A transformation grammar-based methodology for housing rehabilitation: meeting contemporary functional and ICT requirements dwellings characterization and transformation rules

Abstract

Title:

A transformation grammar-based methodology for housing rehabilitation: meeting contemporary functional and ICT requirements

Name: Sara Eloy Cardoso Rodrigues Freire da Cruz
PhD:
Supervisor: Professor Doutor Arq. José Pinto Duarte
Co-supervisors: Professora Doutora Arq. Isabel Plácido
Professor Doutor Eng. Renato Nunes

This research starts from the premise that the future of the real estate market in Portugal will require the rehabilitation of existing residential areas in order to respond to new life-styles and dwelling requirements that have emerged in an era in which information plays a structuring role in society.
The goal of this research is the definition of design guidelines and a rehabilitation methodology to support architects involved in the process of adapting existing dwellings, allowing them to balance sustainability requirements and economic feasibility with new dwelling trends such as the incorporation and updating of Information Communication and Automation Technologies and the need to solve emerging conflicts affecting the use of space prompted by the introduction of new functions associated with such technologies.

In addition to defining a general methodology applicable to all the building types, the study focuses on a specific type, called "rabo-de-bacalhau" ("cod-tail"), built in Lisbon between 1945 and 1965 for which a specifc methodology has been generated. Both shape grammar and space syntax were used as part of the rehabilitation methodology as tools to identify and encode the principles and rules behind the adaptation of existing houses to new requirements.

| Keywords: | Housing Rehabilitation; Domotics; Information and Communication |
| :--- | :--- | :--- | :--- | :--- |
| | Technologies; Transformation Grammar; "Rabo-de-bacalhau"; |
| | Rehabilitation Methodology; Shape Grammar; Space Syntax; Information |
| | Society; New lifestyles. |

ReSumo

Título: Metodologia de reabilitação habitacional baseada numa gramática de transformação: resposta às exigências funcionais e de TIC contemporâneas

Nome: Sara Eloy Cardoso Rodrigues Freire da Cruz
Doutoramento em: Arquitectura
Orientador: Professor Doutor Arq. José Pinto Duarte
Co-orientadores: Professora Doutora Arq. Isabel Plácido
Professor Doutor Eng. Renato Nunes

Esta investigação parte do pressuposto de que o futuro do mercado imobiliário em Portugal irá passar pela reabilitação e requalificação das áreas residenciais, de modo a responder aos novos modos de vida e exigências da habitação que surgiram numa era na qual a informação desempenha um papel estruturante na sociedade devido às novas tecnologias.
O objectivo desta investigação é a definição de uma metodologia de reabilitação que apoie os arquitectos na adaptação do parque habitacional existente, permitindo-Ihes compatibilizar as exigências de sustentabilidade e de viabilidade económica com as novas tendências do "habitar" nomeadamente no que respeita à integração/actualização de Tecnologias da Informação, Comunicação e Automação e à necessidade de responder a conflitos emergentes no uso dos espaços originados pela introdução de novas funções associadas ao uso dessas tecnologias.
Para além da definição de uma metodologia geral aplicável a todos os edifícios, este estudo focou-se num tipo específico de edifício, designado na gíria profissional por "rabo-de-bacalhau", que foi construído em Lisboa entre 1945 e 1965 para o qual é proposta uma metodologia específica.
As gramáticas de forma e a sintaxe especial foram utilizadas como parte da metodologia de reabilitação enquanto formalismos para incorporar os princípios e regras definidos para a adaptação das habitações existentes às novas exigências.

Palavras chave: Reabilitação Habitacional; Domótica; Tecnologias de Informação, Comunicação; Gramática de transformação; "rabo-de-bacalhau"; Metodologia de reabilitação; Gramáticas da forma; Sintaxe espacial; Sociedade da Informação; Novos modos de vida.

This volume includes the appendix of the PhD thesis with the following sections:
_ The analysis of the case study sample of "rabo-de-bacalhau" buildings,
_ Step 1, 2 and 3 of the experiment;
_ The transformation grammar rules;
_ A dwelling transformation.

INSTITUTO
SUPERIOR
TÉCNICO

A transformation grammar-based methodology for housing rehabilitation: meeting contemporary functional and ICT requirements

APPENDIX

Sara Eloy Cardoso Rodrigues Freire da Cruz
Supervisor: Doctor José Manuel Pinto Duarte
Co-Supervisor: Doctor Maria Isabel Plácido Barbosa
Co-Supervisor: Doctor Renato Jorge Caleira Nunes

Thesis approved in public session to obtain the PhD Degree in Architecture Jury final classification: Pass with Merit

Jury
Chairperson:
Chairman of the IST Scientific Board
Members of the Committee:
Doctor Terry Weissman Knight, Full Professor, Massachusetts Institute of Technology Doctor José Manuel Pinto Duarte, Full Professor, Faculdade de Arquitectura UTL Doctor Teresa Frederica Tojal de Valsassina Heitor, Full Professor, Instituto Superior Técnico UTL
Doctor Renato Jorge Caleira Nunes, Assistant Professor, Instituto Superior Técnico UTL Doctor Maria Alexandra de Lacerda Nave Alegre, Assistant Professor, Instituto Superior Técnico UTL
Doctor Maria Isabel Plácido Barbosa, Assistant Researcher, Laboratório Nacional de Engenharia Civil

> Funding Institutions - Fundação para a Ciência e Tecnologia

APPENDIX 1

Analysis of the case study sample

Original buildings and dwellings characterization

Front façade

Door of building

Date: 1954
Number of floors: 8
Project authorship: Arch. António Manuel Bentes

Building entrance hall

Brief functional characterization

Access One access to the building; main lift and service lift; One staircase
Number of dwellings
14
Non habitable divisions Condominium store-rooms
Caretaker's home
Parking space in the open space in the rear of the building
Shops in the ground floor

Brief constructional characterization

Structure and
foundations

Hydraulic and reinforced concrete walls reaching the ground floor. Upward the exterior structure is made of reinforced concrete frame (pillars, beams and slabs).
Continuous foundations and in some cases isolated concrete foundations. Reinforced solid concrete slabs. Reinforced concrete beam and pillar structure.

Exterior walls (façades

 and side walls)Main and rear façade made of reinforced concrete beam and pillar structure filled with two panels of stretcher bonds and airspace of 0.08 m , thicknesses of 0.4 m including plaster.
Side wall built from reinforced concrete with thicknesses of 0.2 m in the last 4 floors and 0.3 m in the remaining floors.

Interior walls Partition walls between different dwellings and staircase partition walls - floor, ground floor, $1^{\text {st }}$ and $2^{\text {nd }}$ floor in solid header bond brick masonry and remaining floors in hollow header bond brick masonry.
Partition walls between divisions - hollow stretcher bond brick masonry using cement and sand mortar (1/4): ground floor and $1^{\text {st }}$ floor - solid header bond brick masonry; $2^{\text {nd }}$ floor - double solid stretcher bond brick masonry; $3^{\text {rd }}$ and $4^{\text {th }}$ floor - solid stretcher bond brick masonry; $5^{\text {th }}$ and $6^{\text {th }}$ floor - hollow stretcher bond brick masonry.

Discrepancies, changes in the façade

Replacement of the windows in several floors with different designs. Double window frames in one case resulting in a

Original dwelling

Floor plan

Convex map

[^0]Service area

Controle

Contiguity

Entire dwelling
Mean: 1.00

Justified graph

Graph with a tree configuration with 1 ring
Graph with 6 levels of depth
15 spaces/nodes
15 arcs/connections

Distributness

a terminal spaces
b reached by two or more arcs
C _reached by two or more arcs and connected in a ring

Depth

Entire dwelling
Mean: 46.66
Higher Lower

Integration

Entire dwelling
Mean: 3.11

Front façade

Door of building
Date: 1955

Number of floors: 9
Project authorship: Arch. n. 154 (illegible signature)

Building entrance hall

Brief functional characterization

Access Two access to the building; main and service lift; one staircase
Number of dwellings 16
Non habitable divisions Condominium store-rooms
Caretaker's home

Brief constructional characterization

Structure and

 foundationsHydraulic and reinforced concrete walls reaching the ground floor. Upward the exterior structure is made of reinforced concrete frame (pillars, beams and slabs). Continuous foundations and in some cases isolated concrete foundations. Reinforced solid concrete slabs. Reinforced concrete beam and pillar structure.
Exterior walls (façades Main and rear façade made of reinforced concrete beam and pillar structure filled with and side walls) two panels of stretcher bonds and airspace of 0.08 m , thicknesses of 0.4 m including plaster.

Interior walls Partition walls between different dwellings and staircase partition walls - floor, ground floor, $1^{\text {st }}$ and $2^{\text {nd }}$ floor in solid header bond brick masonry and remaining floors in hollow header bond brick masonry.
Partition walls between divisions - hollow stretcher bond brick masonry using cement and sand mortar (1/4): ground floor and $1^{\text {st }}$ floor - solid header bond brick masonry; $2^{\text {nd }}$ floor - double solid stretcher bond brick masonry; $3^{\text {rd }}$ and $4^{\text {th }}$ floor - solid stretcher bond brick masonry; $5^{\text {th }}, 6^{\text {th }}$ and $7^{\text {th }}$ floor - hollow stretcher bond brick masonry.

Discrepancies, changes in the façade

Replacement of the windows in several floors with different designs. 5 apartments with closed balconies. Few cables through the building's main façade.

Original dwelling

Floor plan

Right Left

Convex map

Social area
Private area
Circulation area
Service area

Controle

Entire dwelling
Mean: 1.00

Contiguity

Adjacency (arcs) merged

Depth

Entire dwelling
Mean: 36.7

Integration

Entire dwelling
Mean: 3.7

Front façade

Door of building

Date:	1955
Number of floors:	9
Project authorship:	Arch. Joaquim Ferreira

Building entrance hall

Brief functional characterization

Access Two access to the building; main lift and service lift; one staircase.

Number of dwellings 16
Non habitable divisions Caretaker's home
Shops in the ground floor

Brief constructional characterization

Structure and Structure is made of reinforced concrete frame (pillars, beams and slabs). Continuous foundations foundations and in some cases isolated concrete foundations. Concrete slabs. Reinforced concrete beam and pillar structure.
Exterior walls (façades Main and rear façade made of reinforced concrete beam and pillar structure filled with and side walls) two panels of stretcher bonds and airspace of 0.08 m , thicknesses of 0.35 m including plaster. Exterior parament is covered with marmorite. Exterior openings are embellished with cut stone masonry and bottom parament is also covered with cut stone masonry (limestone - lioz). In balconies the protective panel consists of a low masonry wall with a wrought or cast iron enamel painted railing on top. Side walls in brick masonry, thicknesses of 0.25 m . Main and rear façade made of reinforced concrete beam and pillar structure filled with two panels of stretcher bonds and airspace of 0.08 m , thicknesses of 0.35 m including plaster.

Interior walls Reinforced concrete beam structure on alternated floors. Partition walls between different dwellings and staircase partition walls - hollow header bond brick masonry. Partition walls between divisions - hollow stretcher bond brick masonry (in basement solid bricks were used). Interior walls have structure in beam and column, in alternate floors. Partitions and walls of the stairs tenants - brickwork stuck to since. Brickwork stuck to half time (in the basement is solid brick).

Discrepancies, changes in the façade

Replacement of the windows in several floors with different designs. Double window frames resulting in a more advance window surface with aesthetic impact on the main façade. Several closed balconies by glass windows. Last floor, retreated mansard from the façade. Air conditioning unit on the facade. Shop, with alteration of the original openings.

Original dwelling

Floor plan

Right Left

Convex map

Controle

Entire dwelling
Mean: 1.00

Contiguity

Justified graph

Graph with a tree configuration with 1 ring
Graph with 4 levels of depth
14 spaces/nodes
13 arcs/connections

Distributness

Depth

Integration

Entire dwelling
Mean: 35.71

Entire dwelling
Mean: 3.82

Front façade

Door of building
Date: 1956

Number of floors: $\quad 9$ Project authorship:

Building entrance hall

Brief functional characterization

Access	One access to the building; main lift and service lift; one staircase
Number of dwellings	18
Non habitable divisions	Caretaker's home
	Shops in the ground floor

Brief constructional characterization

Structure and foundations	Foundations made of hydraulics masonry and concrete. Structure is made of reinforced concrete frame (pillars, beams and slabs)..

Exterior walls (façades

 and side walls)Main and rear façade made of reinforced concrete beam and pillar structure filled with two panels of stretcher bonds and airspace of 0.08 m .
Exterior walls are covered with a painted coating (made of cement and sand mortar) Cut stone masonry covers the ground floor of the main façade up to the level of the first floor.
Side wall made of reinforced concrete beam and pillar structure filled with, filled with 2 holes bricks, with a thickness of 22 cm .
Interior walls The partition walls are built from stretcher bond brick masonry with thickness of: 0.15 m on 6 th floor and upper floors; 0.18 m on the ground floor up to the 5th floor; 0.25 m on the basement. Beams in interior walls on the 2nd, 4th and 6th floors. Interior walls are plastered with a lime and sand mortar. In the bathroom, kitchen and laundry areas the walls are covered with decorative tiles to a height of 1.5 m and the rest of the wall is enamel-painted.

Discrepancies, changes in the façade

Replacement of the windows in several floors with different designs. Double window frames in one case resulting in a more advance window surface. New green blinds on the last floor different from all the building's blinds. In the last floor, the retreated mansard was forward to the main façade surface. Several air conditioning devices mounted on the façade. Several cables through the building's main façade.

Original dwelling

Floor plan

Right Left

Convex map

Justified graph

Graph with a tree configuration with 1 ring
Graph with 6 levels of depth
17 spaces/nodes
17 arcs/connections

Distributness

Depth

Entire dwelling
Mean: 57

Integration

Entire dwelling Mean: 3.2

Entire dwelling
Mean: 1.00

Contiguity

Original buildings and dwellings characterization

Front façade

Door of building

Brief functional characterization
Access Two access to the building; main lift and service lift; one staircse.
Number of dwellings 16
Non habitable divisions Caretaker's home

Brief constructional characterization

Structure and foundations	Continuous foundations. Structure is made of reinforced concrete frame (pillars, beams and slabs). Exterior walls (façades and side walls)
	Main and rear façade (exterior wall) made of reinforced concrete beam and pillar structure filled with two panels of stretcher bonds and airspace of 0.08 m - thicknesses of
	0.35 m.
	Side walls made of reinforced concrete beam and pillar structure filled of special brick.
Interior walls	On the 4th, 5th, 6th and 7th floors interior walls are non loadbearing. Partition walls between different dwellings and staircase and lift partition walls in header bond brick masonry and remaining interior partitions in stretcher bond brick masonry.

Discrepancies, changes in the façade

In the last floor, the retreated mansard was forward to the main façade surface. Few closed balconies by glass windows. Several air conditioning devices mounted on the façade. Several cables through the building's main façade. In the shop the original openings where changed. TV antenna installed on a balcony.

Net floor area: $95.2 \mathrm{~m}^{2}$ | Gross floor area: $118 \mathrm{~m}^{2}$

Original dwelling

Floor plan

Right Left

Convex map

- Social area
- Private area
- Circulation area

Service area

Entire dwelling
Mean: 1.00

Entire dwelling
Mean: 33.07

- a _ terminal spaces
- b _ reached by two or more arcs

C _ reached by two or more arcs and connected in a ring

Entire dwelling
Mean: 3.61

Original buildings and dwellings characterization

Front façade

Door of building

Building entrance hall

Date: 1953
Number of floors: $\quad 9$
Project authorship: Arch. João Simões

Brief functional characterization

Access Two access to the building; main lift and service lift; one staircase.
Number of dwellings 15
Non habitable divisions Caretaker's home
Shops in the ground floor

Brief constructional characterization

Structure and foundations

Foundations made of timber piles or pier foundations. Light flooring in the form of prefabricated and pre-stressed reinforced concrete components ("corfeo" slabs). Reinforced concrete beam and pillar structure.

Exterior walls (façades and side walls)

Main and rear façade made of reinforced concrete beam and pillar structure filled with two panels of hollow brick stretcher bonds and airspace of 0.05 m .

Interior walls Partition walls between different dwellings, lift and staircase partition walls in hollow header bond brick masonry.
Partition walls between divisions in hollow stretcher bond brick masonry.
The interior walls are covered with plaster over a sand-based rendering. The final coating consists of an oil-based paint.

Discrepancies, changes in the façade

In the last floor, the retreated mansard was forward to the main façade surface. Balcony on the $5^{\text {th }}$ floor with a large wood shade structure. Replacement of the windows in several floors with different designs. Double window frames in several floors resulting in a more advance window surface.

Original dwelling

Floor plan

Convex map

Justified graph

Graph with a tree configuration with 1 ring
Graph with 5 levels of depth
15 spaces/nodes
16 arcs/connections
(windows connections are excluded)

Distributness

a _ terminal spaces
D b reached by two or more arcs
C _ reached by two or more arcs and connected in a ring

[^1]

Adjacency (arcs)
merged \quad door (single) \rightleftharpoons door (double)---- passage \sim window

Entire dwelling
Mean: 46.66

Entire dwelling
Mean: 3.05

Original dwelling

Floor plan

Convex map

Justified graph

Distributness

a _ terminal spaces
b reached by two or more arcs
C _ reached by two or more arcs and connected in a ring

Controle

Contiguity
Depth
Integration

Entire dwelling
Mean: 3.15

Brief functional characterization

Access One access to the building; main lift; two staircases.
Number of dwellings 12
Non habitable divisions Caretaker's home
Shops in the ground floor

Brief constructional characterization

```
    Structure and
    foundations
Exterior walls (façades
    and side walls)
    Interior walls
```


Discrepancies, changes in the façade

Few cables through the building's main façade. Coexistence of green and white blinds.

Av. Guerra Junqueiro, 7

Original dwelling

Floor plan

Controle

Entire dwelling
Mean: 1.00
Adjacency (arcs)
merged

Contiguity

Depth

Entire dwelling
Mean: 69.89
Higher

Justified graph

Graph with a tree configuration with 2 ring
Graph with 7 levels of depth
19 spaces/nodes
20 arcs/connections

Distributness
 -

Convex map

Integration

Entire dwelling
Mean: 3.15

Front façade

Door of building

Date: 1953

Number of floors: 7
Project authorship: Eng. n. 115

Building entrance hall

Brief functional characterization

Access One access to the building; main lift; two staircases.
Number of dwellings
12
Non habitable divisions Caretaker's home
Shops in the ground floor

Brief constructional characterization

Structure and foundations	Reinforced concrete structure.
Exterior walls (façades	
and side walls)	Main façade made of reinforced concrete - continuous wall on the outside panel - with airspace and a brick panel on the interior side of the wall. Rear façade made of reinforced concrete beam and pillar structure filled with two panels of stretcher bonds and airspace of 0.1m. Side wall made of reinforced concrete.
Interior walls	The interior walls and ceilings are covered with plaster over a sand-based rendering. The final coating consists of an oil-based paint.

Discrepancies, changes in the façade
Several cables through the building's main façade. Several air conditioning devices mounted on the façade.

Av. Guerra Junqueiro, 14

Original dwelling

Floor plan

Entire dwelling
Mean: 1.00

Contiguity

Depth

Entire dwelling
Mean: 78.95

Justified graph
Graph with a tree configuration with 6 rings
Graph with 7 levels of depth
21 spaces/nodes
26 arcs/connections
(windows connections are excluded)

Distributness

rer
g

Convex map

- Social area
- Private area
- Circulation area

Service area

- a _ terminal spaces
b _ reached by two or more arcs
c reached by two or more arcs and connected in a ring
\oplus d _ reached by two or more arcs
Integration

Entire dwelling
Mean: 3.44

Front façade

Door of building

Building entrance hall

Date: 1953

Number of floors: 5
Project authorship:

Brief functional characterization

Access One exterior access to the building; main lift and service lift, one staircase.
Number of dwellings
Non habitable divisions Condominium store-rooms
Caretaker's home

Brief constructional characterization

Structure and foundations

Exterior walls (façades and side walls)

Continuous foundations made of hydraulics masonry beneath dividing walls. Reinforced concrete structure.
Main and rear façade made of reinforced concrete beam and pillar structure filled with two panels of stretcher bonds and airspace of 0.08 m , thicknesses of 0.35 m including plaster.
Side walls made of continuous reinforced concrete, thickness of 0.3 m on the upper 4 floors and 0.3 m on the ground one and basement.
Interior walls Partition walls between divisions - hollow stretcher bond brick masonry: 0.25 m on the basement; 0.18 on the ground floor; 0.15 m on the remaining floors. Concrete beams on the ceiling of the $2^{\text {nd }}$ floor and ground floor.

Discrepancies, changes in the façade

Replacement of the window frame in one of the floors with other of different colour and material. Different type of blinds along the building (colour and material). Several cables through the building's main façade.

Original dwelling

Floor plan

Convex map

Justified graph

Graph with a tree configuration with 1 ring
Graph with 5 levels of depth
13 spaces/nodes
14 arcs/connections
(windows connections are excluded)

Distributness

Depth

Entire dwelling
Mean: 35.38
Mean: 35.38

Service area

Controle

Entire dwelling
Mean: 1.00

Contiguity

igher
.

Integration

[^2]

Front façade

Door of building
Date: 1950

Number of floors: 5
Project authorship:

Building entrance hall

Brief functional characterization

Access Two exterior access to the building; main lift and service lift, both only with stair. Number of dwellings 10
Non habitable divisions Caretaker's home

Brief constructional characterization

Structure and foundations Exterior walls (façades and side walls)

Reinforced concrete structure.
Main and rear façade made of reinforced concrete beam and pillar structure filled with two panels of stretcher bonds hollow brick masonry and airspace.
Continuous reinforced concrete wall on the ground floor, thickness of 0.8 m . Side walls made of reinforced concrete.
Interior walls Interior walls: stretcher bonds hollow brick masonry ($4^{\text {th }}$ and $5^{\text {th }}$ floors); stretcher bonds solid brick masonry ($2^{\text {nd }}$ and $3^{\text {rd }}$ floors); double stretcher bonds solid brick masonry (ground -floor); header bonds solid brick masonry (basement) - thickness 0.25 m

Discrepancies, changes in the façade

Blinds with different colours along the building. Several cables through the building's main façade.

Original dwelling

Floor plan

Right Left

Convex map

Social area
Private area
Circulation area

Service area

Justified graph

Graph with a tree configuration
Graph with 4 levels of depth
14 spaces/nodes
3 arcs/connections

Distributness

Controle

Contiguity

Entire dwelling
Mean: 1.00
Adjacency (arcs)
merged ——door (single) \rightleftharpoons door (double)---- passage \sim window

Depth

Entire dwelling
Mean: 36.85
Higher

Integration

Front façade

Main door of building and service door

Date:	1943
Number of floors:	6

Project authorship: Eng. n. 139 (illegible signature)

Brief functional characterization

Access One exterior access to the building; main lift, two staircases.
Number of dwellings 12
Non habitable divisions Condominium store-rooms
Caretaker's home

Brief constructional characterization

Structure and
foundations
Exterior walls (façades
and side walls)
Interior walls

Discrepancies, changes in the façade

Two air condition devices mounted on the façade. Cables through the building's main façade.

Original dwelling

Floor plan

Controle

Entire dwelling
Mean: 1.00
Contiguity

Adjacency (arcs)
merged

Justified graph

Graph with a tree configuration with 1 ring
Graph with 7 levels of depth
16 spaces/nodes
16 arcs/connections
(windows connections are excluded)

Distributness

Depth

Entire dwelling
Mean: 44.26

Convex map

Social area
Private area
Circulation area
Service area
a_terminal spaces
b_reached by two or more arcs
c_reached by two or more arcs
and connected in a ring

Integration

Entire dwelling
Mean: 3.2

Original dwelling

Floor plan

Right Left

Controle

Entire dwelling
Mean: 1.00

Justified graph

Graph with a tree configuration with 1 ring Graph with 7 levels of depth
15 spaces/nodes
15 arcs/connections
(windows connections are excluded)

Distributness

Depth

Entire dwelling
Mean: 44.26

Convex map

Social area

- Private area

Circulation area

- Service area
- a _ terminal spaces

D _ reached by two or more arcs

C reached by two or more arcs

Integration

igher -

Original buildings and dwellings characterization

Front façade

Door of the building

Date: 1939
Number of floors: 4
Project authorship: Arch. João Simões

Building entrance hall

Brief functional characterization

Access One access to the building; two staircases.
Number of dwellings 8
Non habitable divisions Caretaker's home

Brief constructional characterization

Structure and Continuous walls made of hydraulics masonry. Foundations made of reinforced concrete foundations beneath pillars. Reinforced concrete structure.
Exterior walls (façades Main façade made of hydraulics stone masonry. Rear façade made of hydraulics stone and side walls) masonry and solid header bond brick masonry.
Interior walls Hollow header bond brick masonry.

Discrepancies, changes in the façade

Replacement of the windows in some floors with different designs. Few cables through the building's main façade

Original dwelling

Floor plan

Convex map

Social area

- Private area

Circulation area
Service area

Controle

Entire dwelling
Mean: 1.00
jacency (arcs)

Contiguity

Depth

Entire dwelling Mean: 46.06

Justified graph

Graph with a tree configuration with 3 rings
Graph with 8 levels of depth
15 spaces/nodes
17 arcs/connections

[^3]- a _ terminal spaces

D _ reached by two or more arcs
c reached by two or more arcs and connected in a ring
\oplus d _ reached by two or more arcs
and connected by ≥ 2 rings

Integration

Entire dwelling
Mean: 2.82
Entire dwelling
Mean: 2.82

[^4]Original buildings and dwellings characterization

Front façade

Door of the building

Building entrance hall

Brief functional characterization

Access One access to the building; two staircases.
Number of dwellings 8
Non habitable divisions Condominium store-rooms
Caretaker's home

Brief constructional characterization

Structure and foundations

Exterior walls (façades and side walls)

Foundations made of concrete up to ground level. Load-bearing stone masonry and cement blocks masonry.
Main façade made of stone masonry with cement mortar. Rear façade and side walls made of cement blocks with cement mortar. The walls of the basement are made of cement blocks with thickness of 0.6 m
Interior walls Partition walls - hollow stretcher bond brick masonry using cement mortar: ground floor, $1^{\text {st }}$ floor and kitchen and bathroom walls - solid stretcher bond brick masonry; ground floor and $1^{\text {st }}$ floor when walls are non load-bearing - hollow stretcher bond brick masonry; ground floor and $1^{\text {st }}$ floor when walls are load-bearing - solid header bond brick masonry; $2^{\text {nd }}$ and $3^{\text {rd }}$ floor - hollow stretcher bond brick masonry.

Discrepancies, changes in the façade

Several air condition devices mounted on the façade. Cables through the building's main façade.

Original dwelling

Floor plan

Controle

Entire dwelling
Mean: 1.00

Contiguity

Entire dwelling
Mean: 33.00
Depth

Convex map

Graph with a tree configuration with 2 rings
Graph with 5 levels of depth
14 spaces/nodes
15 arcs/connections

Distributness

Integration

Entire dwelling
Mean: 4.41

Original buildings and dwellings characterization

Front façade

Door of the building

Date:	1956
Number of floors:	8
Project authorship:	Arch. n. 147

Building entrance hall

Brief functional characterization

Access One access to the building; main lift and service lift, one staircase.
Number of dwellings 16
Non habitable divisions Caretaker's home

Brief constructional characterization

Structure and foundations	Foundations made of reinforced concrete beneath pillars and continuous foundations beneath dividing walls and exterior walls. Reinforced concrete beam and pillar structure.
Exterior walls (façades	Main and rear façade made of reinforced concrete beam and pillar structure filled with
and side walls)	two panels of stretcher bonds brick masonry and airspace. Side walls made of continuous reinforced concrete on the ground floor and concrete frame filled with bricks on the
	remaining floors.

Discrepancies, changes in the façade

One air conditioning device mounted on the façade. Few cables through the building's main façade.

Av. Oscar Monteiro Torres, 14

Net floor area: $88.5 \mathrm{~m}^{2}$ | Gross floor area: $108.4 \mathrm{~m}^{2}$

Original dwelling

Floor plan

Convex map

Entire dwelling
Mean: 1.00

Depth

Entire dwelling
Mean: 39.84

- a _ terminal spaces
b _ reached by two or more arcs
C reached by two or more arcs and connected in a ring

Entire dwelling
Mean: 2.58

Front façade

Door of the building

Project authorship:
Arch. Pardal Monteiro

Brief functional characterization

Access Two access to the building; main lift, two staircases.
Number of dwellings 12
Non habitable divisions Caretaker's home (in the back yard, outside the building) Shops in the ground floor (garage)

Brief constructional characterization

Structure and foundations

Foundations made of reinforced concrete beneath pillars and continuous foundations of hydraulics stone masonry beneath dividing walls. Reinforced concrete beam and pillar structure.
Exterior walls (façades Reinforced concrete structure filled with two panels of hollow stretcher bonds brick and side walls) masonry and airspace of 0.07 m . Side walls made of reinforced concrete, thicknesses of 0.3 m on the first three floors and 0.2 m on the remaining floors.

Interior walls Partition walls made of brick masonry - hollow stretcher bond brick masonry on the $5^{\text {th }}$ and $6^{\text {th }}$ floor; solid stretcher bond brick masonry on the $3^{\text {rd }}$ and $4^{\text {th }}$ floor; double solid stretcher bond brick masonry on the $2^{\text {nd }}$ floor; solid header bond brick masonry on the ground floor.

