration exceeds ±0.1 radians (3% of maximum angular acceleration), in the

presence of sensory input (one or more neighbours in range). Similarly, Sn(τ) is set,

for the same motor response, in the absence of sensory input (no neighbours in range).

The angular acceleration threshold in registering a motor response is set suprazero

at 3% of maximum angular acceleration, to compensate for stochastic variation in

agent behaviour.

Consequently, for the the features F5(τ) and F6(τ),

F5(τ) = 1 if

τ−W
∑

t=τ

Sm(t) > 0 , otherwise F5(τ) = 0 (13)

F6(τ) = 1 if
τ−W
∑

t=τ

Sn(t) > 0 , otherwise F6(τ) = 0 (14)

where, the features F5(τ) and F6(τ) are set if the sensorimotor interaction events Sm
and Sn respectively, occur at least once in time window W .

Immunological response to agent behaviour: At the start of each time-

step, an agent senses the behaviour of its ten nearest neighbours as 6-bit FVs

according to eqs. 9-12, and computes the number of agents assigned to each 6-

bit FV (FVj). In the agent’s internal CRM instance, APCs are then generated

corresponding to each of the feature vectors perceived. Each APC presents an

individual FV to the T-cells. The number of each type of the APCs generated

Aj = kFVj, for j ∈ {1, . . . ,M}, where k is a scaling constant, andM is the maximum

number of different feature vectors perceived by the agent (M = 26 for 6-bit FV).

The T-cell clones (T1, T2, . . . , TN), each have a different receptor encoded as

a binary string, which determines their affinity to the APC sub-population. The

affinity between T-cell clonal i and APC sub-population j is denoted by θij :
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Table 3: Parameters of the stochastic simulator

Param. Description Value (a.u.)

l Length of binary feature vector 6 bits

M Maximum number of different
feature vectors

2l

N Maximum number of T-cell
clones

2l

c Cross-reactivity between T-cells
and APCs

0.15

IE Density of new effector cells
introduced at each simulation
time-step

10

IR Density of new regulatory cells
introduced at each simulation
time-step

10

k FVs to APCs scaling factor 0.002

S Time CRM instance is executed,
in a single simulation time-step

5× 107

d Proportion of T-cells diffused to
neighbouring agents

0.5

θij = exp

(

−
H [i, j]

cl

)

(15)

where H is the Hamming distance between the receptor of Ti and the FV presented

by Aj , l is the length of the FV, and c is the cross-reactivity between T-cells and

APCs. A high value of c would result in all T-cell clones having a high affinity to

all APC sub-populations. By contrast, at low c, each T-cell clone would have a high

affinity to only one distinct APC sub-population.

At the start of the simulation, the number of effector and regulatory

cells on each agent are initialised to E0 and R0 respectively. Following this,

Algorithm 1 (parameters in Table 3) is executed by the agents in each simulation

time-step, to simulate their internal CRM. The agents begin by sensing their

neighbours, and computing the distribution of feature vectors. The CRM is then

numerically integrated for time S, allowing the system to respond to the different

APCs.

After computing the number of effector and regulatory cells at time S, the

cells diffuse among the agents. In this communication phase, each agent selects

at random another agent, from one of its ten nearest neighbours. Following the
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selection, each agent sends and receives d of its effector and regulatory cells. In our

previous work [38], we found that communication of cells yields a higher performance

when agents move between regions with different feature vector distributions. Finally,

the agent decides the nature of each FV FVj sensed by first computing the following

quantities:

E =
∑N

i=1 θijEi R =
∑N

i=1 θijRi

and tolerating the FV if R > E. By contrast, if E > R, the FV is classified as faulty

by the agent.

The parameters of T-cell proliferation and death rates are set so that an

agent tolerates a FV if it is expressed by more than a single neighbouring agent.

Additionally, the cross-reactivity parameter c is set so that the FV expressed by

a single agent is tolerated if it differs by less than l/3 features from any of the

perceived FVs being expressed by two or more neighbours. Otherwise, the perceived

FV is classified as faulty by the agent.

In the simulation of the CRM instance for an agent, the number of different APC

sub-populations and T-cell clones are limited to the number of observed neighbouring

agents. Consequently, in the implementation of the of Algorithm 1, a linked-list data-

structure is used to explicitly represent the existing APC sub-populations, T-cell

clonal types and their conjugates.

5. Experiments

The main advantage of a CRM-based approach is that classification of normal

vs. abnormal behaviour is continually and autonomously learnt online while the

agents operate in the task environment. Prominent advantages of the online learning

of the classification include that normal behaviour need not be prescribed a priori,

and that the performance is unaffected by changes to normal behaviour as long

as most or all agents change their behaviour simultaneously. In the following, we

assess the performance of our CRM-based approach in different scenarios. We first

evaluate the capacity of a multirobot system to detect abnormal behaviour for

different combinations of normal and fault-simulating behaviours (Section 5.1). We

then evaluate how frequently normally behaving agents are misclassified as behaving

abnormally (Section 5.2), and the influence of transitions in normal behaviour on
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Algorithm 1 An agent’s control loop (simulation of a CRM instance)

1: {Perceive neighbouring agents}

2: Compute distribution of feature vectors (FVj) of neighbouring agents

3: Assign feature vectors to APCs i.e., ∀j, Aj = kFVj

4: {Influx of new T-cells}

5: ∀j ∈ {1, 2 . . .M}, if Aj > 0, increment Ej and Rj by IE and IR, respectively

6: {Run instance of CRM}

7: time← 0

8: while time ≤ S do

9: ∀i ∈ {1, 2 . . .N} and Ti > 0, and ∀j ∈ {1, 2 . . .M} where Aj > 0, compute the number of

conjugated cells Cij in quasi-steady state.

