Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/27262
Autoria: Rico, J.
Barateiro, J.
Mata, J.
Antunes, A.
Cardoso, E.
Editor: George A. Tsihrintzis
Maria Virvou
Evangelos Sakkopoulos,
Lakhmi C. Jain
Data: 2019
Título próprio: Applying advanced data analytics and machine learning to enhance the safety control of dams
Título e volume do livro: Machine learning paradigms: Applications of learning and analytics in intelligent systems
Título e número da coleção: Learning and Analytics in Intelligent Systems
Referência bibliográfica: Rico, J., Barateiro, J., Mata, J., Antunes, A., & Cardoso, E. (2019). Applying advanced data analytics and machine learning to enhance the safety control of dams. EM George A. Tsihrintzis, Maria Virvou, Evangelos Sakkopoulos, Lakhmi C. Jain (Eds.). Machine learning paradigms: Applications of learning and analytics in intelligent systems. Learning and Analytics in Intelligent Systems. Springer. 10.1007/978-3-030-15628-2_10
ISSN: 2662-3447
ISBN: 978-3-030-15628-2
DOI (Digital Object Identifier): 10.1007/978-3-030-15628-2_10
Resumo: The protection of critical engineering infrastructures is vital to today’s so- ciety, not only to ensure the maintenance of their services (e.g., water supply, energy production, transport), but also to avoid large-scale disasters. Therefore, technical and financial efforts are being continuously made to improve the safety control of large civil engineering structures like dams, bridges and nuclear facilities. This con- trol is based on the measurement of physical quantities that characterize the struc- tural behavior, such as displacements, strains and stresses. The analysis of monitor- ing data and its evaluation against physical and mathematical models is the strongest tool to assess the safety of the structural behavior. Commonly, dam specialists use multiple linear regression models to analyze the dam response, which is a well- known approach among dam engineers since the 1950s decade. Nowadays, the data acquisition paradigm is changing from a manual process, where measurements were taken with low frequency (e.g., on a weekly basis), to a fully automated process that allows much higher frequencies. This new paradigm escalates the potential of data analytics on top of monitoring data, but, on the other hand, increases data quality issues related to anomalies in the acquisition process. This chapter presents the full data lifecycle in the safety control of large-scale civil engineering infrastructures (focused on dams), from the data acquisition process, data processing and storage, data quality and outlier detection, and data analysis. A strong focus is made on the use of machine learning techniques for data analysis, where the common multiple linear regression analysis is compared with deep learning strategies, namely recur- rent neural networks. Demonstration scenarios are presented based on data obtained from monitoring systems of concrete dams under operation in Portugal.
Arbitragem científica: yes
Acesso: Acesso Aberto
Aparece nas coleções:CIES-CLI - Capítulos de livros internacionais
CTI-CLI - Capítulos de livros internacionais

Ficheiros deste registo:
Ficheiro TamanhoFormato 
bookPart_72318.pdf3,44 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.