Discrepancies, changes in the façade

Original blinds and new ones with different colours (green and white)

Original dwelling

Floor plan

Controle

Contiguity
Depth

Justified graph

Graph with a tree configuration
Graph with 5 levels of depth
16 spaces/nodes
15 arcs/connections

Distributness

Integration

Convex map

Social area

Priva area
a _ terminal spaces
0 or more arcs and connected in a ring

```

```


Entire dwelling
Mean: 1.00

jacency (arcs)
merged - door (single) \rightleftharpoons door (double)---- passage \sim window

Front façade

Door of the building

Date:	1950
Number of floors:	7
Project authorship:	Eng. Jacinto Bethencourt

Building entrance hall

Brief functional characterization

Access One access to the building; main lift, two staircases.
Number of dwellings 12
Non habitable divisions Caretaker's home
Shops in the ground floor (garage)

Brief constructional characterization

Structure and Foundations beneath the main and rear façade made of simple concrete. Foundations foundations beneath the pillars made of simple concrete or reinforced concrete. Reinforced concrete structure.
Exterior walls (façades and side walls)

Main façade made of continuous reinforced concrete. Remaining area of the main façade and rear façade made of reinforced concrete beam and pillar structure filled with two panels of solid stretcher bonds brick masonry and airspace. Side walls made of reinforced concrete.
Interior walls Partition walls made of brick masonry - hollow stretcher bond brick masonry on the $5^{\text {th }}$ and $6^{\text {th }}$ floor; solid stretcher bond brick masonry on the $3^{\text {rd }}$ and $4^{\text {th }}$ floor; double solid stretcher bond brick masonry on the $2^{\text {nd }}$ floor; solid header bond brick masonry on the ground floor.

Discrepancies, changes in the façade

Several cables through the building's main façade. Lack of general maintenance.

Original dwelling

Justified graph

Graph with a tree configuration with 1 rings
Graph with 6 levels of depth
14 spaces/nodes
14 arcs/connections

Distributness

Depth

Convex map

Integration

Controle

Entire dwelling
Mean: 1.00

Contiguity

Entire dwelling
Mean: 40.57

Entire dwelling Mean: 3.1

Original buildings and dwellings characterization

Front façade

Door of the building

Building entrance hall
Date: 1950

Number of floors: 7
Project authorship: Eng, Ventura Rego

Brief functional characterization

Access One access to the building and one access to the back yard; main lift; two staircases Number of dwellings 12
Non habitable divisions Caretaker's home (in the back yard, outside the building) Shops in the ground floor (garage)

Brief constructional characterization

Structure and Foundations made of stone masonry over clay compacted ground.
foundations Foundations are made of concrete beneath pillars (depth superior to $1 / 2$ of the foundation width) and continuous foundations of concrete blocks masonry beneath dividing walls. Reinforced concrete beam and pillar structure.
Exterior walls (façades Concrete structure filled with two panels of stretcher bonds and airspace of 0.08 m . and side walls) Side walls made of continuous reinforced concrete, thickness 0.2 m on $4^{\text {th }}, 5^{\text {th }}$ and $6^{\text {th }}$ floor, thickness 0.3 m on $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$, ground floor.
Interior walls Partition walls between divisions: ground floor, $1^{\text {st }}$ and $2^{\text {nd }}$ floor - hollow header bond brick masonry; $3^{\text {rd }}, 4^{\text {th }}, 5^{\text {th }}$ and $6^{\text {th }}$ - solid header bond brick masonry. Remaining partition walls - brick masonry with cement and sand mortar: ground floor, 1st and $2^{\text {nd }}$ floor - double solid header bond brick masonry; $3^{\text {rd }}$ and $4^{\text {th }}$ floor - solid stretcher bond; $5^{\text {th }}$ and $6^{\text {th }}$ floor - hollow stretcher bond.

Discrepancies, changes in the façade

Few cables through the building's main façade

Original dwelling

Front façade

Door of the building

Date: 1942
Number of floors: 7
Project authorship: Arch. Miguel J acobetty

Building entrance hall

Brief functional characterization

Access One access to the building; two staircases.
Number of dwellings
12
Non habitable divisions Caretaker's home
Shops in the ground floor

Brief constructional characterization

Structure and foundations

Exterior walls (façades

 and side walls)Foundations made of concrete. Reinforced concrete structure.

Main and rear façade made of concrete structure, thickness 0.5 m . Reinforced concrete beams on all the floors. Side walls made of reinforced concrete, thickness from 0.2 on the upper floor to 0.4 m on the basement.
Interior walls Partition walls made of brick masonry.

Discrepancies, changes in the façade

Few cables through the building's main façade. Several air conditioning devices mounted on the main façade.

Original dwelling

Floor plan

Distributness

Justified graph

Graph with a tree configuration with 2 rings Graph with 6 levels of depth
22 spaces/nodes
23 arcs/connections

Graph with a tree configuration with 2 rings Graph with 6 levels of depth
21 spaces/nodes
22 arcs/connections

Convex map

[^5]
Original dwelling

Adjacency (arcs)

Original dwelling

Front façade

Door of the building

Date:	c. 1949
Number of floors:	4

Project authorship: Arch. Fernando Silva

Brief functional characterization

Access One access to the building. One staircase.
Number of dwellings 6
Non habitable divisions Shops in the ground floor

Brief constructional characterization

Structure and
foundations
Exterior walls (façades
and side walls)
Interior walls

Discrepancies, changes in the façade

Replacement of the windows in several floors with different designs. Double window frames resulting in a more advance window surface with aesthetic impact on the main façade. One closed balcony by glass windows. Air conditioning unit on the façade. Shops with alteration of the original openings. Few cables through the building's main façade.
R. José d'Esaguy, 7 (Type 4 from the célula 3 of Bairro de Alvalade) Net floor area: $84.2 \mathrm{~m}^{2}$ | Gross floor area: $107 \mathrm{~m}^{2}$

Original dwelling

Floor plan

Right Left

Convex map

Controle

Entire dwelling
Mean: 1,00

Contiguity

Justified graph

Graph with a tree configuration with 1 ring
Graph with 4 levels of depth
14 spaces/nodes
14 arcs/connections

Distributness

Depth
Integration

Entire dwelling
Mean: 37,57

Entire dwelling
Mean: 3.56

Original buildings and dwellings characterization

Front façade

Door of the building

Building entrance hall

Date: 1947
Number of floors: 5
Project authorship: Eng. Jacinto Bethencourt

Brief functional characterization
Access One access to the building; main lift, two staircases.
Number of dwellings 8
Non habitable divisions Caretaker's home (in the back yard) Shops in the ground floor (garage)

Brief constructional characterization

Structure and foundations
Exterior walls (façades and side walls)

Foundations made of simple concrete upon compacted clay ground. Reinforced concrete structure.
Main and rear façades made of continuous reinforced concrete on the ground floor, thickness 0.5 m . From the $1^{\text {st }}$ floor up these façades are made of reinforced concrete beam and pillar structure filled with two panels of stretcher bonds and airspace. Side walls made of continuous reinforced concrete.
Interior walls Partition walls made of brick masonry with cement mortar: on the $3^{\text {rd }}$ and $4^{\text {th }}$ floor made of hollow stretcher bond brick masonry; on the 1st and 2nd floor made of solid stretcher bond brick masonry; partition walls between stores in the ground floor made of solid header bond brick masonry; partition walls between different dwellings and staircase made of solid stretcher bond brick masonry on the ground floor (hollow brick above the ground floor).

Discrepancies, changes in the façade

One air conditioning device mounted on the façade. Several advertisement structures of large dimensions mounted on the façade.

Original dwelling

Floor plan

Right Left

Controle

Contiguity

Depth

Entire dwelling
Mean: 1.00

Adjacency (arcs)
Adjacency (arcs) merged

Entire dwelling Mean: 70

Justified graph

Graph with a tree configuration with 1 ring
Graph with 8 levels of depth
18 spaces/nodes

Distributness
a
Social area

- Private area
Circulation area
- Service area
a _ terminal spaces
b _ reached by two or more arcs
c reached by two or more arcs
- and connected in a ring

Convex map

Entire dwelling
Mean: 2.8

Front façade

Door of the building

Date: 1951
Number of floors: 4
Project authorship: Eng.n. 92 (illegible signature)

Building entrance hall

Brief functional characterization

Access One access to the building; one staircase.
Number of dwellings 7
Non habitable divisions Caretaker's home
Shops in the ground floor

Brief constructional characterization

Structure and Foundations made of hydraulic stone masonry with cement and sand mortar. foundations Reinforced concrete beam and pillar structure on the main and rear façade.
Exterior walls (façades Main and rear façades made of concrete structure filled with two panels of stretcher and side walls) bonds and airspace of 0.1 m , thicknesses of 0.4 m .

Side walls made of concrete structure filled with concrete blocks with a water repellent product coating.
Interior walls Partition walls made of brick masonry with cement and sand mortar: $2^{\text {nd }}$ and $3^{\text {rd }}$ floor in hollow stretcher bond brick masonry, ground floor and $1^{\text {st }}$ floor in solid stretcher bond brick masonry, thickness 0.15 m .

Discrepancies, changes in the façade

Replacement of the windows in several floors with different designs. Few cables through the building's main façade. Changes on the façade design on the ground floor in the area occupied by stores. Gas infra-structure mounted on the ground floor façade.

Original dwelling

Floor plan

Convex map

Controle

Justified graph

Distributness

a a _ terminal spaces

- b _ reached by two or more arcs

Depth

C reached by two or more arcs - and connected in a ring

Integration

Adjacency (arcs
merged -_ door (single) \rightleftharpoons door (double)---- passage \sim window
Higher
Lower

A transformation grammar-based methodology for housing rehabilitation: meeting contemporary functional and ICT requirements |Sara Eloy

Original buildings and dwellings characterization

Front façade

Door of the building

Building entrance hall

Date:	1945
Number of floors:	4

Project authorship:

Brief functional characterization

Access One access to the building; two staircases.
Number of dwellings 7
Non habitable divisions Caretaker's home

Brief constructional characterization

Structure and

 foundationsExterior walls (façades and side walls)
Interior walls

Main and rear walls made of ordinary stone masonry with cement and sand mortar. Side walls made of cement and sand blocks.
Partition walls made of brick masonry.

Discrepancies, changes in the façade

Air conditioning devices mounted on the main façade of the building
R. Bica do Marquês, 7

Net floor area: $78 \mathrm{~m}^{2}$ | Gross floor area: $88.8 \mathrm{~m}^{2}$

Original dwelling

Floor plan

Convex map

Social area
Private area
Circulation area
Service area

Entire dwelling
Mean: 1.00

Entire dwelling
Mean: 31.66

Distributness

- a terminal spaces

D b _ reached by two or more arcs
C reached by two or more arcs and connected in a ring

Integration

Entire dwelling
Mean: 2,96

Original buildings and dwellings characterization

Front façade

Door of the building

Brief functional characterization

Access One access to the building; one staircase.
Number of dwellings 7
Non habitable divisions Condominium store-rooms
Caretaker's home
Shops in the ground floor

Brief constructional characterization

$\begin{array}{ll}\text { Date: } & 1948 \\ \text { Number of floors: } & 4\end{array}$
Project authorship: Eng. n. 220 (illegible signature)

Building entrance hall Shops in the ground floor

$$
\begin{aligned}
\begin{array}{r}
\text { Structure and } \\
\text { foundations }
\end{array} & \begin{array}{l}
\text { Foundations made of concrete with } 0.5 \mathrm{~m} \text { height and above made of hydraulic stone } \\
\text { masonry with cement and sand mortar. } \\
\text { Main façade made of stone masonry, rear façade and side walls made of concrete }
\end{array} \\
& \text { blocks with cement and sand mortar. }
\end{aligned}
$$

Discrepancies, changes in the façade

Several cables through the building's main façade.

Original dwelling

Right Left

Justified graph

Graph with a tree configuration
Graph with 5 levels of depth
10 spaces/nodes
9 arcs/connections
Right

Social area
Private area

Distributness

Right

- a _ terminal spaces
- b _ reached by two or more arcs

Controle

Entire dwelling

Mean: 1.00 (right) / 1.00 (left)

Contiguity

Depth

Entire dwelling
Mean: 23 (right) / 21.04 (left)

Graph with a tree configuration Graph with 4 levels of depth
10 spaces/nodes
9 arcs/connections
Left

Circulation area
Service area

Left

C _ reached by two or more arcs and connected in a ring

Integration

Entire dwelling
Mean: 2.97 (right) / 3.52 (left)

Front façade

Door of the building

Building entrance hall

Brief functional characterization

Access One access to the building; two staircases
Number of dwellings 6
Non habitable divisions

Brief constructional characterization

Structure and
 foundations
 Exterior walls (façades
 and side walls)
 Interior walls

Discrepancies, changes in the façade

Several cables through the building's main façade.

Original dwelling

Floor plan

Controle

Contiguity
12 spaces/nodes
13 arcs/connections

Convex map

Graph with a tree configuration
Graph with 6 levels of depth
(windows connections are excluded)

Distributness

Depth

Social area
Private area
Circulation area
Service area
a_terminal spaces
b reached by two or more arcs
C _ reached by two or more arcs and connected in a ring

Integration

Entire dwelling

Entire dwelling
Mean: 31.33

Entire dwelling
Mean: 3.07

Front façade

Door of the building

Date:	1948
Number of floors:	5

Project authorship:

Building entrance hall

Brief functional characterization

Access One access to the building; main lift, two staircases.
Number of dwellings 8
Non habitable divisions Caretaker's home
Shops in the ground floor

Brief constructional characterization

Structure and
 foundations
 Exterior walls (façades
 and side walls)
 Interior walls

Discrepancies, changes in the façade

Some air conditioning devices mounted on the main façade. Some windows frames where changed and replaced by different types of window (original casement windows where replaced by sliding windows). Few cables through the building's main façade.

Original dwelling

Floor plan

Controle

Contiguity

Entire dwelling
Mean: 1.00

Adjacency (arcs)
merged - door (single) $=$ door (double)---- passage \sim window

Entire dwelling
Mean: 51.46

Depth

Distributness

Justified graph

Graph with a tree configuration
Graph with 7 levels of depth
15 spaces/nodes
14 arcs/connections

Social area
Private area
Circulation area

- Service area
- a _ terminal spaces

D b reached by two or more arcs
C reached by two or more arcs

Integration

Convex map

[^6]
Original dwelling

Floor plan

Controle

Entire dwelling
Mean: 1.00

Contiguity

Convex map

Entire dwelling
Mean: 46.14
Entire dwelling
Mean: 46.14

Distributness

Depth

Entire dwelling Mean: 2.55

APPENDIX 2

Steps 1, 2 and 3 of the experiment

APPENDIX 2: STEPS 1, 2 AND 3 OF THE EXPERIMENT

As stated in Part 2: Chapter 1.4 the methodology used to infer the transformation grammar was divided into three steps, each corresponding to a particular type of experiment:

- Step 1: testing the feasibility of the experimental setup by the main author of the research and defining a set of preliminary rehabilitation rules that could be transmitted to the experimental subjects in step 2:
- Step 2: finding rehabilitation solutions that could satisfy the functional and constructional requirements of each family in a given dwelling. These solutions, designed by hand, were used to infer transformation rules;
- Step 3: testing the transformation rules inferred in the previous step by verifying whether the solutions generated following these rules were satisfactory.
The goal was to relate domestic groups (families) to dwellings (existing houses). Prior to applying the methodology, data concerning the domestic groups, the case study dwellings, new housing functions, and the pack of ICAT functions was gathered and organised, as described below. These elements were then given to the experimental subjects in steps 1,2 and 3.
This appendix includes data on these steps that is not cited in the main body of the thesis, namely the data used by the experimental subjects and some examples of the results of the experiment.

DATA USED: FAMILIES AND EXISTING HOUSES

The results of the interviews with the five families are presented in Table 1 to Table 5.

Family 01	Couple with 3 children	Minimal functional programme
		1 Double bedroom; 1 Twin bedroom; 1 Single bedroom; 1 Kitchen; 1 Living room; 1 Bathroom (toilet, lavatory, bidet, bath or shower); Storage areas
	Couple Girl aged 5 Girl aged 3 Boy aged 1	Extra areas or functions in order of priority
		Small office space; 2 Private bathrooms (toilet, lavatory, bidet, bath or shower); Large living/dining room ($\geq 12 \mathrm{~m}^{2}$ and $18 \mathrm{~m}^{2}$); 1 guest bathroom
		Important connections between rooms
		Children's bedrooms near parents' bedroom; Private bathrooms in private area; Living room adjacent to dining room or large combined living/dining room
	Table 1 - Results from the interview with family 01	
Family 02	Couple with 2 children	Minimal functional programme
		1 Double bedroom; 1 Twin bedroom; 1 Kitchen; 1 Living room; 1 Bathroom (toilet, lavatory, bidet, bath or shower); Storage areas
	Couple Girl aged 8 Girl aged 4	Extra areas or functions in order of priority
		2 Single bedrooms for children; Living room separated from dining room $\left(\geq 12 \mathrm{~m}^{2}\right.$ and $18 \mathrm{~m}^{2}$); 2 Private bathrooms; 1 guest bathroom; Room for home office which could also be used as a guest bedroom; Laundry room separate from, but near, kitchen
		Important connections between rooms
		Children's bedrooms near parents' bedroom; Private bathroom in private area; Dining room near kitchen; Living room near entrance
		, 2 - Results from the interview with family 02
Family 03	Young couple without children	Minimal functional program
		1 Double bedroom; 1 Kitchen; 1 Living room; 1 Bathroom (toilet, lavatory, bidet, bath or shower); Storage areas
		Extra areas or functions in order of priority
	Couple	Home office in an independent room; Big living/dining room ($\geq 25 \mathrm{~m}^{2}$); Balcony connected to social area; Extra storage areas; 1 guest bathroom
		Important connections between rooms
		Private space (bedroom and bathroom) segregated from the rest of the dwelling
		Table 3 - Results from the interview with family 03
Sara Eloy	A transformation grammar-based methodology for housing rehabilitation: meeting contemporary functional and ICT requirements	

Family 04	Elderly couple Couple 2 grandsons (occasionally)	Minimal functional programme
		1 Double bedroom; 1 Kitchen; 1 Living room; 1 Bathroom (toilet, lavatory, bidet, bath or shower); Storage areas
		Extra areas or functions in order of priority
		1 Twin bedroom for grandsons (occasional use); Small office space; Dining area in kitchen; Living room separate from dining room; 1 guest bathroom
		Important connections between rooms
		Bedrooms next to each other; Guest bathroom in social area; Dining room near kitchen
		Table 4 - Results from the interview with family 04
Family 05	Couple with children (second marriage, children from different marriages)	Minimal functional programme
		1 Double bedroom; 1 Twin bedroom; 1 Single bedroom; 1 Kitchen; 1 Living room 1 Bathroom (toilet, lavatory, bidet, bath or shower): Storage areas
		Extra areas or functions in order of priority
	Couple 2 children from mother's previous marriage (girl aged 8, boy aged 10), 1 child from father's previous marriage (boy aged 12)	1 Single bedroom for each child; 2 Private bathrooms; 1 guest bathroom; Extra storage areas; Big living room and dining room (1 or 2 rooms) (dining room $\geq 12 \mathrm{~m}^{2}$ and living room $\geq 20 \mathrm{~m}^{2}$)
		Important connections between rooms
		All bedrooms in private area; Children's bedrooms next to each other; Private space (bedrooms and bathrooms) segregated from the rest of the dwelling

Table 5 - Results from the interview with family 05
The criterion for selecting dwellings for the $1^{\text {st }}$ and $2^{\text {nd }}$ steps was to choose ten dwellings of varying types and areas that could potentially meet the requirements of the functional programmes for the selected families (Table 6).
The 10 chosen dwellings corresponded to 3 "type A" dwellings, 2 "type B" dwellings 2 "type C" dwellings and 3 "type D" dwellings (see Figure 1 and Table 7).
For the third step, three different dwellings were chosen that were not used in the $1^{\text {st }}$ and $2^{\text {nd }}$ experiments.

Figure 1 - Dwellings selected for the 1st and 2nd step of the experiment.

Table 7 - Calculations for the net floor area $\left(\mathrm{m}^{2}\right)$ for each family based on the minimum values in the functional programme and the needs expressed by each family. Comparison between these values and the net floor area of each of the two dwellings assigned to each family in Steps 1 and 2.

STEP 1

The aim of this first step was to test the rehabilitation hypotheses according to the requirements defined in the functional programme, in addition to the pack of ICAT and the extra requirements specified by each family. As this step was undertaken by the author of the thesis, the information set used was the knowledge of aspects relating to the rehabilitation work acquired up to this stage. The data on the families (the functional programme and ICAT pack) and proposed dwellings was as previously defined.
The procedure for carrying out the experiment, together with the information used and the procedure for assessing the results, was similar to those illustrated in Step 2 (see pages 73 to 80).

STEP 2

In step number 2 the same data from experiment 1 was used, namely, 10 existing dwellings (Figure 1) and 5 different families (Table 1 to Table 5). Besides the dwelling layouts (plotted on a scale of $1: 100$ or DWG drawing) and the written description of family desires, a brief description of the major functional and constructional aspects the family had to follow was given to the experimental subjects (Figure 3).

The data that resulted from these experiments included sketches (two of the architects designed by computer and therefore did not produce sketches) (Figure 2), final drawings of the proposed layouts, and texts explaining the process followed in each case (two of the architects explained the process verbally and therefore did not write texts.)

Pages 73 to 80 show one example of a pair of family/dwelling transformations produced during Step 1 by experimental subject \#1 and during Step 2 by experimental subjects \#2a, \#2b, \#2d and \#2e. The first experimental subject proposed three different transformations and all others but one of the experimental subjects proposed only one transformation. The total proposed layouts for this dwelling/family pair was 7. Page 80 shows the evaluation form which was completed for each of the seven layouts in order to assess fulfilment of the functional programme for the dwelling.
A set of forms similar to the sample shown in pages 73 to 79 was completed for each of the 35 resulting dwelling transformations in order to compare them and infer transformation rules.

Figure 2 - Drawings produced by the experimental subjects during Step 2 of the experiment

All dwellings must include the following mandatory rooms (MR) and optional rooms (OR). Room net floor areas are shown

MR	Kitchen ($\geq 6 \mathrm{~m}^{2}$)	OR	Living room (if isolated) ($\geq 10,5 \mathrm{~m}^{2}$)
MR	Laundry (can be included in the kitchen) (if apart from kitchen, it must have $\geq 1,5 \mathrm{~m}^{2}$)	OR	Dining room (f is isated) (for 2 persons $\left.\geq 7,5 \mathrm{~m}^{2}\right)$
MR	Living and dining room (must include living and dining space for, at least, all the members of the family) (for 2 or 3 people $\geq 18 \mathrm{~m}^{2}$, for 4 or 5 people $\geq 20 \mathrm{~m}^{2}$)	OR	Guest bathroom ($\geq 1 \mathrm{~m}^{2}$)
MR	Private bathroom (toilet, lavatory, bidet, bathtub or shower) $\left(\geq 3,5 m^{2}\right)$	OR	$2{ }^{\text {nd }}$ private bathroom ($\geq 2,5 \mathrm{~m}^{2}$)
MR	Bedroom(s) (couple $\geq 10,5 \mathrm{~m}^{2}$, double $\geq 9 \mathrm{~m}^{2}$, single $\geq 6,5 \mathrm{~m}^{2}$)	OR	Home office

Functional areas	Rules
Social area _ Spaces: living room, dining room, home office, social bathroom.	

- sociab spaces must have natural light and ventilation

Social area must be near the entrance and permit easy access
Living and dining rooms must have a proper access to the circulation area or to other living area;

- Two separated but connected (living and dining) rooms are recommended, rather than one room;
- The living room must be of the appropriate size and have enough space to accommodate the furniture needed for a large TV set or home cinema;
_ The guest bathroom must be near social and circulation area; access to the social bathroom should not be visible from the entrance; the guest bathroom should not have direct access to living or dining room;
Private area _ Spaces: Bedroom(s), private bathroom(s) and closet(s)
- Inhabitable spaces must have natural light and ventilation. It is permissible for a bedroom not to
have natural light or ventilation if it is only used occasionally, in which case it must receive light and ventilation from another adjacent room
_ The private area must be the most segregated area of the dwelling;
_ The circulation area that serves the private area must be separate from the one that serves the social and service areas. The night-time areas (bedrooms + private bathroom) ought to be separated from the daily-time areas (living and dining rooms + kitchen) by doors or hallways
_ Bedrooms must have a proper access from a circulation areas or access from a home office or a play room.
_ Bedrooms must have easy and direct access to private bathroom without crossing social areas;
_ Connexion between bedrooms and entrance door must be done by one or two circulation spaces
apart from living and dining rooms.

Service area	_ Spaces: kitchen, laundry, storeroom; _ The kitchen must have natural light and ventilation or light and ventilation via the laundry; _ The kitchen must have proper access to the circulation area although it may also have access via a living or dining room (permissible if this is not the only division in the social area) _ The kitchen must include an area for informal meals or, alternatively, drect access to the dining room; The kitchen must be near the laundry and have easy access to it.
Circulation area	_ The circulation area must be reduced and used more efficienty (e.g. by adding closets or enlarging the social area): _ Circulation spaces within different areas must not have breaks (e.g. doors between two different privatc corridors)
Demolition / new construction	_ Rehabilitation work must involve little demolition and only in "surgical" situations. _ Entire walls cannot be demolished. Demolition work must obey two rules: the length of the demolished section should be 2 m or less and it cannot total more than half the wall; _ Beams for new openings must be considered in any demolition work; _ Bathrooms can be relocated if this proves to be the best solution (we used maceration techndogy or a new vertical line of sewage). _ New walls must be constructed using a light partition wall system as plasterboard, wood panelling, etc.
Floor areas	The criterion of minimal floor area is used to achieve a sustainable solution. This criterion can only be reformulated in accordance with new requirements by residents

Figure 3 - Information given to the experimental subjects for use in creating their rehabilitation proposals. Summary of the functional programme for the dwellings and the rules for transformations.

STEP 3

As explained in Part 2: Chapter 1.4.3, the goal of Step 3 was to test the proposed grammar on dwellings that had not been used to infer the rules in order to check whether they provided the compositional means for making new transformations in other existing dwellings for other families.
This experiment was carried out by a class of 22 architecture students. The final layouts obtained from this experiment were as follows, by experimental subject group (see Figure 4):
_ Group 01 - Did not complete the experiment in 3 hours. They failed to obey four shape rules during the derivation. The rules that were not obeyed were concerned with dimension conditions (net area and length and weights (to position new bathrooms). The derivation was performed immediately, without revising any decisions. The final result contained misinterpretations.
_ Group 02 - Completed the experiment in 3 hours. They obeyed all the shape rules and explored a viable and correct dwelling layout in accordance with the transformation grammar. One rule was misinterpreted but the final result was good and the questions raised by the misinterpretation were transferred to a new grammar rule. The derivation was completed at the second attempt. The final result was positive.
_ Group 03 - Completed the experiment in 4 hours (initial session of 3 h and second session of 1 h). The derivation was performed immediately, without revising decisions. The final result was positive.
_ Group 04 - Completed the experiment in 3 hours. In some cases, they did not follow the rule application sequence but this was not relevant to completion of the exercise. They failed to obey some shape rules during derivation. The rules that were not obeyed were concerned with dimension conditions (net floor area) and led to an incorrect dwelling layout. The final result contained misinterpretations.
_ Group 05 - Did not complete the experiment in 3 hours. They did not obey 1 fundamental shape rule concerning the assignment of the private bathroom and the dwelling layout was therefore incorrect. This group invented new rules and misinterpreted the exercise. The final result was negative.

- The $5^{\text {th }}$ group tried to accomplish the exercise in a second session of 2 hours using a different dwelling. The dwelling was too small for the family's extra requests. The experimental subjects reached a solution but did not consider the articulation/function conditions of the rules. They also did not explore the rules for changing the shape of rooms. The final result was viable but as the rule conditions were not met, it would have rated badly in terms of functional organisation.
_ Group 06 - Completed the experiment in 3 hours. They obeyed all the shape rules and explored a viable and correct dwelling layout according to the transformation grammar. The derivation was completed at the second attempt because of a simple mistake that could have been avoided if they had read the rule application sequence carefully. The final result was positive.
_ Group 7 - Completed the experiment in 3 hours. One demolition not included in the rules was performed and the geometry of the final layout was altered without any apparent benefit. Due to lack of compliance with the rule conditions, a rule was applied
wrongly and an unnecessary new space was created. The derivation was completed at the second attempt because of a simple mistake that could have been avoided if they had read the rule application sequence carefully. The final result contained misinterpretations.
_ Group 08 - Completed the experiment in 5 hours (initial session of 3 h and second session of 2 h). In the first session they anticipated the assignment of the guest bathroom without obeying the rule and reached a dead-end. The final result was negative. In the second session they made new mistakes (altering the order of the rules) but achieved a positive result.
_ Group 09 - Completed the experiment in 3 hours. The dwelling assigned to this group contained a special feature that led to a misinterpretation of a shape rule - this new aspect was subsequently included in the grammar. This group added an unnecessary new private bathroom by using a rule wrongly and this led to an incorrect result. They failed to obey some shape rules during derivation. The rules that were not obeyed concerned dimension conditions (net area), functional conditions (functions associated with labels) and weights (demolition of structural elements). The derivation was performed immediately without revising decisions. The final result contained misinterpretations.
- Group 10 - Did not complete the experiment in 3 hours. The given dwelling did not fulfil family needs. They failed to obey some shape rules during derivation. The rules that were not obeyed concerned labels (the left shape rule label did not correspond to the one they used). These wrongly applied rules led to incorrect dwelling layouts. The final result contained misinterpretations.