10: Using the number of conjugated cells, compute the updated number of effector and regulatory

cells with the Euler-Heun adaptive step method [41]. The adaptive step size is stored in h

11: time← time+ h

12: end while

13: {Diffuse cells across neighbouring agents}

14: Randomly select one of the agents in the communication range following a linear distribution

and weighted by the total number of cells on the respective neighbouring agents

15: Exchange cells with agent

16: {Decide if feature vectors are to be tolerated or not}

17: For each feature vector, compute the sum of effector and regulatory cells, weighted by their

affinity.

18: Tolerate the feature vector if total regulatory cells exceeds effectors, else interpret it as faulty.

Log the outcome of the classification.

performance (Section 5.3). The scalability of our CRM-based approach is then

evaluated, first in terms of the dimensionality of the FV space (Section 5.4), and

then in terms of swarm size (Section 5.5). Finally, we compare the performance of

our CRM-based approach with the performance of a threshold-based approach to

behaviour classification (Section 5.6).

5.1. Detection of abnormalities

We ran experiments with 20 randomly placed agents in a 5 × 5 m2 toroidal

environment. In the swarm, 19 of the 20 agents performed one of the normal

behaviours, that is, aggregation, dispersion, flocking or homing, while one agent

performed one of the fault-simulating behaviours, STRLN, RNDWK, CIRCLE and

STOP. The FVs used by the CRM-based abnormality detector were composed
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Figure 4: Detection of abnormalities. Proportion of time fault-simulating agent

is detected as abnormal across 20 replicates, in each of the 16 distinct combinations

of normal (aggregation, dispersion, flocking and homing) and abnormal (STRLN,

RNDWK, CIRCLE and STOP) behaviours.§

of (F1, F2 . . . F6) (see Section 4). We ran 20 replicates for each combination of normal

behaviour and fault-simulating. Each replicate lasted 15, 000 cycles (corresponding

to 1, 500 s), and we recorded the proportion of time during which the fault-simulating

agent was correctly detected as behaving abnormally by neighbouring agents. The

results are summarised in the box-plot in Figure 4 with one box for each combination

of normal and fault-simulating behaviour.

The results of experiments with three combinations of normal and fault-

simulating behaviour are prominent: (i) in aggregation/CIRCLE, the distribution

of proportion of time the fault-simulating agent is detected is wide; (ii) in

dispersion/RNDWK, the proportion of time the fault-simulating agent is detected

is very low (median: 0.023); and (iii) in flocking/STRLN, the proportion of time

the fault-simulating agent is detected is low in the majority of the replicates. In

all three cases, the relatively low proportion of time that the fault-simulating agent

§ On each box, the mid-line marks the median, and the box extends from the lower to upper quartile

below and above the median. Whisker outside the box indicate the maximum and minimum values,

except in case of outliers, which are shown as crosses. Outliers are data points outside of 1.5 times

the interquartile range.
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is detected is caused by similarities between the fault-simulating behaviour and the

normal behaviours in certain situations: in the aggregation/CIRCLE experiments,

some or all normally behaving agents may aggregate around the circling agent

causing it to become a member of an aggregate, and detected as such. In the

dispersion/RNDWK experiments, all agents disperse away from one another and

from the fault-simulating agent performing random walk. As soon as the fault-

simulating agent approaches a normally behaving agent, the normally behaving

agent will disperse away from the random walking agent. All the robots in the

MRS will therefore be dispersed and the fault-simulating agent is thus difficult to

detect. Finally, in several flocking/STRLN replicates, normally behaving robots end

up forming a flock around the fault-simulating agent moving in a straight line. The

relatively low proportion of time that the fault-simulating is detected in many of

the aggregation/CIRCLE, dispersion/RNDWK, and flocking/STRLN experiments

are thus due to the self-organised behaviour of the swarm that makes the fault-

simulating behaviour of a single agent indistinguishable from normal behaviour.

5.2. Tolerance to normal behaviour

The effectiveness of a fault detection system depends as much on its capacity

to avoid false positives and correctly classify normal behaviour as its capacity to

detect faults. Consequently, we evaluated our CRM-based approach to abnormality

detection in a series of experiments in which all 20 agents behaved normally, and

we measured the proportion of time the agents were correctly classified as behaving

normally (tolerated) by their neighbours. In Figure 5, we have plotted the mean

proportion of time that agents are tolerated in each of 20 replicates of the four

normal swarm behaviours (horizontal axis), and the variation between the 20 agents

observed in each replicate calculated as the difference between the maximum and

minimum time tolerated (vertical axis).

The mean proportion of time that normally behaving agents were correctly

classified was high across all experiments, at 0.9974 ± 0.002 for aggregation,

0.9819 ± 0.002 for dispersion, 0.9966 ± 0.002 for flocking, and 0.9997 ± 0.001

for homing (mean±SD). The variation in time tolerated between the agents of

the swarm, in individual replicates, is low (less than 0.1) for all four swarm

behaviours (see Figure 5).

