Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/30561
Autoria: Cruz, D.
Monteiro, F. A.
Coutinho, B. C.
Data: 2023
Título próprio: Quantum error correction via noise guessing decoding
Título da revista: IEEE Access
Volume: 11
Paginação: 119446 - 119461
Referência bibliográfica: Cruz, D., Monteiro, F. A., & Coutinho, B. C. (2023). Quantum error correction via noise guessing decoding. IEEE Access, 11, 119446-119461. https://dx.doi.org/10.1109/ACCESS.2023.3327214
ISSN: 2169-3536
DOI (Digital Object Identifier): 10.1109/ACCESS.2023.3327214
Palavras-chave: GRAND
ML decoding
Quantum error correction codes
Short codes
Syndrome decoding
Resumo: Quantum error correction codes (QECCs) play a central role in both quantum communications and quantum computation. Practical quantum error correction codes, such as stabilizer codes, are generally structured to suit a specific use, and present rigid code lengths and code rates. This paper shows that it is possible to both construct and decode QECCs that can attain the maximum performance of the finite blocklength regime, for any chosen code length when the code rate is sufficiently high. A recently proposed strategy for decoding classical codes called GRAND (guessing random additive noise decoding) opened doors to efficiently decode classical random linear codes (RLCs) performing near the maximum rate of the finite blocklength regime. By using noise statistics, GRAND is a noise-centric efficient universal decoder for classical codes, provided that a simple code membership test exists. These conditions are particularly suitable for quantum systems, and therefore the paper extends these concepts to quantum random linear codes (QRLCs), which were known to be possible to construct but whose decoding was not yet feasible. By combining QRLCs and a newly proposed quantum-GRAND, this work shows that it is possible to decode QECCs that are easy to adapt to changing conditions. The paper starts by assessing the minimum number of gates in the coding circuit needed to reach the QRLCs’ asymptotic performance, and subsequently proposes a quantum-GRAND algorithm that makes use of quantum noise statistics, not only to build an adaptive code membership test, but also to efficiently implement syndrome decoding.
Arbitragem científica: yes
Acesso: Acesso Aberto
Aparece nas coleções:IT-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro TamanhoFormato 
article_98351.pdf1,68 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.