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Abstract. Fault detection and fault tolerance represent two of the most
important and largely unsolved issues in the field of multirobot systems. Efficient,
long-term operation requires an accurate, timely detection, and accommodation of
abnormally behaving robots. Most existing approaches to fault-tolerance prescribe
a characterisation of normal robot behaviours, and train a model to recognise
these behaviours. Behaviours unrecognised by the model are consequently labelled
abnormal or faulty. Multirobot systems employing these models do not transition
well to scenarios involving temporal variations in behaviour (e.g., online learning
of new behaviours, or in response to environment perturbations). The vertebrate
immune system is a complex distributed system capable of learning to tolerate
the organism’s tissues even when they change during puberty or metamorphosis,
and to mount specific responses to invading pathogens, all without the need
of a genetically hardwired characterisation of normality. We present a generic
abnormality detection approach based on a model of the adaptive immune system,
and evaluate the approach in a swarm of robots. Our results reveal the robust
detection of abnormal robots simulating common electro-mechanical and software
faults, irrespective of temporal changes in swarm behaviour. Abnormality detection
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is shown to be scalable in terms of the number of robots in the swarm, and in terms
of the size of the behaviour classification space.
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1. Introduction

The field of multirobot systems (MRS) has expanded rapidly since its advent in the
late 1980s [1}, 2], with groups of robots coordinating to perform a wide variety of tasks,
ranging from exploration and foraging [3, 4], to site construction, and warehouse-
management [5], 6] [7]. The coordination of robots in a MRS is a major challenge
because the robot behaviour depends not only on interactions with the immediate
environment but also on the behaviour of other robots. A centralised control
approach may not always be feasible due to computational and/or communication
constraints on robots (e.g., [8 @]). Distributed control, on the other hand, is often
complicated to realise because the behavioural rules for the individual units cannot
be easily derived from a desired macroscopic behaviour (e.g., [10, 11, 12]). In
the design of large-scale distributed MRS, several researchers have therefore taken
inspiration from nature, e.g., aggregation of amoeba into slime mold [13], quorum
sensing and communication in bacteria [14], division of labour in social insects
such as ants and honey bees (e.g., [4, B, [15]), and the adaptive immune system
in vertebrates (e.g., [10, 17, [18]).

The individual robots of a MRS are susceptible to failure, such as electronic
faults on the robot platform, electro-mechanical faults in the robot’s sensor and
actuation devices, and bugs in the software controlling the robot. Consequent
to the wide variety of intricate inter-robot interactions affecting robot behaviour,
the prediction and modelling of potential faults to an individual robot is a major
challenge. A straightforward approach to fault detection involves the addition of
special-purpose hardware to detect some of the common faults (e.g., torque and
position sensors for robotic manipulators [19]). However, the additional hardware
can greatly increase the cost and complexity of the individual robot platform, and
it is therefore preferably avoided in the design of large-scale MRS. Furthermore, the
multitude of individual robots constituting a large-scale MRS (e.g., robot swarms),
does not inherently result in a fault-tolerant system [20]. Explicit fault-detection
systems are therefore critical to enhance the autonomy and operating capacity of
MRS.

The engineering of fault-detection systems for robots is a well-studied problem,
and can be broadly classified into endogenous and exogenous models. In endogenous
fault detection, robots proprioceptively detect and monitor faults in their individual
behaviour (e.g., [21], 22, 23] 24]). In most of these models, artificial neural networks
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and radial basis functions are trained to detect faults based on the input-output
relationship of the focal component. These approaches have been successfully used
to detect faults in components such as, actuator joints of a robotic manipulator [19],
wheels [22], and treels (wheels with tracks) [21] of a mobile robot. The large majority
of endogenous fault detection models are built on the assumption that the normal (no
faults present) operating behaviour of the robot is known, and can be characterised
beforehand. Consequently, the models are trained to recognise prescribed normal
behaviour, and behaviours not recognised by the model are labelled abnormal.
However, while such approaches provide some interesting results of robust fault
detection and fault tolerance, they may not easily transition to different and varying
characterisations of normality in collective systems. Transitions in normal behaviour
can occur in scenarios wherein robots change their behaviour through online learning,
or in response to variations in the environment. In addition, the prior information
on the characterisation of normal operating behaviour may not always be available
to the system designer. In summary, the endogenous fault detection capabilities of
the robot tend to be designed rather specifically to the particular behaviour of the
target system, under a specific set of task parameters.

Exogenous fault detection (e.g., [25, 26 27 28, 29]) refers to the capacity of
one robot can detect the presence of faults in other, physically separated robots.
Some faults are difficult to detect endogenously by the robot, such as mechanical
failures consequent to a broken connection to a power source, or software bugs in
the robot controller. Alternatively, while the robot may be able to proprioceptively
detect faults, the fault itself might disable the robot’s communication and capability
to alert other robots or a human operator. Consequently, in exogenous fault
detectors, the multiplicity of robots in MRS allows the robots to robustly and
explicitly detect the presence of faults in one another. Fault detection in MRS
composed of a limited number of relatively complex robots has been extensively
studied in the past (e.g., [25 26l 27, 28, 29]). For instance, a high degree of fault
tolerance was achieved by cooperating teams of robots utilising the ALLIANCE
software architecture [25], consequent to a mathematical modelling of the robot’s
motivation to perform different tasks, and an adaptive task selection based on
these motivation. In other approaches (e.g., MURDOCH [26] 27] and TraderBots
[28]), fault detection and fault tolerance was built into an explicit inter-robot
communication process used by the robots to negotiate task allocation. However,
in all these approaches, successful fault detection required prior knowledge of the
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various tasks to be performed, and their corresponding measures of performance.
Furthermore, these fault-detection approaches were designed for MRS consisting of
a limited number of tightly-coupled, and relatively complex robots.

The deployment of large-scale MRS would require scalable and completely
distributed algorithms for fault detection, if they are to achieve a high level of fault
tolerance. Christensen et al. [30] proposed one such approach for MRS swarms,
inspired by synchronised flashing behaviour of fireflies, in which failed robots were
exogenously detected by other operational members of the swarm. However, by
nature of the underlying model, only faults involving a complete robot failure could
be detected. The effect of such faults on the MRS collective behaviour has been
shown to be relatively benign [31]. By contrast, robots plagued with partial failures
have a far greater potential of disrupting the MRS behaviour [20]. In other work,
Lau et al. [16, [32] investigated the detection of errors due to faults in a cooperative
foraging MRS operating in a dynamic environment. Various statistical classifiers and
kernel density estimation functions were applied to the number of pucks foraged by
individual robots, to detect outliers (caused by robot faults). While this approach
successfully detected errors with a low false-positive rate and latency time, the faults
considered were limited to the wheels of the simulated foraging robot. Additionally,
a prior knowledge of the behaviour of the robot was required to design the fault-
detection system.

An interesting analogy can be made between fault-detection systems and the
adaptive immune system. The adaptive immune system too has to allow the body’s
cells and tissues to function normally, while mounting an immune response or
attacking what may be abnormal cells or tissues (e.g., infected cells, and cancerous
cells) [33]. The characteristics of these abnormalities and that of the normal cells and
tissues are in principle open-ended, and therefore differ from current approaches to
endogenous and exogenous fault detection in robots. Experimental evidence indicates
that the tolerance exhibited by the immune system results from the dynamics
and interactions between specific regulatory and effector T-cells (e.g., [34]). The
decentralised nature of these intercellular interactions imparts a high degree of
robustness for fault detection, without the need of a genetically hardwired record
of what normal tissues should look like.

In this paper, we present an approach based on the adaptive immune system for
exogenous fault detection in large-scale multirobot systems. The main advantages of
the proposed approach are that (i) the different behaviours and their characterisation
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(normal or abnormal) is learned online and need not be known beforehand, (ii) the
approach is completely decentralised and does not rely on task negotiation (or
knowledge of tasks), and (iii) detection is not limited to robots experiencing
complete failure or any other limited set of faults. Our system is based on the
crossregulation model (CRM) [35] 36, [87], which is a mathematical model that
captures the robust maintenance of immunological tolerance by allowing the system
to discriminate between antigens based solely on their density and persistence in the
environment. The system is able to tolerate body antigens (the molecular components
of body tissues) that are characteristically persistent and abundant, and to mount
an immune response to foreign pathogens, that are characterised as being neither
persistent nor abundant. In our fault-detection approach, each robots executes an
independent instance of the CRM. Previously, we have studied a computationally
costly CRM implementation was used directly from [35], for a preliminary assessment
of abnormality detection in small-sized MRS [38] [I8]. In this study, we present a
simplified CRM implementation for decentralised detection of abnormally behaving
robots, suitable for large-scale MRS (tested with up to 100 robots). Abnormalities
are exhibited with fault-simulating behaviours, such as a robot moving continually
in a straight line to mimic a sensor fault. The MRS demonstrates a reliable
detection of an introduced abnormally behaving agent, that is surrounded by robots
performing typical swarm behaviours (aggregation, flocking, dispersion or homing),
and irrespective of multiple temporal changes in the behaviour of the rest of the
swarm. Our model is capable of scaling both in terms of the number of robots in
the swarm, and in terms of the dimensionality of the space of behavioural features in
which the normal and abnormal behaviours are classified. Finally, resilience of the
CRM to stochastic variations in behaviour is demonstrated with a comparison of our
results with a threshold-based model for normal-abnormal behaviour classification.