	Dwelling	Experimental subjects		
Family 1	(D1) Pr. Afrânio Peixoto, 13 (type a)	$\begin{gathered} \hline 01 \\ 2 \text { people } \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 2} \\ 2 \text { people } \end{gathered}$	
Family 2	(D1) Pr. Afrânio Peixoto, 13 (type a)	$\begin{gathered} \mathbf{0 3} \\ 1 \text { person } \\ \hline \end{gathered}$	$\begin{gathered} 04 \\ 2 \text { people } \\ \hline \end{gathered}$	05 (1st session) 3 people
	(D2) R. Actor Isidoro, 16 (type d)			05 (2nd session) 3 persons
Family 3	(D3) Calçada do Galvão, 135 (type d)	$\begin{gathered} \mathbf{0 6} \\ 2 \text { people } \end{gathered}$	$\begin{gathered} \mathbf{0 7} \\ 3 \text { people } \\ \hline \end{gathered}$	
Family 4	(D4) Estrada de Benfica 490 (type d)	$\begin{gathered} \mathbf{0 8} \\ 1 \text { person } \end{gathered}$	$\begin{gathered} 09 \\ 3 \text { people } \\ \hline \end{gathered}$	
Family 5	(D5) Av. de Roma, 85 (type a)	$\begin{gathered} 10 \\ 3 \text { people } \\ \hline \end{gathered}$		

Did not complete the	Completed the experiment and did not experiment but did not comply with all the rules with all the rules
comply not complete the	Completed the
Did	
experiment but complied	experiment and
with the rules	complied with all the rules

Table 8 - Composition of groups in the 3rd experiment

Figure 4 (continued on next page) - Final dwelling layouts at the end of the experiment, by experimental subject groups. f (family); d (dwelling), es (experimental subject)

Figure 6 (continuation of the previous page) - Final dwelling layout at the end of the experiment, by experimental subject groups. f (family); d (dwelling), es (experimental subject)

The following conclusions can be drawn from this experience:

- Contrary to what happened in the second step of the experiment, the demolition restrictions were not considered a problem in transforming the dwelling, except in one case involving one group derivation;
_ The major difficulty was finding rooms that met the net floor area conditions. Almost all the rooms were smaller than the areas requested. This obstacle led to some possible solutions that need to be integrated into the rules:
- Assigning a tolerance to the requested area, e.g. 10% ($\mathrm{F} \geq 9 \mathrm{~m} 2$ means that $\mathrm{F} \geq 8,1 \mathrm{~m} 2$) \rightarrow this was included in the revised grammar rules;
- Allowing a room, e.g. a double bedroom, to be allocated to a smaller space if the floor area could be enlarged. This possibility is difficult to introduce as a rule because a large number of shape, dimensional and functional conditions have to be met in relation to all the surrounding rooms;
- Allowing a space to first be enlarged and then assigned a function;
- Using the areas required for the minimum level, even if the recommended level had been chosen by the family \rightarrow this was included in the revised grammar rules;
_ Instead of having a sequence of assignment then changing shape rules for each functional area, the experiment revealed that it would be better to have the assignment rules for all the functional areas and then all the changing shape rules separately. This would enable room shape to be changed whenever necessary rather than based only on the predefined sequence \rightarrow this conclusion was included in the revised grammar rules;
_ Instead of having different changing shape rules for each of the functional areas, it was preferable to have the group of changing shape rules with the shape part equal and the conditions differing according to functional or dimensional restrictions \rightarrow this conclusion was included in the revised grammar rules;
_ As there are mandatory rooms (those required by the functional programme) and optional rooms (the extra ones required by the family, in order of priority) and it is sometimes not possible to satisfy all requirements, it would be better assign in the following order:
- Firstly, allocate and ensure the mandatory rooms;
- Secondly, allocate the optional rooms.

Although this option is an interesting possibility, its application would solve some problems but also create others. The main new problem would be the difficulty in keeping the divisions in the different functional areas together, given that they would be attributed at different stages.

Original dwelling

Right Left

Justified graph

Depth

Entire dwelling
Mean: 57

Distributness

Integration

Entire dwelling
Mean: 3.2

Rehabilitation programme

Obligatory rooms
_ kitchen
_ double bedroom
_ children bedrooms
_ separate or combined living room and dining room
_ private bathroom (1st)
_ private bathroom (2nd)
Extra divisions requested by the family (in order of priority) and relationships between divisions
_ 1 twin bedroom +1 single bedroom for children next to double bedroom
a terminal spaces
_ small work area isolated or integrated with other area
_ 2 fully equipped private bathrooms in private area
_ The dining room and living room should be a big room, combined or separate but adjacent, enabling them to be linked for social events
_ guest bathroom next to social area
b reached by two or more arcs
C _reached by two or more arcs and connected in a ring

Social area

- Private area

Circulation area
Service area

Demolitions / constructions

Right (hyp.1) _ few demolitions; few new constructions Left (hyp.2) _ many demolitions; few new constructions Right (hyp.3) _ many demolitions; few new constructions

- a_terminal spaces
- b _ reached by two or more arcs

C _ reached by two or more arcs and connected in a ring

- Social area
- Private area

Circulation area

- Service area

Justified graph _ right (hyp.1)

Justified graph _ left (hyp.2)

Distributness _ left (hyp.2)

Justified graph _ right (hyp.3)

Distributness _ right (hyp.3)

Justified graph

Distributness

Entire dwelling

Mean: 39.6

General criteria for transforming the dwellings in the study

- Enlargement of existing living room (usually small) using the adjacent bedroom.
- Living room(s) orientated towards the main facade or towards maximum sunlight, rather than north-facing.
- Bedrooms located close to bathrooms, and creation of suite, if possible.
- Enlargement of kitchen area, (usually very compartmentalised), using the space in adjacent areas.
- Conversion of larders/storerooms into guest bathrooms required by the programme, using a macerator system.
- Reduction of circulation areas to the minimum, including within storerooms.

Specific criteria for transforming this dwelling

- Creation of a large social area consisting of a hall adjacent to two adjoining living rooms - one living room created by converting a bedroom.
- Alterations to the existing private area: 3 bedrooms, 1 interior, converted into 2 bedrooms, both with storage facilities.
- Creation of a guest bathroom in the space where the former service area storeroom was located.
- Creation of a bedroom with storage facilities in the space where the former service bedroom and bathroom were located.
- Bedroom next to kitchen was not used to extend the latter, as it was required in the proposed programme.a _ terminal spaces
D _ reached by two or more arcs
C _ reached by two or more arcs and connected in a ring
- Social area
- Private area
- Circulation area

Service area

Justified graph

Distributness

Entire dwelling
Mean: 1.00

Contiguity

Entire dwelling
Mean: 32.3

Integration

Entire dwelling Mean: 3.59 10

Right

Entire dwelling
Mean: 1.00

Right

Justified graph

Distributness

Entire dwelling
Mean: 46.1

Integration

Entire dwelling Mean: 3.1

Justified graph

Distributness

Right Left

Controle

Entire dwelling
Mean: 1.00

Contiguity

Depth

Entire dwelling
Mean: 39.06

Integration

Entire dwelling
Mean: 4.08

Justified graph

Right

Right

Controle

Entire dwelling
Mean: 1.00

Depth

Entire dwelling

$$
\text { Mean: } 48.8
$$

Distributness

Contiguity

Integration

Entire dwelling
Mean: 2.85

Rehabilitation evaluation

Obligatory rooms

_ kitchen	\square
- laundry	
- double bedroom	\square
- twin bedroom/single bedroom	\square
- separate or combined living room and dining room	\square
- private bathroom (1st)	\square
- private bathroom (2nd)	\square
_ storeroom	\square

Extra divisions requested by the family (in order of priority) and relationships between divisions

_ 2 bedroom for children	
- small work area	
_ 2 fully equipped private bathrooms	\square
- one large or two separate living rooms	
- bathroom for general use	
- all bedrooms next to each other	\square

Evaluation of the experiments:

YES answers / total questions

Experimental subject \#1

hyp 1 _ 33/36
hyp 2 _ 30/36
hyp 3 _ 34/36

Experimental subject \#2a

hyp 1 _ 32/36
Experimental subject \#2b
hyp 1 _ $34 / 36$
Experimental subject \#2d
hyp 1 _ 30/36
Experimental subject \#2e
hyp 1 _ 28/36

General characteristics

_ Bedrooms and living rooms have natural light and ventilation \qquad
_ The daytime area (living rooms + kitchens) can be separated from the night-time area (bedrooms and private bathrooms) by doors or a corridor

Social area

_ The social area is accessed via the circulation areas \qquad
_ The dining room and living room are combined or separate but adjacent, enabling them to be linked \qquad
_ The dining room is close to the kitchen \qquad
_ There is a bathroom for general use with easy access that does not involve passing through private or social areas \qquad _ The bathroom for general use has no door opening onto any room
_ Social spaces are close to the entrance for easy access \qquad
_ The living room is large enough to allow for the possibility of installing furniture for viewing TV or home cinema from a distance of 3 m
_ There is individual access to the living room(s) via a circulation area or other living room
_ All living rooms comply with minimum area requirements \qquad

Private area

_ Bedrooms and private bathrooms are accessed from circulation areas other than those of the hall and the social and service zone circulation areas \qquad
_ The bedrooms have access to a bathroom within the same private area
_ All bedrooms comply with minimum area requirements \qquad

Service area

_ The kitchen is accessed by circulation areas or via a living room, if it is not the only one \qquad
_ The kitchen includes an eating area for light meals or is close
to an eating area \qquad
_ The kitchen includes a space for laundry work or has a direct
link to a space reserved for this purpose \qquad
_ The kitchen complies with minimum area requirements \qquad

Circulation areas

_ The circulation areas allow for alternative paths within the dwelling
_ There are no obstacles to circulation within the social area \qquad
There are no obstacles to circulation within the service area
_ There are no obstacles to circulation within the private area \qquad

Demolition work

_ Linear dimensions of walls demolished

APPENDIX 3

Transformation grammar rules

Rule -1.1b _ Generation of a compound representation - using surfaces to represent rooms

Conditions:
Dimensions
$\mathrm{I} 1, \mathrm{w} 1 \geq 0.2 \mathrm{~m}$
$45^{\circ} \leq \mathrm{d} \leq 135^{\circ}$
$e=135^{\circ}$

Rule -1.1c Generation of a compound representation - using surfaces to represent rooms

Conditions:
Dimensions:
$\mathrm{l}, \mathrm{w} \geq 1 \mathrm{~m}$
$\mathrm{w} 1 \geq 0.8 \mathrm{~m}$
** $w \geq 1 \mathrm{~m}^{2}$
$e=135^{\circ}$
Rule -1.1d _ Generation of a compound representation - using surfaces to represent rooms

Conditions:
Dimensions:
$\mathrm{l}, \mathrm{w} \geq 1 \mathrm{~m}$
$11, \mathrm{w} 1 \geq 0.2 \mathrm{~m}$
$\mathrm{e}=135^{\circ}$

Dimensions:
$l \geq 2 \mathrm{~m}$
$w \geq 1 m$

Rule -1.1e Generation of a parallel representation - using surfaces (interior passages and windows)
$\mathrm{W}_{1} \stackrel{\mathrm{w}}{\mathrm{F}+\mathrm{W}_{2}}$
$\mathrm{I}_{1}=\mathrm{W}$
I
$\mathrm{I}_{2}=\boldsymbol{m}$

Rule - 1.1 e 3

$\mathrm{w}_{1} \stackrel{\mathrm{w}}{+\mathrm{w}_{2}}$
$\mathrm{I}_{1=}$
1
$\mathrm{I}_{2}=$

$\mathrm{I}_{1} \stackrel{\mathrm{w}}{\mathrm{w}} \mathrm{w}_{2}$
1
1

[^7]Rule -1.2 _ Generation of a compound representation - using dots and arcs to represent rooms and connections

Conditions:
Dimensions:
I, $w \geq 0.65 m$
$0.8 m^{2} \leq 1^{*} w \leq 30 m^{2}$
$0 \mathrm{~m} \leq 11, \mathrm{w} 1 \leq 1 \mathrm{~m}$
$80^{\circ} \leq \mathrm{a} \leq 90^{\circ}$
$90^{\circ} \leq \mathrm{b} \leq 98^{\circ}$

Conditions:
Dimensions:
$\mathrm{I}, \mathrm{w} \geq 1 \mathrm{~m}$
$1 \mathrm{~m}^{2} \leq 1^{*} \mathrm{w} \leq 30 \mathrm{~m}^{2}$
12 w $2 \geq 0.2 \mathrm{~m}$
$e=135^{\circ}$

Conditions:
Dimensions:
$\mathrm{I}, \mathrm{w} \geq 1 \mathrm{~m}$
$w 1 \geq 0.8 \mathrm{~m}$
$0.8 m^{2} \leq l^{*} w \leq 30 m^{2}$
$e=135^{\circ}$

Conditions:
Dimensions:
$\mathrm{l}, \mathrm{w} \geq 1 \mathrm{~m}$
$0.8 m^{2} \leq 1^{*} w \leq 30 m^{2}$
I1, $\mathrm{w} 1 \geq 0.2 \mathrm{~m}$
$e=135^{\circ}$
Rule - $1.2 e \quad$ _ atribution of a dot to represent one room

		11			11	Conditions:	(this situation happens only once)
						Dimensions:	
		I				$\begin{aligned} & 2 \mathrm{~m} \leq 1, \mathrm{w} \leq 6 \\ & \mid 1 \leq 1 \\ & \mathrm{w} 1 \geq \mathrm{w} \end{aligned}$	
w1	w		w1	w			

Rule -1.2f _ attribution of a dot to represent one rooms

Rule $-1.2 g_{_}$attribution of a dot with a label to the exterior

Rule -1.2 h _ attribution of an arc between two connecting rooms (with a door between them)

Rule -1.2j _ attribution of an arc between the exterior and a room with a window

	$\mathrm{w}_{1} \mathrm{\# N}_{2}$	Conditions:	Description (abbreviated):
$1 \neq$		Dimensions:	R-1.2j < D-1: $\varnothing>\rightarrow$ D-1: window_to >
1	,	$1 \geq 0,8 \mathrm{~m}$	
$\mathrm{I}_{2}=$	I_{2}	$0,10 \mathrm{~m} \leq \mathrm{w}, \mathrm{w} 1 \leq 0,55 \mathrm{~m}$	
		$0 \mathrm{~m} \leq \mathrm{w} 2 \leq 0,45 \mathrm{~m}$	
		$0 \mathrm{~m} \leq 11,12 \leq 0,25 \mathrm{~m}$	

Notes:

Rule - 1.4 _ Attribution of weights for the dwelling walls

Rule - 1.4 a _ Attribution of brick wall (ub) weight

F_{b}	F_{6}	Conditions:
		Dimensions:
		$1 \leq 0.25 \mathrm{~m}$
F_{f}	F_{f}	Functions:
		$\mathrm{Fb}, \mathrm{Ff} \in\{\mathrm{hs}, \mathrm{nhs}, \mathrm{Xki}, \mathrm{Xba}, \mathrm{Xla}\}$

Rule -1.4b _ Attribution of structural elements (us) weight

F_{b}	F_{b}	Conditions:
		Dimensions:
		$0.25 \mathrm{~m} \leq 1 \leq 0.55 \mathrm{~m}$
$F_{\text {f }}$	F_{f}	Functions:
		$\mathrm{Fb} \in\{\mathrm{ext}\}$

Rule - 1.4 c _ Atribution of structural elements (us) weight

Conditions:
Dimensions:
$0.1 \mathrm{~m} \leq 1, w \leq 0.5 \mathrm{~m}$
$0 \mathrm{~m} \leq \mathrm{l}, \mathrm{w} \leq 0.2 \mathrm{~m}$
$\mathrm{l}=\mathrm{w} \vee \mathrm{l} \neq \mathrm{w}$

Rule -1.4d _ Attribution of side walls (usi) weight

Conditions:
Dimensions:
I $>0.25 \mathrm{~m}$

Functions:
$\mathrm{Fb} \in\{\mathrm{S}\}$
Ff $\in\{n h s$, hs, Xba $\}$

Rule - 1.5 _ Changing from step -1 to step 0

Conditions:

\forall wall: wall $\in\{$ wus, wusi, wub $\}$
\forall connection: connection $\supset\{$ arc connection, surface $\}$
\forall adjacency: adjacency \supset \{arc_adjacency\}
\forall room: room $\supset\{$ surface, dot, label\}

Description (abbreviated):
R-1.5 < D-1: S-1 > \rightarrow D0: SO $>$

Rule 0.3.b _ Assignment of isolated kitchen for strategy 1 (recommended level)

Conditions:

$$
Z \supset\{\mathrm{ki}\} \wedge Z^{\prime} \nmid\{\mathrm{ki}\}
$$

Dimensions:
If nhab $=4 \Rightarrow 10.5 \mathrm{~m}^{2} \leq F \leq 30 \mathrm{~m}^{2}(\pm 10 \%)$
If nhab $\geq 5 \Rightarrow 11,5 m^{2}+0,5 m^{2}(n-5) \leq F \leq 30 m^{2}(\pm 10 \%)$
I, $w \geq 1,7 m$
$0 \mathrm{~m} \leq 11, \mathrm{w} 1 \leq 1 \mathrm{~m}$
$12, \mathrm{w} 2 \geq 0 \mathrm{~m}$
$e \in\left\{135^{\circ}, 180^{\circ}\right\}$
Functions:
$F b \in\{e x t\} \wedge \mathrm{Ff} \vee \mathrm{Fr} \vee \mathrm{FI} \in\{\mathrm{nhs}, \mathrm{hs}\} \wedge \exists \mathrm{Ff} \vee \mathrm{Fr} \vee F I \in\{\mathrm{nhs}\} \wedge \mathrm{F} \in\{\mathrm{hs}$
F (inside $(x))=T R U E, x \in\{u k\}$
$F \in\{F a\} \vee F \in\{F b\} \vee F \in\{F c\}$
If $\mathrm{Fa}=\min (\mathrm{A}) \wedge \mathrm{A} \in\{\mathrm{Fa}, \mathrm{Fb}, \mathrm{Fc}\} \Rightarrow \mathrm{F} 1=\mathrm{Fa}$
$\mathrm{F} 1 \in\{\mathrm{ki}\}$
Description (abbreviated):
R0.3b < D0: \{ext\}, \{nhs\}, Fr, FI; F; Z"; E> \rightarrow

Rule 0.4 _ Erasing new kitchen's placement weight

Conditions:
Description (abbreviated):
$Z^{\prime} \supset\{k i\}$

$$
\text { R0. } 4 \text { < D0: uk > } \rightarrow \text { < D0: Ø> }
$$

Dimensions:
$5.7 \mathrm{~m} \leq \mathrm{w} \leq 18.5 \mathrm{~m}$
$3 \mathrm{~m} \leq \mathrm{w} \leq 5.7 \mathrm{~m}$

Rule 0.5 _ Changing Xki labe

- ${ }^{F}$
- F1

Conditions:
$Z^{\prime} \supset\{k i\}$
Functions:
$\mathrm{F} \in\{\mathrm{Xki}\}$
$\mathrm{F} 1 \in\{\mathrm{hs}\}$

Description (abbreviated)
R0.5 < D0: Xki; E > \rightarrow D0: hs; $\mathrm{E}-\{\mathrm{Xki}\}, \mathrm{E}+\{\mathrm{hs}\}>$

Rule 2.1. a _ Assignment of double bedroom (minimum level)

Rule 2.2.a _Assignment of twin bedrooms (minimum level)

Conditions:
$Z \supset\{$ be.tn $\} \wedge Z^{\prime} D\{$ be.tn

Dimensions:
$10.5 \mathrm{~m}^{2}(\pm 10 \%) \leq \mathrm{F} \leq 30 \mathrm{~m}^{2}$
$w, l \geq 2,1 m$
$0 m \leq 11, w 1 \leq 1 m$
12, w2 $\geq 0 \mathrm{~m}$

$$
e \in\left\{135^{\circ}, 180^{\circ}\right\}
$$

Functions:
be.t $($ next_to $(x))=$ TRUE \vee be.t $($ close_to $(x))=$ TRUE, $x \in\{$ be.d $\}$
$\exists \mathrm{Fb} \vee \mathrm{Ff} \vee \mathrm{Fr} \vee \mathrm{Fl} \in\{\mathrm{ext}, \mathrm{Cbc}\}$
\exists Fb $\vee F f \vee F r \vee F I \in\{n h s, c o, c o . p, c l\}$
FbvFf $\vee \operatorname{Fr} \vee \mathrm{Fl} \nmid\{\mathrm{hl}\}$
$F \in\{h s\}$
$F 1 \in\{b e . t\}$
Description (abbreviated):

R2.2a < D2: ext, \{nhs, co, co.p, Cl\}, Ff, Fl; F; Z"; E > \rightarrow
< D2: ext, \{nhs, co, co.p, Cl\}, Ff, FI; be.t; Z' + \{be.t $\} ; \mathrm{E}-\{$ hs $\}, \mathrm{E}+\{$ be.t $\}>$

Rule 2.2.b _ Assignment of twin bedrooms (recommended level)

Rule 2.4 _ Changing from step 2 to step 7 if there is no spaces satisfying rules 2.1 to 2.3

S2 \rightarrow S7

Conditions:

If $\forall \mathrm{F}: \mathrm{F} \leq 10,5 \mathrm{~m}^{2}(\pm 10 \%)$ (Rule 2.1.a) \vee If $\forall \mathrm{F}: \mathrm{F} \leq 12 \mathrm{~m}^{2}(\pm 10 \%)$ (Rule 2.1.a) \vee
If $\forall \mathrm{F}: \mathrm{F} \leq 10,5 \mathrm{~m}^{2}(\pm 10 \%)$ (Rule 2.2.a) \vee If $\forall \mathrm{F}: \mathrm{F} \leq 14,5 \mathrm{~m}^{2}(\pm 10 \%)$ (Rule 2.2.b) \vee If $\forall \mathrm{F}: \mathrm{F} \leq 8 \mathrm{~m}^{2}(\pm 10 \%)$ (Rule 2.3.a) \vee
If $\forall \mathrm{F}: \mathrm{F} \leq 8,5 \mathrm{~m}^{2}(\pm 10 \%)$ (Rule 2.3.b)
\Rightarrow Rule 7.1.a \vee Rule 7.1. $\mathrm{b} \vee$ Rule 7.1.g \vee Rule 7.4.a

Rule 2.5 _ Permuting bedroom assignment due to area criteria

Conditions:
Dimensions: Description (abbreviated):

R2.5 < D2: F1, FI; F2, Fr > \rightarrow D2: F1', FI; F2', Fr >
If $\mathrm{F} 1>\mathrm{F} 2 \wedge \mathrm{~F} 1 \in\{b e . s\}$ ($22 \in\{b e . t\} \Rightarrow \mathrm{F}^{\prime} \in\{$ be.t $\} \wedge \mathrm{F}^{\prime} \in\{b e . s\}$
If $F 1>F 2 \wedge F 1 \in\{b e . s\} \wedge F 2 \in\{b e . d\} \Rightarrow F 1^{\prime} \in\{b$ be.d $\} \wedge F^{\prime} \in\{$ be.s $\}$
If $\mathrm{F} 1>\mathrm{F} 2 \wedge \mathrm{~F} 1 \in\{$ be.s $\} \wedge \mathrm{F} 2 \in\{$ be. d$\} \Rightarrow \mathrm{F}^{\prime} \in\{$ be.d $\} \wedge \mathrm{F}^{\prime} \in\{$ be. $s\}$
Function:
F1, F2, F1', F2'G \{be.d, be.t, be.s\}
$\mathrm{Fl}, \mathrm{Fr} \in\{\mathrm{nhs}, \mathrm{co} . \mathrm{p}, \mathrm{co}, \mathrm{cl}\}$
F1 1 F2

Description (abbreviated): R2. 4 D2: S2 > \rightarrow D7: S7 >

Rule 2.6 _ Assignment of main private bathroom (minimum level)

$$
\bullet^{F} \quad \rightarrow \quad \bullet^{F 1}
$$

```
Conditions:
    Z\supset{ba.pn} \ Z'D{ba.pn}
    Dimensions:
    If F=max(A) ^A\in{Xba1, Xba2} }=>\textrm{F}=\textrm{F}
    Functions:
    IfE\supset{Xba1, Xba2} \ Xba1>Xba2 }=>F\in{Xba1} ^ F1\in{ba.p1
    If E\supset{Xba1, Xba2} \ Xba2>Xba1 =>FE{Xba2} ^ F1\in{ba.p1}
Dimensions:
If \(F=\max (A) \wedge A \in\{X b a 1, X b a 2\} \Rightarrow F=F 1\)
tions.
If \(E \supset\{X b a 1, X b a 2\} \wedge \mathrm{Xba2} 2>\mathrm{Xba1} \Rightarrow \mathrm{~F} \in\{\mathrm{Xba} 2\} \wedge \mathrm{F} 1 \in\{b a . p 1\}\)
```

Rule 2.7.a _ Attribution of new bathrooms placement weight: uba (type a and b)

Conditions:

$Z^{\prime} \supset\{$ ba.p1 $\} \wedge Z \supset\{$ ba.p2 $\} \wedge Z^{\prime} D\{$ ba.p2 $\} \vee$
$Z^{\prime} \supset\{$ ba.p1 $\} \wedge Z \supset\{$ ba.p3 $\} \wedge Z^{\prime} D\{$ ba.p3 $\} \vee$
$Z^{\prime} \supset\{$ ba.p1 $\} \wedge Z \supset\{$ ba.g $\} \wedge Z^{\prime} \neq\{$ ba.g $\}$
Dimensions:
$9.4 \mathrm{~m} \leq \mathrm{I} \leq 14 \mathrm{~m}$
$5.7 \mathrm{~m} \leq \mathrm{w} \leq 18.5 \mathrm{~m}$
$3 \mathrm{~m} \leq \mathrm{w} 1 \leq 7.2 \mathrm{~m}$
$11=3 \mathrm{~m}$
Description (abbreviated):
R2.7a $<\mathrm{D} 2: \mathrm{I}, \mathrm{w}, \mathrm{w} 1 ; \varnothing>\rightarrow<\mathrm{D} 2: \mathrm{I}, \mathrm{w}, \mathrm{w} 1, \mathrm{I} 1$; uba \gg
.
scription (abbreviated):
R2. 6 < D2: Xba; Z"; E> \rightarrow
< D2: ba.p1 ; Z1 + \{ba.p1\}; E-\{Xba\}, E + \{ba.p1\} >

Rule 2.7.b _ Attribution of new bathrooms placement weight: uba (type c and d)

Conditions:

$Z^{\prime} \supset\{$ ba.p1 $\} \wedge Z \supset\{$ ba.p2 $\} \wedge Z^{\prime} D\{$ ba.p2 $\} \vee$ $Z^{\prime} \supset\{$ ba.p1 $\} \wedge Z \supset\{$ ba.p3 $\} \wedge Z^{\prime} D\{$ ba.p3 $\} \vee$ $Z^{\prime} \supset\{b a . p 1\} \wedge Z \supset\{b a . g\} \wedge Z^{\prime} \neq\{b a . g\}$

Dimensions:
$9.4 \mathrm{~m} \leq \mathrm{l} \leq 14 \mathrm{~m}$
$5.7 \mathrm{~m} \leq \mathrm{w} \leq 18.5 \mathrm{~m}$
$3.7 \mathrm{~m} \leq \mathrm{w} 1 \leq 7.2 \mathrm{~m}$
$11=3 \mathrm{~m}$

Description (abbreviated):
R2.7b < D2: I, w, w1; $\varnothing>\rightarrow$ D2: I, w, w1, I1; uba >
\square

Note:
------ auxiliary lines

Rule 2.7.c Assignment of area to place new bathrooms, extending an existing bathroom

Conditions:

$$
\begin{array}{ll}
Z \supset\{\text { ba.p2 }\} \wedge Z^{\prime} D\{\text { ba.p2 } 2 \vee & \vee \\
Z \supset\{\text { ba.p3\} } \wedge & \wedge \text { Z'D\{ba.p3 }\} \\
\vee & \\
Z \supset\{\text { ba.g }\} \wedge Z^{\prime} D\{\text { ba.g }\} & \\
\text { Dimensions: } & \\
1 \mathrm{~m} \leq 1 \leq 2 \mathrm{~m} & \text { Function: } \\
1 \mathrm{~m} \leq \mathrm{w} \leq 2 \mathrm{~m} & \mathrm{~F} \in\{\mathrm{Xba}, \text { ba.p1 }\} \\
I 1 \leq 3 \mathrm{~m} & \mathrm{Fb} \in\{\text { ext }\} \\
& \mathrm{Ff} \in\{\text { nhs }\}
\end{array}
$$

Rule 2.8.a_Assignment of second private bathroom (minimum level)