The CRM-based abnormality detector classifies the behaviour of neighbouring
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Figure 5: Tolerance to normal behaviour. Mean and variation in proportion of

time agent tolerated, across the 20 agents of the MAS, in each of 20 replicates of four

swarm behaviours. Variation measured in each replicate as the difference between

the maximum and minimum time tolerated, across the 20 agents.

agents at every control cycle. The results presented in Figures 4 and 5 for abnormality

detection and for tolerance of normal behaviour, respectively, correspond to the

direct, uninterpreted output of the CRM-based abnormality detector. A more

reliable classification of behaviour can be obtained by accumulating the output

over a series of consecutive control cycles instead of classifying the behaviour of

neighbouring agents based on the output in a single control cycle. Depending on

the relative cost of tolerating an abnormally behaving agent (false negatives) and of

incorrectly classifying an agent as behaving abnormally (false positives), the output

may be interpreted in one of several ways. A simple scheme involves storing the past

n outputs of the CRM-based abnormality detector and only classifying an agent as

behaving abnormally if it has been detected as such for the majority or all past n

control cycles. If fault accommodation is expensive, while the presence of abnormally

behaving agents has a relatively small impact on performance, n could be set to a

relatively high value. Conversely, in critical tasks where abnormal behaviour can be

catastrophic, n could be set to a relatively low value. With n = 100 (corresponding to

10 s), wherein only agents detected abnormal in all n control cycles were interpreted

as behaving abnormal, we observed a significant reduction in the number of false
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positive incidents compared to when the output of the CRM-based classifier is used

directly (corresponding to n = 1): with n = 1, the median number of false positive

incidents per replicate was 15 (max. 38) across all experiments, while for n = 100,

the median number of false positive incidents was 0.5 (max. 1). A false positive

incident corresponds to a series of consecutive simulation cycles in which an agent is

incorrectly being classified as behaving abnormally, thus, to the number of times that

a swarm would incorrectly have taken steps to accommodate a non-existing fault.

The trade-off between false positives and false negatives can thus be fine-tuned based

on the task and its parameters.

5.3. Response to changes in agent behaviour

One of the main advantages of a CRM-based approach is that classification of

normal vs. abnormal behaviour is continually learnt online while the agents operate

in the task environment. Continual learning of the classifier potentially allows for

agents to change their behaviour without being classified as abnormal as long as a

sufficient number of agents follow suit. We setup a series of experiments to assess

the CRM-based approach’s capacity to tolerate changes to agent behaviour. We

first evaluated the performance of our CRM-based abnormality detector in three

different setups in which all agents transitioned from one behaviour to another and

then back again to the original behaviour. Each phase of an experiment lasted

5, 000 control cycles (corresponding to 500 s). We used three different pairs of

behaviours: (a) aggregation and dispersion, (b) aggregation and flocking, and

(c) aggregation and STOP. It should be noted that the STOP behaviour in our

experiments in the previous section (Section 5.1) was considered one of the abnormal

behaviours because it was only performed by a single agent, but that when all agents

perform the behaviour, it should be considered normal and therefore tolerated. We

conducted 20 replicates in each setup and the results are shown in Figure 6 where we

have plotted the mean time that agents are tolerated in each experiment (horizontal

axis) and the variation in each replicate (vertical axis).

5.3.1. Change in behaviour of all agents The proportion of time that the normal

behaviour is tolerated in the experiments in which the normal behaviour switches

from aggregation to either dispersion, flocking or STOP (see Figure 6) is comparable

to the proportion of time that normal behaviour is tolerated when the normal
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Figure 6: Tolerance to changes in normal behaviour. Mean and variation in

proportion of time agent tolerated, across the 20 agents of the MAS, in each of 20

replicates, and two transitions in normal behaviour: (a) aggregation to dispersion

to aggregation (crosses), (b) aggregation to flocking to aggregation (circles), and

(c) aggregation to STOP to aggregation (triangles).

behaviour remains constant throughout an experiment (see Figure 5). Only in the

experiments in which behaviour was changed from aggregation to dispersion and

back again did we observe a slight drop in (uninterpreted) classification performance

immediately after the behaviour had been switched. Around 50 s after the agents

switch from dispersion back to aggregation, some agents will have aggregated while

others are still dispersed and moving toward an aggregate. Therefore, the differences

in observable behaviour can briefly lead the dispersed agents to be classified as

abnormal.

We analysed the distribution of FVs during the experiments in which all agents

changed behaviour, see Figure 7. As it can be seen in the figure, the distribution of

FVs changes as the behaviour changes, and several different FVs are present in the

population of robots at any given time.

5.3.2. Change in behaviour of single agent We ran a set of experiments in order

to determine if an agent that starts to behave abnormally halfway though an

experiment can be detected reliably. For the first half of the experiment, all agents
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Figure 7: Behaviour FV distribution. Distribution of 6-bit FVs across the 20

agents of the swarm during 15, 000 simulation control cycles, and with transitions in

swarm behaviour occurring at the 5, 000th and 10, 000th control cycle.

performed aggregation, while at the midpoint, a single agent switched its behaviour

to dispersion. Across 20 replicates, the mean proportion of time a normal aggregating

agent was tolerated during the first half of the simulation was 0.99±0.001, while the

mean proportion of time that the same agent was detected as behaving abnormally

in the second half of the experiments was 0.70 ± 0.386. However, in 5 of the 20

replicates conducted, the focal agent was surrounded by other aggregating agents

when it switched from performing aggregation to dispersion, which explains the low

performance compared to experiments in which an abnormal behaviour is performed

from the start of an experiment (see Figure 4).