The rest of the paper is organised as follows: first, we describe the
CRM (Section [l), and approximations to enhance the scalability of the
model (Section ). We then present the distributed embodiment of the CRM in a
MRS (Section H]). In Section B we report the results of our experiments for different
swarm behaviours and under different introduced faults. We vary the swarm size and
the number of primitive features used to encode agent behaviour, and we provide
a performance comparison of the CRM with a threshold-based model for behaviour
classification. Finally, we discuss our approach to fault detection and highlight the
conclusions of this study (Section [0).



Fault detection in multirobot system 7

2. Crossregulation model

The viability of multicellular organisms is consequent to two general principles [39).
Firstly, the persistence of any cell lineage requires that its cells continually interact
with the other cell types in the multicellular organism. Cells that fail to interact with
other cells eventually die. Secondly, the growth of a cell population involves density-
dependent feedback mechanisms controlling individual cell proliferation (division).
These feedback mechanisms may involve (i) indirect interactions among cells such as
a competition for limited growth factors, and (ii) direct interactions, such as contact
inhibition. These two principles are the foundation of the crossregulation model, and
have been justified extensively in Carneiro et al. [35]. Below, we outline the model
and highlight its key properties that are later embodied distributedly in a multiagent
system.

The CRM describes the population dynamics of cells of the adaptive immune
system, based on three mutually interacting cell types: (i) antigen presenting
cells (APCs) that display the antigen on their surface. Individual APCs have a
fixed number of sites (s) on which effector and regulatory cells can form conjugates;
(ii) effector cells Tg that can potentially mount an immune response which, depending
on receptor specificity, can be directed to foreign pathogens or to self-antigens; and
(iii) regulatory cells Ty that suppress proliferation of Tg cells with similar specificities.
Furthermore, the APCs are classified into different sub-populations of equivalent
APCs, with each APC in a sub-population presenting the same antigen on its surface.
Similarly, effector and regulatory cells are also classified into different sub-populations
or clones according to their specificity.

The dynamics of the T-cell population is regulated by the following density-
dependent feedback mechanisms: (i) effector and regulatory cells that are unable to
interact with APCs are slowly lost by cell death; (ii) the proliferation of effector and
regulatory cells requires interactions with APCs and depends on interactions these
T-cells make with each other. Proliferation of the Tg cell population is promoted
by the absence of regulatory cells on the APC. In contrast, Tz can only proliferate
following co-conjugation with effector cells on the same APC. Additionally, Tz and
Ty cells interact indirectly by competition for access to limited conjugation sites on
APCs.
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2.1. Mathematical formulation of the model

The dynamics of the interactions between effector and regulatory cells, with APCs
is described by a set of ordinary differential equations in the following variables:
(i) the number of effector E; and regulatory R; T-cells of clonal type i, where
i € {1,2...N} and N is the number of T-cell clones; (ii) the number of APCs
A;, where j € {1,2... M} and M is the number of different antigen types; (iii) the
number of conjugates Cj; formed between effector and regulatory cells from clone 7
and APC from population j.
For the effector E; and regulatory R; cells of clone i, we have:

dE .
dR; .

where the involved quantities are defined in Table [Il In this parameter table, the
CRM parameters representing the number of binding sites on an APC (s), and the
seed population of T-cells (Ey and Ry), are set based on our previous experiments in
using the model for robust and online classification [38, 40, [1§]. The remaining CRM
parameters of T-cell-APC interactions (7, and ~,), and T-cell proliferation and death
rates (mg, mr and J), can be reduced to two key composite parameters representing
effective growth rates of effector and regulatory T-cells, that define the parameter
regimes of the model (details in Sec. 2.2] and [36]). These model parameters are
set from knowledge of the underlying biology; wherein, the T-cell-APC interaction
rates are known to be orders of magnitude faster than T-cell proliferation and death
rates [35].

The equations for E; (eq. ) and R; (eq. 2)) have two terms. The first term
represents the proliferation of activated effector £} and regulatory R cells, and the
second term accounts for the death of T-cells, which is assumed to be at constant
rate. In the simulations, we generate all T-cell clones with similar initial conditions
ie., Vi, £;(0) = Ey and R;(0) = Ry.

The density of activated Tg and Ty cells of each clone are computed in a stepwise
manner. Let us consider the interactions between the i-th T-cell clone and the j-th
APC population. The dynamics of the conjugates C;; is described by the following
equation:
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Table 1: Parameters of the crossregulation model.

Param. | Description Value (a.u.)
Aj Density of APCs of sub-population j —
s Maximum number of T-cells that can bind to an | 3
APC
Ey Seed density of effector cells 10
Ro Seed density of regulatory cells 10
E; Density of effector cells of clone @ —
R; Density of regulatory cells of clone 7 -
T; Density of T-cells of clone 4 E; + R;
Cij Density of conjugates between T; and A; -
Ye Conjugation rate of T-cells to APCs 101
Yd Deconjugation rate of T-cells from APCs 10~1
TR Proliferation rate of effector cells 103
TR Proliferation rate of regulatory cells 0.7 x 103
é Death rate of effector and regulatory cells 106

dC.. M al
dtZ = 7ebij (Tz - Z Cz‘j) (Ajs - Z C,-j) — 7l (3)
j=1 i=1

where T7; = F; + R;, and 7. and 7, involve the conjugation and deconjugation
rates between APCs and T-cells, respectively (parameters in Table[]). In the above
equation, new conjugates are formed by the free T-cells of clone ¢ with the available
sites on APCs of population j at rate .. The conjugation rate is also controlled by
the affinity 6;;, between the T-cells and APCs. The existing conjugates dissociate
at rate 4. As the conjugation and deconjugation of T-cells from the APCs is a
fast process with respect to the overall T-cell population dynamics, we numerically
integrate to the quasi-steady state values of the conjugates, by the Euler-Heun
adaptive step method [41].

The densities of activated effector E} and regulatory R} cells can now be
calculated, for all T-cell clones i. Conjugated effector cells are activated in the
absence of regulatory cells on the same APC. In contrast, conjugated regulatory
cells can only be activated if at least one effector cell is simultaneously conjugated
to the same APC. Given the conjugate density C;; at quasi-steady state, the density
of conjugated effector and regulatory cells is calculated proportional to the relative
frequency of Tg and Ty cells in the clone. For the conjugated effector Ec;; and
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regulatory Rc;; cells of clone 7 at APC population j, we have:

CiEi CiiR;
Ec;; = % and Rc;; = 7{

Finally, for the number of activated effector E} and regulatory R} cells, we have:

M

Ez* = Z Pe(Aj> ECj, RCJ)ECZ] (4)
7j=1
M

R;k = Z P,«(Aj, ECj, RCj)RCZ‘j (5)
j=1

where the function P, is the probability that an effector cell is conjugated with no
neighbouring regulatory cell at the same APC. P, is the probability that a regulatory
cells is conjugated with an APC that has at least one effector cell conjugated
simultaneously. Additionally, F'c; and Rc; are the total number of conjugated effector
and regulatory cells on the APC sub-population j:

N N
ECj = ZECU and RCj = ZRCZ']‘
i=1 i=1

The probability functions P. and P, can be reduced to the following expressions,
based on a multinomial approximation [42] that is valid given that the total number
of sites (summed over all the APCs) is much larger than the number of sites per
APC. For three binding sites (s = 3) on each APC, we have:

(RC]' — 3Aj)2

Pe(AjvEcijCj) = 9A2 (6)
J

6Aj — ECj)ECj

(
P.(A;, Ec;, Re;) = (7)
J J J 9143

Utilising the probability functions P, and P,, the density of activated effector
and regulatory cells is calculated (eq.d and [B)). Finally, for each T-cell clone ¢, the
population of effector E; (eq. [Il), and the population of regulatory R; (eq. ) cells,
are updated.
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2.2. Behaviour of the cell population

The population dynamics behaviour exhibited by the CRM is governed by two
key composite parameters representing the effective growth rates of Tg and Ty
cell populations [36]. These two parameters are directly proportional to the basic
parameters controlling population growth i.e., conjugation constant (7.), affinity
between T-cell and APCs (,;), proliferation rates of effector and regulatory cells (7
and 7r), and the density of APCs (A;). The effective growth rate of the T-cells is also
inversely proportional to the death rate () of the corresponding population. The
composite Tg and Ty growth parameters define four parameter regimes according to
the resulting cell population behaviour. Three parameter regimes result in a single
stable state that may correspond to either: (i) extinction of all T-cells (Tg = 0,
Tz = 0), (ii) immune state (Tg > Tz, Tg = 0), or (iii) tolerant state (Tg < Tg, Tz > 0).
The fourth parameter regime corresponds to a bistable system where both immune
and tolerant states are stable. A detailed analysis of these four parameter regimes is
provided in Leon et al. [36].