Conditions:
$Z^{\prime} \supset\{$ ba.p1 $\} \wedge Z \supset\{$ ba.p2 $\} \wedge Z^{\prime} D\{$ ba.p2 $\}$
Dimensions:
If nhab $\leq 6 \Rightarrow 5 \mathrm{~m}^{2}(\pm 10 \%) \geq \mathrm{F} \geq 1 \mathrm{~m}^{2}$
If nhab $\geq 7 \Rightarrow 5 \mathrm{~m}^{2}(\pm 10 \%) \geq \mathrm{F} \geq 2,5 \mathrm{~m}^{2}$
$\mathrm{I}, \mathrm{w} \geq 1 \mathrm{~m}$
$0 \mathrm{~m} \leq 11, \mathrm{w} 1 \leq 1 \mathrm{~m}$
12 w $2 \geq 0 \mathrm{~m}$

$e \in\left\{135^{\circ}, 180^{\circ}\right\}$
Functions:
$\mathrm{F} \in\{\mathrm{nh} s\}$
F (inside $(x))=$ TRUE, $x \in\{u b a\}$
$\exists \exists$ (passage_to(y)) | $F($ passage_to(y)) $=T R U E, y \in\{F f, F b, F l, F f\}$
$F($ next_to $(t))=T R U E, t \in\{b e . s, \bar{b} e . d$, be.t $\}$
$\vee F($ close_to(t)) $=$ TRUE, $t \in\{b e . s$, be.d, be.t $\}$
$F 1 \in\{b a . p 2\}$
Description (abbreviated):
$\mathrm{R} 2.8 \mathrm{a}<\mathrm{D} 2: \mathrm{Fb}, \mathrm{Ff}, \mathrm{Fr}, \mathrm{FI} ; \mathrm{F} ; \mathrm{Z} ; \mathrm{E}>\rightarrow$
$<\mathrm{D} 2: \mathrm{Fb}, \mathrm{Ff}, \mathrm{Fr}, \mathrm{Fl} ; \mathrm{ba} . \mathrm{p2} ; \mathrm{Z}^{\prime}+\{$ ba.p2\}; $\mathrm{E}-\{\mathrm{nhs}\}, \mathrm{E}+\{$ ba.p2\} $>$

Rule 2.8.b_Assignment of second private bathroom (recommended level)

> Conditions:
> $Z^{\prime} \supset\{$ ba.p1 $\} \wedge Z \supset\{$ ba.p2 $\} \wedge Z^{\prime} D\{$ ba.p2 $\}$
> Dimensions:
> If nhab $\leq 5 \Rightarrow 5 m^{2}(\pm 10 \%) \geq F \geq 2 m^{2}$
> If nhab $\geq 6 \Rightarrow 5 m^{2}(\pm 10 \%) \geq F \geq 3 m^{2}$
> I, $w \geq 1 \mathrm{~m}$
> $0 \mathrm{~m} \leq 11, \mathrm{w} 1 \leq 1 \mathrm{~m}$
> 12 , $w 2 \geq 0 \mathrm{~m}$
> $e \in\left\{135^{\circ}, 180^{\circ}\right\}$
> Functions:
> $\mathrm{F} \in\{\mathrm{nhs}\}$
> $F($ inside $(x))=$ TRUE, $x \in\{$ uba $\}$
> 키 (passage_to(y)) | F (passage_to(y))=TRUE, $y \in\{\mathrm{Ff}, \mathrm{Fb}, \mathrm{FI}, \mathrm{Ff}\}$
> $F($ next_to $(t))=T R U E, t \in\{b e . s, \bar{b} e . d$, be.t $\}$
> $\vee F($ close_to(tt) $=T R U E, t \in\{b e . s$, be.d, be.t $\}$
> $F 1 \in\{b a . p 2\}$
> Description (abbreviated):
> R2.8a < D2: Fb, Ff, Fr, FI; F; Z'; E > \rightarrow
> $<\mathrm{D} 2: \mathrm{Fb}, \mathrm{Ff}, \mathrm{Fr}, \mathrm{FI} ;$ ba.p2; Z' + \{ba.p2\}; E - \{nhs\}, E + \{ba.p2\} $>$

Rule 2.9 _ Create a second private bathroom (next to side wall or on a parallel wall)

Rule 2.10 _ Create a second private bathroom (next to side wall)

Conditions:
$Z^{\prime} \supset\{$ ba.p1 $\} \wedge Z \supset\{$ ba.p2 $\} \wedge Z^{\prime} \triangleright\{$ ba.p2 $\}$
Dimensions:
$1.2 \mathrm{~m} \leq \mathrm{l} \leq 1.5 \mathrm{~m}$
$1 \mathrm{~m} \leq l^{\prime} \leq 1.5 \mathrm{~m}$
$1 \mathrm{~m} \leq \mathrm{w} \leq 4 \mathrm{~m}$
$0.1 \mathrm{~m} \leq 11,13 \leq 2 \mathrm{~m}$
$0 \mathrm{~m} \leq 12 \leq 1.2 \mathrm{~m}$

Function:
$\mathrm{Fb}, \mathrm{Ff} \in\{\mathrm{nhs}$, hs, be.d, be.t, be.s, li, di, li/di, ho, mr, ki\}
$F($ inside $(x))=$ TRUE, $x \in\{$ uba $\}$
$F($ adjacent_t $0(x))=$ TRUE, $x \in\{u s i\}$
$F 1 \in\{$ ba.p2 $\}$

Description (abbreviated):
R2. $10<\mathrm{D} 2:$ Fb, Ff; Z'; E > \rightarrow
$<$ D2: Fb, ba.p2, Ff; Z' $+\{$ ba.p2\}; $E+\{$ ba.p2 $\}>$

Rule 2.11 _ Create a second private bathroom (next to side wall)

Rule 2.12 Create a second private bathroom (next to a wall parallel to the side wall)

Conditions:

$$
Z^{\prime} \supset\{\text { ba.p1 }\} \wedge Z \supset\left\{\text { ba.p2\} } \wedge Z^{\prime} D\{\text { ba.p2 }\}\right.
$$

Dimensions:
$1.2 \mathrm{~m} \leq \mathrm{l} \leq 1.5 \mathrm{~m}$
$1 \mathrm{~m} \leq \mathrm{l}^{\prime} \leq 1.5 \mathrm{~m}$
$1 \mathrm{~m} \leq \mathrm{w}, \mathrm{w}^{\prime} \leq 4 \mathrm{~m}$
$0.1 \mathrm{~m} \leq 11,13 \leq 2 \mathrm{~m}$
$0 \mathrm{~m} \leq 12 \leq 1.2 \mathrm{~m}$
Function:
$\mathrm{Fb}, \mathrm{Ff}, \mathrm{Fl} \in\{$ nhs, hs, be.d, be.t, be.s, li, di, li/di, ho, mr, ki\}
$F($ inside $(x))=$ TRUE, $x \in\{$ uba $\}$
F (adjacent_to(x))=TRUE, $x \in\{u s i\}$
$F 1 \in\{$ ba.p2 $\}$
Description (abbreviated):
R2. 12 < D2: Fb, Ff, FI; Z'; E> \rightarrow
< D2: Fb, ba.p2, Ff, Fl; Z' + \{ba.p2\}; E $+\{$ ba.p2 $\}>$

Rule 2.13 _ Create a second private bathroom (next to a wall parallel to the side wall)
Conditions:

$$
Z^{\prime} \supset\{\text { ba.p1 }\} \wedge Z \supset\{\text { ba.p2 }\} \wedge Z^{\prime} \neq\{\text { ba.p2\} }
$$

Dimensions:
$1.2 \mathrm{~m} \leq \mathrm{I} \leq 1.5 \mathrm{~m}$
$1 \mathrm{~m} \leq \mathrm{l}^{\prime} \leq 1.5 \mathrm{~m}$
$1 \mathrm{~m} \leq \mathrm{w}, \mathrm{w}^{\prime} \leq 4 \mathrm{~m}$
$1 \mathrm{~m} \leq \mathrm{w}=2.5 \mathrm{~m}$
$0.9 \mathrm{~m} \leq \mathrm{w} " \leq 1.2 \mathrm{~m}$

$0.1 \mathrm{~m} \leq 11,13 \leq 2 \mathrm{~m}$
$0 \mathrm{~m} \leq 12 \leq 1.2 \mathrm{~m}$
$\mid 4 \in\{0.8 \mathrm{~m}\}$

Function:
$\mathrm{Fb}, \mathrm{Ff}, \mathrm{Fl} \in\{$ nhs, hs, be.d, be.t, be.s, li, di, li/di, ho, mr, ki\}
$F($ inside $(x))=$ TRUE, $x \in\{u b a\}$
$F($ adjacent_to(x) $)=$ TRUE, $x \in\{u s i\}$
$\mathrm{F} 1 \in\{$ ba.p2 $\}$

Description (abbreviated):
R2. 13 < D2: Fb, Ff, FI; Z"; E > \rightarrow
< D2: Fb, ba.p2, Ff, F1; Z' + \{ba.p2\}; E + \{ba.p2\} $>$
Rule 2.14 _ Create a second bathroom (in nhs)


```
Rule 2.15 _ Create a second bathroom (inside a bedroom)
```


Conditions:

w Fb

$$
Z^{\prime} \supset\{\text { ba.p1 }\} \wedge Z \supset\{\text { ba.p2 }\} \wedge Z^{\prime} \perp\{\text { ba.p2 }\}
$$

Dimensions:

$1 \geq 4,4 \mathrm{~m}$
If mimimum_level $\wedge \mathrm{F} \in\{$ be. d$\} \Rightarrow \mathrm{w}, \mathrm{I} 2 \geq 2,7 \mathrm{~m} \wedge \mathrm{~F}^{\prime} \geq 10,5 \mathrm{~m}^{2}$
If mimimum_level $\wedge F \in\{$ be.t $\} \Rightarrow W \geq 2,5 \mathrm{~m} \wedge \mathrm{I} 2 \geq 2,1 \mathrm{~m} \wedge \mathrm{~F}^{\prime} \geq 10,5 \mathrm{~m}^{2}$
If mimimum_level $\wedge \mathrm{F} \in\{$ be.s $\} \Rightarrow \mathrm{w} \geq 2,5 \mathrm{~m} \wedge \mathrm{I} 2 \geq 2,1 \mathrm{~m} \wedge \mathrm{~F}^{\prime} \geq 8 \mathrm{~m}^{2}$

$\mathrm{w} 2 \geq 1 \mathrm{~m}$
$1 \mathrm{~m} \leq 11, \mathrm{w} 1 \leq 1,5 \mathrm{~m}$
$\mid 3 \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}\}$
Function:
F, $F^{\prime} \in\{$ be.d, be.t, be.s $\}$
$F=F^{\prime}$
$\mathrm{Fb} \in\{\mathrm{nhs}, \mathrm{co}, \mathrm{co.s}, \mathrm{co} . \mathrm{p}\}$
$\mathrm{Fl}=$ ext
F1 (inside (x)) =TRUE, $x \in\{u b a\}$
$F 1 \in\{$ ba.p2 $\}$
Description (abbreviated):
R2.15 < D2: F; Z'; E> \rightarrow < D2: F', \{ba.p2\}; Z' $+\{$ ba.p2\}; E + \{ba.p2\} >

Rule 2.16.a _ Erasing the new bathrooms placement weight: uba (type a and b)

Conditions:

$Z^{\prime} \supset\{$ ba.pn, ba.g\} $\wedge Z D\{$ ba.pn, ba.g $\}$
Dimensions:
$9.4 \mathrm{~m} \leq \mathrm{I} \leq 14 \mathrm{~m}$
$5.7 \mathrm{~m} \leq \mathrm{w} \leq 18.5 \mathrm{~m}$
$3 \mathrm{~m} \leq \mathrm{w} 1 \leq 7.2 \mathrm{~m}$
$11=3 \mathrm{~m}$

Rule 2.16.b _ Erasing the new bathrooms placement weight: uba (type cand d)

Conditions:

$Z^{\prime} \supset\{$ ba.pn, ba.g\} \wedge ZD\{ba.pn, ba.g\}
Dimensions:
$9.4 \mathrm{~m} \leq \mathrm{I} \leq 14 \mathrm{~m}$
$5.7 \mathrm{~m} \leq \mathrm{w} \leq 18.5 \mathrm{~m}$
$3.7 \mathrm{~m} \leq \mathrm{w} 1 \leq 7.2 \mathrm{~m}$
$11=3 \mathrm{~m}$

Description (abbreviated):
R2.16b \langle D2: I ; uba $>\rightarrow\langle\mathrm{D} 2: 11,12 ; \varnothing\rangle$

Rule 2.17_Permuting the function of a bedroom which gives passage to private bathroom


```
Conditions:
Description (abbreviated):
    Function:
    ba.p (passage_to(x))=FALSE, x\in{F}
    R2.17 < D2: F, F1, ba.p, Fa1 > }
    <D2:F, F2, ba.p, Fa2 >
```

 \(\mathrm{F} \in\{\mathrm{nhs}, \mathrm{co}, \mathrm{co.S}, \mathrm{co} . \mathrm{p}, \mathrm{hl}\}\)
 If \(\mathrm{F} 1 \in\{\) be.t \(\} \wedge \mathrm{Fa} 1 \in\{\) be. d\(\} \Rightarrow \mathrm{F} 2 \in\{\) be. d\(\} \wedge \mathrm{Fa} 2 \in\{\) be.t \(\}\)
 If \(\mathrm{F} 1 \in\{\) be.s \(\} \wedge \mathrm{Fa} 1 \in\{\) be. d\(\} \Rightarrow \mathrm{F} 2 \in\{\) be. d\(\} \wedge \mathrm{Fa} 2 \in\{\mathrm{be} . \mathrm{s}\}\)
 Rule 2.18 _ Changing from step 2 to step 7 if there is no spaces satisfying rules 2.8 to 2.15

```
    \varnothing}->
```

 S2 \(\quad \rightarrow \quad\) S7
 Conditions:
If $\forall \mathrm{F}: \mathrm{F} \leq 2,5 \mathrm{~m}^{2}(\pm 10 \%)$ (Rule 2.8.a) \vee If $\forall \mathrm{F}: \mathrm{F} \leq 3 \mathrm{~m}^{2}(\pm 10 \%)$ (Rule 2.8.b) \vee
\Rightarrow Rules $7.1 \vee$ Rules 7.4

Description (abbreviated):
R2. 18 < D2: S2 > \rightarrow D7: S7 >

Rule 2.19 _ Changing from step 2 to step 3
$\mathrm{S} 2 \rightarrow \mathrm{~S} 3$

Conditions:

If $Z \supset\{$ be. $d\} \wedge Z^{\prime} \supset\{$ be. $d\} \wedge E \supset\{$ be.d $\}$ If $Z \supset\{b e . t n\} \wedge Z^{\prime} \supset\{b e . t n\} \wedge E \supset\{b e . t n\}$ If $Z \supset\{$ be.sn $\} \wedge Z^{\prime} \supset\{b e . s n\} \wedge \mathrm{E} \supset\{b e . s n\}$ If $Z \supset\{$ ba.pn $\} \wedge Z^{\prime} \supset\{$ ba.pn $\} \wedge E \supset\{$ ba.pn $\}$

Rule 3.1.a_ Assignment of living room (minimum level)

Description (abbreviated):
R3.1a < D3: ext, \{nhs, co, co.p, hl\}, Ff, Fl; F; Z'; E > \rightarrow
< D3: ext, \{nhs, co, co.p, hl\}, Ff, Fl; li; Z' $+\{\mathrm{li}\} ; \mathrm{E}-\{\mathrm{hs}\}, \mathrm{E}+\{\mathrm{li}\}>$
Conditions:
$Z \supset\{l i\} \wedge Z^{\prime} \nmid\{l i\}$
Dimensions:
If nhab $=2 \Rightarrow 11.5 \mathrm{~m}^{2}(\pm 10 \%) \leq \mathrm{F} \leq 35 \mathrm{~m}^{2}$
If nhab $=3 \Rightarrow 13 \mathrm{~m}^{2}(\pm 10 \%) \leq \mathrm{F} \leq 35 \mathrm{~m}^{2}$
If nhab $=\{4,5\} \Rightarrow 16 \mathrm{~m}^{2}(\pm 10 \%) \leq \mathrm{F} \leq 35 \mathrm{~m}^{2}$
If nhab $=6 \Rightarrow F \geq 19.5 \mathrm{~m}^{2}(\pm 10 \%) \leq F \leq 35 \mathrm{~m}^{2}$
If nhab $=7 \Rightarrow F \geq 22.5 \mathrm{~m}^{2}(\pm 10 \%) \leq \mathrm{F} \leq 35 \mathrm{~m}^{2}$
If nhab $\geq 8 \Rightarrow F \geq 26 \mathrm{~m}^{2}(\pm 10 \%) \leq F \leq 35 \mathrm{~m}^{2}$
$\mathrm{w}, \mathrm{l} \geq 3.5 \mathrm{~m}$
$\mathrm{I} \leq 2^{*} \mathrm{w}$
$0 \mathrm{~m} \leq 11, \mathrm{w} 1 \leq 1 \mathrm{~m}$
12 , w2 $\geq 0 \mathrm{~m}$
$e \in\left\{135^{\circ}, 180^{\circ}\right\}$
Functions:
$\mathrm{Fb} \in\{\mathrm{ext}\}$
\exists FfvFrvFl $\in\{n h s, c o, c o . p, h l\}$
$F \in\{h s\}$
If $\{$ strategy 1$\} \Rightarrow$ li $($ next_to $(\mathrm{x}))=$ TRUE \vee li $($ close_to $(\mathrm{x}))=$ TRUE, $x \in\{\mathrm{ki}, \mathrm{hl}\}$
If $\{$ strategy 2$\} \Rightarrow \mathrm{li}($ next_to(y) $)=$ TRUE \vee li $($ close_to(y) $)=$ TRUE, $y \in\{d i$, hl, co, co.s $\}$
$\mathrm{F} 1 \in\{\mathrm{li}\}$
R3.1b < D3: ext, \{nhs, co, co.p, hl\}, Ff, FI; F; Z; E > \rightarrow
< D3: ext, \{nhs, co, co.p, hi\}, Ft, Fl; li; Z' $+\{\mathrm{li}\} ; \mathrm{E}-\{\mathrm{hs}\}, \mathrm{E}+\{\mathrm{li}\}>$

[^8]Rule 3.2.b _ Assignment of dining room (recommended level)

Conditions:
$Z \supset\{d i\} \wedge Z^{\prime} \not \subset\{d i\}$
Dimensions:
If nhab $\geq 2 \Rightarrow F \geq\left(7.5 m^{2}+1 m^{2}(n-2)\right)(\pm 10 \%) \leq F \leq 35 m^{2}$
$7 \mathrm{~m}^{2}<\mathrm{F}<9 \mathrm{~m}^{2} \Rightarrow \mathrm{I} \vee \mathrm{w} \geq 2,1 \mathrm{~m}$
$9,5 m^{2}<F<12 m^{2} \Rightarrow I, w \geq 2,4 m$
$\mathrm{F} \geq 12 \mathrm{~m}^{2} \Rightarrow \mathrm{I}, \mathrm{w} \geq 2,7 \mathrm{~m}$
$1 \leq 2^{*} w$
$0 \mathrm{~m} \leq 11, \mathrm{w} 1 \leq 1 \mathrm{~m}$
12, w2 $\geq 0 \mathrm{~m}$
$e \in\left\{135^{\circ}, 180^{\circ}\right\}$
Functions:
\exists Ff $\vee F \mathrm{Fr} \vee \mathrm{Fl} \vee \mathrm{Fb} \in\{\mathrm{nhs}, \mathrm{co}, \mathrm{co} . \mathrm{p}, \mathrm{hl}\}$
$F \in\{h s\} \vee F \in\{n h s\}$ If $(F($ passage_to $(x))=T R U E, x \in\{l i\})$
If $\{s t r a t e g y 1\} \Rightarrow$ di $($ next_to $(\mathrm{x}))=$ TRUE \vee di $\left(\right.$ close_t $\left.^{2}(\mathrm{x})\right)=$ TRUE, $x \in\{\mathrm{ki}\}$
If $\{$ strategy 2$\} \Rightarrow$ di $($ next_to $(\mathrm{y}))=$ TRUE \vee di $($ close_to $(\mathrm{x}))=$ TRUE, $\mathrm{y} \in\{\mathrm{li}, \mathrm{hl}, \mathrm{co}, \mathrm{co.s}, \mathrm{ki}\}$
$\mathrm{F} 1 \in\{\mathrm{di}\}$
Description (abbreviated):
R3.2b < D3: ext, \{nhs, co, co.p, hl\}, Ff, FI; F; Z; E > \rightarrow
< D3: ext, \{nhs, co, co.p, hl\}, Ff, Fl; di; Z' + \{di\}; E - \{hs, nhs $\}, ~ E ~+~\{d i\}>~$

Rule 3.3.a_Assignment of combined living/dining room (minimum level)

Description (abbreviated):
R3.3a < D3: ext, \{nhs, co, co.p, hl\}, Ff, FI; F; Z'; E > \rightarrow
< D3: ext, \{nhs, co, co.p, hl\}, Ff, Fl; li/di;

$$
\mathrm{Z}+\{\mathrm{li} / \mathrm{di}\} ; \mathrm{E}-\{\mathrm{hs}\}, \mathrm{E}+\{\mathrm{l} / \mathrm{di}\}>
$$

$$
\begin{aligned}
& \text { Conditions: } \\
& Z \supset\{d i / l i, \text { li, di }\} \wedge Z^{\prime} \neq\{d i / l i, \operatorname{li}, d i\} \\
& \text { Dimensions: } \\
& \text { If nhab }=\{1,2\} \Rightarrow 12 m^{2}(\pm 10 \%) \leq F \leq 35 m^{2} \\
& \text { If npersons }=3 \Rightarrow 15 \mathrm{~m}^{2}(\pm 10 \%) \leq F \leq 35 \mathrm{~m}^{2} \\
& \text { If npersons }=4 \Rightarrow 17.5 \mathrm{~m}^{2}(\pm 10 \%) \leq \mathrm{F} \leq 35 \mathrm{~m}^{2} \\
& \text { If npersons }=5 \Rightarrow 19 \mathrm{~m}^{2}(\pm 10 \%) \leq F \leq 35 \mathrm{~m}^{2} \\
& \text { If npersons }=6 \Rightarrow 21 \mathrm{~m}^{2}(\pm 10 \%) \leq \mathrm{F} \leq 35 \mathrm{~m}^{2} \\
& \text { If npersons }=7 \Rightarrow 24 \mathrm{~m}^{2}(\pm 10 \%) \leq \mathrm{F} \leq 35 \mathrm{~m}^{2} \\
& \text { If npersons } \geq 8 \Rightarrow 29 \mathrm{~m}^{2}(\pm 10 \%) \leq \mathrm{F} \leq 35 \mathrm{~m}^{2} \\
& 1, w \geq 3 m \\
& \text {, } \\
& 0 \mathrm{~m} \leq 11, \mathrm{w} 1 \leq 1 \mathrm{~m} \\
& \text { 12, w } 2 \geq 0 \mathrm{~m} \\
& e \in\left\{135^{\circ}, 180^{\circ}\right\} \\
& \text { Functions: } \\
& \mathrm{F} \in\{\mathrm{hs}\} \\
& \text { Fb } \in\{\text { ext }\} \wedge \text { Ff } \vee F r \vee F I \in\{n h s, c o, \text { co.s, hl }\} \\
& \text { If }\{\text { strategy } 1\} \Rightarrow F(\text { next_to }(\mathrm{x}))=\text { TRUE, } x \in\{\mathrm{ki}\} \\
& \text { If }\{\text { strategy } 2\} \Rightarrow F(\text { next_to(y) })=\text { TRUE, } y \in\{h l, c o, c o . s\} \\
& \mathrm{F} 1 \in\{\mathrm{li} / \mathrm{di}\}
\end{aligned}
$$

Conditions:
$Z \supset\{d i / l i, \operatorname{li}, \mathrm{di}\} \wedge Z^{\prime} \nmid\{d i / l \mathrm{l}, \mathrm{li}, \mathrm{di}\}$
Dimensions:
If nhab $=\{1,2\} \Rightarrow 18.5 \mathrm{~m}^{2}(\pm 10 \%) \leq \mathrm{F} \leq 35 \mathrm{~m}^{2}$
If npersons $=3 \Rightarrow 20.5 \mathrm{~m}^{2}(\pm 10 \%) \leq \mathrm{F} \leq 35 \mathrm{~m}^{2}$
If npersons $=4 \Rightarrow 23.5 \mathrm{~m}^{2}(\pm 10 \%) \leq \mathrm{F} \leq 35 \mathrm{~m}^{2}$
If npersons $=5 \Rightarrow 24 \mathrm{~m}^{2}(\pm 10 \%) \leq \mathrm{F} \leq 35 \mathrm{~m}^{2}$
If npersons $=6 \Rightarrow 26.5 \mathrm{~m}^{2}(\pm 10 \%) \leq \mathrm{F} \leq 35 \mathrm{~m}^{2}$
If npersons $=7 \Rightarrow 32.5 \mathrm{~m}^{2}(\pm 10 \%) \leq \mathrm{F} \leq 40 \mathrm{~m}^{2}$
If npersons $=8 \Rightarrow 35.5 \mathrm{~m}^{2}(\pm 10 \%) \leq F \leq 40 \mathrm{~m}^{2}$
If npersons $=9 \Rightarrow 36 \mathrm{~m}^{2}(\pm 10 \%) \leq \mathrm{F} \leq 40 \mathrm{~m}^{2}$
I, $\mathrm{w} \geq 3.5 \mathrm{~m}$
$1 \leq 2^{*} \mathrm{w}$
$0 \mathrm{~m} \leq 11, \mathrm{w} 1 \leq 1 \mathrm{~m}$
12 , w2 $\geq 0 \mathrm{~m}$
$e \in\left\{135^{\circ}, 180^{\circ}\right\}$
Functions:
$\mathrm{F} \in\{\mathrm{hs}\}$
$\mathrm{Fb} \in\{\mathrm{ext}\} \wedge \mathrm{Ff} \vee \mathrm{Fr} \vee \mathrm{Fl} \in\{\mathrm{nhs}, \mathrm{co}, \mathrm{cos}$.s, hl\}
If $\{$ strategy 1$\} \Rightarrow F($ next_to $(\mathrm{x}))=$ TRUE, $x \in\{\mathrm{ki}\}$
If $\{$ strategy 2$\} \Rightarrow F($ next to $(\mathrm{y}))=$ TRUE, $\mathrm{y} \in\{\mathrm{hl}, \mathrm{co}, \mathrm{co} . \mathrm{s}\}$
$\mathrm{F} 1 \in\{\mathrm{li} / \mathrm{di}\}$

Rule 3.4 _Assignment of isolated home office (by request of the inhabitant)

$$
\begin{aligned}
& \rightarrow \quad 11 \neq \\
& \underset{w 1}{W 1} \xrightarrow{w} \\
& 11^{\text {丰 }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Conditions: } \\
& Z \supset\{h 0\} \wedge Z D\{h 0\} \\
& \text { Dimensions: } \\
& 7 \mathrm{~m}^{2}(\pm 10 \%) \leq \mathrm{F} \leq 30 \mathrm{~m}^{2} \\
& \mathrm{w}, \mathrm{l} \geq 2,1 \mathrm{~m} \\
& 0 \mathrm{~m} \leq 11, \mathrm{w} 1 \leq 1 \mathrm{~m} \\
& \text {-F } \quad \begin{array}{ll}
\mathrm{F} 1 & \mathrm{I}, \mathrm{w} 2 \geq 0 \mathrm{~m} \\
\mathrm{e} \in\left\{135^{\circ}, 180^{\circ}\right\}
\end{array} \\
& \text { Functions: } \\
& F \in\{h s\} \vee F \in\{\text { nhs }\} \text { If } F(\text { passage_to(x) })=T R U E, x \in\{l i \text {, li/di, be.c, be.t }\} \\
& \mathrm{F} 1 \in\{\mathrm{~h} 0\} \\
& \text { Description (abbreviated): } \\
& \text { R3. } 4 \text { < D3: ext, \{nhs, co, co.p, co.s, hl\}, Ff, Fl; F; Z' > } \rightarrow \\
& \text { < D3: ext, \{nhs, co, co.p, co.s, hl\}, Ff, Fl; ho; Z' }+\{h 0\} ; \mathrm{E}-\{\mathrm{hs}, \mathrm{nhs}\}, \mathrm{E}+\{\mathrm{ho}\}>
\end{aligned}
$$

Rule 3.5.a _ Assignment of delimited home office (minimum level)

$\underbrace{w 1} \quad \mathrm{w}$
$\underset{|l| l}{\mid 3} \left\lvert\, \begin{aligned} & 12 \\ & 12\end{aligned} \rightarrow\right.$

w1 w
-
$e^{F 1}$

Conditions:

$$
Z \supset\left\{h_{0}\right\} \wedge Z^{\prime} \nmid\left\{h_{0}\right\}
$$

Dimensions:
If nhab $\geq 2 \Rightarrow 2 \mathrm{~m}^{2} \leq \mathrm{F} 1 \leq 4 \mathrm{~m}^{2}(\pm 10 \%)$
$1 \mathrm{~m} \leq \mathrm{w}, \mathrm{w}, 12 \leq 5 \mathrm{~m}$
$0 \mathrm{~m} \leq 11,13 \leq 3.5 \mathrm{~m} \quad$ Description (abbreviated):
R3.5a < D3: F; Z'; E > \rightarrow D3: F, F1; Z' $+\{h 0\} ;$ E $+\{h 0\}>$
Function:

$$
\text { R3.5a < D3: F; Z'; E > } \rightarrow \text { D } 3: \text { F, F1; Z' }+\{\text { ho\}; E + \{ho\}> }
$$