In interpreting the CRM classification over a series of control cycles, our

results revealed a more reliable classification, despite the variations in behaviour. In

classifying a behaviour as abnormal if it was detected abnormal in all of the past n

control cycles (n = 100), no more than one false-positive incident was recorded for

the normally behaving aggregating agents. By contrast, with n = 1, the maximum

number of such incidents was 430. The introduction of this temporal filter has an

impact on the latency in detection of the abnormal agent. In the absence of the

filter, the abnormal dispersing agent was detected with a median latency time of

11.6 s (max. 481.2 s). With the filter (n = 100), the latency time was 26.7 s (max.

491.1 s), registering an increase by 44.0% when discounting the length of the time
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Table 4: Binary features encoding agent behaviour (parameters in Table 2).

Notation Value at time τ*

F1(τ)
∑τ−W

t=τ
U [ni(t)]

W
> 0.5

F2(τ)
∑τ−W

t=τ
U [no(t)]

W
> 0.5

F3(τ) p(τ) > 0.05W |~vmax|

F4(τ) |~v(τ)| > 0.05|~vmax|

F5(τ)
∑τ−W

t=τ U [ni(τ) + no(τ)] ∧ U [ω′(τ) − 0.03ω′
max

] > 0

F6(τ)
∑τ−W

t=τ ¬U [ni(τ) + no(τ)] ∧ U [ω′(τ) − 0.03ω′
max

] > 0

F7(τ) ni(τ) > 0

F8(τ) no(τ) > 0

F9(τ)
∑τ−W

t=τ U [ni(τ) + no(τ)] ∧ U [ω(τ)− 0.03ωmax] > 0

F10(τ)
∑τ−W

t=τ ¬U [ni(τ) + no(τ)] ∧ U [ω(τ) − 0.03ωmax] > 0

F11(τ) U [|~v′(τ)| − 0.05|~v′max|] > 0

F12(τ) U [ω(τ)− 0.03ωmax] > 0

F13(τ) U [|ω′(τ)| − 0.03ω′
max

] > 0

F14(τ) U [|~v(τ)| − |~u(τ)| − 0.05|vmax|] > 0

F15(τ) U [φvu − 0.03ωmax] > 0

*The binary feature is set if the condition is satisfied,

else 0.

series, and the three replicates where the abnormal agent was never detected.

5.4. Scalability of CRM in the FV space

In this section, we study the scalability of our CRM-based approach with respect to

number of behavioural features considered by the abnormality detector. The main

questions are: (i) if and how the inclusion of additional features affects the accuracy

of abnormality detection, and (ii) what is the impact of the inclusion of additional

features on the computational cost of running the CRM-based abnormality detector?

We ran a series of experiments to assess performance and resources, for FV spaces of

different dimensionalities: 6, 9, 12, and 15 features. We considered FVs of, 6 features

(F1, F2 . . . F6), 9 features (F1, F2 . . . F9), 12 features (F1, F2 . . . F12), and 15 features

(F1, F2 . . . F15). All features are computed based on behavioural information over

a moving time window of W s. The nine new features (F7, F8 . . . F15), pertain to

the agent’s immediate environment (F7, F8), sensorimotor interactions (F9, F10), and

absolute (F11, F12, F13) and relative (F14, F15) motor outputs as detailed in Table 4.

Results of experiments in which FVs of different lengths were used are
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Table 5: Experimental setups for results shown in Figures 8, 11, and 12.

Setup Description

(A) Detection: a single agent in the swarm simulates a fault. The fault-simulating
behaviours considered are STRLN, RNDWK, CIRCLE and STOP, while the normal
behaviours for the rest of the agents in the swarm are: aggregation, dispersion,
flocking, and homing, resulting in a total of 16 combinations. Each box in the
plot summarises the proportion of time the fault-simulating agent is detected in 20
replicates in each of the 16 experimental setups (a total of 320 experiments per box).

(B) Tolerance: all agents in the swarm behave normally. The normal behaviours
considered are: aggregation, dispersion, flocking, and homing. Each box in the plot
summarises the proportion of time that the normally behaving agents are tolerated
in 20 replicates for each of the four normal behaviours (a total of 80 experiments per
box).

(C) Changes in normal behaviour: all agent synchronously transition from
aggregation to an alternative behaviour (dispersion, flocking, or STOP) and back to
aggregation during an experiment. The first transition in behaviour occurs one-third
into the experiment, and the second transition occurs two-thirds into the experiment.
Each box in the plot summarises the proportion of time the agents are tolerated in
20 replicates for each alternative behaviour (dispersion, flocking, or STOP, thus, a
total of 60 experiments per box). Note that when most, or all of the agents in the
swarm perform the STOP behaviour, it is considered the normal behaviour.