In the present study, the parameter values of the CRM have been set so that
at very low APC densities, the stable state corresponds to extinction of all T-
cells (A < ag, Figure [[h). Furthermore, at low APC densities, the system evolves
into a single immune state, composed only of effector cells (ap < A < ag, Figure[Ih).
Finally, at a relatively high density of APCs, the system is bistable (A > ag,
Figure [Th) and can evolve either into an equilibrium state consisting predominantly
of effector cells (immune state), or into a state composed largely of regulatory
cells (tolerant state). The system develops into the regulatory cell dominated tolerant
state, provided that the seeding population has sufficient Ty cells. By contrast, if Ty
cells are initially underrepresented, the Tg cells will competitively exclude the former
from the system. Consequently, the CRM is able to discriminate between antigens
based on their abundance in the environment.

The CRM is also able to discriminate between antigens based on their persistence
in the environment, wherein the outcome of the model depends on the speed and
magnitude of the rise in APC density, relative to the proportion of Ty cells present
in the seed population. In the bistable parameter regime, whatever the proportion
of Ty cells, they may be diluted in forming co-conjugates with Tg cells, if the influx
of APCs is sufficiently fast and large. Consequently, the Tt cells would dominate the
population, resulting in an immune response (e.g., Ty cell dilution at APC densities
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Figure 1: Equilibrium densities of E and R cell populations as a function of
APC density. (a) Bifurcation diagram of the CRM, representing all possible
equilibrium densities of T-cells (sum of variables, E 4+ R), as a function of the APC
density (parameter A). (b) Equilibria that are actually reached by solving the system
with a fixed seed T-cell population (Fy = 4, Ry = 2, remaining parameter values in
Table ).

exceeding 10, see Figure [Ib). By contrast, if the APC influx is slow and gradual
enough, a fraction of Ty cells in the responding population may slowly adapt its size
and control the expansion of Tg cells, allowing for a tolerance response.

3. Simplified implementation of the crossregulation model

The numerical integration of the T-cell population is a recurrent two-step process
comprising of, (i) the integration of T-cell-FAPC conjugates to the quasi-steady state,
and (ii) utilising the conjugated T-cell densities to update the population of Tg
and Ty cells. The numerical integration of the conjugated cells can be avoided, and
consequently the computation burden of the model reduced using an approximated
analytic expression of the steady-state values of the conjugated cells C;;. This analytic
expression is valid in the special condition that T-cells are always in excess to APCs,
as proposed by [43]. In this section, we derive such an analytical expression, and
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highlight the properties of the resulting CRM implementation.

The dynamics of the conjugates Cj;, between the i-th T-cell clone and the j-th
APC sub-population can be simplified by assuming that the total T-cell density is
in excess of the density of conjugated cells (i.e., for all T-cell clonal types i in the
population, T; > Z;Vil Ci;). Consequently, eq. Bl can be reduced to the following
equation:

d¢; al
d—tj = ’}/C(Z ewﬂ) (AjS — CJ) — ’)/de (8)
i=1

From eq. B, the quasi-steady state density of the conjugated cells is calculated
as the following function, for each existing APC sub-population j:

YeAjs 3o 04T
Ya+ Ve Yoy 05T

The total number of conjugated effector and regulatory cells on the APC sub-
population j is then calculated, proportional to the relative frequency of Tg and Ty
cells, and weighted by their affinity to the APC sub-population j. For the total
density of conjugated effector Ec; and regulatory Re; cells at APC sub-population

C; =

J, we have:

N N
Ec; = Cjigi;l Z”? and Rc; =C} 7§2;1 Z”];Z
i=1Yijti i=1Yijdi
The total number of conjugated effector and regulatory cells on the APC sub-
population j is now factored into the different T-cell clones i in the population.
For the conjugated effector Ec;; and regulatory Rc;; cells of clone i at APC sub-
population j, we have:

zv%i and Rc;; = chNeiji
Zu:l equu Zu:l Hquu

Finally, utilising eq. d and [ to compute the density of activated effector £ and
regulatory R cells respectively, for each T-cell clone 7, the population of effector
E; (eq.[) and regulatory R; (eq.[2) cells is updated.

In the implementation of the simplified CRM, the T-cell population is able

ECU = ECj

to discriminate between antigens based only on their abundance, and not on
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Figure 2: The simplified CRM’s equilibrium densities of £ and R cell populations,
reached by solving the system for a fixed seed T-cell population (Ey = 4, Ry = 2,
remaining parameter values in Table [I]).

their persistence in the environment (Figure [2). For the selected parameter
values (Table [I]), at low APC densities, the system evolves towards a single immune
state composed only of effector cells. By contrast, at relatively high density of
APCs, the system exhibits bistability, and evolves into the regulatory cell dominated
tolerance state, provided that the seeding population has sufficient Ty cells.

The model’s capability to discriminate between the antigens in the environment
based only on the density, allows for a reactive abnormality detection system. In the
resulting system, the abnormally behaving agents are detected immediately upon
their occurrence, and without any delay in allowing for the abnormality to establish
persistence in the swarm.

4. The CRM in a Multiagent System

In this section, we demonstrate how the CRM can be implemented for a distributed
embodied multiagent system in order to give the system the capacity to detect
abnormally behaving agents, while maintaining a tolerance towards normal swarm
behaviour. Behaviours that are abundant (performed by many agents in swarm) are
to be tolerated. By contrast, rare behaviours (exhibited by a single or few agents)
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are to be detected as abnormal behaviours that may be caused by a fault. We show
that the multiagent system is able to detect abnormally behaving agents, and adapt
online and tolerate different normal behaviours.

We assume that the agents can observe neighbouring robots over a certain period
of time with sufficient accuracy to characterise their behaviour. On real robots, the
sensory equipment necessary to facilitate observations is task-dependent. Movement-
centric behaviours, such as the traditional swarm behaviours used in this study, could
be characterised by robots equipped with relatively localisation hardware (e.g. an
infrared range and bearing system [44]), while for other robots and tasks in which
body posture is relevant, sensors such as depth cameras or laser scanners could be
used.

We use a stochastic, spatial, discrete-time multiagent system simulator. The

2 and composed of 20

simulated environment is toroidal and has a size of 5 x 5 m
mobile agents of diameter 7.5 cm. Each agent has a maximum speed of 10 cm/s,
with a control cycle of 0.1 s, and performs the behaviour assigned to it at the start
of the simulation. During the simulation, each agent senses the behaviour of its ten
nearest neighbours, and runs an internal and individual instance of a CRM in order to
determine if the perceived behaviours of the neighbouring agents are to be tolerated
or not. In the private CRM instance running on each agent, different APC sub-
populations are associated with distinct perceived behaviours. The APCs stimulate
the growth of virtual Tz and Ty cell populations of different clonal types (eq. [l and
2) to immune or tolerance stable states, to determine if the behaviours observed are
normal or abnormal, respectively.

Swarm behaviours: The normal swarm behaviours simulated are (a) disper-
sion, (b) aggregation, (c) flocking, and (d) homing towards a moving landmark. The
behaviours are implemented using a subsumption architecture [45]. According to
the designed architecture, the basic behaviour allows an agent with no neighbours to
perform a random walk. In dispersion, the agents move in the opposite direction of
the centre of mass of their neighbours (Figure Bh). By contrast, in aggregation, the
agents move towards the centre of mass of surrounding agents, but disperse away if
too close to their neighbours (Figure Bb). Similarly, homing agents move towards a
single prespecified agent that serves as a moving landmark, and move away if too
close to the landmark or to other agents (Figure[Bk). The landmark agent for homing
is selected at random at the start of the experiment. Finally, in flocking (Figure Bd),
agents continually adjust their velocity to that of neighbouring agents. Furthermore,
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Table 2: Parameters of an agent

Param.