$\mathrm{F} \in\{\mathrm{li}$, di, li/di, be.c, co, co.s, hl, nhs $\}$

$$
\mathrm{F} 1 \in\{\mathrm{ho}\}
$$

Rule 3.5.b _ Assignment of delimited home office (recommended level)

Conditions:

$$
\mathrm{Z} \supset\{\mathrm{ho}\} \wedge \mathrm{Z}^{\prime} \nmid\{\mathrm{ho}\}
$$

Dimensions:
If nhab $\geq 2 \Rightarrow 4 \mathrm{~m}^{2} \leq \mathrm{F} \leq 6 \mathrm{~m}^{2}(\pm 10 \%)$
$1 \mathrm{~m} \leq \mathrm{w}, \mathrm{w} 1,12 \leq 5 \mathrm{~m}$
$0 \mathrm{~m} \leq 11,13 \leq 3.5 \mathrm{~m}$

Description (abbreviated):

R3.5b < D3: F; Z'; E> \rightarrow D3: F, F1; Z' $+\{h 0\} ; E+\{h 0\}>$
Function:
F $\in\{\mathrm{li}$, di, li/di, be.c, co, co.s, hl, nhs $\}$
$F 1 \in\{h 0\}$
A transformation grammar-based methodology for housing rehabilitation: meeting contemporary functional and ICT requirements | Sara Eloy

```
Rule 3.6.a _ Adding an home office space to an assigned living room (minimum level)
```

$\bullet^{F 1} \rightarrow \bullet^{F 2}$

Conditions:

$$
Z \supset\left\{h_{0}\right\} \wedge Z^{\prime} \neq\left\{h_{0}\right\}
$$

Dimensions:
If nhab $\leq 6 \Rightarrow F 2 \geq 14 \mathrm{~m}^{2}(\pm 10 \%)$
If nhab $=7 \Rightarrow F 2 \geq 17 \mathrm{~m}^{2}(\pm 10 \%)$
If nhab $\geq 8 \Rightarrow F 2 \geq 20.5 \mathrm{~m}^{2}(\pm 10 \%)$
Functions: Description (abbreviated):
F1 $\in\{1 \mathrm{li}\} \quad$ R3.6a $<\mathrm{D} 3: \mathrm{F} 1 ; \mathrm{Z}^{\prime \prime} ; \mathrm{E}>\rightarrow$
F2 $\in\{1 \mathrm{li} / \mathrm{ho}\}$

```
< D3: F2; Z' - {li},Z' + {li/ho};E-{li},E + {li/ho} >
```

Rule 3.6.b_Assignment of living room + included home office (recommended level)
$\bullet^{\mathrm{F} 1} \rightarrow \bullet^{\mathrm{F} 2}$

Conditions:

$$
Z \supset\left\{h_{0}\right\} \wedge Z^{\prime} D\left\{h_{0}\right\}
$$

Dimensions:
If nhab $=2 \Rightarrow F 2 \geq 14.5 m^{2}(\pm 10 \%)$
If nhab $=3 \Rightarrow F 2 \geq 16 \mathrm{~m}^{2}(\pm 10 \%)$
If nhab $=\{4,5\} \Rightarrow F 2 \geq 19 \mathrm{~m}^{2}(\pm 10 \%)$
If nhab $=6 \Rightarrow F 2 \geq 22.5 \mathrm{~m}^{2}$ ($\pm 10 \%$)
If nhab $=7 \Rightarrow F 2 \geq 25.5 \mathrm{~m}^{2}(\pm 10 \%)$
If nhab $\geq 8 \Rightarrow F 2 \geq 29 \mathrm{~m}^{2}(\pm 10 \%)$
Functions: Description (abbreviated):
F1 $\in\{1 i\}$
R3.6b < D3: F1; Z'; E> \rightarrow
$\mathrm{F} 2 \in\{\mathrm{li} / \mathrm{ho}\}$

```
< D3:F2; Z' - {li},Z' + {li/ho};E-{li},E + {li/ho} >
```

Rule 3.7 _ Adding an home office space to an assigned bedroom of occasional use
$\bullet^{\mathrm{F} 1} \rightarrow \bullet^{\mathrm{F} 2}$

Conditions:
Functions:
$\mathrm{F} 1 \in\{$ be.t $\} \wedge$ percentage_occupation(F1) $\leq 50 \% \Rightarrow$ F2 $\in\{$ be.t/ho $\}$
$\mathrm{F} 1 \in\{$ be.s $\} \wedge$ percentage_occupation $(\mathrm{F} 1) \leq 50 \% \Rightarrow \mathrm{~F} 2 \in\{$ be.s/ho $\}$

Description (abbreviated)
R3. 7 < D3: F1; Z'; E > \rightarrow
< D3: F2; Z' - \{be.t, be.d\}, Z' + \{be.t/ho, be.d/ho\}; E - \{be.t, be.d\}, E + \{be.t/ho, be.d/ho\} >

Rule 3.8 _Assignment of isolated media room (recommended level)

$$
\begin{aligned}
& \text { Conditions: } \\
& Z \supset\{m r\} \wedge Z^{\prime} D\{m r\} \\
& \text { Dimensions: } \\
& \text { If nhab }=\{4,5,6\} \Rightarrow 12 \mathrm{~m}^{2}(\pm 10 \%) \leq F \leq 30 \mathrm{~m}^{2} \\
& \text { If nhab } \geq 7 \Rightarrow 14 \mathrm{~m}^{2}(\pm 10 \%) \leq \mathrm{F} \leq 30 \mathrm{~m}^{2} \\
& \mathrm{I}, \mathrm{w} \geq 3,5 \mathrm{~m} \\
& 0 \mathrm{~m} \leq 11, \mathrm{w} 1 \leq 1 \mathrm{~m} \\
& \text { - }{ }^{\text {F }} \\
& 12 \text {, w } 2 \geq 0 \mathrm{~m} \\
& e \in\left\{135^{\circ}, 180^{\circ}\right\} \\
& \text { Functions: } \\
& F \in\{h s\} \vee F \in\{n h s\} \text { If } F(\text { passage_to(x) })=\text { TRUE, } x \in\{1 i, \text { li/di }\} \\
& \exists \text { FbvFfvFrvFl } \in\{n h s, c o, c o . s, h l\} \\
& \mathrm{F} 1 \in\{\mathrm{mr}\} \\
& \text { Description (abbreviated): } \\
& \text { R3. }<\text { D3: }\{\mathrm{nhs}, \mathrm{co}, \mathrm{co.s}, \mathrm{hl}\}, \mathrm{Ff}, \mathrm{Fl}, \mathrm{Fr} ; \text { F; Z'; E > } \rightarrow \\
& \text { < D3: ext, \{nhs, co, co.p, co.s, hl\}, Ff, FI, Fr; mr; Z' }+\{\mathrm{mr}\} ; \mathrm{E}-\{\mathrm{hs}, \mathrm{nhs}\}, \mathrm{E}+\{\mathrm{mr}\}>
\end{aligned}
$$

Rule 3.9 _ Adding a media room to an assigned living room (recommended level)
$e^{\mathrm{F} 1} \rightarrow e^{\mathrm{F} 2}$

Conditions:

$$
Z \supset\{m r\} \wedge Z^{\prime} \nmid\{m r\}
$$

Dimensions:
If nhab $=2 \Rightarrow F 1 \geq 11.5 \mathrm{~m}^{2}+2 \mathrm{~m}^{2}(\pm 10 \%)$
If $\mathrm{nhab}=3 \Rightarrow \mathrm{~F} 1 \geq 13 \mathrm{~m}^{2}+2 \mathrm{~m}^{2}(\pm 10 \%)$
If nhab $=\{4,5\} \Rightarrow F 1 \geq 16 \mathrm{~m}^{2}+3 \mathrm{~m}^{2}(\pm 10 \%)$
If nhab $=6 \Rightarrow F 1 \geq 19.5 m^{2}+3 m^{2}(\pm 10 \%)$
If nhab $=7 \Rightarrow F 1 \geq 22.5 \mathrm{~m}^{2}+4 \mathrm{~m}^{2} \quad(\pm 10 \%)$
If nhab $\geq 8 \Rightarrow F 1 \geq 26 \mathrm{~m}^{2}+4 \mathrm{~m}^{2}(\pm 10 \%)$

Rule 3.10 _ Changing from step 3 to step 7 if there is no spaces satisfying rules 3.1a to 3.5 b

S3 $\quad \rightarrow \quad$ S7

Conditions:

If $\forall \mathrm{F}: \mathrm{F} \leq$ dimensions_of (Rule 3.1.a) $=$ TRUE \vee If $\forall \mathrm{F}: \mathrm{F} \leq$ dimensions_of(Rule 3.1.b) $=$ TRUE \vee If $\forall \mathrm{F}: \mathrm{F} \leq$ dimensions of (Rule 3.2.a) $=$ TRUE \vee If $\forall \mathrm{F}: \mathrm{F} \leq$ dimensions_of(Rule 3.2.b) $=$ TRUE \vee If $\forall \mathrm{F}$: $\mathrm{F} \leq$ dimensions_of (Rule 3.3.a) $=$ TRUE \vee If $\forall \mathrm{F}: \mathrm{F} \leq$ dimensions_of(Rule 3.3.b) $=$ TRUE \vee If $\forall \mathrm{F}$: $\mathrm{F} \leq$ dimensions_of(Rule 3.4)=TRUE \vee If $\forall \mathrm{F}$: $\mathrm{F} \leq$ dimensions of (Rule 3.5.a) $=$ TRUE \vee If $\forall \mathrm{F}: \mathrm{F} \leq$ dimensions_of (Rule 3.5.b) $=$ TRUE \Rightarrow Rule 7.1.a \vee Rule 7.1. $\mathrm{b} \vee$ Rule 7.1.g \vee Rule 7.4.a

Rule 3.14 _ Create a guest bathroom by dividing a space in two

Rule 3.15 _ Changing Xba label

- ${ }^{F}$

- ${ }^{F 1}$

Conditions:
Description (abbreviated):
ZD\{ba.p1, ba.p2, ba.p3, ba.g\}
R3. 15 < D3: Xba; E > \rightarrow D3: nhs; E - \{Xba\}, E + \{nhs\} >
Functions:
$\mathrm{F} \in\{\mathrm{Xba}\}$
$\mathrm{F} 1 \in\{\mathrm{nh} s\}$

Rule 3.16 _ Changing from step 3 to step 7 if there is no spaces satisfying rules 3.11 to 3.14
S3 \rightarrow S7

Conditions:
Description (abbreviated):
\forall F: F=conditions_of(Rules 3.11, 3.12, 3.13, 3.14)=FALSE \quad R3.16 $<\mathrm{D} 3: \mathrm{S} 3>\rightarrow\langle\mathrm{D} 7: \mathrm{S} 7\rangle$

Rule 3.17 _ Changing from step 3 to step 4
S3 \rightarrow S4

Conditions

$$
\text { If } Z \supset\{l i\} \wedge Z^{\prime} \supset\{l i\} \wedge E \supset\{l i\}
$$

$$
\text { If } \mathrm{Z} \supset\{\mathrm{di}\} \wedge \mathrm{Z}^{\prime} \supset\{\mathrm{di}\} \wedge \mathrm{E} \supset\{\mathrm{di}\}
$$

$$
\text { If } Z \supset\left\{\mathrm{~h}^{\prime}\right\} \wedge \mathrm{Z}^{\prime} \supset\left\{\mathrm{ho}^{\prime}\right\} \wedge \mathrm{E} \supset\left\{\mathrm{~h}^{\prime}\right\}
$$

$$
\text { If } Z \supset\{\mathrm{mr}\} \wedge Z^{\prime} \supset\{\mathrm{mr}\} \wedge \mathrm{E} \supset\{\mathrm{mr}\}
$$

$$
\text { If } Z \supset\{\text { ba. } g\} \wedge Z^{\prime} \supset\{\text { ba.g }\} \wedge E \supset\{\text { ba.g }\}
$$

Description (abbreviated):

R3. $17<$ D3: S3 > \rightarrow D4: S4 >

Rule 4.1 _ Assignment of private corridors

Conditions:
Dimensions:
$0.9 \mathrm{~m} \leq \mathrm{I}, \mathrm{w} \leq 10 \mathrm{~m}$
$1 m^{2} \leq F \leq 15 m^{2}$
$0 \mathrm{~m} \leq 11$
$\mathrm{w} 1 \leq 1 \mathrm{~m}$
$12, \mathrm{w} 2 \geq 0 \mathrm{~m}$
$e \in\left\{135^{\circ}, 180^{\circ}\right\}$
Function:
$F \in\{n h s\}$
$\forall \mathrm{x}$: $\mathrm{F}($ passage_to $(\mathrm{x}))=$ TRUE, $\mathrm{x} \in\{\mathrm{Fb}, \mathrm{Ff}, \mathrm{Fr}, \mathrm{Fl}\}$
$\wedge x \in\{$ be.d, be.t, be.s, cl, ba.p, ho, hl, co, co.s, st, nhs\}
$\wedge \exists x \in\{$ be.d, be.t, be.s, ba.p\}
V
F (passage_to(x))=TRUE, $\mathrm{x} \in\{\mathrm{Fb}, \mathrm{Ff}, \mathrm{Fr}, \mathrm{FI}\}$

$\wedge x \in\{$ be.d, be.t, be.s, cl, ba.p, ho, hl, co, co.s, st, nhs, li, di, li/di\}
$\wedge \exists x \in\{$ be.d, be.t, be.s, ba.p\}

$\mathrm{F} 1 \in\{\mathrm{co} . \mathrm{p}\}$

Rule 4.2 _ Assignment of social corridors

R4.2 < D4: Fb, Ff, Fr, FI; F; Z'; E > \rightarrow
< D4:Fb, Ff, Fr, Fl; CO; Z' $+\{\mathrm{CO}\} ; \mathrm{E}-\{\mathrm{nhs}\}, \mathrm{E}+\{\mathrm{co}\}>$

$$
\mathrm{S} 4 \quad \rightarrow \quad \mathrm{~S} 7
$$

```
Conditions: Description (abbreviated):
    If Z\supset {be.d} ^ be.d (passage_to(y))=FALSE, y\in{co, co.p, hl, cl}
    R4.4 < D4: S4> }->\mathrm{ <D7: S7 >
    If Z\supset {be.t} ^ be.t (passage_to(y))=FALSE, y\in{co, co.p, hl, cl}
    If z\supset {be.s} ^ be.s (passage_to(y))=FALSE,y\in{co,co.p, hl, cl}
    If Z\supset{ba.p} ^ ba.p (passage to(y))=FALSE, y\in{co, co.p, cl, be.d, be.t, be.s}
    If Z\supset{li}}\ li (passage_to(y))=FALSE, y\in{co, hl}
    If Z\supset{di} \ di (passage_to(y))=FALSE, y\in{co, hl, li, ki}
    If Z\supset{ho} ^ ho (passage_to(y))=FALSE,y\in{co,co.p, co.s, hl, cl, li, di}
    If Z\supset{mr} ^ mr (passage_to(y))=FALSE, y\in{co, co.p, co.s, hl, li, di, ho}
    If Z\supset{ba.g} ^ ba.g (passage_to(y))=FALSE, y\in{co, hl}
    =>Rules 7.3\vee Rules 7.5 \vee Rules 7.6
```

Rule 4.5 _ Changing from step 4 to step 5
$\varnothing \quad \rightarrow \quad \varnothing$
S4 $\rightarrow \quad$ S5

Conditions:
\forall be.d: be.d (passage_to(y)) $=$ TRUE, $y \in\{c 0, c o . p, h l, ~ c l\}$
\forall be.t: be.t (passage_to(y))=TRUE, $y \in\{c 0, c o . p, \mathrm{hl}, \mathrm{cl}\}$
\forall be.s: be.s (passage_to(y))=TRUE, $y \in\{c o, c o . p, h l, c l\}$
\forall ba.p: ba.p (passage_to(y))=TRUE, $y \in\{c 0, c o . p, ~ c l, ~ b e . d, ~ b e . t, ~ b e . s ~\} ~$
$\forall \mathrm{li}: \mathrm{li}($ passage_to(y)) $=$ TRUE, $y \in\{\mathrm{co}, \mathrm{hl}\}$
\forall di: di $($ passage_to $(\mathrm{y}))=$ TRUE,$y \in\{\mathrm{co}, \mathrm{hl}, \mathrm{li}, \mathrm{ki}\}$
\forall ho: ho (passage_to(y))=TRUE, $y \in\{c 0$, co.p, co.s, hl, cl, li, di $\}$
$\forall \mathrm{mr}$: mr (passage_to(y)) $=$ TRUE, $y \in\{c 0, c o . p, c o . s, \mathrm{hl}, \mathrm{li}, \mathrm{di}, \mathrm{ho}\}$
\forall ba.g: ba.g (passāge_to(y))=TRUE, $y \in\{c o$, hl $\}$

Rule 5.1 _Assignment of isolated laundry (strategy 2)

```
- \({ }^{F}\)
- \({ }^{\mathrm{F} 1}\)
```

thary (strategy 2

Conditions:
$Z \supset\{\mid a\} \wedge Z \not \subset\{\mid a\}$
Functions:
$\operatorname{If}\{$ strategy 2$\} \wedge F \in\{X \mid a\} \Rightarrow F 1 \in\{\mid a\}$

Description (abbreviated):
R4.5 < D4: S4 > \rightarrow D5: S5 >

Description (abbreviated):
R5. 1 < D5: Xla; Z: E > \rightarrow
$<$ D5: la; Z' $+\{1 a\} ; E-\{X \mid a\}, E+\{l a\}>$

```
Rule 5.2.a _ Assignment of included laundry (minimum level) (strategy1)
```

```
Conditions: Description (abbreviated):
    Dimensions:
    F}\geq8\mp@subsup{m}{}{2}(\pm10%
    I,w\geq1,7m
    Functions:
    F\in{ki}
    F1\in{ki/la}
```

Rule 5.2.b _ Assignment of included laundry (recommended level) (strategy1)

```
\({ }^{\mathrm{F}}\)
- \({ }^{\text {F1 }}\)
```

Conditions:
Description (abbreviated):
Dimensions:
R5.2b < D5: ki; ZZ; E > \rightarrow
If nhab $=4 \Rightarrow F \geq 14 \mathrm{~m}^{2}(\pm 10 \%)$
< D5: ki/la; Z' $-\{\mathrm{ki}\}, \mathrm{Z}^{\prime}+\{\mathrm{ki} / \mathrm{la}\} ; \mathrm{E}-\{\mathrm{ki}\}, \mathrm{E}+\{\mathrm{ki} / \mathrm{la}\}>$
If $7>$ nhab $\geq 5 \Rightarrow F \geq 15 m^{2}+0,5 m^{2}(n-5)(\pm 10 \%)$
If nhab $\geq 7 \Rightarrow F \geq 16 m^{2}+0,5 m^{2}(n-5)(\pm 10 \%)$
I, $w \geq 1,7 m$
Functions:
$\mathrm{F} \in\{\mathrm{ki}\}$
$\mathrm{F} 1 \in\{\mathrm{ki} / \mathrm{la}\}$

Rule 5.3 Changing Xba label (strategy1)

Conditions:
Description (abbreviated):
$Z \supset\{\mid a\}$
R5.3 < D5: Xla; E $>\rightarrow$ D5: Cl; $-\{$ Xla $\}, E+\{\mathrm{cl}\}\rangle$
Functions:
$F \in\{X \mid a\}$
$F^{\prime} \in\{$ be.s, be.t, be.d\}
$\mathrm{F} 1 \in\{\mathrm{cl}\}$

Rule 5.4 _ Changing from step 5 to step 6

$\mathrm{S} 5 \rightarrow \mathrm{~S} 6$

Conditions:

Description (abbreviated):

$$
Z \supset\{\mid a\} \wedge Z^{\prime} \supset\{l a\} \wedge E \supset\{l a\}
$$

R5. $4<$ D5: S5 > \rightarrow D6: S6 >

Rule 6.5 _ Changing from step 6 to step 7

S6 \rightarrow S7

```
Conditions:
\(Z \supset\{\mathrm{cl}\} \wedge \mathrm{Z}^{\prime} \supset\{\mathrm{cl}\} \wedge \mathrm{E} \supset\{\mathrm{Cl}\}\)
\(Z \supset\{s t\} \wedge Z^{\prime} \supset\{s t\} \wedge E \supset\{s t\}\)
```

Description (abbreviated):
R6. 5 < D6: S6> \rightarrow D7: S7 >

Rule 7.1.a _ Connecting three adjacent rooms (by eliminating an L-shaped wall)

$-{ }_{F_{1}}$

$\quad \mathrm{I}$
I
Conditions:
Dimensions:
$0.9 \mathrm{~m} \leq 1 \leq 2 \mathrm{~m} \wedge 0 \mathrm{~m} \leq 11,12,13 \leq 2 \mathrm{~m}$
$0.9 \mathrm{~m} \leq \mathrm{w} \leq 2 \mathrm{~m} \wedge 0 \mathrm{~m} \leq \mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3 \leq 2 \mathrm{~m}$

Function:
$\mathrm{F} \in\{\mathrm{nhs}, \mathrm{Xba}, \mathrm{Xla}, \mathrm{cl}, \mathrm{st}\}$
$\mathrm{Fr} \in\{\mathrm{nh}, \mathrm{co}, \mathrm{co.p}, \mathrm{cos}, \mathrm{cl}\}$
Ff $\in\{h s$, be.d, be.t, be.s, ki, li, di, li/di, ho, mr\}
$\mathrm{Ff}=\mathrm{F} 1$
Description (abbreviated):
R7.1a < D7: Fr, Ff, F; w*wub(F, Ff), I*wub(F, Fr) > \rightarrow < D7: F1; w ${ }^{*}$ Ø>

Rule 7.1.b _ Connecting two adjacent rooms (by eliminating a straight wall)

Description (abbreviated):

R7.1.b < D7: Fb, Ff; w*wub(Fb, Ff) > \rightarrow D7: Fb; w* \quad >

Rule 7.1.c _ Connecting two adjacent rooms (by eliminating a straight wall)

Description (abbreviated):
R7.1.c < D7: Fb, Ff; w*wub(Fb, Ff) > \rightarrow D7: Fb ; w*Ø >

Rule 7.1.d _ Connecting two adjacent rooms (by eliminating a wall)

Conditions:
Dimensions:
$1 \mathrm{~m} \leq \mathrm{w} \leq 3 \mathrm{~m}$
$0 \mathrm{~m} \leq 11,12 \leq 3 \mathrm{~m}$

$\| 12$
$\mid 11]^{\prime \prime}$
w. w' \qquad

$\stackrel{\Xi}{\leftrightarrows}$
$1 \mathrm{~m} \leq 1 \leq 2 \mathrm{~m}$
$1 m \leq w^{\prime}, l^{\prime} \leq 4 m$
Function:
$F \in\{k i\} \wedge F l \in\{n h s, X b a, s t\} \wedge \exists \mid F l($ passage_to(x) $)=T R U E, x \in\{n h s, X b a, s t\}$
\checkmark
$F \in\{l i, d i, l i / d i, h o, m r\} \wedge F I \in\{c o, c o . s\} \wedge \exists \mid F l($ passage_to(x) $)=T R U E, x \in\{c 0, c o . s\}$
$\underset{\sim}{F}$
F

Description (abbreviated):

R7.1.d < D7: FI, F; I*wub(FI, F) > \rightarrow D7: F; I ${ }^{\star} \varnothing>$

Rule 7.1.e _ Connecting two adjacent spaces (by eliminating a straight wall)
(

Rule 7.1.f_Connecting two adjacent rooms (by eliminating part of a straight wall, in the middle of the wall)

Conditions:
Dimensions:
$\mathrm{w} 1+\mathrm{w}+\mathrm{w} 2 \geq 1 \mathrm{~m}$
$w \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}, 1.2 \mathrm{~m}, 1.6 \mathrm{~m}\}$
$\mathrm{w} 1, \mathrm{w} 2 \geq 0 \mathrm{~m}$
Function:

Private areas

$\mathrm{Fb} \in\{$ be.d, be.t, be.s $\} \wedge \mathrm{Ff} \in\{\mathrm{nhs}, \mathrm{co.p}, \mathrm{co}\} \wedge \mathrm{Fb}$ (passage_to(x)=FALSE, $\forall \mathrm{x} \in\{\mathrm{nhs}, \mathrm{co.p}, \mathrm{co}\}) \Rightarrow \mathrm{w} \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}\}$
$\mathrm{Fb} \in\{$ be.d, be.t, be.s $\} \wedge \mathrm{Ff} \in\{\mathrm{cl}$, ba.p $\} \wedge \mathrm{Ff}($ passage_to(x) $=\mathrm{FALSE}, \forall \mathrm{x} \in\{Z, \mathrm{hs}, \mathrm{nhs}\}) \Rightarrow w \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}\}$ $\mathrm{Fb} \in\{$ ba.p, cl$\} \wedge \mathrm{Ff} \in\{\mathrm{nhs}, \mathrm{co} . \mathrm{p}, \mathrm{co}\} \wedge \mathrm{Fb}($ passage_to(x)=FALSE, $\forall \mathrm{x} \in\{Z, \mathrm{hs}, \mathrm{nhs}\}) \Rightarrow \mathrm{w} \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}\}$

Living areas
$\mathrm{Fb} \in\{\mathrm{li}, \mathrm{di}, \mathrm{li} / \mathrm{di}, \mathrm{ho}, \mathrm{mr}\} \wedge \mathrm{Ff} \in\{\mathrm{nhs}, \mathrm{co}, \mathrm{co.s}, \mathrm{hl}\} \wedge \mathrm{Fb}($ passage_to(x)=FALSE, $\forall \mathrm{x} \in\{\mathrm{nhs}, \mathrm{co}, \mathrm{hl}\})$
$\mathrm{Fb} \in\{\mathrm{li}\} \wedge \mathrm{Ff} \in\{\mathrm{di}, \mathrm{ho}, \mathrm{mr}\}$
$\mathrm{Fb} \in\{\mathrm{di}, \mathrm{li} / \mathrm{di}\} \wedge \mathrm{Ff} \in\{\mathrm{li}, \mathrm{ho}, \mathrm{mr}, \mathrm{ki}\}$
$F b \in\{h 0\} \wedge F f \in\{l i, d i, l i / d i, m r, c o . p, k i, c l, s t, b e . d\}$
$\mathrm{Fb} \in\{\mathrm{mr}\} \wedge \mathrm{Ff} \in\{\mathrm{li}, \mathrm{di}, \mathrm{li} / \mathrm{di}, \mathrm{ho}\}$
Service areas
$\mathrm{Fb} \in\{\mathrm{ki}\} \wedge \mathrm{Ff} \in\{\mathrm{co}, \mathrm{co.s}, \mathrm{hl}\} \wedge \mathrm{Fb}($ passage_to(x) $)=\mathrm{FALSE}, \forall \mathrm{x} \in\{\mathrm{co}, \mathrm{co.s}, \mathrm{hl}\}) \Rightarrow \mathrm{w} \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}\}$ $\mathrm{Fb} \in\{\mathrm{ki}\} \wedge \mathrm{Ff} \in\{\mathrm{di}, \mathrm{li} / \mathrm{di}, \mathrm{la}\} \wedge \mathrm{Fb}($ passage_to(x)$=\mathrm{FALSE}, \forall \mathrm{x} \in\{\mathrm{di}, \mathrm{li} / \mathrm{di}, \mathrm{la}\})$

Circulations areas
$\mathrm{Ff}, \mathrm{Fb} \in\{\mathrm{nhs}, \mathrm{co}, \mathrm{co} . \mathrm{p}, \mathrm{cos}$, hl\}
Storage areas
$\mathrm{Fb} \in\{\mathrm{cl}\} \wedge \mathrm{Ff} \in\{\mathrm{co}, \mathrm{co} . \mathrm{p}$, be.d, be.t, be.s $\} \wedge \mathrm{Fb}($ passage_to(x)=FALSE, $\forall \mathrm{x} \in\{\mathrm{co}$, co.p, be.d, be.t, be.s $\}) \Rightarrow \mathrm{w} \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}\}$ $\mathrm{Fb} \in\{\mathrm{st}\} \wedge \mathrm{Ff} \in\{\mathrm{co}, \mathrm{co} . \mathrm{s}, \mathrm{hl}, \mathrm{ki}, \mathrm{la}, \mathrm{ho}, \mathrm{mr}\} \wedge \mathrm{Fb}($ passage_to(x)$=F A L S E, \forall \mathrm{x} \in\{\mathrm{co}, \mathrm{co.s}, \mathrm{hl}, \mathrm{ki}, \mathrm{la}, \mathrm{ho}, \mathrm{mr}\}) \Rightarrow \mathrm{w} \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}\}$

Rule 7.1.g _ Connecting two adjacent rooms (by eliminating part of a straight wall, next to the perpendicular partition wall)

Conditions:
Dimensions:
$w \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}, 1.2 \mathrm{~m}, 1.6 \mathrm{~m}\}$
$w 1=0,1 \mathrm{~m}$
Function:

Private areas

$\mathrm{Fb} \in\{$ be.d, be.t, be.s $\} \wedge \mathrm{Ff} \in\{$ nhs, $\mathrm{co} . \mathrm{p}, \mathrm{co}\} \wedge \mathrm{Fb}($ passage_to(x$)=\mathrm{FALSE}, \forall \mathrm{x} \in\{\mathrm{nhs}, \mathrm{co} . \mathrm{p}, \mathrm{co}\}) \Rightarrow \mathrm{w} \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}\}$
$\mathrm{Fb} \in\{$ be.d, be.t, be.s $\} \wedge \mathrm{Ff} \in\{\mathrm{cl}$, ba.p\} $\} \wedge \mathrm{Ff}($ passage_to(x) $=F A L S E, \forall x \in\{Z, \mathrm{hs}, \mathrm{nhs}\}) \Rightarrow \mathrm{w} \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}\}$
$\mathrm{Fb} \in\{$ ba.p, cl$\} \wedge \mathrm{Ff} \in\{\mathrm{nhs}, \mathrm{co} . \mathrm{p}, \mathrm{Co}\} \wedge \mathrm{Fb}($ passage_to(x$)=\mathrm{FALSE}, \forall \mathrm{x} \in\{\mathrm{Z}, \mathrm{hs}, \mathrm{nhs}\}) \Rightarrow \mathrm{w} \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}\}$
Living areas
$\mathrm{Fb} \in\{\mathrm{li}, \mathrm{di}, \mathrm{li} / \mathrm{di}, \mathrm{ho}, \mathrm{mr}\} \wedge \mathrm{Ff} \in\{\mathrm{nhs}, \mathrm{co}, \mathrm{cos} \mathrm{s}, \mathrm{hl}\} \wedge \mathrm{Fb}$ (passage_to(x)=FALSE,$\forall \mathrm{x} \in\{\mathrm{nhs}, \mathrm{co}, \mathrm{hl}\}$)
$\mathrm{Fb} \in\{\mathrm{li}\} \wedge \mathrm{Ff} \in\{\mathrm{di}, \mathrm{ho}, \mathrm{mr}\}$
$\mathrm{Fb} \in\{\mathrm{di}, \mathrm{li} / \mathrm{di}\} \wedge \mathrm{Ff} \in\{\mathrm{li}, \mathrm{ho}, \mathrm{mr}, \mathrm{ki}\}$
$F b \in\{h o\} \wedge F f \in\{l i, d i$, li/di, mr, co.p, ki, cl, st, be.d $\}$
$\mathrm{Fb} \in\{\mathrm{mr}\} \wedge \mathrm{Ff} \in\{\mathrm{li}, \mathrm{di}, \mathrm{li} / \mathrm{di}, \mathrm{ho}\}$
Service areas
$\mathrm{Fb} \in\{\mathrm{ki}\} \wedge \mathrm{Ff} \in\{\mathrm{co}, \mathrm{co} . \mathrm{s}, \mathrm{hl}\} \wedge \mathrm{Fb}($ passage_to(x)=FALSE, $\forall \mathrm{x} \in\{\mathrm{co}, \mathrm{co.s}, \mathrm{hl}\}) \Rightarrow \mathrm{w} \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}\}$
$\mathrm{Fb} \in\{\mathrm{ki}\} \wedge \mathrm{Ff} \in\{\mathrm{di}, \mathrm{li} / \mathrm{di}, \mathrm{la}\} \wedge \mathrm{Fb}($ passage_to $(\mathrm{x})=\mathrm{FALSE}, \forall \mathrm{x} \in\{\mathrm{di}, \mathrm{li} / \mathrm{di}, \mathrm{la}\})$
Circulations areas
$\mathrm{Ff}, \mathrm{Fb} \in\{\mathrm{nhs}, \mathrm{co}, \mathrm{co} . \mathrm{p}, \mathrm{co.s}, \mathrm{hl}\}$

Storage areas

$\mathrm{Fb} \in\{\mathrm{cl}\} \wedge \mathrm{Ff} \in\{\mathrm{co}$, co.p, be.d, be.t, be.s $\} \wedge \mathrm{Fb}($ passage_to(x)=FALSE, $\forall \mathrm{x} \in\{c 0$, co.p, be.d, be.t, be.s $\}) \Rightarrow w \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}\}$ $\mathrm{Fb} \in\{\mathrm{st}\} \wedge \mathrm{Ff} \in\{\mathrm{Co}, \mathrm{cos}, \mathrm{hl}, \mathrm{ki}, \mathrm{la}, \mathrm{ho}, \mathrm{mr}\} \wedge \mathrm{Fb}($ passage_to(x)=FALSE, $\forall \mathrm{x} \in\{\mathrm{co}, \mathrm{co.s}, \mathrm{hl}, \mathrm{ki}, \mathrm{la}, \mathrm{ho}, \mathrm{mr}\}) \Rightarrow \mathrm{w} \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}\}$

Rule 7.1.h _ Connecting two adjacent rooms (by eliminating part of a straight wall, disting $0,7 \mathrm{~m}$ to the perpendicular partition wall)

Conditions:
Dimensions:
$w \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}, 1.2 \mathrm{~m}, 1.6 \mathrm{~m}\}$
$\mathrm{w} 1=0,7 \mathrm{~m}$
Function:

Private areas

$\mathrm{Fb} \in\{$ be.d, be.t, be.s $\} \wedge \mathrm{Ff} \in\{$ nhs, co.p, co$\} \wedge \mathrm{Fb}$ (passage_to(x)=FALSE, $\forall \mathrm{x} \in\{\mathrm{nhs}, \mathrm{co.p}, \mathrm{co}\}) \Rightarrow \mathrm{w} \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}\}$
$\mathrm{Fb} \in\{$ be.d, be.t, be.s $\} \wedge \mathrm{Ff} \in\{\mathrm{cl}$, ba.p $\} \wedge \mathrm{Ff}($ passage_to(x)$=F A L S E, \forall \mathrm{x} \in\{Z, \mathrm{hs}, \mathrm{nhs}\}) \Rightarrow \mathrm{w} \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}\}$
$\mathrm{Fb} \in\{b a . \mathrm{p}, \mathrm{cl}\} \wedge \mathrm{Ff} \in\{\mathrm{nhs}, \mathrm{co} . \mathrm{p}, \mathrm{co}\} \wedge \mathrm{Fb}($ passage_to(x)=FALSE, $\forall \mathrm{x} \in\{Z, \mathrm{hs}, \mathrm{nhs}\}) \Rightarrow \mathrm{w} \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}\}$
Living areas
$\mathrm{Fb} \in\{\mathrm{li}, \mathrm{di}, \mathrm{li} / \mathrm{di}, \mathrm{ho}, \mathrm{mr}\} \wedge \mathrm{Ff} \in\{\mathrm{nhs}, \mathrm{co}, \mathrm{co} . \mathrm{s}, \mathrm{hl}\} \wedge \mathrm{Fb}($ passage_to(x)$=\mathrm{FALSE}, \forall \mathrm{x} \in\{\mathrm{nhs}, \mathrm{co}, \mathrm{hl}\})$
$\mathrm{Fb} \in\{\mathrm{li}\} \wedge \mathrm{Ff} \in\{\mathrm{di}, \mathrm{ho}, \mathrm{mr}\}$
$\mathrm{Fb} \in\{\mathrm{di}, \mathrm{li} / \mathrm{di}\} \wedge \mathrm{Ff} \in\{\mathrm{li}, \mathrm{h}, \mathrm{mr}, \mathrm{ki}\}$
$F b \in\{h o\} \wedge F f \in\{l i, d i, l i / d i, m r, c o . p$, ki, cl, st, be.d $\}$
$\mathrm{Fb} \in\{\mathrm{mr}\} \wedge \mathrm{Ff} \in\{\mathrm{li}, \mathrm{di}, \mathrm{li} / \mathrm{di}, \mathrm{ho}\}$
Service areas
$\mathrm{Fb} \in\{\mathrm{ki}\} \wedge \mathrm{Ff} \in\{\mathrm{co}, \mathrm{co.s}, \mathrm{hl}\} \wedge \mathrm{Fb}($ passage_to(x) $=\mathrm{FALSE}, \forall \mathrm{x} \in\{\mathrm{co}, \mathrm{co.s}, \mathrm{hl}\}) \Rightarrow \mathrm{w} \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}\}$
$\mathrm{Fb} \in\{\mathrm{ki}\} \wedge \mathrm{Ff} \in\{\mathrm{di}, \mathrm{li} / \mathrm{di}, \mathrm{la}\} \wedge \mathrm{Fb}($ passage_to(x) $)=\mathrm{FALSE}, \forall \mathrm{x} \in\{\mathrm{di}, \mathrm{li} / \mathrm{di}, \mathrm{la}\})$
Circulations areas
$\mathrm{Ff}, \mathrm{Fb} \in\{\mathrm{nhs}, \mathrm{co}, \mathrm{co} . \mathrm{p}, \mathrm{co} . \mathrm{s}, \mathrm{hl}\}$
Storage areas
$\mathrm{Fb} \in\{\mathrm{cl}\} \wedge \mathrm{Ff} \in\{\mathrm{co}, \mathrm{co} . \mathrm{p}$, be.d, be.t, be.s $\} \wedge \mathrm{Fb}$ (passage_to(x)=FALSE, $\forall \mathrm{x} \in\{\mathrm{co}, \mathrm{co} . \mathrm{p}$, be.d, be.t, be.s $\}) \Rightarrow \mathrm{w} \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}\}$ $\mathrm{Fb} \in\{\mathrm{st}\} \wedge \mathrm{Ff} \in\{\mathrm{co}, \mathrm{cos}, \mathrm{hl}, \mathrm{ki}, \mathrm{la}, \mathrm{ho}, \mathrm{mr}\} \wedge \mathrm{Fb}($ passage_to(x)=FALSE, $\forall \mathrm{x} \in\{\mathrm{co}, \mathrm{co} . \mathrm{s}, \mathrm{hl}, \mathrm{ki}, \mathrm{la}, \mathrm{ho}, \mathrm{mr}\}) \Rightarrow \mathrm{w} \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}\}$

Rule 7.1.i _ Widening the connection between two rooms (by partially eliminating walls on both sides of a door opening)

Conditions:
Dimensions:
dimensions:
$\mathrm{w} 1 \geq 0,9 \mathrm{~m}$
w2', w3' $\geq 0 \mathrm{~m}$
$w 1 ' \in\{1 \mathrm{~m}, 1.2 \mathrm{~m}, 1.6 \mathrm{~m}, 2 \mathrm{~m}, 2.2 \mathrm{~m}, 2.5 \mathrm{~m}, \mathrm{w}\}$
Function:
$\mathrm{Fb}, \mathrm{Ff} \in\{\mathrm{Z}\}$

Description (abbreviated):
R7.1i < D7: Fb, Ff; w2*wub(Fb, Ff), w3*wub(Fb, Ff) > \rightarrow
< D7: Fb, Ff; w2 ${ }^{\star *}$ wub (Fb, Ff), w3 ${ }^{* *}$ wub (Fb, Ff) >

Rule 7.1.j _ Widening the connection between two rooms (by partially eliminating walls on both sides of a door opening)
$\mathrm{Fb} \quad \mathrm{Fb}$

Conditions
Dimensions:
$1 \mathrm{~m} \leq \mathrm{w} 1 \leq 2 \mathrm{~m}$
$w 1 \in\{1,0 m, 1,2 m, 1,6 m\}$

Function:
$\mathrm{Fb}, \mathrm{Ff} \in\{\mathrm{Z}\}$

Description (abbreviated):
R7. 1 j < D7: Fb, Ff; w2**wb(Fb, Ff), w3*wub(Fb, Ff) > \rightarrow < D7: Fb, Ff; w2** wub(Fb, Ff), w3'*wub(Fb, Ff) >

Rule 7.1.k_Connecting two adjacent spaces (by eliminating part of a straight walll)

Conditions:
Dimensions:
$\mathrm{w} \leq 2 \mathrm{~m}$
$0,4 \mathrm{~m} \leq \mathrm{I} \leq 1 \mathrm{~m}$
Function:
$\mathrm{Fb}, \mathrm{Ff} \in\{\mathrm{li}, \mathrm{di}, \mathrm{li} / \mathrm{di}, \mathrm{ho}, \mathrm{mr}\}$
\vee
Fb $\in\{$ be.d, be.t, be.s $\} \wedge \mathrm{Ff} \in\{\mathrm{cl}$, ho, ba.p $\}$

Description:

R7.1k < D7: Fb, Ff; w* ${ }^{*}$, $I^{*} u b>\rightarrow$

$$
<\mathrm{DF}: \mathrm{Fb}, \mathrm{Ff} ; w^{\star} \varnothing,\left.\right|^{\star} \varnothing,>
$$

Rule 7.1.I _Connecting two adjacent spaces (by eliminating part of a straight walll)

 Γ

Conditions:
Dimensions:
$w \leq 2 m$
$0,4 \mathrm{~m} \leq \mathrm{I} \leq 1 \mathrm{~m}$

Function:
$\mathrm{Fb}, \mathrm{Ff} \in\{\mathrm{li}, \mathrm{di}, \mathrm{li} / \mathrm{di}, \mathrm{ho}, \mathrm{mr}\}$
V
$\mathrm{Fb} \in\{$ be.d, be.t, be.s $\} \wedge \mathrm{Ff} \in\{\mathrm{cl}$, ho, ba.p $\}$

Description:
R7.11 < D7: Fb, Ff; $\mathrm{w}^{\star} u b, I^{\star} u b>\rightarrow$
$<\mathrm{D7}: \mathrm{Fb}, \mathrm{Ff} ; \mathrm{w}^{*} \varnothing, \mathrm{I}^{*} \varnothing,>$

Rule 7.2.a _ Separating rooms, closing door opening with light partition wall
Conditions:
Function:
Fb $\neq \mathrm{Ff}$

[^9]Rule 7.2.b _ Dividing a room in two by adding a wall

Conditions:
7.2.b1 Dividing a bedroom

Dimensions:
If mimimum_level $\wedge \mathrm{Fb} \in\{\mathrm{be} . \mathrm{d}\} \Rightarrow \mathrm{Fb} 1 \geq 10,5 \mathrm{~m}^{2} \wedge \mathrm{w}, \mathrm{I} 1 \geq 2,7 \mathrm{~m}$
If recommended_level $\wedge \mathrm{Fb} \in\{$ be. d$\} \Rightarrow \mathrm{Fb} 1 \geq 12 \mathrm{~m}^{2} \wedge \mathrm{w}, \mathrm{I} 1 \geq 2,7 \mathrm{~m}$ If mimimum_level $\wedge \mathrm{Fb} \in\{\mathrm{be} . \mathrm{t}\} \Rightarrow \mathrm{Fb} 1 \geq 9 \mathrm{~m}^{2} \wedge \mathrm{w}, \mathrm{I} 1 \geq 2,1 \mathrm{~m}$
If recommended_level $\wedge \mathrm{Fb} \in\{$ be.t $\} \Rightarrow \mathrm{Fb} 1 \geq 14,5 \mathrm{~m}^{2} \wedge \mathrm{w}, \mathrm{I} 1 \geq 2,1 \mathrm{~m}$ If mimimum_level $\wedge \mathrm{Fb} \in\{$ be. $s\} \Rightarrow \mathrm{Fb} 1 \geq 7 \mathrm{~m}^{2} \wedge \mathrm{w}, \mathrm{I} \geq 2,1 \mathrm{~m}$
If recommended_level $\wedge \mathrm{Fb} \in\{\mathrm{be} . \mathrm{s}\} \Rightarrow \mathrm{Fb} 1 \geq 8,5 \mathrm{~m}^{2} \wedge \mathrm{w}, \mathrm{I} \mid \geq 2,1 \mathrm{~m}$ $\mathrm{Ff} \geq 1 \mathrm{~m}^{2} \wedge \mathrm{l} 2 \geq 1 \mathrm{~m}$

Function:
Fb, Fb1 \in \{be.d, be.t, be.s $\}$
$\mathrm{Ff} \in\{\mathrm{nh} s\}$
$\mathrm{Fb} \neq \mathrm{Ff}$
7.2.b2 Dividing a private bathroom

Dimensions:
w, $11, \mid 2 \geq 1 \mathrm{~m}$
If mimimum level $\Rightarrow \mathrm{Fb} \geq 5 \mathrm{~m}^{2} \wedge \mathrm{Fb} 1 \geq 3,5 \mathrm{~m}^{2}$
If recommeñded level $\Rightarrow \mathrm{Fb} \geq 7,5 \mathrm{~m}^{2} \wedge \mathrm{Fb} 1 \geq 5 \mathrm{~m}^{2}$
$\mathrm{Ff} \geq 1 \mathrm{~m}^{2}$
Functions:
$\mathrm{Fb}, \mathrm{Fb} 1 \in\{\mathrm{ba} . \mathrm{p}\}$
$\mathrm{Ff} \in\{$ ba.p, ba.g, cl, nhs\}
7.2.b3 Dividing social rooms

Dimensions:
$\mathrm{Fb} \in\{\mathrm{li}\} \Rightarrow \mathrm{Fb} 1, \mathrm{lb} \geq$ dimensions ofRule3.1a
$\mathrm{Fb} \in\{\mathrm{di}\} \Rightarrow \mathrm{Fb} 1, \mathrm{lb} \geq$ dimensions_ofRule3.2a
$\mathrm{Fb} \in\{\mathrm{li} / \mathrm{di}\} \Rightarrow \mathrm{Fb} 1, \mathrm{lb} \geq$ dimensions_ofRule3.3a
$\mathrm{Fb} \in\{\mathrm{ho}\} \Rightarrow \mathrm{Fb} 1, \mathrm{lb} \geq$ dimension_ofRule3.4a
$\mathrm{Fb} \in\{\mathrm{mr}\} \Rightarrow \mathrm{Fb} 1, \mathrm{lb} \geq$ dimensions_ofRule3.5a
$\mathrm{Ff} \geq 1 \mathrm{~m}^{2} \wedge \mathrm{I} 2 \geq 1 \mathrm{~m}$
Function:
$\mathrm{Fb}, \mathrm{Fb} 1 \in\{\mathrm{li}, \mathrm{di}, \mathrm{i} / \mathrm{di}, \mathrm{ho}, \mathrm{mr}\}$
$\mathrm{Ff} \in\{\mathrm{nhs}\}$
$\mathrm{Fb} \neq \mathrm{Ff}$
7.2.b4 Dividing a kitchen

Dimensions:
$w, I 1, I 2 \geq 1 \mathrm{~m}$
If mimimum level $\Rightarrow \mathrm{Fb} 1 \geq 6 \mathrm{~m}^{2}(\pm 10 \%)$
If recommended level \wedge If nhab $=4 \Rightarrow \mathrm{Fb} \geq 10,5 \mathrm{~m}^{2}(\pm 10 \%)$
If recommended_level \wedge If $n h a b \geq 5 \Rightarrow \mathrm{Fb} \geq 11,5 \mathrm{~m}^{2}+0,5 \mathrm{~m}^{2}(\mathrm{n}-5)(\pm 10 \%)$
$\mathrm{Ff} \geq 1 \mathrm{~m}^{2}$
Functions:
$\mathrm{Fb}, \mathrm{Fb} 1 \in\{\mathrm{ki}\}$
$\mathrm{Ff} \in\{\mathrm{nh} s\}$

Description (abbreviated):

$$
\text { Rule7.2b < D7: Fb; E > } \rightarrow
$$

< D7: Fb1, Ff; E+ \{Ff\}; w *wul(Fb1, Ff) >

Rule 7.2.c _ Reducing a door opening with light partition wall

Conditions
Dimensions:
$w^{\prime}>0.9 \mathrm{~m} \wedge \mathrm{w} \geq 1 \mathrm{~m}$
$w 2 \in\{0.8 \mathrm{~m}, 1.0 \mathrm{~m}, 1.2 \mathrm{~m}, 1.6 \mathrm{~m}\}$
$w^{\prime}=w 1+w 2+w 3$
$\mathrm{w} 1, \mathrm{w} 3>0 \mathrm{~m}$
Function:
$\mathrm{Fb} \neq \mathrm{Ff}$

Description (abbreviated):

$\mathrm{R7} .2 \mathrm{C}<\mathrm{D7}: \mathrm{Fb}, \mathrm{Ff} ; \mathrm{w}^{\prime *} \varnothing>\rightarrow\left\langle\mathrm{D7}: \mathrm{Fb}, \mathrm{Ff} ; \mathrm{w}^{*} \mathrm{wul}(\mathrm{Fb}, \mathrm{Ff}), \mathrm{w} 2^{*} \mathrm{wul}(\mathrm{Fb}, \mathrm{Ff})\right\rangle$

Rule 7.3.a _ Remove part of a room to assign to circulation area

Conditions:
Dimensions:
$1 \mathrm{~m} \leq \mathrm{l}<2 \mathrm{~m}$
$0.9 \mathrm{~m} \leq \mathrm{w}<2 \mathrm{~m}$
$11, w 1 \in\{0.8 m, 1.0 m, 1.2 m, 1.6 m\}$

Function:
If (passage to(F)) $=0$
Private areas
F, $F 1 \in\{$ be.d, be.t, be.s $\}$

F2 $\in\{$ nhs, $\mathrm{co}, \mathrm{co.p}\}$
Social areas
F, F1 $\in\{l i$, di, li/di, ba.g, ho, mr $\}$
F2 $\in\{n h s, c o, c o . s, h l\}$

Kitchen
$\mathrm{F} 1 \in\{\mathrm{ki}\}$
F, F2 $\in\{Z\}$

Description (abbreviated):

R7.3a < D7: F, F1, F2; I1*wub(F, F1), w*wub(F1, F2)> \rightarrow
< D7: Fb ; $11^{*} \varnothing ; w^{*} \varnothing$, w2*wul(F1, F2), 12^{*} wul(F1, F2) >

Rule 7.3.b _ Remove part of a room area to assign to circulation area

Conditions:

Ff: Bedroom or private bathroom
Dimensions:
$w \leq 2 m$
$0 m \leq w 1, w 1^{\prime}, w 2^{\prime} \leq 1.2 m$
$w 2 \in\{0.8 m, 0.9 m, 1 m\}$
$\mathrm{w} 2 \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}\}$
If minimum_level $\wedge \mathrm{Ff} \in\{$ be. d$\} \Rightarrow \mathrm{I} \geq 3,9 \mathrm{~m} \wedge \mathrm{I} 2 \geq 2,7 \mathrm{~m} \wedge \mathrm{Ff} 1 \geq 10,5 \mathrm{~m}^{2}$ If recommended level $\wedge \mathrm{Ff} \in\{$ be. d$\} \Rightarrow \mathrm{I} \geq 3,9 \mathrm{~m} \wedge \mathrm{I} 2 \geq 2,7 \mathrm{~m} \wedge \mathrm{Ff} 1 \geq 12 \mathrm{~m}^{2}$ If minimum_level $\wedge \mathrm{Ff} \in\{$ be.t $\} \Rightarrow \mathrm{I} \geq 3,3 \mathrm{~m} \wedge \mathrm{I} 2 \geq 2,7 \mathrm{~m} \wedge \mathrm{Ff} 1 \geq 9 \mathrm{~m}^{2}$ If recommended_level $\wedge \mathrm{Ff} \in\{$ be. t$\} \Rightarrow \mathrm{I} \geq 3,3 \mathrm{~m} \wedge \mathrm{I} 2 \geq 2,7 \mathrm{~m} \wedge \mathrm{Ff} 1 \geq 14,5 \mathrm{~m}^{2}$ If minimum_level $\wedge \mathrm{Ff} \in\{$ be.s $\} \Rightarrow \mathrm{I} \geq 3,3 \mathrm{~m} \wedge \mathrm{I} 2 \geq 2,1 \mathrm{~m} \wedge \mathrm{Ff} 1 \geq 8 \mathrm{~m}^{2}$ If recommended_level $\wedge \mathrm{Ff} \in\{$ be.s $\} \Rightarrow \mathrm{I} \geq 3,3 \mathrm{~m} \wedge \mathrm{I} 2 \geq 2,1 \mathrm{~m} \wedge \mathrm{Ff} 1 \geq 8,5 \mathrm{~m}^{2}$ If minimum_level $\wedge \mathrm{Ff} \in\{$ ba.p $\} \Rightarrow \mathrm{I} \geq 2,2 \mathrm{~m} \wedge \mathrm{I} 2 \geq 1 \mathrm{~m} \wedge \mathrm{Ff} 1 \geq 3,5 \mathrm{~m}^{2}$ If recommended_level $\wedge \mathrm{Ff} \in\{$ ba. p$\} \Rightarrow \mathrm{I} \geq 2,2 \mathrm{~m} \wedge \mathrm{I} 2 \geq 1 \mathrm{~m} \wedge \mathrm{Ff} 1 \geq 5 \mathrm{~m}^{2}$ $1 \mathrm{~m} \leq 11<2 \mathrm{~m}$

Function:
Ff, $\mathrm{Ff} 1 \in\{$ be.d, be.t, be.s, ba.p $\} \wedge \mathrm{Ff}=\mathrm{Ff} 1$
$\mathrm{Fb}, \mathrm{Fb} 1 \in\{\mathrm{nhs}, \mathrm{co} . \mathrm{p}, \mathrm{co}, \mathrm{co} . \mathrm{s}\} \wedge \mathrm{Fb}=\mathrm{Fb} 1$
Ff: Guest bathroom
Dimensions:
$\mathrm{w} \leq 2 \mathrm{~m}$
$1 \mathrm{~m} \leq 11<2 \mathrm{~m}$
$0 \mathrm{~m} \leq \mathrm{w} 1, \mathrm{w} 1^{1}, \mathrm{w} 2 \mathbf{2}^{\prime} \leq 1.2 \mathrm{~m}$
$\mathrm{w} 2 \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}\}$
If minimum_level $\wedge \mathrm{Ff} \in\{$ ba.g $\} \Rightarrow \mathrm{I} \geq 2,2 \mathrm{~m} \wedge \mathrm{I} 2 \geq 1 \mathrm{~m} \wedge \mathrm{Ff1} \geq 1 \mathrm{~m}^{2}$
If recommended_level $\wedge \mathrm{Ff} \in\{$ ba. g$\} \Rightarrow \mathrm{I} \geq 2,2 \mathrm{~m} \wedge \mathrm{I} 2 \geq 1 \mathrm{~m} \wedge \mathrm{Ff} \geq 2 \mathrm{~m}^{2}$
Function:
$\mathrm{Ff}, \mathrm{Ff} 1 \in\{\mathrm{ba} . \mathrm{g}\} \wedge \mathrm{Ff}=\mathrm{Ff} 1$
$\mathrm{Fb}, \mathrm{Fb} 1 \in\{\mathrm{Z}\} \wedge \mathrm{Fb}=\mathrm{Fb} 1$

Regra 7.3.c _ Remove part of the bedroom area to assign to circulation area

> Conditions
> Dimensions:
> $11 \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}\}$
> $1 \mathrm{~m} \leq \mathrm{l}^{\prime} \leq 1.5 \mathrm{~m}$
> If minimum_level $\wedge \mathrm{Ff} \in\{$ be. s$\} \Rightarrow \mathrm{I} 2 \geq 2,1 \mathrm{~m} \wedge \mathrm{Ff} 1 \geq 8 \mathrm{~m}^{2}$
> If recommended_level $\wedge \mathrm{Ff} \in\{$ be. s$\} \Rightarrow \mathrm{I} 2 \geq 2,1 \mathrm{~m} \wedge \mathrm{Ff} 1 \geq 8,5 \mathrm{~m}^{2}$
> If minimum_level $\wedge \mathrm{Ff} \in\{$ be. t$\} \Rightarrow \mathrm{I} 2 \geq 2,7 \mathrm{~m} \wedge \mathrm{Ff} 1 \geq 9 \mathrm{~m}^{2}$
> If recommended_level $\wedge \mathrm{Ff} \in\{$ be.t $\} \Rightarrow \mid 2 \geq 2,7 \mathrm{~m} \wedge \mathrm{Ff1} \geq 14,5 \mathrm{~m}^{2}$
> If minimum_level $\wedge \mathrm{Ff} \in\{$ be. d$\} \Rightarrow \mid 2 \geq 2,7 \mathrm{~m} \wedge \mathrm{Ff} 1 \geq 10,5 \mathrm{~m}^{2}$
> If recommended_level $\wedge \mathrm{Ff} \in\{$ be. d$\} \Rightarrow \mathrm{I} 2 \geq 2,7 \mathrm{~m} \wedge \mathrm{Ff} 1 \geq 12 \mathrm{~m}^{2}$
> $\mathrm{~F} \geq 1 \mathrm{~m}^{2}$
> Function:
> Ff, $\mathrm{Fr}, \mathrm{Fl} \in\{$ be.d, be.t, be.s, ba.p, cl\}
> $\mathrm{Fb}, \mathrm{F} \in\{\mathrm{nhs}, \mathrm{co} . \mathrm{p}, \mathrm{co}, \mathrm{co.s}\}$

Description (abbreviated):
R7.3c < D1: Fb, Ff, Fl, Fr> \rightarrow D1: Fb, Ff1, FI, Fr, F; w*wul(F, Ff1) >

Rule 7.4.a _ Changing a room's dimension (enlarging or reducing) by "moving" a wall (eliminating and adding a wall)

Conditions:
Dimensions:
Description (abbreviated):
$1 \mathrm{~m} \leq \mathrm{w} \leq 2 \mathrm{~m}$
R7.4a < D7: Fb, Ff; A, w*wub(Fb, Ff) > \rightarrow
< D7: Fb1, F11; B, w*wul(Fb1, Ff1) >
$0 \mathrm{~m} \leq \mathrm{w} 1$, w2, w3 $\leq 2 \mathrm{~m}$
$0,5 \mathrm{~m} \leq \operatorname{dist}(\mathrm{A}, \mathrm{B}) \leq 1 \mathrm{~m}$
7.4.a1 Changing a bedroom dimension