(D) Changes in the behaviour of one agent: a single agent transitions from the
normal behaviour performed by the rest of the swarm (aggregation) to an abnormal
behaviour (dispersion) halfway through the experiment. Each box in the plot
summarises the proportion of time that the behaviour of the focal agent is correctly
classified by its neighbours, that is, the proportion of time that it is tolerated while
performing the same behaviour as the rest of the swarm, and then the proportion of
time that it is detected as behaving abnormally. We ran 20 experimental replicates
in the experiment setup.

summarised in Figure 8, where box-plots in (A) summarise abnormality detection

performance, (B) summarise tolerance to normal behaviour, (C) summarise tolerance

when all agents change behaviour simultaneously, and (D) summarise tolerance and

detection of a single agent that changes its behaviour from the normal behaviour to

an abnormal behaviour halfway through an experiment. Table 5 lists the details on

the experimental setups used.

Across all experiments, we only observed relatively small differences in

performance when FV spaces of distinct dimensionalities were used, with a maximum

difference in performance (proportion of time that behaviour is correctly classified)

of 7.9%. Some of the differences were found to be statistically significant using the

non-parametric Kruskal-Wallis significance test (d.f. = 4, p < 0.001), followed by

the Bonferroni multicomparison test: in the experiments summarised in Figure 8(A),

FVs with a length of 9 bits yielded a significantly higher performance than FVs of

length 6, 12, and 15 bits; in the experiments summarised in Figure 8(B) and 8(C),
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Figure 8: Scalability of CRM performance in terms of FV classification

space. Abnormality detection performance of the CRM across 20 replicates,

with 6, 9, 12 and 15-bit FV length: (A) detection of fault-simulating behaviours,

(B) tolerance to normal behaviours, (C) tolerance to transitions in normal behaviour

of entire swarm, and (D) response (immune and tolerance) to transitions in

single agent behaviour. See Table 5 for details on the experimental setups and

quantification of performance.

the FV of length 6 bits yielded a significantly higher performance than all of the

longer FVs; while no statistically significant difference was found in performance in

the experiments summarised in Figure 8(D). The high variance in performance in

detection of a single agent transitioning to an abnormal behaviour (Figure 8(D)),

was because of low performance in 5 of the 20 replicates (irrespective of FV size)

where the transitioning agent was surrounded by other aggregating agents when it

switched from performing aggregation to dispersion, and consecutively could not be

detected immediately as behaving abnormal. Overall, the results indicate that a

CRM-based abnormality detector is able to improve performance with the addition

of new behaviour features (F7, F8 and F9), upto a point, and that the further addition

of redundant features do not compromise its classification accuracy.

The small decrease in performance with the FVs of length 12 and 15

bits (Figure 8(A)), follows from the equation of affinity between T-cell clonal types

and APC sub-populations (eq. 15). In order to detect as abnormal an APC sub-
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Figure 9: Number of discriminating features. The number of fault-

simulating/normal behaviour discriminating features in 6, 9, 12 and 15-bit FV length,

across 20 replicates. Each box corresponds to the average number of discriminating

features for all 16 fault-simulating behaviour detection experiments (experiment

details in Table 5, setup (A)).

population presenting the FV of a fault-simulating behaviour, as the FV length l is

incremented, more features of the FV are required to be different (longer Hamming

distance) between this APC sub-population and the receptors of regulatory cells

representing normal behaviour. This number of different features for our CRM

parameters is 2, 3, 4 and 5 for FV length of 6, 9, 12 and 15, respectively. An analysis

of the number of fault-simulating/normal behaviour discriminating features in FVs

of length 6, 9, 12 and 15 bits (Figure 9) shows an increase in number of discriminating

features with the addition of behaviour features F7, F8 and F9. However, there is no

further increase in such features with FVs of length 12 and 15 bits (computational

details in Appendix A).

5.4.1. Number of floating-point operations for FVs of lengths 6, 9, 12 and 15 bits

To assess the computational resources necessary to run the CRM with FV spaces

of different sizes, we recorded the number of floating-point operations executed

by the CRM-based abnormality detector over the course of a set of experiments

with 20 agents. Figure 10 shows the number of floating-point operations (FLO)
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in experiments involving the transition of normal behaviour from aggregation to

dispersion to aggregation. This experiment was selected for illustration as it revealed

the maximum total number of FLOs, for the largest FV space (15-bits FVs). The

box-plot indicates the number of FLOs, averaged across 20 agents and 15, 000 control

cycles (corresponding to 1500 s), for 20 independent replicates. Fluctuations in

number of FLO necessary in different control cycles go up to five times the median

number. The results show that while the size of the FV space increases exponentially

with the number of features considered, the computational resources in terms of FLOs

required to execute the CRM-based abnormality detection increases in accordance

with a power function with an exponent of 0.3 (R2 = 0.97), with decreasing growth-

rates of 176.31±20.2, 27.52±4.7, and 7.88±1.7 FLOs/FV, for 6 to 9, 9 to 12, and 12

to 15-bit FVs, respectively. Furthermore, a similar relationship between the number

of FLOs and the size of the FV space, was revealed in all the other experimental

setups.

Our simplified CRM-based abnormality detector is computationally efficient in

terms of FV classification space. However, does this efficiency come at a cost to

performance, because of the simplifications introduced in the model implementation

(Section 3)? To address this question, we compared the performance and required

computational resources for the simplified and the complete CRM implementations.