Description

Value

N
| Umax |

Maximum linear speed of agent

10 cm/s

|91

Linear speed of agent

Wmnax

Maximum change in direction

7 radians

16

of agent per control cycle

w Change in direction of agent | —
per control cycle

<L

Average velocity of neighbours | —
in 60 cm range

Dvu Direction of relative velocity to ‘g'

neighbours in 60 cm range

u

arccos ( ) radians

n; Number of  neighbouring | —
agents in the inner range of
[0,30] cm

o Number of  neighbouring | —
agents in the outer range of
(30, 60] cm

w Length of the time window for
feature computation

45 s

P Distance traversed by the | —
agent in the past W' s

flocking agents, aggregate towards and disperse from neighbours, if they are too far
away or close by, respectively.

Faulty behaviours: An agent may behave abnormally so as to: (a) move
continually in a straightly line (STRLN); (b) perform a random walk, with a
0.01 probability of changing to a new random direction each simulation control
cycle (RNDWK); (c) circle with diameter 10 cm around a fixed point (CIRCLE);
or (d) stop completely (STOP). These additional behaviours are introduced to
mimic: (a) software bugs and sensor faults in the agent controller (STRLN and
RNDWK); (b) motor malfunctions or blocked wheel (CIRCLE); and (c) a broken or
dead battery (STOP).

Encoding of agent behaviour: We divide an agent’s behaviour into
three different classes: (i) the agent’s immediate environment (sensors), (ii) the
agent’s actions (actuators), and (iii) the agent’s response to events (sensorimotor
interactions). Behavioural features from each class are then used to characterise an

I Simulation source code can be downloaded from http://www.isr.ist.utl.pt/~dtarapore/
scalablefaultdetection


http://www.isr.ist.utl.pt/~dtarapore/scalablefaultdetection
http://www.isr.ist.utl.pt/~dtarapore/scalablefaultdetection
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(a) Dispersion (b) Aggregation

(¢) Homing towards moving landmark (d) Flocking

Figure 3: Examples of the normal behaviours exhibited by the swarm.
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agent’s behaviour. Individual features are encoded in Boolean form (present= 1,
absent= 0), and then concatenated to form a binary string, the feature vector (FV).
In our simulations, a FV comprises the concatenation of six features (Fy, Fs ... Fs),
with two features from each behaviour class. The features are computed utilising the
behavioural information collected over a moving time window of W s. Consequently,
the computation of the FV is initiated after W s of the simulation.

The first two features, Fi(7) and Fy(7) at time 7, pertain to the agent’s
immediate environment, i.e., neighbours in proximity:

T—W
Fi(r)=1if 2iter W(i[m(t)] > 0.5 , otherwise Fi (1) =0 (9)

e s Ulng(1)]
Fy(r)=1if i

> 0.5 , otherwise Fy(1) =0 (10)

where n; and n, are the number of neighbours in the inner ([0,30] cm), and
outer ((30,60] cm) range, respectively. Furthermore, U[n] is the unit step function,
defined as:

1, ifn(t) >0

0, otherwise

At time 7, the features Fi(7) and Fy(7) are set, if the agent has at least one
neighbour in range [0,30] cm and (30,60] cm, respectively, for the majority of the
past W s (see parameters in Table [2)).

The next two features, F3(7) and Fy(7), pertain to the agent’s motors. For these
two features, we have:

Fg(T)
F4(T)

p(7) > 0.05W |Upay| , otherwise F3(7) =0 (11)

=1if
= 1if [U(7)| > 0.05|Vpax| , otherwise Fy(7) =0 (12)
where, at time 7, p(7) cm is the distance traversed by the agent in the past W s,
speed |U(7)| em/s, and maximum speed |Upay| cm/s. The feature F3(7) is set, if p(7),
exceeds 5% of the maximum distance that may be traversed by the agent in W s.
Similarly, Fy(7) is set, if |0(7)| cm/s exceeds 5% of the maximum agent speed. For
both features F3(7) and Fy(7), the 5% threshold is set to compensate for stochastic
variation in agent behaviour.
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Finally, for the last two features, F5(7) and Fy(7), pertain to the agent’s
sensorimotor interactions. For these interactions, we define two sensorimotor
interaction events S,, and S,,, as follows:

S(T) = Ulni(1) + no(7)] AU[|w'(T)] — 0.03w;,]

max

Sn(1) = =Uni(7) + no(7)] AU[|w'(7)| — 0.03w;

max]

The above sensorimotor interaction event S,,(7) is set, if the agent’s angular
acceleration exceeds +0.1 radians (3% of maximum angular acceleration), in the
presence of sensory input (one or more neighbours in range). Similarly, S, (7) is set,
for the same motor response, in the absence of sensory input (no neighbours in range).
The angular acceleration threshold in registering a motor response is set suprazero
at 3% of maximum angular acceleration, to compensate for stochastic variation in
agent behaviour.

Consequently, for the the features F5(7) and Fg(7),

T—W
Fs(r)=11if Z S (t) > 0, otherwise F5(7) =0 (13)
t=1

—W
Fy(r) = 1if Y Su(t) > 0, otherwise Fy(r) =0 (14)
t=1
where, the features F5(7) and Fg(7) are set if the sensorimotor interaction events Sy
and S, respectively, occur at least once in time window .

Immunological response to agent behaviour: At the start of each time-
step, an agent senses the behaviour of its ten nearest neighbours as 6-bit FVs
according to eqs. QHIZ2] and computes the number of agents assigned to each 6-
bit FV (FV;). In the agent’s internal CRM instance, APCs are then generated
corresponding to each of the feature vectors perceived. Each APC presents an
individual FV to the T-cells. The number of each type of the APCs generated
A; =kFV;, forj e {l,..., M}, where k is a scaling constant, and M is the maximum
number of different feature vectors perceived by the agent (M = 2° for 6-bit FV).

The T-cell clones (11,75,...,Ty), each have a different receptor encoded as
a binary string, which determines their affinity to the APC sub-population. The
affinity between T-cell clonal 7 and APC sub-population j is denoted by 6;;:
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Table 3: Parameters of the stochastic simulator

Param. | Description Value (a.u.)
l Length of binary feature vector 6 bits
M Maximum number of different | 2!

feature vectors

N Maximum number of T-cell | 2!
clones

c Cross-reactivity between T-cells | 0.15
and APCs

Ig Density of new effector cells | 10
introduced at each simulation
time-step

Inp Density of new regulatory cells | 10
introduced at each simulation
time-step

k FVs to APCs scaling factor 0.002

Time CRM instance is executed, | 5 x 107
in a single simulation time-step

d Proportion of T-cells diffused to | 0.5
neighbouring agents

0= exp (~22) (15)
where H is the Hamming distance between the receptor of T; and the FV presented
by A;, lis the length of the FV, and c is the cross-reactivity between T-cells and
APCs. A high value of ¢ would result in all T-cell clones having a high affinity to
all APC sub-populations. By contrast, at low ¢, each T-cell clone would have a high
affinity to only one distinct APC sub-population.

At the start of the simulation, the number of effector and regulatory
cells on each agent are initialised to Ey and Ry respectively. Following this,
Algorithm 1 (parameters in Table [3)) is executed by the agents in each simulation
time-step, to simulate their internal CRM. The agents begin by sensing their
neighbours, and computing the distribution of feature vectors. The CRM is then
numerically integrated for time S, allowing the system to respond to the different
APCs.

After computing the number of effector and regulatory cells at time S, the
cells diffuse among the agents. In this communication phase, each agent selects
at random another agent, from one of its ten nearest neighbours. Following the
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selection, each agent sends and receives d of its effector and regulatory cells. In our
previous work [38], we found that communication of cells yields a higher performance
when agents move between regions with different feature vector distributions. Finally,
the agent decides the nature of each FV F'V; sensed by first computing the following
quantities:

E=" 0B R=Y., 0;R

and tolerating the FV if R > F. By contrast, if £ > R, the FV is classified as faulty
by the agent.

The parameters of T-cell proliferation and death rates are set so that an
agent tolerates a FV if it is expressed by more than a single neighbouring agent.
Additionally, the cross-reactivity parameter c is set so that the FV expressed by
a single agent is tolerated if it differs by less than [/3 features from any of the
perceived F'Vs being expressed by two or more neighbours. Otherwise, the perceived
FV is classified as faulty by the agent.

In the simulation of the CRM instance for an agent, the number of different APC
sub-populations and T-cell clones are limited to the number of observed neighbouring
agents. Consequently, in the implementation of the of Algorithm 1, a linked-list data-
structure is used to explicitly represent the existing APC sub-populations, T-cell
clonal types and their conjugates.