Dimensions:
$\left(F b=b e . d \Rightarrow F b 1 \geq 10,5 \mathrm{~m}^{2} \wedge \mathrm{Ib} 1 \geq 2,7 \mathrm{~m}\right) \vee\left(\mathrm{Ff}=\mathrm{be} . \mathrm{d} \Rightarrow \mathrm{Ff} 1 \geq 10,5 \mathrm{~m}^{2} \wedge \mathrm{If} 1 \geq 2,7 \mathrm{~m}\right)$
$\left(\mathrm{Fb}=\right.$ be.t $\left.\Rightarrow \mathrm{Fb} 1 \geq 9 \mathrm{~m}^{2} \wedge \mathrm{Ib} 1 \geq 2,1 \mathrm{~m}\right) \vee\left(\mathrm{Ff}=\mathrm{be} . \mathrm{t} \Rightarrow \mathrm{Ff} 1 \geq 9 \mathrm{~m}^{2} \wedge \mathrm{If} 1 \geq 2,1 \mathrm{~m}\right)$
$\left(\mathrm{Fb}=\mathrm{be} . \mathrm{s} \Rightarrow \mathrm{Fb} 1 \geq 8 \mathrm{~m}^{2} \wedge \mathrm{Ib} 1 \geq 2,1 \mathrm{~m}\right) \vee\left(\mathrm{Ff}=\mathrm{be} . \mathrm{s} \Rightarrow \mathrm{Ff} 1 \geq 9 \mathrm{~m}^{2} \wedge \mathrm{If} 1 \geq 2,1 \mathrm{~m}\right)$
Function:
$\mathrm{Fb}, \mathrm{Fb} 1 \in\{\mathrm{be} . \mathrm{d}$, be.t, be.s $\} \wedge \mathrm{Ff}, \mathrm{Ff} 1 \in\{\mathrm{be} . \mathrm{d}$, be.t, be.s, cl , ba.p, nhs$\} \wedge \mathrm{Fb}=\mathrm{Fb} 1 \wedge \mathrm{Ff}=\mathrm{Ff} 1 \wedge \mathrm{Fb}, \mathrm{Fb} 1 \neq \mathrm{Ff}, \mathrm{Ff} 1$
$\mathrm{Ff}, \mathrm{Ff} 1 \in\{$ be.d, be.t, be.s $\} \wedge \mathrm{Fb}, \mathrm{Fb} 1 \in\{\mathrm{be} . \mathrm{d}$, be.t, be.s, cl, ba.p, nhs$\} \wedge \mathrm{Fb}=\mathrm{Fb} 1 \wedge \mathrm{Ff}=\mathrm{Ff} 1 \wedge \mathrm{Fb}, \mathrm{Fb} 1 \neq \mathrm{Ff}, \mathrm{Ff} 1$
7.4.a2 Changing a bathroom dimension

Dimensions:
$\left(\mathrm{Fb}=\mathrm{ba} . \mathrm{p} \Rightarrow \mathrm{Fb} 1 \geq 3,5 \mathrm{~m}^{2} \wedge \mathrm{Ib} 1 \geq 1 \mathrm{~m}\right) \vee\left(\mathrm{Ff}=\mathrm{ba} . \mathrm{p} \Rightarrow \mathrm{Ff} 1 \geq 3,5 \mathrm{~m}^{2} \wedge \mathrm{If} 1 \geq 1 \mathrm{~m}\right)$
Function:
$\mathrm{Fb}, \mathrm{Fb} 1 \in\{\mathrm{ba} . \mathrm{p}\} \wedge \mathrm{Ff}, \mathrm{Ff} 1 \in\{$ be.d, be.t, be.s, cl, ba.p, nhs, hs$\} \wedge \mathrm{Fb}=\mathrm{Fb} 1 \wedge \mathrm{Ff}=\mathrm{Ff} 1 \wedge \mathrm{Fb}, \mathrm{Fb} 1 \neq \mathrm{Ff}, \mathrm{Ff} 1$
7.4.a3 Changing a social room dimension

Dimensions:
$(\mathrm{Fb}=\mathrm{li} \Rightarrow \mathrm{Fb} 1, \mathrm{lb} 1 \geq$ dimensions_ofRule3.1a $\wedge \mathrm{If} 1 \geq 1 \mathrm{~m}) \vee(\mathrm{Ff}=\mathrm{li} \Rightarrow \mathrm{Ff1}, \mathrm{lf} \geq$ dimensions_ofRule3.1a $\wedge \mathrm{lb} 1 \geq 1 \mathrm{~m})$ $(\mathrm{Fb}=\mathrm{di} \Rightarrow \mathrm{Fb} 1, \mathrm{lb} 1 \geq$ dimensions_ofRule2.2a $\wedge \mathrm{If} 1 \geq 1 \mathrm{~m}) \vee(\mathrm{Ff}=\mathrm{li} \Rightarrow \mathrm{Ff} 1, \mathrm{If} 1 \geq$ dimensions_ofRule2.2a $\wedge \mathrm{lb} 1 \geq 1 \mathrm{~m})$ $(\mathrm{Fb}=\mathrm{li} / \mathrm{di} \Rightarrow \mathrm{Fb} 1, \mathrm{lb} 1 \geq$ dimensions_ofRule2.3a $\wedge \mathrm{If} 1 \geq 1 \mathrm{~m}) \vee(\mathrm{Ff}=\mathrm{li} \Rightarrow \mathrm{Ff} 1, \mathrm{If} 1 \geq$ dimensions_ofRule2.3a $\wedge \mathrm{lb} 1 \geq 1 \mathrm{~m})$ ($\mathrm{Fb}=\mathrm{ho} \Rightarrow \mathrm{Fb} 1, \mathrm{lb} 1 \geq$ dimension_ofRule2.4a $\wedge \mathrm{If} 1 \geq 1 \mathrm{~m}$) $\vee(\mathrm{Ff}, \mathrm{If} 1 \geq$ dimensions_offRule2.4a $\wedge \mathrm{lb} 1 \geq 1 \mathrm{~m})$ $(\mathrm{Fb}=\mathrm{mr} \Rightarrow \mathrm{Fb} 1, \mathrm{Ib} 1 \geq$ dimensions_ofRule2.5a $\wedge \mathrm{If} 1 \geq 1 \mathrm{~m}) \vee(\mathrm{Ff}=\mathrm{li} \Rightarrow \mathrm{Ff1}, \mathrm{If} 1 \geq$ dimensions_ofRule2.5a $\wedge \mathrm{lb} 1 \geq 1 \mathrm{~m})$

Function:
$\mathrm{Fb}, \mathrm{Fb} 1 \in\{\mathrm{li}, \mathrm{di}, \mathrm{li} / \mathrm{di}, \mathrm{h} 0, \mathrm{mr}\} \wedge \mathrm{Ff}, \mathrm{Ff} 1 \in\{\mathrm{Z}\} \wedge \mathrm{Fb}=\mathrm{Fb} 1 \wedge \mathrm{Ff}=\mathrm{Ff} 1 \wedge \mathrm{Fb}, \mathrm{Fb} 1 \neq \mathrm{Ff}, \mathrm{Ff} 1$
7.4.a4 Changing a guest bathroom dimension

Dimensions:
$\left(F b=b a . g \Rightarrow F b 1 \geq 1 m^{2} \wedge \mathrm{lb} 1 \geq 1 \mathrm{~m}\right) \vee\left(\mathrm{Ff}=\mathrm{ba} . \mathrm{g} \wedge \mathrm{If} \leq 1,2 \mathrm{~m} \Rightarrow \mathrm{Ff} 1 \geq 1 \mathrm{~m}^{2} \wedge 2 \mathrm{~m} \geq \mathrm{lf} 1 \geq 1 \mathrm{~m}\right)$
Function:
$\mathrm{Fb}, \mathrm{Fb} 1 \in\{\mathrm{ba} . \mathrm{g}\} \wedge \mathrm{Ff}, \mathrm{Ff} 1 \in\{\mathrm{Z}\} \wedge \mathrm{Fb}=\mathrm{Fb} 1 \wedge \mathrm{Ff}=\mathrm{Ff} 1 \wedge \mathrm{Fb}, \mathrm{Fb} 1 \neq \mathrm{Ff}, \mathrm{Ff} 1$

Rule 7.4.b _ Changing a room's dimension (enlarging or reducing) by "moving" a wall (eliminating and adding a wall)

Conditions:
Dimensions:
$1 \mathrm{~m} \leq \mathrm{w} \leq 2 \mathrm{~m}$
w1, w2, w3 $\geq 0 \mathrm{~m}$
$0.1 \mathrm{~m} \leq \mathrm{w} 4 \leq 0.3 \mathrm{~m}$
$0,5 \mathrm{~m} \leq \operatorname{dist}(\mathrm{A}, \mathrm{B}) \leq 1 \mathrm{~m}$
7.4.b1 Changing a bathroom dimension

Dimensions:
$\left(F b=\right.$ ba.p $\left.\Rightarrow \mathrm{Fb} 1 \geq 3,5 \mathrm{~m}^{2} \wedge \mathrm{Ib} 1 \geq 1 \mathrm{~m}\right) \vee\left(\mathrm{Ff}=\right.$ ba. $\left.\mathrm{p} \Rightarrow \mathrm{Ff} 1 \geq 3,5 \mathrm{~m}^{2} \wedge \mathrm{If} 1 \geq 1 \mathrm{~m}\right)$
Function:
$\mathrm{Fb}, \mathrm{Fb} 1 \in\{$ ba.p $\} \wedge \mathrm{Ff}, \mathrm{Ff} 1 \in\{$ be.d, be.t, be.s, cl, ba.p, nhs, hs$\} \wedge \mathrm{Fb}=\mathrm{Fb} 1 \wedge \mathrm{Ff}=\mathrm{Ff} 1 \wedge \mathrm{Fb}, \mathrm{Fb} 1 \neq \mathrm{Ff}, \mathrm{Ff} 1$
7.4.b2 Changing a guest bathroom dimension

Dimensions:
$\left(\mathrm{Fb}=\mathrm{ba} . \mathrm{g} \Rightarrow \mathrm{Fb} 1 \geq 1 \mathrm{~m}^{2} \wedge \mathrm{Ib} 1 \geq 1 \mathrm{~m}\right) \vee\left(\mathrm{Ff}=\mathrm{ba} . \mathrm{g} \wedge \mathrm{If} \leq 1,2 \mathrm{~m} \Rightarrow \mathrm{Ff} 1 \geq 1 \mathrm{~m}^{2} \wedge 2 \mathrm{~m} \geq \mathrm{If} 1 \geq 1 \mathrm{~m}\right)$
Function:
$\mathrm{Fb}, \mathrm{Fb} 1 \in\{\mathrm{ba} . \mathrm{g}\} \wedge \mathrm{Ff}, \mathrm{Ff} 1 \in\{\mathrm{Z}\} \wedge \mathrm{Fb}=\mathrm{Fb} 1 \wedge \mathrm{Ff}=\mathrm{Ff} 1 \wedge \mathrm{Fb}, \mathrm{Fb} 1 \neq \mathrm{Ff}, \mathrm{Ff} 1$

Rule 7.4.c _ Changing a room's dimension - reducing - by "moving" a wall (eliminating and adding a wall)

Description (abbreviated):

R7.4c < D7: Fb, Ff; B, w* ${ }^{*}$ ub (Fb, Ff) $>\rightarrow$
< D7: Fb1, Ff1; A, w*wul(Fb1, Ff1) >

Rule 7.4.d_ Divide a room in two autonomous ones and enlarging one of them

Conditions:
Dimensions:
$1 \mathrm{~m} \leq \mathrm{w} \leq 2 \mathrm{~m}$
$11 \geq 1 m$
$\mathrm{F} 1 \geq 1 \mathrm{~m}^{2}$
$0,5 \mathrm{~m} \leq \operatorname{dist}(\mathrm{A}, \mathrm{B}) \leq 1 \mathrm{~m}$
$0,5 \mathrm{~m} \leq \operatorname{dist}(\mathrm{A}, \mathrm{C}) \leq 1 \mathrm{~m}$
Function:
$\mathrm{FI} \vee F b \vee \mathrm{Fr} \in\left\{\mathrm{co}^{2}, \mathrm{co.s}, \mathrm{co} . \mathrm{p}, \mathrm{nhs}, \mathrm{hl}\right\}$
FIVFf $\vee \mathrm{Fr} \in\{$ ext $\}$
$\mathrm{F} 1 \in\{\mathrm{nhs}\}$
7.4.c1 Dividing a bedroom in two autonomous ones and enlarging the bedroom

Dimensions:
If mimimum_level $\wedge \mathrm{F} \in\{$ be. d$\} \Rightarrow \mathrm{F} 2 \geq 10,5 \mathrm{~m}^{2} \wedge \mathrm{w}, \mathrm{I} 2 \geq 2,7 \mathrm{~m}$
If recommended_level $\wedge F \in\{$ be.d $\} \Rightarrow F 2 \geq 12 m^{2} \wedge \mathrm{w}, \mathrm{I} 2 \geq 2,7 \mathrm{~m}$
If mimimum_level $\wedge F \in\{$ be.t $\} \Rightarrow F 2 \geq 9 m^{2} \wedge \mathrm{w}, \mathrm{I} 2 \geq 2,1 \mathrm{~m}$
If recommended_level $\wedge F \in\{$ be.t $\} \Rightarrow F 2 \geq 14,5 \mathrm{~m}^{2} \wedge \mathrm{w}, \mathrm{I} 2 \geq 2,1 \mathrm{~m}$
If mimimum_level $\wedge \mathrm{F} \in\{$ be. $s\} \Rightarrow F 2 \geq 7 \mathrm{~m}^{2} \wedge \mathrm{w}, \mathrm{I} 2 \geq 2,1 \mathrm{~m}$
If recommended_level $\wedge \mathrm{F} \in\{$ be. $s\} \Rightarrow \mathrm{F} 2 \geq 8,5 \mathrm{~m}^{2} \wedge \mathrm{w}, \mathrm{I} 2 \geq 2,1 \mathrm{~m}$
Function:
F, F2 \in \{be.d, be.t, be.s $\}$
$\mathrm{F}=\mathrm{F} 2$
7.4.c2 Dividing a social room in two autonomous ones and enlarging the bedroom

Dimensions:
$\mathrm{F} \in\{\mathrm{li}\} \Rightarrow \mathrm{F} 2, \mathrm{I} 2 \geq$ dimensions_ofRule3.1a
$\mathrm{F} \in\{\mathrm{di}\} \Rightarrow \mathrm{F} 2, \mathrm{I} 2 \geq$ dimensions_ofRule3.2a
$\mathrm{F} \in\{\mathrm{I} / \mathrm{di}\} \Rightarrow \mathrm{F} 2,12 \geq$ dimensions_ofRule3.3a
$\mathrm{F} \in\{\mathrm{ho}\} \Rightarrow \mathrm{F} 2,12 \geq$ dimension_ofRule3.4a
$\mathrm{F} \in\{\mathrm{mr}\} \Rightarrow \mathrm{F}, \mathrm{I} 2 \geq$ dimensions_ofRule3.5a
Function:
F, F2 $\in\{\mathrm{li}, \mathrm{di}, \mathrm{li} / \mathrm{di}, \mathrm{ho}, \mathrm{mr}\}$
$\mathrm{F}=\mathrm{F} 2$

Description (abbreviated):
R7.4d < D7: F, Ff, FI, Fr; w ${ }^{\star}$ wub (Fb, F) $>\rightarrow$
< D7: F1, F2, Ff, FI, Fr; w*wul(Fb, F1), w*wul(F1, F2) >

Rule 7.5.a _ Changing a room layout and assignment, next to middle wall (types cand d)

Conditions:

Dimensions:
$1 \mathrm{~m} \leq \mathrm{w} 1, \mathrm{w} 2 \leq 1.5 \mathrm{~m}$
$1 \mathrm{~m} \leq 1 \leq 2 \mathrm{~m}$
$0 \mathrm{~m} \leq \mathrm{w} 3 \leq 0.9 \mathrm{~m}$
w $3^{\prime}=0.8 \mathrm{~m}$
$\mathrm{FI} 1 \geq 1 \mathrm{~m}^{2}$
Function:
Fl, Fr1, Fb, Fb1, Ff, Ff1 $\in\{n h s, ~ c o, ~ c o . s, ~ h l\} ~$
$\mathrm{Fr}, \mathrm{Fl} 1 \in\{$ ba.g, st $\}$

Description (abbreviated):
R7.5a < D7: FI, Fr; w2*wub(Fb, Fr), w2*wub(Fr, Ff) > \rightarrow
< D7: Fb1, Ff1; w1*wul(Fb1, F11), w1*wul(Ff1, Fl1)>

Rule 7.5.b _ Changing room layout and assignment, next to middle wall (types cand d)
Rule 7.5 c _ Changing room layout and assignment, next to middle wall (types c and d) Conditions: Dimensions: $\begin{aligned} & 1 \mathrm{~m} \leq \mathrm{w} 1, \mathrm{w} 2, \mathrm{I} 2 \leq 1.5 \mathrm{~m} \\ & 1 \mathrm{~m} \leq \mathrm{I} \leq 2 \mathrm{~m} \\ & 0 \mathrm{~m} \leq \mathrm{w} 3 \leq 0.9 \mathrm{~m} \\ & 0 \mathrm{~m} \leq 11 \leq 2 \mathrm{~m} \\ & \mathrm{I} 2=0.8 \mathrm{~m} \\ & \mathrm{FI} \geq 1 \mathrm{~m}^{2} \end{aligned}$ Function: $\mathrm{Fl}, \mathrm{Fr} 1 \in\{\mathrm{nhs}, \mathrm{co}, \mathrm{cos}$. $\}$ $\mathrm{Fb}, \mathrm{Fb} 1 \in\{\mathrm{nhs}, \mathrm{co} . \mathrm{p}, \mathrm{co}, \mathrm{cos} \mathrm{s}\}$ $\mathrm{Fr}, \mathrm{Fl} 1 \in\{$ ba.g $\}$ Description $\begin{aligned} \text { R7. } 5 \mathrm{c} & <\mathrm{D7}: \mathrm{Fl}, \mathrm{Fr} ; \mathrm{w} 1^{*} \varnothing, \text { w2*ub }>\rightarrow \\ & <\mathrm{D} 7: \mathrm{Fb} 1, \mathrm{Ff} 1 ; \mathrm{w} 1^{*} \mathrm{ul}, \mathrm{w} 2^{*} \varnothing> \end{aligned}$

Rule 7.6.a _ Changing a door position (aligned with door in front)

$=\underbrace{\mathrm{s}_{\mathrm{F}}^{\infty}}_{\mathrm{Ff}}$		Conditions: Dimensions: $w \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}, 1.2 \mathrm{~m}\}$
Fb	Fb	Function: $\mathrm{F} \in\{\mathrm{nhs}, \mathrm{co.p}, \mathrm{co.s}, \mathrm{co}, \mathrm{hl}\}$
	$\begin{aligned} & \mathrm{F} \\ & \mathrm{Ff} \end{aligned}$	$\mathrm{Fb}, \mathrm{Ff} \in\{\mathrm{Z}\}$

Rule 7.6.b _ Changing a door position (change door next to partition wall)

Rule 7.6.c _ Changing a door position (change door to a perpendicular wall)

$$
\begin{aligned}
& \text { Conditions: } \\
& \text { Dimensions: } \\
& \text { w1, w2 } \geq 0,9 \mathrm{~m} \\
& \text { I, w } \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}\} \\
& 11 \geq 0,7 \mathrm{~m} \\
& 1 \mathrm{~m}^{2} \leq \mathrm{Fr} \leq 3 \mathrm{~m}^{2} \\
& \text { Function: } \\
& \mathrm{Fb} \in\{\mathrm{co}, \mathrm{co.s}, \mathrm{co} . \mathrm{p}\} \wedge \mathrm{Fb}(\text { passage_to(x))}=T R U E, x \in\{\text { be.d, be.t, be.s }\} \\
& \mathrm{Fl} \in\{\operatorname{co\} } \wedge \mathrm{Fb} \text { (passage_to(x))=TRUE, } \forall \mathrm{x}: \mathrm{x} \in\{\mathrm{ki} \text {, li, di, li/di, ho, mr, hl }\} \\
& \mathrm{Fr} \in\{b a . g\} \\
& \text { R7.6.c < D7: FI, Fr, Fb; I*wub(FI, Fr) > } \rightarrow \\
& \text { < D7: Fl, Fr, Fb; w*wul(Fb, Fr), I* } \varnothing>
\end{aligned}
$$

Rule 7.6.d _ Changing a door position (change door to a perpendicular wall)

Conditions:
Dimensions:
$I, w \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}\}$
$1 \mathrm{~m}^{2} \leq \mathrm{Fr} \leq 3 \mathrm{~m}^{2}$

Function:
$\mathrm{Fl}, \mathrm{Fb}, \mathrm{Fr} \in\{Z\}$
$\mathrm{Fl}($ passage_to(x) $)=$ TRUE $\vee \mathrm{Fl}($ next_to(x) $)=$ TRUE, $x \in\{n h s, ~ c o, ~ c o . s, ~ h l ~\} ~$

Description (abbreviated):

R7.6.d < D7: Fr, Fb; w* \varnothing, I^{*} wub (FI, Fr) $>\rightarrow$
< D7: Fr, Fb; w*wul(Fb, Fr), I ${ }^{\star}$ Ø>

Rule 7.6.e _ Changing a door position (change door from co or co.s to co.p)

Conditions
\rightarrow
Dimensions:
$\mathrm{I} 2 \in\{0.8 \mathrm{~m}, 0.9 \mathrm{~m}, 1 \mathrm{~m}\}$

Function:
$F \in\{$ be.d, be.t, be.s $\}$
$\mathrm{Fb} \in\{\mathrm{co}, \mathrm{co} . \mathrm{s}, \mathrm{hl}\}$
$\mathrm{Ff} \in\{\mathrm{co} . \mathrm{p}\}$

Description (abbreviated):
R7.6.e < D7: Ff, Fr, F; $11^{*} \varnothing, 12^{*}$ wub (F, Ff) $>\rightarrow$
< D7: Ff, Fr, F; 11^{*} wul(F, Fb), I2* $\varnothing>$

Rule 7.7 _ Changing from step 7 to step 8

S7 $\quad \rightarrow \quad$ S8

Conditions:
$\forall\{\beta 6, \beta 7, \beta 8, \beta 9, \beta 10, \beta 11\}:\{\beta 6, \beta 7, \beta 8, \beta 9, \beta 10, \beta 11\} \subset \mathrm{E}$

Description (abbreviated):
R7. $7<$ D7: S7 > \rightarrow D8: S8 >

Rule 8.1.a _ Allocating of water detectors (wd)

Conditions:
$X \supset\{\mathrm{wd} n\} \wedge \mathrm{X}^{\prime} D\{\mathrm{wd} n\}$
Position:
$0,2 m \leq w \leq 0,5 m$
wd (mounted_on(z)) $=$ TRUE $\wedge z \in\{$ skirting_board $\}$
Function
Ff $\in\{$ ba.p, ba.g, ki, la $\}$

Description (abbreviated).
R8.1a1 < D8: Ff; wub(Ff); \varnothing; X $^{\prime}>\rightarrow$
< D8: Ff; wub(Ff); wd; X' $+\{$ wd $\}>$
R8.1a2 < D8: Ff; wul(Ff); Ø; X' > \rightarrow
< D8: Ff; wul(Ff); wd; X ' \{wd $\}>$

Rule 8.1.b_Allocating of smoke detectors (sd)

Conditions:
$X \supset\{\operatorname{sd} n\} \wedge X^{\prime} D\{\mathrm{sd} n\} \wedge \mathrm{sd} 1 \mathrm{sd} 2 \geq 4 \mathrm{~m}$
Position:
$1 m \leq w \leq 1,5 m$
sd (mounted-on $(z))=$ TRUE $\wedge z \in\{$ ceilling $\}$
Function:
$\mathrm{Fl} \in\{\mathrm{lh}, \mathrm{sh}\}$
$\mathrm{F} \in\{\mathrm{hl}, \mathrm{co}, \mathrm{cos}, \mathrm{co.p}\}$

Description (abbreviated):
R8.1b < D8: F; $\varnothing ; \mathrm{X}^{\prime}>\rightarrow<\mathrm{D} 8:$ F; sd; $\mathrm{X}^{\prime}+\{\mathrm{sd}\}>$

Rule 8.1.c _ Allocating of temperature detectors (td)

Conditions:
$X \supset\{\operatorname{td} n\} \wedge X^{\prime} \perp\{\operatorname{td} n\} \wedge \mathrm{td} 1 \mathrm{td} 2 \geq 4 \mathrm{~m}$
Position:
$0,5 \mathrm{~m} \leq \mathrm{w}, \mathrm{I} \leq 0,7 \mathrm{~m}$
$1 \mathrm{~m} \leq \mathrm{w} 1 \leq 1,5 \mathrm{~m}$
$\operatorname{td}($ mounted-on(z)) $=$ TRUE $\wedge z \in\{$ ceilling $\}$
Function:
$\mathrm{Ff} \in\{\mathrm{ki}\}$

Description (abbreviated):
R8.1c < D8: Ff; Ø; $\mathrm{X}^{\prime}>\rightarrow$ D8: Ff; td; $\mathrm{X}^{\prime}+\{\mathrm{td}\}>$

Rule 8.10.a1 _ Allocating of interfaces: control panel (i)

Conditions:
$X \supset\{i n\} \wedge X^{\prime} D\{i n\}$
Position:
$0.2 \mathrm{~m} \leq \mathrm{I} \leq 0.8 \mathrm{~m}$
$i($ mounted-on(z) $)=$ TRUE $\wedge z \in\{$ wall $\}$
Function:
$\mathrm{Fl} \in\{\mathrm{lh}, \mathrm{sh}\}$
$\mathrm{Fr} \in\{\mathrm{hl}, \mathrm{co}, \mathrm{co} . \mathrm{s}\}$

Rule 8.10.a2 _Allocating of interfaces: control panel (i)

Conditions:
$X \supset\{i n\} \wedge X D\{i n\}$
Position:
$1 \leq 0.25 \mathrm{~m}$
$0.9 \mathrm{~m} \leq \mathrm{w} \leq 1.5 \mathrm{~m}$
$i($ mounted-on(z) $)=$ TRUE $\wedge z \in\{$ wall $\}$
Function:
$\mathrm{Fl} \in\{\mathrm{lh}, \mathrm{sh}\}$
$\mathrm{Fr} \in\{\mathrm{hl}, \mathrm{co}, \mathrm{cos} \mathrm{s}\}$

Rule 8.10.a3 _Allocating of interfaces: control panel (i)

Conditions:

$$
X \supset\{i n\} \wedge X^{\prime} D\{i n\}
$$

Description (abbreviated):
R8.10a3 < D8: FI, Fr; Ø; $\mathrm{X}^{\prime}>\rightarrow$ D8: FI, Fr; ; ; X' $+\{\mathrm{i}\}>$

Position:
$1 m \leq w \leq 2 m$
$i($ mounted-on(z) $)=$ TRUE $\wedge z \in\{$ wall $\}$
Function:
$\mathrm{Fl} \in\{\mathrm{lh}, \mathrm{sh}\}$
$\mathrm{Fr} \in\{\mathrm{hl}, \mathrm{co}, \mathrm{co.s}\}$

Rule 8.10.b1 _Allocating of interfaces: multifunctional switches (ms)


```
Conditions: Description (abbreviated):
    X\supset{msn} ^ X'D{msn}
    Position:
    0.1m\leql\leq0.5m
    ms (mounted-on(z)) = TRUE \ z\in{wall}
    Function:
    F&{ba.p, ba.g, cl, st}
```

Rule 8.10.b2 _ Allocating of interfaces: multifunctional switches (ms)


```
Conditions:
                                    Description (abbreviated):
        X\supset{msn} ^ X'D{msn}
                            R8.10b2 < D8: F; Ø; X' > > < D8: F; ms; X' + {ms} >
    Position:
    I }\leq0.25\textrm{m
    0.25m\leqw\leq1m
    ms (mounted-on(z)) = TRUE \ z\in{wall}
    Function:
    F&{ba.p, ba.g, cl, st}
```

Rule 8.10.b3 _ Allocating of interfaces: multifunctional switches (ms)

Conditions:
$X \supset\{\mathrm{~ms} n\} \wedge X^{\prime} D\{\mathrm{~ms} n\}$
Position
$0.1 \mathrm{~m} \leq 1 \leq 0.5 \mathrm{~m}$
$\mathrm{ms}($ mounted-on(z)) $=$ TRUE $\wedge z \in\{$ wall $\}$
Function:
$\mathrm{F} \in\{$ ba.p, ba.g, cl, st\}

Rule 8.10.b4 _Allocating of interfaces: multifunctional switches (ms)


```
Conditions:
Description (abbreviated):
X\supset{msn}}\wedge X'D{msn
    Position:
    0.4m\leqw\leq1m
    ms (mounted-on(z))=TRUE \ z\in{wall}
    Function:
    F&{ba.p, ba.g, cl, st}
```

Rule 8.10.b5 _ Allocating of interfaces: multifunctional switches (ms)

Conditions:

$$
X \supset\{m s n\} \wedge X^{\prime} D\{m s n\}
$$

Position:
$0.2 \mathrm{~m} \leq 1 \leq 0.8 \mathrm{~m}$
$\mathrm{ms}($ mounted-on(z)) $=$ TRUE $\wedge z \in\{$ wall $\}$
Function:
Fl $\in\{1 \mathrm{~h}, \mathrm{sh}\}$
$\mathrm{Fr} \in\{\mathrm{hl}, \mathrm{co}, \mathrm{co.s}\}$

Description (abbreviated):

$$
\text { R8.10b5 < D8: FI, Fr; Ø; X' > } \rightarrow \text { < D8: FI, Fr; ms; X' }+\{\mathrm{ms}\}>
$$

Note:
For this rule the representation
of the elevation or section of
the division would be needed in
order to specity the exact
position of the switch in order
not to conflict with the control
panel specified by Rule 8.10a1

Rule 8.10.b6 _ Allocating of interfaces: multifunctional switches (ms)

Conditions:
$X \supset\{i n\} \wedge X^{\prime} D\{i n\}$
Position:
I $\leq 0.25 \mathrm{~m}$
$0.9 \mathrm{~m} \leq \mathrm{w} \leq 1.5 \mathrm{~m}$
$i($ mounted-on(z) $)=$ TRUE $\wedge z \in\{$ wall $\}$
Function:
$\mathrm{Fl} \in\{\mathrm{lh}, \mathrm{sh}\}$
$\mathrm{Fr} \in\{\mathrm{hl}, \mathrm{co}, \mathrm{co.s}\}$

Description (abbreviated):
R8.10b6 < D8: FI, Fr; Ø; X'> \rightarrow D8: FI, Fr; ms; $\mathrm{X}^{\prime}+\{\mathrm{ms}\}>$
Note:
For this rule the representation
of the elevation or section of
the division would be needed in
order to specify the exact
position of the switch in order
not to conflict with the control
panel specified by Rule 8.10a1

APPENDIX 4

A dwelling transformation

This Appendix provides an example of the entire rehabilitation process, from identifying the family characteristics and the existing dwelling to the final design for the adapted dwelling (see Figure 5).
The chosen example shows how the rehabilitation process can be managed using the methodology proposed in this thesis when an architect is confronted with a family and their current dwelling to rehabilitate.
Throughout this $5^{\text {th }}$ chapter tables will be used to show data, as a simulation of what would be used in a computer interface for a generative shape grammar software.