Results revealed that while the simplifications had no effect on the performance of the

abnormality detector (see Supplementary Section S1.1 and Figures S1, S2 and S3),

they improved its computationally efficiency by almost an order of magnitude (see

Supplementary Section S1.2 and Figure S4).

5.5. Scalability of CRM in the Swarm Size

A distributed abnormality detection approach is particularly relevant for multiagent

systems with a large number of units. We ran a series of experiments to assess

the performance of our CRM-based abnormality detection approach in swarms of

different sizes. Results of experiments with swarms of 20, 40, 60, 80 and 100 agents

are shown in Figure 11.‖

The results in Figure 11 show that, aside from the experiments in (A), the

CRM-based abnormality approach is unaffected by swarm size. The decrease in the

‖ The environment area was increased proportional to the number of agents, keeping the agent

density constant in all our experiments.
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Figure 10: Scalability of CRM resources in terms of FV classification space.

Computational costs of abnormality detection using the CRM with FV space for 6, 9,

12 and 15-bits FV length (in log scale), across 20 replicates. Each box corresponds to

the average number of FLOs per agent, per control cycle in experiments involving the

transition of normal behaviour from aggregation to dispersion to aggregation (details

of experimental setups in Table 5).

proportion of time a fault-simulating agent is detected as the number of units in the

swarm is increased observed (Figure 11(A)) is the result of situations that mainly

occur with the combinations of the normal behaviours aggregation and homing,

and the fault-simulating behaviour CIRCLE: large moving aggregates are formed of

normal behaving agents, thereby increasing the possibility that the stationary circling

abnormal agent is intermingled in this aggregate and thus not detected as behaving

abnormally. In the experiments with other combinations of normal and fault-

simulating behaviour, we only observed stochastic differences in performance and

thus no relationship between swarm size and proportion of time that an abnormally

behaving agent is detected. Furthermore, the high variance in performance in

Figure 11(D) was consequent to low performance in three replicates (swarm of 80

agents), four replicates (swarm of 40 agents), and five replicates (swarm of 20, 60

and 100 agents), where the focal agent transitioning from aggregation to dispersion

was surrounded by other aggregating agents, and could not disperse from within the
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Figure 11: Scalability of CRM performance in terms of swarm size.

Abnormality detection performance of the CRM across 20 replicates, with 6-bit

FV length, and swarm sizes of 20, 40, 60, 80 and 100 agents: (A) detection of

fault-simulating behaviours, (B) tolerance to normal behaviours, (C) tolerance to

transitions in normal behaviour of entire swarm, and (D) response (immune and

tolerance) to transitions in single agent behaviour. See Table 5 for details on the

experimental setups and quantification of performance.

aggregate.

5.6. Resilience to stochastic variations in behaviour: A comparison with

threshold-based model

We conducted a series of experiments to compare the performance of our CRM-

based approach to abnormality detection to a simpler threshold-based model. In a

threshold-based model, each agent computes the distribution of perceived FVs, and

FVs displayed by less than t agents are considered abnormal. The threshold t is

set at the bifurcation point of the CRM (aR in Figure 2), separating the immune

and tolerant responses of the model, and remains fixed throughout each replicate.

Furthermore, as each agent performs comparisons of all perceived FVs with the

threshold at most n times, where n is the number of perceived neighbouring agents,

our threshold-based model implementation takes time O(n). Details on the number

of FLOs required in actual experiments can be found in Supplementary Section S2.2
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and Figure S5.

The performance of abnormality detection based on the threshold-based

model for FVs of lengths 6, 9, 12, and 15 bits are shown in Figure 12:

boxes in (A) summarise fault-detection performance, (B) summarise tolerance to

normal behaviour, (C) summarise tolerance when all agents change behaviour

simultaneously, and (D) summarise tolerance and detection of a single agent that

changes its behaviour from the normal behaviour to an abnormal behaviour halfway

through an experiment (see Table 5 for details).

The results show that while the abnormality detection performance improves

as more features are considered (Figure 12(A)), the tolerance of normal

behaviour (Figure 12(B)) decreases as increasingly longer FVs are considered. The

decrease in performance when all the agents change their behaviour simultaneously

during the experiment (Figure 12(C)) and when a single agent transitions

from the normal behaviour to an abnormal behaviour halfway through the

experiment (Figure 12(D)), are due to the decrease in tolerance of normally behaving

agents when longer FVs are considered. Both the increase in abnormality detection

performance and the decrease in tolerance of normal behaviour is due to the

stochastic differences in FVs of agents performing the same behaviour (see the

example in Figure 7). The more features considered, the larger the opportunity

for stochastic variations in the distribution of the FVs displayed by normally

behaving agents. The tolerance to normal behaviour does, in fact, degrade to

the point where the median proportion of time that normally behaving agents are

tolerated (Figure 12(B) and Figure 12(C)) is respectively 0.64 when no transition in

normal behaviour occurs, and 0.59 when all agents transition to a different normal

behaviours during experiment. The increase in the proportion of time that an

abnormally behaving agent is detected when longer FVs are considered thus comes

at the expense of an increasing number of false positives.