5. Experiments

The main advantage of a CRM-based approach is that classification of normal
vs. abnormal behaviour is continually and autonomously learnt online while the
agents operate in the task environment. Prominent advantages of the online learning
of the classification include that normal behaviour need not be prescribed a priori,
and that the performance is unaffected by changes to normal behaviour as long
as most or all agents change their behaviour simultaneously. In the following, we
assess the performance of our CRM-based approach in different scenarios. We first
evaluate the capacity of a multirobot system to detect abnormal behaviour for
different combinations of normal and fault-simulating behaviours (Section [5.1]). We
then evaluate how frequently normally behaving agents are misclassified as behaving
abnormally (Section [(.2]), and the influence of transitions in normal behaviour on
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Algorithm 1 An agent’s control loop (simulation of a CRM instance)

{Perceive neighbouring agents}
Compute distribution of feature vectors (F'V}) of neighbouring agents
Assign feature vectors to APCs i.e., Vj, A; = kFV}
{Influx of new T-cells}
Vjie{l,2...M},if A; >0, increment F; and R; by Ir and Ig, respectively
{Run instance of CRM}
time < 0
while time < S do
Vie{1,2...N} and T; > 0, and Vj € {1,2... M} where A; > 0, compute the number of
conjugated cells C;; in quasi-steady state.
10:  Using the number of conjugated cells, compute the updated number of effector and regulatory
cells with the Euler-Heun adaptive step method [41I]. The adaptive step size is stored in h
11:  time < time+h
12: end while
13: {Diffuse cells across neighbouring agents}
14: Randomly select one of the agents in the communication range following a linear distribution
and weighted by the total number of cells on the respective neighbouring agents
15: Exchange cells with agent
16: {Decide if feature vectors are to be tolerated or not}
17: For each feature vector, compute the sum of effector and regulatory cells, weighted by their
affinity.
18: Tolerate the feature vector if total regulatory cells exceeds effectors, else interpret it as faulty.
Log the outcome of the classification.

performance (Section [5.3]). The scalability of our CRM-based approach is then
evaluated, first in terms of the dimensionality of the FV space (Section [.4]), and
then in terms of swarm size (Section [5.5]). Finally, we compare the performance of
our CRM-based approach with the performance of a threshold-based approach to
behaviour classification (Section [.6]).

5.1. Detection of abnormalities

2 toroidal

We ran experiments with 20 randomly placed agents in a 5 X 5 m
environment. In the swarm, 19 of the 20 agents performed one of the normal
behaviours, that is, aggregation, dispersion, flocking or homing, while one agent
performed one of the fault-simulating behaviours, STRLN, RNDWK, CIRCLE and

STOP. The FVs used by the CRM-based abnormality detector were composed
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Figure 4: Detection of abnormalities. Proportion of time fault-simulating agent
is detected as abnormal across 20 replicates, in each of the 16 distinct combinations
of normal (aggregation, dispersion, flocking and homing) and abnormal (STRLN,
RNDWK, CIRCLE and STOP) behaviours%

of (F1, Fy ... Fg) (see Section[]). We ran 20 replicates for each combination of normal
behaviour and fault-simulating. Each replicate lasted 15,000 cycles (corresponding
to 1,500 s), and we recorded the proportion of time during which the fault-simulating
agent was correctly detected as behaving abnormally by neighbouring agents. The
results are summarised in the box-plot in Figure dl with one box for each combination
of normal and fault-simulating behaviour.

The results of experiments with three combinations of normal and fault-
simulating behaviour are prominent: (i) in aggregation/CIRCLE, the distribution
of proportion of time the fault-simulating agent is detected is wide; (ii) in
dispersion/RNDWK; the proportion of time the fault-simulating agent is detected
is very low (median: 0.023); and (iii) in flocking/STRLN, the proportion of time
the fault-simulating agent is detected is low in the majority of the replicates. In
all three cases, the relatively low proportion of time that the fault-simulating agent

& On each box, the mid-line marks the median, and the box extends from the lower to upper quartile
below and above the median. Whisker outside the box indicate the maximum and minimum values,
except in case of outliers, which are shown as crosses. Outliers are data points outside of 1.5 times
the interquartile range.



Fault detection in multirobot system 24

is detected is caused by similarities between the fault-simulating behaviour and the
normal behaviours in certain situations: in the aggregation/CIRCLE experiments,
some or all normally behaving agents may aggregate around the circling agent
causing it to become a member of an aggregate, and detected as such. In the
dispersion/RNDWK experiments, all agents disperse away from one another and
from the fault-simulating agent performing random walk. As soon as the fault-
simulating agent approaches a normally behaving agent, the normally behaving
agent will disperse away from the random walking agent. All the robots in the
MRS will therefore be dispersed and the fault-simulating agent is thus difficult to
detect. Finally, in several flocking/STRLN replicates, normally behaving robots end
up forming a flock around the fault-simulating agent moving in a straight line. The
relatively low proportion of time that the fault-simulating is detected in many of
the aggregation/CIRCLE, dispersion/RNDWK, and flocking/STRLN experiments
are thus due to the self-organised behaviour of the swarm that makes the fault-
simulating behaviour of a single agent indistinguishable from normal behaviour.

5.2. Tolerance to normal behaviour

The effectiveness of a fault detection system depends as much on its capacity
to avoid false positives and correctly classify normal behaviour as its capacity to
detect faults. Consequently, we evaluated our CRM-based approach to abnormality
detection in a series of experiments in which all 20 agents behaved normally, and
we measured the proportion of time the agents were correctly classified as behaving
normally (tolerated) by their neighbours. In Figure Bl we have plotted the mean
proportion of time that agents are tolerated in each of 20 replicates of the four
normal swarm behaviours (horizontal axis), and the variation between the 20 agents
observed in each replicate calculated as the difference between the maximum and
minimum time tolerated (vertical axis).

The mean proportion of time that normally behaving agents were correctly
classified was high across all experiments, at 0.9974 4+ 0.002 for aggregation,
0.9819 + 0.002 for dispersion, 0.9966 + 0.002 for flocking, and 0.9997 4+ 0.001
for homing (mean+SD). The variation in time tolerated between the agents of
the swarm, in individual replicates, is low (less than 0.1) for all four swarm
behaviours (see Figure [).

The CRM-based abnormality detector classifies the behaviour of neighbouring
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Figure 5: Tolerance to normal behaviour. Mean and variation in proportion of
time agent tolerated, across the 20 agents of the MAS, in each of 20 replicates of four

swarm behaviours. Variation measured in each replicate as the difference between
the maximum and minimum time tolerated, across the 20 agents.

agents at every control cycle. The results presented in Figures[d and [5lfor abnormality
detection and for tolerance of normal behaviour, respectively, correspond to the
direct, uninterpreted output of the CRM-based abnormality detector. A more
reliable classification of behaviour can be obtained by accumulating the output
over a series of consecutive control cycles instead of classifying the behaviour of
neighbouring agents based on the output in a single control cycle. Depending on
the relative cost of tolerating an abnormally behaving agent (false negatives) and of
incorrectly classifying an agent as behaving abnormally (false positives), the output
may be interpreted in one of several ways. A simple scheme involves storing the past
n outputs of the CRM-based abnormality detector and only classifying an agent as
behaving abnormally if it has been detected as such for the majority or all past n
control cycles. If fault accommodation is expensive, while the presence of abnormally
behaving agents has a relatively small impact on performance, n could be set to a
relatively high value. Conversely, in critical tasks where abnormal behaviour can be
catastrophic, n could be set to a relatively low value. With n = 100 (corresponding to
10 s), wherein only agents detected abnormal in all n control cycles were interpreted
as behaving abnormal, we observed a significant reduction in the number of false
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positive incidents compared to when the output of the CRM-based classifier is used
directly (corresponding to n = 1): with n = 1, the median number of false positive
incidents per replicate was 15 (max. 38) across all experiments, while for n = 100,
the median number of false positive incidents was 0.5 (max. 1). A false positive
incident corresponds to a series of consecutive simulation cycles in which an agent is
incorrectly being classified as behaving abnormally, thus, to the number of times that
a swarm would incorrectly have taken steps to accommodate a non-existing fault.
The trade-off between false positives and false negatives can thus be fine-tuned based
on the task and its parameters.

5.3. Response to changes in agent behaviour

One of the main advantages of a CRM-based approach is that classification of
normal vs. abnormal behaviour is continually learnt online while the agents operate
in the task environment. Continual learning of the classifier potentially allows for
agents to change their behaviour without being classified as abnormal as long as a
sufficient number of agents follow suit. We setup a series of experiments to assess
the CRM-based approach’s capacity to tolerate changes to agent behaviour. We
first evaluated the performance of our CRM-based abnormality detector in three
different setups in which all agents transitioned from one behaviour to another and
then back again to the original behaviour. Each phase of an experiment lasted
5,000 control cycles (corresponding to 500 s). We used three different pairs of
behaviours: (a) aggregation and dispersion, (b) aggregation and flocking, and
(c) aggregation and STOP. It should be noted that the STOP behaviour in our
experiments in the previous section (Section [5.1]) was considered one of the abnormal
behaviours because it was only performed by a single agent, but that when all agents
perform the behaviour, it should be considered normal and therefore tolerated. We
conducted 20 replicates in each setup and the results are shown in Figure [6] where we
have plotted the mean time that agents are tolerated in each experiment (horizontal
axis) and the variation in each replicate (vertical axis).

5.3.1. Change in behaviour of all agents The proportion of time that the normal
behaviour is tolerated in the experiments in which the normal behaviour switches
from aggregation to either dispersion, flocking or STOP (see Figure[f]) is comparable
to the proportion of time that normal behaviour is tolerated when the normal
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Figure 6: Tolerance to changes in normal behaviour. Mean and variation in
proportion of time agent tolerated, across the 20 agents of the MAS, in each of 20
replicates, and two transitions in normal behaviour: (a) aggregation to dispersion
to aggregation (crosses), (b) aggregation to flocking to aggregation (circles), and
(c) aggregation to STOP to aggregation (triangles).

behaviour remains constant throughout an experiment (see Figure [Bl). Only in the
experiments in which behaviour was changed from aggregation to dispersion and
back again did we observe a slight drop in (uninterpreted) classification performance
immediately after the behaviour had been switched. Around 50 s after the agents
switch from dispersion back to aggregation, some agents will have aggregated while
others are still dispersed and moving toward an aggregate. Therefore, the differences
in observable behaviour can briefly lead the dispersed agents to be classified as
abnormal.

We analysed the distribution of F'Vs during the experiments in which all agents
changed behaviour, see Figure [l As it can be seen in the figure, the distribution of
FVs changes as the behaviour changes, and several different FVs are present in the
population of robots at any given time.

5.8.2. Change in behaviour of single agent We ran a set of experiments in order
to determine if an agent that starts to behave abnormally halfway though an
experiment can be detected reliably. For the first half of the experiment, all agents
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Figure 7: Behaviour FV distribution. Distribution of 6-bit FVs across the 20
agents of the swarm during 15, 000 simulation control cycles, and with transitions in
swarm behaviour occurring at the 5,000th and 10, 000th control cycle.

performed aggregation, while at the midpoint, a single agent switched its behaviour
to dispersion. Across 20 replicates, the mean proportion of time a normal aggregating
agent was tolerated during the first half of the simulation was 0.99 £+0.001, while the
mean proportion of time that the same agent was detected as behaving abnormally
in the second half of the experiments was 0.70 + 0.386. However, in 5 of the 20
replicates conducted, the focal agent was surrounded by other aggregating agents
when it switched from performing aggregation to dispersion, which explains the low
performance compared to experiments in which an abnormal behaviour is performed
from the start of an experiment (see Figure []).

In interpreting the CRM classification over a series of control cycles, our
results revealed a more reliable classification, despite the variations in behaviour. In
classifying a behaviour as abnormal if it was detected abnormal in all of the past n
control cycles (n = 100), no more than one false-positive incident was recorded for
the normally behaving aggregating agents. By contrast, with n = 1, the maximum
number of such incidents was 430. The introduction of this temporal filter has an
impact on the latency in detection of the abnormal agent. In the absence of the
filter, the abnormal dispersing agent was detected with a median latency time of
11.6 s (max. 481.2 s). With the filter (n = 100), the latency time was 26.7 s (max.
491.1 s), registering an increase by 44.0% when discounting the length of the time
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Table 4: Binary features encoding agent behaviour (parameters in Table [2)).

Notation | Value at time 7*

Fi(r) Ziss Ul 5 o5

Fa(r) i Ulno@l 5, 5

F3(7) p(7) > 0.05W | Upax|

Fy(r) |T()| > 0.05|Tnax]|

Fs(1) S Un(r) + no(n)] AU (7) — 0.03wp,] > 0
Fs () S ~Uni(7) + no ()] AUW (1) — 0.03wp,y] > 0
Fr (1) ni(r) >0

Fg(T1) no(r) >0

Fo(r) =W Ulni(1) + no(1)] A Ulw(T) — 0.03whax] > 0
Fio(7) W <Uni(7) 4+ no(1)] A U[w(7) — 0.03wnax] > 0
Fii(7) U[|0' (7)| = 0.05|0" gax|] > 0

Fia(7) Ulw(7) — 0.03wnax] > 0

Fi3(T) Ul|lw'(7)] — 0.03w)y] > 0

Fua(7) U[|9(7)| — |@(T)| — 0.05|vmax|] > 0

Fi5(7) Ulpou — 0.03wnax] > 0

*The binary feature is set if the condition is satisfied,
else 0.

series, and the three replicates where the abnormal agent was never detected.

5.4. Scalability of CRM in the F'V space

In this section, we study the scalability of our CRM-based approach with respect to
number of behavioural features considered by the abnormality detector. The main
questions are: (i) if and how the inclusion of additional features affects the accuracy
of abnormality detection, and (ii) what is the impact of the inclusion of additional
features on the computational cost of running the CRM-based abnormality detector?
We ran a series of experiments to assess performance and resources, for FV spaces of
different dimensionalities: 6, 9, 12, and 15 features. We considered FVs of, 6 features
(F1, Fy. .. Fg), 9 features (F, Fy ... Fy), 12 features (F, Fy ... Fis), and 15 features
(F1, Fy... Fi5). All features are computed based on behavioural information over
a moving time window of W s. The nine new features (F7, Fy... F}5), pertain to
the agent’s immediate environment (F7, Fg), sensorimotor interactions (Fy, Fi), and
absolute (Fi1, Fio, Fi3) and relative (Fi4, F5) motor outputs as detailed in Table [l

Results of experiments in which FVs of different lengths were used are
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Table 5: Experimental setups for results shown in Figures [§, [[T], and

Setup | Description

(A) Detection: a single agent in the swarm simulates a fault. The fault-simulating
behaviours considered are STRLN, RNDWK, CIRCLE and STOP, while the normal
behaviours for the rest of the agents in the swarm are: aggregation, dispersion,
flocking, and homing, resulting in a total of 16 combinations. Each box in the
plot summarises the proportion of time the fault-simulating agent is detected in 20
replicates in each of the 16 experimental setups (a total of 320 experiments per box).

(B) Tolerance: all agents in the swarm behave normally. The normal behaviours
considered are: aggregation, dispersion, flocking, and homing. Each box in the plot
summarises the proportion of time that the normally behaving agents are tolerated
in 20 replicates for each of the four normal behaviours (a total of 80 experiments per
box).

(©) Changes in normal behaviour: all agent synchronously transition from
aggregation to an alternative behaviour (dispersion, flocking, or STOP) and back to
aggregation during an experiment. The first transition in behaviour occurs one-third
into the experiment, and the second transition occurs two-thirds into the experiment.
Each box in the plot summarises the proportion of time the agents are tolerated in
20 replicates for each alternative behaviour (dispersion, flocking, or STOP, thus, a
total of 60 experiments per box). Note that when most, or all of the agents in the
swarm perform the STOP behaviour, it is considered the normal behaviour.

(D) Changes in the behaviour of one agent: a single agent transitions from the
normal behaviour performed by the rest of the swarm (aggregation) to an abnormal
behaviour (dispersion) halfway through the experiment. FEach box in the plot
summarises the proportion of time that the behaviour of the focal agent is correctly
classified by its neighbours, that is, the proportion of time that it is tolerated while
performing the same behaviour as the rest of the swarm, and then the proportion of
time that it is detected as behaving abnormally. We ran 20 experimental replicates
in the experiment setup.

summarised in Figure [§ where box-plots in (A) summarise abnormality detection
performance, (B) summarise tolerance to normal behaviour, (C) summarise tolerance
when all agents change behaviour simultaneously, and (D) summarise tolerance and
detection of a single agent that changes its behaviour from the normal behaviour to
an abnormal behaviour halfway through an experiment. Table [ lists the details on
the experimental setups used.

Across all experiments, we only observed relatively small differences in
performance when F'V spaces of distinct dimensionalities were used, with a maximum
difference in performance (proportion of time that behaviour is correctly classified)
of 7.9%. Some of the differences were found to be statistically significant using the
non-parametric Kruskal-Wallis significance test (d.f. = 4, p < 0.001), followed by
the Bonferroni multicomparison test: in the experiments summarised in Figure8(A),
FVs with a length of 9 bits yielded a significantly higher performance than FVs of
length 6, 12, and 15 bits; in the experiments summarised in Figure B(B) and [§(C),
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Figure 8: Scalability of CRM performance in terms of FV classification

space. Abnormality detection performance of the CRM across 20 replicates,

with 6, 9, 12 and 15-bit FV length: (A) detection of fault-simulating behaviours,

(B) tolerance to normal behaviours, (C) tolerance to transitions in normal behaviour

of entire swarm, and (D) response (immune and tolerance) to transitions in

single agent behaviour. See Table [3] for details on the experimental setups and
quantification of performance.

the FV of length 6 bits yielded a significantly higher performance than all of the
longer FVs; while no statistically significant difference was found in performance in
the experiments summarised in Figure B(D). The high variance in performance in
detection of a single agent transitioning to an abnormal behaviour (Figure B(D)),
was because of low performance in 5 of the 20 replicates (irrespective of FV size)
where the transitioning agent was surrounded by other aggregating agents when it
switched from performing aggregation to dispersion, and consecutively could not be
detected immediately as behaving abnormal. Overall, the results indicate that a
CRM-based abnormality detector is able to improve performance with the addition
of new behaviour features (F%, Fg and Fy), upto a point, and that the further addition
of redundant features do not compromise its classification accuracy.