The CRM-based approach, on the other hand, achieved a higher median

performance than the threshold-based model in all the experiments (all experimental

setups in Table 5), ranging from a 3.1% increase in performance in experiments with

6-bit FVs, and up to a 52.8% increase in performance in experiments with 15-bit FVs

(detailed analysis in Supplementary Section S2.1 and Table S1). The improvement

in performance with the CRM, particularly for large FVs, is because of the resilience

the model exhibits to stochastic variations in FVs displayed by normally behaving

agents (see Figure 8). This resilience to stochastic variations in the perceived FVs of
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Figure 12: Performance of threshold-based model. Fault-detection

performance of the threshold-based model across 20 replicates, with 6, 9, 12 and 15-

bit FV length: (A) detection of fault-simulating behaviours, (B) tolerance to normal

behaviours, (C) tolerance to transitions in normal behaviour of entire swarm, and

(D) response (immune and tolerance) to transitions in single agent behaviour. See

Table 5 for details on the experimental setups and quantification of performance.

agents executing the same normal behavior, results from the cross-reactivity between

T-cells and APCs (c, see eqn. 15). The cross-reactivity causes the regulatory cells to

react with and suppress effector cells whose specificities are close to (low Hamming

distance apart) the specificities of the regulatory cells. Consequently, the CRM-based

approach not only tolerates as normal, the behaviours exhibited by a majority of the

swarm, but also the stochastically variant behaviours of a minority of agents with

similar FVs to the majority.

6. Discussion and Conclusions

In this study, we investigated the use of the CRM [35, 36, 37] for online abnormality

detection in a MRS. In our experiments, all robots executed the same behaviour,

except those simulating faults. To detect abnormal behaviour, each robot encoded

the behaviour of the ten nearest neighbours as binary feature vectors. The agents

behaving normally were therefore always sensed in abundance by their neighbours.

Our abnormality detection system was thus not required to look for persistence in
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normal behaviour, but only the abundance, to operate successfully. Experimental

results revealed that our CRM-based approach, (i) displayed robust maintenance of

tolerance to individuals exhibiting a wide variety of normal behaviours, characterised

as being exhibited by a large proportion of the agents in the swarm, (ii) was able to

reliably detect abnormal behaviours, irrespective of changes in the normal behaviour

of the rest of the swarm, (iii) was scalable both in terms of the number of agents in

the MRS, and in terms of the number of features used for normal-abnormal behaviour

classification, and (iv) was resilient to stochastic variations in observed behaviour,

in comparison to the threshold-based model for behaviour classification.

The abnormality detection model developed in this study highlights an

important difference between fault detection and abnormality detection. Behaviours

that are not similar to behaviours exhibited by a sufficiently large proportion of

proximal agents in the swarm may be considered as abnormal, although they

may not necessarily be caused by faults. In the detection of specific faulty

agents, the false negatives occurred when the behaviour of a fault-simulating

agent was indistinguishable from normal behaviour. For example, in some of the

flocking/STRLN experiments, the normally behaving agents aggregated around the

fault-simulating agent moving in a straight line causing the whole system, including

the fault-simulating agent, to move in flocks. Similarly, in dispersion/RNDWK

experiments, the dispersion behaviour of the normally behaving agents sufficed to

keep the whole swarm dispersed in the environment, even when a fault-simulating

agent performed a random walk. However, faults which lead to behaviour that

is either indistinguishable from normal behaviour and/or does not disrupt the

behaviour of the system are often tolerable.

Current endogenous approaches to fault detection (see [21, 22, 19, 23, 24] for

examples) assume that the normal behaviour of the robot is known and can be

characterised beforehand. Consequently, such approaches may not easily operate

in scenarios involving variations in the characterisation of normality, or wherein the

characterisation of normal behaviour is not available beforehand. By contrast, in our

CRM-based approach, abnormality detection is determined online, without an initial

training step. Furthermore, a priori knowledge of normal and abnormal behaviour

classification is not required, as demonstrated in our results, when, for instance, the

dispersion behaviour is detected abnormal when exhibited by a single agent, and

the STOP behaviour is tolerated as normal when performed by all the agents of

the swarm. Consequently, our approach may compliment the existing endogenous
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models in scenarios involving temporal variations in normal behaviour (e.g., online

learning, perturbations in the environment). In such scenarios, our fault-detection

algorithm does not need to be retrained, consequently saving costs and increasing

the autonomy of the resultant system.

In exogenous fault detection, Parker et al. [25] proposed the ALLIANCE

software architecture, wherein the mathematically modelled motivation of different

robots to perform different tasks, resulted in a high degree of fault tolerance

for cooperating teams of robots. Similarly, in other exogenous fault-detection

models [26, 27, 28], an explicit and intricate inter-robot communication process

was used to facilitate task allocation. However, these approaches require relatively

complex and tightly-coupled robot platforms to operate successfully. By contrast, our

proposed fault-detection model is distributed in design and consequently scalable as

demonstrated with up to a fivefold increase in swarm size. Furthermore, in contrast to

other exogenous and distributed fault detection models, our approach is not limited

to the detection of specific faults involving complete robot failure [30], and does not

require detailed task-performance metrics known apriori [16, 32].