The small decrease in performance with the FVs of length 12 and 15
bits (Figure §(A)), follows from the equation of affinity between T-cell clonal types
and APC sub-populations (eq. [[3]). In order to detect as abnormal an APC sub-
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Figure 9: Number of discriminating features. The number of fault-

simulating /normal behaviour discriminating features in 6, 9, 12 and 15-bit FV length,
across 20 replicates. Each box corresponds to the average number of discriminating
features for all 16 fault-simulating behaviour detection experiments (experiment
details in Table B, setup (A)).

population presenting the F'V of a fault-simulating behaviour, as the FV length [ is
incremented, more features of the FV are required to be different (longer Hamming
distance) between this APC sub-population and the receptors of regulatory cells
representing normal behaviour. This number of different features for our CRM
parameters is 2, 3, 4 and 5 for F'V length of 6, 9, 12 and 15, respectively. An analysis
of the number of fault-simulating/normal behaviour discriminating features in FVs
of length 6, 9, 12 and 15 bits (Figure[d) shows an increase in number of discriminating
features with the addition of behaviour features F», Fy and Fy. However, there is no
further increase in such features with FVs of length 12 and 15 bits (computational

details in [Appendix A).

5.4.1. Number of floating-point operations for FVs of lengths 6, 9, 12 and 15 bits
To assess the computational resources necessary to run the CRM with FV spaces
of different sizes, we recorded the number of floating-point operations executed
by the CRM-based abnormality detector over the course of a set of experiments
with 20 agents. Figure shows the number of floating-point operations (FLO)
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in experiments involving the transition of normal behaviour from aggregation to
dispersion to aggregation. This experiment was selected for illustration as it revealed
the maximum total number of FLOs, for the largest F'V space (15-bits FVs). The
box-plot indicates the number of FLOs, averaged across 20 agents and 15, 000 control
cycles (corresponding to 1500 s), for 20 independent replicates. Fluctuations in
number of FLO necessary in different control cycles go up to five times the median
number. The results show that while the size of the F'V space increases exponentially
with the number of features considered, the computational resources in terms of FLOs
required to execute the CRM-based abnormality detection increases in accordance
with a power function with an exponent of 0.3 (R? = 0.97), with decreasing growth-
rates of 176.314+20.2, 27.52+4.7, and 7.88+ 1.7 FLOs/FV, for 6 to 9, 9 to 12, and 12
to 15-bit FVs, respectively. Furthermore, a similar relationship between the number
of FLOs and the size of the FV space, was revealed in all the other experimental
setups.

Our simplified CRM-based abnormality detector is computationally efficient in
terms of FV classification space. However, does this efficiency come at a cost to
performance, because of the simplifications introduced in the model implementation
(Section B)? To address this question, we compared the performance and required
computational resources for the simplified and the complete CRM implementations.
Results revealed that while the simplifications had no effect on the performance of the
abnormality detector (see Supplementary Section S1.1 and Figures S1, S2 and S3),
they improved its computationally efficiency by almost an order of magnitude (see
Supplementary Section S1.2 and Figure S4).

5.5. Scalability of CRM in the Swarm Size

A distributed abnormality detection approach is particularly relevant for multiagent
systems with a large number of units. We ran a series of experiments to assess
the performance of our CRM-based abnormality detection approach in swarms of
different sizes. Results of experiments with swarms of 20, 40, 60, 80 and 100 agents
are shown in Figure

The results in Figure [[1] show that, aside from the experiments in (A), the
CRM-based abnormality approach is unaffected by swarm size. The decrease in the

|| The environment area was increased proportional to the number of agents, keeping the agent
density constant in all our experiments.
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Figure 10: Scalability of CRM resources in terms of F'V classification space.
Computational costs of abnormality detection using the CRM with F'V space for 6, 9,
12 and 15-bits FV length (in log scale), across 20 replicates. Each box corresponds to
the average number of FLOs per agent, per control cycle in experiments involving the
transition of normal behaviour from aggregation to dispersion to aggregation (details
of experimental setups in Table [H).

proportion of time a fault-simulating agent is detected as the number of units in the
swarm is increased observed (Figure [[T(A)) is the result of situations that mainly
occur with the combinations of the normal behaviours aggregation and homing,
and the fault-simulating behaviour CIRCLE: large moving aggregates are formed of
normal behaving agents, thereby increasing the possibility that the stationary circling
abnormal agent is intermingled in this aggregate and thus not detected as behaving
abnormally. In the experiments with other combinations of normal and fault-
simulating behaviour, we only observed stochastic differences in performance and
thus no relationship between swarm size and proportion of time that an abnormally
behaving agent is detected. Furthermore, the high variance in performance in
Figure [[T(D) was consequent to low performance in three replicates (swarm of 80
agents), four replicates (swarm of 40 agents), and five replicates (swarm of 20, 60
and 100 agents), where the focal agent transitioning from aggregation to dispersion
was surrounded by other aggregating agents, and could not disperse from within the
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Figure 11: Scalability of CRM performance in terms of swarm size.
Abnormality detection performance of the CRM across 20 replicates, with 6-bit
FV length, and swarm sizes of 20, 40, 60, 80 and 100 agents: (A) detection of
fault-simulating behaviours, (B) tolerance to normal behaviours, (C) tolerance to
transitions in normal behaviour of entire swarm, and (D) response (immune and
tolerance) to transitions in single agent behaviour. See Table [{ for details on the
experimental setups and quantification of performance.

aggregate.

5.6. Resilience to stochastic variations in behaviour: A comparison with
threshold-based model

We conducted a series of experiments to compare the performance of our CRM-
based approach to abnormality detection to a simpler threshold-based model. In a
threshold-based model, each agent computes the distribution of perceived FVs, and
FVs displayed by less than t agents are considered abnormal. The threshold ¢ is
set at the bifurcation point of the CRM (ag in Figure ), separating the immune
and tolerant responses of the model, and remains fixed throughout each replicate.
Furthermore, as each agent performs comparisons of all perceived FVs with the
threshold at most n times, where n is the number of perceived neighbouring agents,
our threshold-based model implementation takes time O(n). Details on the number
of FLOs required in actual experiments can be found in Supplementary Section S2.2
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and Figure S5.

The performance of abnormality detection based on the threshold-based
model for FVs of lengths 6, 9, 12, and 15 bits are shown in Figure
boxes in (A) summarise fault-detection performance, (B) summarise tolerance to
normal behaviour, (C) summarise tolerance when all agents change behaviour
simultaneously, and (D) summarise tolerance and detection of a single agent that
changes its behaviour from the normal behaviour to an abnormal behaviour halfway
through an experiment (see Table [Hl for details).

The results show that while the abnormality detection performance improves
as more features are considered (Figure [M2[(A)), the tolerance of normal
behaviour (Figure [2(B)) decreases as increasingly longer FVs are considered. The
decrease in performance when all the agents change their behaviour simultaneously
during the experiment (Figure [I2(C)) and when a single agent transitions
from the normal behaviour to an abnormal behaviour halfway through the
experiment (Figure[I2(D)), are due to the decrease in tolerance of normally behaving
agents when longer FVs are considered. Both the increase in abnormality detection
performance and the decrease in tolerance of normal behaviour is due to the
stochastic differences in FVs of agents performing the same behaviour (see the
example in Figure [[). The more features considered, the larger the opportunity
for stochastic variations in the distribution of the FVs displayed by normally
behaving agents. The tolerance to normal behaviour does, in fact, degrade to
the point where the median proportion of time that normally behaving agents are
tolerated (Figure[I2(B) and Figure [I2(C)) is respectively 0.64 when no transition in
normal behaviour occurs, and 0.59 when all agents transition to a different normal
behaviours during experiment. The increase in the proportion of time that an
abnormally behaving agent is detected when longer FVs are considered thus comes
at the expense of an increasing number of false positives.

The CRM-based approach, on the other hand, achieved a higher median
performance than the threshold-based model in all the experiments (all experimental
setups in Table [{]), ranging from a 3.1% increase in performance in experiments with
6-bit FVs, and up to a 52.8% increase in performance in experiments with 15-bit FVs
(detailed analysis in Supplementary Section S2.1 and Table S1). The improvement
in performance with the CRM, particularly for large FVs, is because of the resilience
the model exhibits to stochastic variations in FVs displayed by normally behaving
agents (see Figure[§)). This resilience to stochastic variations in the perceived FVs of
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Figure 12: Performance of threshold-based model. Fault-detection
performance of the threshold-based model across 20 replicates, with 6, 9, 12 and 15-
bit F'V length: (A) detection of fault-simulating behaviours, (B) tolerance to normal
behaviours, (C) tolerance to transitions in normal behaviour of entire swarm, and
(D) response (immune and tolerance) to transitions in single agent behaviour. See
Table [ for details on the experimental setups and quantification of performance.

agents executing the same normal behavior, results from the cross-reactivity between
T-cells and APCs (c, see eqn. [IH]). The cross-reactivity causes the regulatory cells to
react with and suppress effector cells whose specificities are close to (low Hamming
distance apart) the specificities of the regulatory cells. Consequently, the CRM-based
approach not only tolerates as normal, the behaviours exhibited by a majority of the
swarm, but also the stochastically variant behaviours of a minority of agents with
similar F'Vs to the majority.

6. Discussion and Conclusions

In this study, we investigated the use of the CRM [35] [36], [37] for online abnormality
detection in a MRS. In our experiments, all robots executed the same behaviour,
except those simulating faults. To detect abnormal behaviour, each robot encoded
the behaviour of the ten nearest neighbours as binary feature vectors. The agents
behaving normally were therefore always sensed in abundance by their neighbours.
Our abnormality detection system was thus not required to look for persistence in
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normal behaviour, but only the abundance, to operate successfully. Experimental
results revealed that our CRM-based approach, (i) displayed robust maintenance of
tolerance to individuals exhibiting a wide variety of normal behaviours, characterised
as being exhibited by a large proportion of the agents in the swarm, (ii) was able to
reliably detect abnormal behaviours, irrespective of changes in the normal behaviour
of the rest of the swarm, (iii) was scalable both in terms of the number of agents in
the MRS, and in terms of the number of features used for normal-abnormal behaviour
classification, and (iv) was resilient to stochastic variations in observed behaviour,
in comparison to the threshold-based model for behaviour classification.

The abnormality detection model developed in this study highlights an
important difference between fault detection and abnormality detection. Behaviours
that are not similar to behaviours exhibited by a sufficiently large proportion of
proximal agents in the swarm may be considered as abnormal, although they
may not necessarily be caused by faults. In the detection of specific faulty
agents, the false negatives occurred when the behaviour of a fault-simulating
agent was indistinguishable from normal behaviour. For example, in some of the
flocking/STRLN experiments, the normally behaving agents aggregated around the
fault-simulating agent moving in a straight line causing the whole system, including
the fault-simulating agent, to move in flocks. Similarly, in dispersion/RNDWK
experiments, the dispersion behaviour of the normally behaving agents sufficed to
keep the whole swarm dispersed in the environment, even when a fault-simulating
agent performed a random walk. However, faults which lead to behaviour that
is either indistinguishable from normal behaviour and/or does not disrupt the
behaviour of the system are often tolerable.

Current endogenous approaches to fault detection (see [21], 22] 19, 23] 24] for
examples) assume that the normal behaviour of the robot is known and can be
characterised beforehand. Consequently, such approaches may not easily operate
in scenarios involving variations in the characterisation of normality, or wherein the
characterisation of normal behaviour is not available beforehand. By contrast, in our
CRM-based approach, abnormality detection is determined online, without an initial
training step. Furthermore, a priori knowledge of normal and abnormal behaviour
classification is not required, as demonstrated in our results, when, for instance, the
dispersion behaviour is detected abnormal when exhibited by a single agent, and
the STOP behaviour is tolerated as normal when performed by all the agents of
the swarm. Consequently, our approach may compliment the existing endogenous
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models in scenarios involving temporal variations in normal behaviour (e.g., online
learning, perturbations in the environment). In such scenarios, our fault-detection
algorithm does not need to be retrained, consequently saving costs and increasing
the autonomy of the resultant system.

In exogenous fault detection, Parker et al. [25] proposed the ALLIANCE
software architecture, wherein the mathematically modelled motivation of different
robots to perform different tasks, resulted in a high degree of fault tolerance
for cooperating teams of robots. Similarly, in other exogenous fault-detection
models [26, 27, 28], an explicit and intricate inter-robot communication process
was used to facilitate task allocation. However, these approaches require relatively
complex and tightly-coupled robot platforms to operate successfully. By contrast, our
proposed fault-detection model is distributed in design and consequently scalable as
demonstrated with up to a fivefold increase in swarm size. Furthermore, in contrast to
other exogenous and distributed fault detection models, our approach is not limited
to the detection of specific faults involving complete robot failure [30], and does not
require detailed task-performance metrics known apriori [16, [32].

The experiments presented in this study involved only relatively simple swarm
behaviours, and in the experiments with transitions in swarm behaviour, all the
robots transitioned simultaneously. In the current version of our approach, the
normal/abnormal classification is based exclusively on feature vectors observed in the
present, and may therefore not be applicable to scenarios in which robots perform
more complex (or composite) behaviours, or in which behaviour transitions propagate
gradually. In order to extend CRM-based abnormality detection to scenarios in
which robots independently can perform different behaviours at different times,
classification must be based on observations made over a period of time. One
approach would be for robots to store a recent record of observed feature vectors. The
robots would use the record when executing their internal CRM-instance. A record
of past observations could also allow our approach to be applied to scenarios in which
robots cannot always observe a certain minimum number of neighbouring robots. In
our ongoing work, we are evaluating the use of a history of recent observations in
CRM-based abnormality detection.

Real sensors and actuators are typically noisy resulting in some degree of
stochasticity in observation and action. Such stochasticity does, however, only have
an impact on the CRM-based abnormality detector if it can cause changes in one or
more of entries of the feature vector. One way to compensate for noisy sensors
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and actuators is by taking the characteristics of the specific hardware platform
into account in the design of the individual features. In our experiments, features
F3, Fy, F5, and Fg had associated thresholds to compensate for stochastic variations
in agent behaviour (see Section M]). If we had subjected the movement of agents
to noise in our experiments, those thresholds could, for instance, have been set
accordingly. The value of individual features was furthermore calculated based on
several observations made over a period of time (W seconds), and the decision on
whether to classify an agent as behaving abnormally or not, was based on votes from
several agents. There are thus several mechanisms in place (feature design, use of
multiple observations, and voting) to avoid that a single noisy observation leads to
the misclassification of agents. Still, in case an agent miscalculates the one or more
features due to noise, it has previously been shown that CRM-based classification is
robust to moderate degrees of perturbations in feature vectors [38].

The scalability of our abnormality detection algorithm in terms of the amount
of information used for behaviour classification was evaluated with 6 to 15
different features. Our results revealed that the CRM-based fault-detection algorithm
performed well with relatively short feature vectors (i.e., of 6 and 9 features). Further
increase in length of the feature vector did not have a strong effect on performance
in fault detection. Additionally, the exponential increase in the feature-vector
space only lead to a small increase (following a power law) in the number of
floating-point operations, due to our computationally efficient implementation of
the crossregulation model.

Our approach to the design of the feature vector was to make it generalisable
across various behaviour tasks. Indeed, in our selection, the same features were
used for eight different normal and abnormal behaviours. However, some level of
domain knowledge was required to select the features, that may not always be
available to the system designer. These selected features are independent of the
controller architecture employed to execute the robot behaviours, evident by the
absence of any of the subsumption architecture controller parameters in our feature
space. Furthermore, as our model scales well with the size of behaviour classification
space, features suspected to be of use for fault detection may be introduced without
seriously affecting the computational cost of the algorithm, allowing the potential use
of our generalised abnormality detection algorithm to a broader range of multirobot
system applications. In ongoing work, we are studying the inclusion of non-binary
features (“distance to neighbour” instead of “close to neighbour”, for instance) to
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allow individual features to characterise a whole set or a continuum of behavioural
aspects.
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Appendix A. Behaviour discriminating features

The section details the computation of the number of behaviour discriminating features, in FVs of
length 6, 9, 12 and 15 bits. In each of the 16 fault-simulating behaviour detection experiments (see
Table[B] experiment setup (A)), we compute the number of control cycles when the value of each of
[ features of the fault-simulating agent differs from the majority of the rest of the swarm. A feature
in the FV is counted discriminative if it differentiates between the normal and fault-simulating
behaviours in most of the 15,000 control cycles of the experiment.