The experiments presented in this study involved only relatively simple swarm

behaviours, and in the experiments with transitions in swarm behaviour, all the

robots transitioned simultaneously. In the current version of our approach, the

normal/abnormal classification is based exclusively on feature vectors observed in the

present, and may therefore not be applicable to scenarios in which robots perform

more complex (or composite) behaviours, or in which behaviour transitions propagate

gradually. In order to extend CRM-based abnormality detection to scenarios in

which robots independently can perform different behaviours at different times,

classification must be based on observations made over a period of time. One

approach would be for robots to store a recent record of observed feature vectors. The

robots would use the record when executing their internal CRM-instance. A record

of past observations could also allow our approach to be applied to scenarios in which

robots cannot always observe a certain minimum number of neighbouring robots. In

our ongoing work, we are evaluating the use of a history of recent observations in

CRM-based abnormality detection.

Real sensors and actuators are typically noisy resulting in some degree of

stochasticity in observation and action. Such stochasticity does, however, only have

an impact on the CRM-based abnormality detector if it can cause changes in one or

more of entries of the feature vector. One way to compensate for noisy sensors
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and actuators is by taking the characteristics of the specific hardware platform

into account in the design of the individual features. In our experiments, features

F3, F4, F5, and F6 had associated thresholds to compensate for stochastic variations

in agent behaviour (see Section 4). If we had subjected the movement of agents

to noise in our experiments, those thresholds could, for instance, have been set

accordingly. The value of individual features was furthermore calculated based on

several observations made over a period of time (W seconds), and the decision on

whether to classify an agent as behaving abnormally or not, was based on votes from

several agents. There are thus several mechanisms in place (feature design, use of

multiple observations, and voting) to avoid that a single noisy observation leads to

the misclassification of agents. Still, in case an agent miscalculates the one or more

features due to noise, it has previously been shown that CRM-based classification is

robust to moderate degrees of perturbations in feature vectors [38].

The scalability of our abnormality detection algorithm in terms of the amount

of information used for behaviour classification was evaluated with 6 to 15

different features. Our results revealed that the CRM-based fault-detection algorithm

performed well with relatively short feature vectors (i.e., of 6 and 9 features). Further

increase in length of the feature vector did not have a strong effect on performance

in fault detection. Additionally, the exponential increase in the feature-vector

space only lead to a small increase (following a power law) in the number of

floating-point operations, due to our computationally efficient implementation of

the crossregulation model.

Our approach to the design of the feature vector was to make it generalisable

across various behaviour tasks. Indeed, in our selection, the same features were

used for eight different normal and abnormal behaviours. However, some level of

domain knowledge was required to select the features, that may not always be

available to the system designer. These selected features are independent of the

controller architecture employed to execute the robot behaviours, evident by the

absence of any of the subsumption architecture controller parameters in our feature

space. Furthermore, as our model scales well with the size of behaviour classification

space, features suspected to be of use for fault detection may be introduced without

seriously affecting the computational cost of the algorithm, allowing the potential use

of our generalised abnormality detection algorithm to a broader range of multirobot

system applications. In ongoing work, we are studying the inclusion of non-binary

features (“distance to neighbour” instead of “close to neighbour”, for instance) to
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allow individual features to characterise a whole set or a continuum of behavioural

aspects.
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[14] Şahin E 2005 Swarm robotics: From sources of inspiration to domains of application Swarm

Robotics (Springer, Berlin, Germany) pp 10–20

[15] O’Grady R, Groß R, Christensen A L and Dorigo M 2010 Autonomous Robots 28(4) 439–455

[16] Lau H, Bate I, Cairns P and Timmis J 2011 Robotics and Autonomous Systems 59 1021–1035

[17] Timmis J, Andrews P and Hart E 2010 Swarm Intelligence 4 247–273

[18] Tarapore D, Christensen A L, Lima P U and Carneiro J 2013 Abnormality detection in



Fault detection in multirobot system 42

multiagent systems inspired by the adaptive immune system Proceedings of the International

Conference on Autonomous Agents and Multiagent Systems (IFAAMAS, Red Hook, NY) pp

23–30

[19] Terra M H and Tinos R 2001 Journal of Robotic Systems 18 357–374

[20] Bjerknes J D and Winfield A F T 2013 On fault tolerance and scalability of swarm robotic

systems Distributed Autonomous Robotic Systems (Springer Berlin Heidelberg) pp 431–444

[21] Christensen A L, O’Grady R, Birattari M and Dorigo M 2008 Autonomous Robots 24 49–67

[22] Skoundrianos E N and Tzafestas S G 2004 IEEE Robotics and Automation Magazine 11 83–90

[23] Verma V and Simmons R 2006 Robotics and Autonomous Systems 54 184–191

[24] Goel P, Dedeoglu G, Roumeliotis S I and Sukhatme G S 2000 Fault detection and identification

in a mobile robot using multiple model estimation and neural network Proceedings of the

IEEE International Conference on Robotics and Automation (IEEE Press, Piscataway, NJ)

pp 2302–2309

[25] Parker L 1998 IEEE Transactions on Robotics and Automation 14 220–240
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Appendix A. Behaviour discriminating features

The section details the computation of the number of behaviour discriminating features, in FVs of

length 6, 9, 12 and 15 bits. In each of the 16 fault-simulating behaviour detection experiments (see

Table 5, experiment setup (A)), we compute the number of control cycles when the value of each of

l features of the fault-simulating agent differs from the majority of the rest of the swarm. A feature

in the FV is counted discriminative if it differentiates between the normal and fault-simulating

behaviours in most of the 15,000 control cycles of the experiment.