The INPUTs represent the data that users would have to introduce and the OUTPUTs represent the reply data that the system would give to the user.
This example contains a family profile that was used during the experiments described in Part 2: Chapter 1.4, and one of the dwellings that belongs to the corpus.

Figure 5 - Rehabilitation methodology - sequence/sub-chapters from which the example derivation is developed.

A4:1 DEFINITION OF THE FAMILY

This section introduces the data on the family characteristics for the purpose of understanding their requirements and proposing the ideal functional programme (see next section A4:2) and ideal ICAT pack (see A4:3). This data is shown in Table 9.
The number of residents and their kinship enables the family size to be understood and the possibilities for grouping different members of the family in bedrooms.
The "period of occupation" essentially refers to the situation regarding children of separated couples, who may stay in the mother's/father's home for short periods of time.

If a member of the family has restricted mobility or a disability, the functional and dimensional requirements for the dwelling will be more demanding, in order to facilitate mobility.

Table 9 - Definition of the family

A4:2 DEFINITION OF THE IDEAL FUNCTIONAL PROGRAMME

This section exemplifies how the ideal functional programme for the dwelling is structured.
This example is based on the ideal functional programme defined in Part 2: Chapter 2.2 and the family characteristics are as described in the previous section (A4:1).
In this step the ideal functional programme is generated (using tables and flowcharts or automatically using computer software) as shown in the table below (Table 10). Firstly, the family chooses the desired quality level - minimum or recommended (Input 2). Secondly, the preliminary ideal programme is generated (Output 1). If the functional programme does not completely meet family needs, or if the family wishes to emphasise certain characteristics, the system allows additional spaces and topology to be introduced in order of priority, using Input 3 and Input 4 respectively.
By combining Output 1 with Input 3 and 4 the final ideal functional programme is obtained Output 2 - which will be used in the following steps of the rehabilitation process.

(typology)	T3
(space/connection / area)	Double bedroom / isolated / $12 \mathrm{~m}^{2}$
	2 single bedrooms / isolated / $8.5 \times 2 \mathrm{~m}^{2}$
	Kitchen / isolated / 10.5m ${ }^{2}$
	Laundry / demarcated / $3.5 \mathrm{~m}^{2}$
	Living room / demarcated / 16m ${ }^{2}$
	Dining room / demarcated $/ 9.5 \mathrm{~m}^{2}$
	Media room / included / $3 \mathrm{~m}^{2}$
	Private bathroom. first / isolated / $5 \mathrm{~m}^{2}$
	Private bathroom. second / isolated / $2 \mathrm{~m}^{2}$
	Guest bathroom / isolated / $1 \mathrm{~m}^{2}$
	Home office / included / $3 \mathrm{~m}^{2}$
	Storage areas / demarcated / 4.5m²
	Hall + circulation area
Priority topology	
	Bedrooms1,2,3 DOOR TO private corridor
	Bedroom1 NEXT/CLOSE TO Bedroom2
	Bedroom1 NEXT/CLOSE TO Bedroom3
	Bedroom2 NEXT/CLOSE TO Bedroom3
	Bedrooms FAR FROM Hall
	Bedrooms have large DEPTH
	Living/dining room PASSAGE TO circulation area
	Living room PASSAGE TO Dining room
	Living room NEXT TO Hall
	Living room CLOSE TO Guest bathroom
	Living/dining room DISTRIBUTEDNESS "c" or "d"
	Dining room CLOSE TO Hall
	Dining room CLOSE TO Guest bathroom
	Dining room PASSAGE/NEXT TO Kitchen
	Home office INCLUDED IN Living or Dining room
	Media room INCLUDED IN Living or Dining room
	Kitchen PASSAGE TO Circulation area
	Kitchen CLOSE TO Hall
	Kitchen PASSAGE/NEXT TO Dining room
	Kitchen CLOSE TO Guest bathroom
	Laundry PASSAGE TO Kitchen
	Private bathroom1 PASSAGE TO circulation area, bedroom
	Private bathroom2 PASSAGE TO circulation area bedroom
	Guest bathroom PASSAGE TO circulation area

Input 3 Define additional spaces

1. Dining room / isolated ($\geq 12 \mathrm{~m}^{2}$)
2. Home office / isolated
3. Two complete private bathrooms (one may be smaller)

Input 4 Define additional or priority topology

1. Single bedrooms NEXT TO double bedroom
2. Private bathroom INSIDE private area
3. Dining room NEXT TO kitchen
4. Living room NEXT TO hall

| Kitchen CLOSE TO Guest bathroom |
| :--- | :--- |
| Laundry PASSAGE TO Kitchen |
| 2. Private bathroom1 PASSAGE TO private
 corridor, bedroom |
| 2. Private bathroom2 PASSAGE TO private
 corridor |
| Guest bathroom PASSAGE TO circulation area |

Table 10 - Sequence of steps to define the ideal functional programme

A4:3 DEFINITION OF THE IDEAL ICAT PACK

In this step the ideal ICAT pack is generated (using tables and flowcharts or automatically using computer software) as shown in the table below (Table 11) according to the family profile defined in section A4:1.
As with the ideal functional programme, the family first chooses the desired level of ICAT integration - basic, medium or optimum (Input 5). Secondly, the preliminary ideal ICAT pack is generated (Output 3). If the ICAT pack does not completely meet family needs, or if the family wishes to emphasise certain characteristics, the system allows additional technology requirements to be introduced in order of priority, using Input 6.
By combining Output 3 with Input 6 the final ideal ICAT pack is obtained - Output 4 - which will be used in the following steps of the rehabilitation process.

	Security		
		Control of access	
			Video caretaker control of access
		Detection of intrud	
			Detection of movement
			Alarm to the exterior
			Local alarm
	Comfort		
		Control of lightning	
			Safe entry to home (movement sensors in hall)
	Energy management		
		Management of	rical domestic appliances
			Use of day/night tariff to activate appliances during off-peak hours
	Information and Communication		
		Communications w	h the exterior
			Alarms sent to the exterior via telephone
		Local networks and	Internet
			Access to broadband Internet
			Telecommunications networks in compliance with ITED
		Communications	tween the system components
			Dedicated cable network
			Supplementary wireless network (if necessary)
	Leisure \& Entertainment		
		TV, audio and cons	
			Access to TV via cable, satellite, ADSL, IPTV
	Interfaces		
		Fixed multifunction	switches
		Panel with LCD or	uch screen
		Remote control	
		Telephone /mobile	hone

Input 6 Define additional ICAT

Control of motors (blinds and curtains)
Automated blinds in all divisions General open/close control on main panel Individual open/close control in each division
Remote control
Output 4 Final ideal ICAT pack

Table 11 - Sequence of steps to define the ideal ICAT pack

A4:4 DESCRIPTION OF THE EXISTING DWELLING

In order to define the adapted housing programme and the adapted ICAT pack in addition to the ideal functional programme (Output 2) and the ideal ICAT pack (Output 4), an existing dwelling is required.
In this step, the description of the existing dwelling is provided - Input 7 - describing the dwelling net floor area, dwelling type, number of habitable spaces, a description of each space (habitable/non habitable, isolated/demarcated/included, net floor area), and the topology (using a graph) (Table 12).
Since this description will also be used in the definition of the ideal ICAT pack, other characteristics are needed, namely the floor on which the dwelling is situated and a definition of the interior spaces that may be accessed from other buildings.
Input 7 Existing dwelling

Table 12 - Sequence of steps to describe the existing dwelling

A4:5 DEFINITION OF THE ADAPTED FUNCTIONAL PROGRAMME

After defining the existing dwelling, the family is asked about the scale of building work they intend to carry out, so that a rehabilitation strategy can be chosen. This choice is the consequence of a series of decisions the family has to make, which are addressed in Part 2: Chapter 2.3 and introduced in Input 8.
The adapted functional programme (Output 6) combines the ideal functional programme (Output 2) with the existing dwelling (Input 7) in order to create an adapted functional programme (Table 13).
The method used is:
_ Comparison of the number of habitable spaces in both the functional programme and the existing dwelling,
_ Comparison of the net floor area needed for each room in the functional programme and the existing net floor area.
As previously stated, this step will allow for an intermediate evaluation of the capacity of the existing dwelling to fulfil the functional programme required by the family.

Input	8 Choosing the dwelling and rehabilitation strategy		Does the dwelling correspond to the functional programme?		
				Area needed (94/105m²)	\rightarrow Yes (100m²)
				Type (A or D)	$\rightarrow \mathrm{Yes}(A)$
			Rehabilitation of the whole building?	\rightarrow No	

Output	5			Strategy	2
Output	6	Adapted programme	functional		
				Spaces	
					T3, 7 habitable spaces
					(hs) Double bedroom / isolated / $12 \mathrm{~m}^{2}$
					(hs) Single bedrooms / isolated $/ 8.5 \mathrm{~m}^{2}$
					(hs) Single bedrooms / isolated / $8.5 \mathrm{~m}^{2}$
					(hs) Kitchen /isolated/ < $10.5 \mathrm{~m}^{2}$
					(hs) Living room + media room / demarcated or isolated / < $19 \mathrm{~m}^{2}$
					(hs) Dining room/demarcated or isolated $/ 12 \mathrm{~m}^{2}$
					(hs) Home office / isolated / $7 \mathrm{~m}^{2}$
					Laundry / demarcated/ $3.5 \mathrm{~m}^{2}$
					Private bathroom / /isolated/ $5 \mathrm{~m}^{2}$
					Private bathroom / isolated $/ 3.5 \mathrm{~m}^{2}$
					Guest bathroom / isolated / $1 \mathrm{~m}^{2}$
					Storage areas / demarcated / $<4.5 \mathrm{~m}^{2}$
					Circulation area / demarcated/ $\pm 16 \mathrm{~m}^{2}$
				Priority topology	
					1. Bedroom1 CLOSE TO Bedroom2
					1. Bedroom1 CLOSE TO Bedroom3
					1. Bedroom2 CLOSE TO Bedroom3
					2. Private bathroom1 PASSAGE TO private circulation area, bedroom
					2. Private bathroom2 PASSAGE TO private circulation area, bedroom
					3. Dining room CLOSE/DOOR TO Kitchen
					4. Living room NEXT TO Hall
					Bedrooms1,2,3 PASSAGE TO private corridor
					Bedrooms FAR FROM Hall
					Bedrooms with great DEPTH
					Living/dining room PASSAGE TO circulation area
					Living room PASSAGE TO Dining room
					Living room CLOSE TO Guest bathroom
					Living/dining room DISTRIBUTEDNESS "c" or "d"
					Dining room CLOSE TO Hall
					Dining room CLOSE TO Guest bathroom
					Home office INCLUDED IN Living or Dining room
					Media room INCLUDED IN Living or dining room
					Kitchen PASSAGE TO Circulation area
					Kitchen CLOSE TO Hall
					Kitchen PASSAGE/CLOSE TO Dining room
					Kitchen CLOSE TO Guest bathroom
					Laundry PASSAGE TO Kitchen
					Guest bathroom PASSAGE TO circulation area

Table 13 - Sequence of steps to define the adapted functional programme

A4:6 DEFINITION OF THE ADAPTED ICAT PACK

The adapted ICAT pack (Output 7) combines the ideal ICAT pack (Output 4) with the existing dwelling (Input 7) and the adapted functional programme (Output 6). The method used is:
_ Comparison of the ICAT functions prescribed in the ideal ICAT pack and the definition of ICAT functions, by division (Part 2: Chapter 3.2);
_ Comparison of the ICAT functions prescribed in the ideal ICAT pack and the final divisions prescribed by the adapted functional programme (Output 6).
This step will enable the definition of the ICAT set to be integrated into each division in the adapted functional programme for the dwelling. The sequence of steps needed to define the adapted ICAT pack is shown in the table below (Table 14).

		Security: IF window to rear balcony \rightarrow Detection of intruders: movement detector, alarms (local and remote)
		Comfort: Control of motors (blinds and curtains) motor, wall mounted switch and remote control, central control
		Energy management: electrical domestic appliances
		IC: Local networks and Internet - Ethernet and broadband Internet sockets
		IC: Communications - wired infrastructure between the domotic appliances
		Interfaces: Wall mounted multifunction interfaces
	Living room + media room	
		Security: IF window to rear balcony \rightarrow Detection of intruders: movement detector, alarms (local and remote)
		Comfort: Control of motors (blinds and curtains) motor, wall mounted switch and remote control, central control
		IC: Local networks and Internet - Ethernet and broadband Internet sockets
		IC: Communications - wired infrastructure between the domotic appliances
		Leisure \& Entertainment: TV via cable, satellite, ADSL or IPTV
		Interfaces: Wall mounted multifunction interfaces, remote control
	Dining room	
		Security: IF window to rear balcony \rightarrow Detection of intruders: movement detector, alarms (local and remote)
		Comfort: Control of motors (blinds and curtains) motor, wall mounted switch and remote control, central control
		IC: Local networks and Internet - Ethernet and broadband Internet sockets
		IC: Communications - wired infrastructure between the domotic appliances
		Interfaces: Wall mounted multifunction interfaces, remote control
	Home office	
		Security: IF window to rear balcony \rightarrow Detection of intruders: movement detector, alarms (local and remote)
		Comfort: Control of motors (blinds and curtains) motor, wall mounted switch and remote control, central control
		IC: Local networks and Internet - Ethernet and broadband Internet sockets
		IC: Communications - wired infrastructure between the domotic appliances
		Leisure \& Entertainment: TV via cable, satellite, ADSL or IPTV
		Interfaces: Wall mounted multifunction interfaces, remote control
	Laundry	
		Safety: Detection of gas leaks: gas detector, alarms (local and remote alarm)

		Safety: Detection of flooding: water detector, alarms (local and remote alarm)
	Private bathroom	IF window to rear balcony \rightarrow Detection of intruders: movement detector, alarms (local and remote)
		Comfort: Control of motors (blinds and curtains) motor, wall mounted switch and remote control, central control
		Energy management: electrical domestic appliances
		IC: Local networks and Internet - Ethernet and broadband Internet sockets, wired infrastructure
		Interfaces: Wall mounted multifunction interfaces
	Guest bathroom	Safety: Detection of flooding - water detector, alarms (local and remote alarm)
		Security: IF window to rear balcony \rightarrow Detection of intruders: movement detector, alarms (local and remote)
		Comfort: Control of motors (blinds and curtains) motor, wall mounted switch and remote control, central control
		IC: Communications - wired infrastructure between the domotic appliances
		Interfaces: Wall mounted multifunction interfaces
	Storage areas	Safety: Detection of flooding - water detector, alarms (local and remote alarm)
		Security: IF window to rear balcony \rightarrow Detection of intruders: movement detector, alarms (local and remote)
		Comfort: Control of motors (blinds and curtains) motor, wall mounted switch and remote control, central control
		IC: Communications - wired infrastructure between the domotic appliances
		Interfaces: Wall mounted multifunction interfaces
	Circulation area	
	Hall	
		Safety: Detection of fire - smoke detector, alarms (local and remote alarm)
		Security: Detection of intruders - movement detector, alarms (local and remote)
		Security: Control of access - entry phone
		Comfort: Lightning controlled by movement sensor (safe entry)
		IC: Communications - wired infrastructure between the domotic appliances; communication to the exterior (e.g. alarms)
		IC: Local networks and Internet - Ethernet and broadband Internet sockets, wired infrastructure
		Interfaces: Wall mounted multifunction interfaces, touch panel, remote control
	Corridors	
		IC: Communications - wired infrastructure between the domotic appliances;
		IC: Local networks and Internet - wired infrastructure
		Interfaces: Wall mounted multifunction interfaces

Table 14 - Sequence of steps to define the adapted ICAT pack

A4:7 DEFINITION OF THE ADAPTED DWELLING: APPLICATION OF THE TRANSFORMATION GRAMMAR

After defining both the functional programme and the ICAT pack, all the data needed to start the dwelling transformation is available. Using the data previously defined, one example is given of a possible transformation for the dwelling that fulfils the family requirements to a large extend.
The derivation example shows all the rules applied step by step in order to formulate a viable design for the given family and dwelling.

The schemes presented at the end of this Appendix are, in order of appearance:
_ The original dwelling (floor plan and graph) and an evaluation of its space syntax;
_ The derivation of the functional transformation of the dwelling, step by step, stating the rule applied in each step;

- The adapted dwelling (floor plan and graph) and an evaluation of its space syntax;
_ An evaluation chart that details both fulfilment of family requirements and fulfilment of a set of general housing characteristics expressed in Part 2: Chapter 2.1. This evaluation chart was also used for each of the transformation results obtained from the experiments described in Part 2: Chapter 1.4 and illustrated in Appendix 2. A comparison between the transformation hypothesis proposed in this appendix and the ones proposed during the experiments is shown in Appendix 2.
_ The start of the derivation of ICAT integration for the dwelling, step by step, stating the rule applied in each step. Since not all the rules for the integration of ICAT were designed in the transformation grammar, this derivation shows only a small part of the potential for ICAT integration using shape grammar.

A4:7a Description of the derivation

As stated in Part 2: Chapter 4.3 the description starts with a description of the initial shape the original dwelling - and evolves as the transformation occurs, step by step. The description variables are therefore updated each time a rule is applied.
Since this task is very time consuming to perform manually it was only carried out for the first steps following the creation of a parallel representation and in the $12^{\text {th }}$ step to illustrate the application of a rule that eliminates an existing wall and adds a new one.
This indicates that the description of the initial shape will be as complex as the description of the final design, since all the properties of the dwelling are already present in the design from the time the derivation begins.
To perform the description the labels indicated in Part 2: Chapter 4.2.2 were used and a number was added to each repeated label to differentiate between different spaces with the same label (e.g. $h s 1$ and $h s 2$ instead of $h s$ and $h s$) (see Figure 6).

The following tables show the description during the transformation process that occurred after the steps shown in the previous section. In each table the bold variables indicate what has been changed in relation to the previous table. In Table 18 the underlined variables indicate what has been changed following the application of the rule that changes the room shape.

Figure 6 - Dwelling floor plan and justified graph with labels.

STEP \#4 _ INSERTION OF LABELS

$\alpha 1 \leftarrow$	<A >
$\alpha 2 \leftarrow$	< [(hs 1 ,isolated) (hs 2 ,isolated) (hs 3 ,isolated) (hs, isolated) (hss,isolated) (hs 6 ,isolated) (nhs 1 ,demarcated) (nhs 2, isolated) (nhs, isolated) (nhs4,isolated) (nhs 5, isolated) (Xki,isolated) (Xla,demarcated) (Xba1,isolated) (Xbaz, isolated)] >
$\alpha 3 \leftarrow$	< 100 >
$\alpha 4 \leftarrow$	$<[(h s 1,13.3)(h s 2,13.1)(h s 3,14.1)(h s 4,14.1)(h s 5,7.6)(h s 6,6.3)$ (nhs1, 1.6) (nhs2, 2) (nhs3, 3.3) (nhs4, $4.45)($ nhs5, 3.7) (Xki, 8.1) (Xla, 3.2) (Xba1, 3.4) (Xba2, 1.9)] >
$\alpha 5 \leftarrow$	$<[(h s 1,4,3.25)(h s 2,4,3.2)(h s 3,3.65,3.72)(h s 4,3.7,3.75)(h s 5,3.7,2)(h s 6,2.9,2.1)$ (nhs1,1.1,1.45) (nhs2,1,2) (nhs3,1.65,2) (nhs4,1,4.45) (nhs5,3.7,1) (Xki,3.1,2.62) (Xla, 1.25,2.62) (Xba,2.35,1.45) (Xba, 1.1,1.3)]>
$\alpha 6 \leftarrow$	< [(hs1, nhs4, passage_to) (hs2, nhs4, passage_to) (hs3, nhs3, passage_to) (hs4, nhs4, passage_to) (hs4, nhs5, passage_to) (hs5, nhs1, passage_to) (hs6, Xla, passage_to) (hs6, Xba2, passage_to) (nhs1, Xba1, passage_to) (nhs1, nhs4, passage_to) (nhs2, nhs4, passage_to) (nhs3, nhs4, passage_to) (nhs3, nhs5, passage_to) (nhs5, Xki, passage_to) (Xki, Xla, passage_to)] [(hs1, nhs3, next_to) (hs1, nhs1, next_to) (hs1, hs4, next_to) (hs2, nhs3, next_to) (hs2, nhs1, next_to) (hs2, hs4, next_to) (nhs2, nhs3, next_to) (nhs2, nhs1, next_to) (nhs2, hs4, next_to) (hs3, nhs5, next_to) (hs4, Xki, next_to) (hs4, nhs3, next_to) (hs4, nhs2, next_to) (hs5, Xba1, next_to) (hs5, nhs4, next_to) (hs6, Xki, next_to) (nhs1, nhs3, next_to) (nhs1, nhs2, next_to) (nhs3, Xki, next_to) (nhs3, nhs2, next_to) (nhs4, Xba1, next_to) (nhs4, nhs5, next_to) (nhs5, Xla, next_to) (Xla, Xba2, next_to)] [(hs1, hs3, close_to) (hs1, hs5, close_to) (hs1, Xba1, close_to) (hs1, nhs5, close_to) (hs2, hs3, close_to) (hs2, hs5, close_to) (hs2, Xba1, close_to) (hs2, nhs5, close_to) (hs3, nhs2, close_to) (hs3, nhs1, close_to) (hs3, hs4, close_to) (hs3, Xki, close_to) (hs4, nhs2, close_to) (hs4, nhs1, close_to) (hs4, Xla, close_to) (hs5, nhs2, close_to) (hs5, nhs3, close_to) (nhs1, nhs5, close_to) (nhs2, Xba1, close_to) (nhs2, nhs5, close_to) (nhs3, Xba1, close_to) (nhs3, Xla, close_to) (nhs4, Xki, close_to) (nhs5, hs6, close_to) (Xki, Xba2, close_to)] [(hs1, Xki, far_from) (hs1, Xla, far_from) (hs1, hs6, far_from) (hs1, Xba2, far_from) (hs2, Xki, far_from) (hs2, Xla, far_from) (hs2, hs6, far_from) (hs2, Xba2, far_from) (nhs1, Xki, far_from) (nhs1, Xla, far_from) (nhs1, hs6, far_from) (nhs1, Xba2, far_from) (nhs2, Xki, far_from) (nhs2, Xla, far_from) (nhs2, hs6, far_from) (nhs2, Xba2, far_from) (hs4, hs6, far_from) (hs4, Xba2, far_from) (hs3, Xla, far_from) (hs3, hs6, far_from) (hs3, Xba2, far_from) (hs5, nhs5, far_from) (hs5, Xki, far_from) (hs5, Xla, far_from) (hs5, hs6, far_from) (hs5, Xba2, far_from) (hs6, Xba1, far_from) (hs6, nhs4, far_from) (hs6, nhs3, far_from) (nhs3, Xba2, far_from) (nhs4, Xla, far_from) (nhs4, Xba2, far_from) (nhs5, Xba1, far_from) (nhs5, Xba2, far_from) (Xba1, Xba2, far_from) (Xba1, Xla, far_from) (Xba1, Xki, far_from)] >

$\alpha 7 \leftarrow$	< [(hs1, hs2, adjacent) (hs1, nhs2, adjacent) (hs1, nhs4, adjacent) (hs2, nhs4, adjacent) (hs2, hs3, adjacent) (hs3, nhs3, adjacent) (hs4, Xba1, adjacent) (hs4, nhs1, adjacent) (hs4, nhs4, adjacent) (hs4, nhs5, adjacent) (hs4, Xba2, adjacent) (hs5, Xba1, adjacent) (hs5, nhs2, adjacent) (hs5, nhs1, adjacent) (hs6 Xba2, adjacent) (hs6, Xki, adjacent) (hs6, Xla, adjacent) (nhs1, Xba1, adjacent) (nhs1, nhs4, adjacent) (nhs2, nhs4, adjacent) (nhs3, nhs4, adjacent) (nhs3, nhs5, adjacent) (nhs5, Xki, adjacent) (Xba2, Xki, adjacent) (Xki, Xla, adjacent)]>
$\alpha 8 \leftarrow$	< (f, us) (b, us) (p, us) (s, usi) >
$\alpha 9 \leftarrow$	< [(Wub(hs1, hs2, 4)) (Wub (hs1, nhs2, 2)) (Wub (hs1, nhs4, 1)) (Wub (hs2, nhs4, 3.2)) (Wub (hs2, hs3, 4)) (Wub (hs3, nhs3, 2)) (Wub (hs4, Xba1, 2.35)) ($\mathrm{wub}_{\mathrm{ub}}$ (hs4, nhs1, 1.1)) ($\mathrm{wub}_{\mathrm{ub}}$ (hs4, nhs4, 2.75)) ($\mathrm{Wub}_{\mathrm{ub}}$ (hs4, nhs5, 3.7)) (Wub (hs4, Xba2, 1.6)) ($\mathrm{Wub}_{\mathrm{ub}}(\mathrm{hs5} 5, \mathrm{Xba} 1,3.7)$) (W_{ub} (hs5, nhs2, 2)) (w_{ub} (hs5, nhs1, 1.1)) (W_{ub} (hs6, Xba2, 1.6)) (W_{ub} (hs6, Xki, $1.75)$) (Wub (hs6, Xla, 1.05)) (Wub (nhs1, Xba1, 1.45)) (Wub (nhs1, nhs4, 1.45)) (Wub (nhs2, nhs4, 1)) (Wub (nhs3, nhs4, 1)) ($\mathrm{wub}_{\text {ub }}$ (nhs3, nhs5, 1)) ($\mathrm{wub}_{\text {ub }}$ (nhs5, Xki, 1)) ($\mathrm{wub}_{\mathrm{ub}}$ (Xba2, Xki, 1.1)) (w_{ub} (Xki, Xla, 2.65))]>
$\alpha 10 \leftarrow$	< S-1 >

Table 15 - Step \#4 of the derivation

STEP \#5 _ ASSIGNMENT OF ISOLATED KITCHEN

$\alpha 1 \leftarrow$	< ${ }^{\text {> }}$
$\alpha 2 \leftarrow$	(nhs2,isolated) (nhs 3 ,isolated) (nhs4,isolated) (nhs 5 ,isolated) (ki,isolated) (Xla,demarcated) (Xba1,isolated) (Xba2,isolated)] >
$\alpha 3 \leftarrow$	< 100 >
$\alpha 4 \leftarrow$	< [(hs1, 13.3) (hs2, 13.1) (hs3, 14.1) (hs4, 14.1) (hs5, 7.6) (hs6, 6.3) (nhs1, 1.6) (nhs2, 2) (nhs3, 3.3) (nhs4, $4.45)(n h s 5,3.7)(\mathbf{k i}, 8.1)(X l a, 3.2)(X b a 1,3.4)(X b a 2,1.9)]>$
$\alpha 5 \leftarrow$	< [(hs1,4,3.25) (hs2,4,3.2) (hs3,3.65,3.72) (hs4,3.7,3.75) (hs5, 3.7,2) (hs6, 2.9,2.1) (nhs1,1.1,1.45) (nhs2,1,2) (nhs3,1.65,2) (nhs4,1,4.45) (nhs5,3.7,1) (ki,3.1,2.62) (Xla, 1.25,2.62) (Xba,2.35,1.45) (Xba, 1.1,1.3)] >
$\alpha 6 \leftarrow$	< [(hs1, nhs4, passage_to) (hs2, nhs4, passage_to) (hs3, nhs3, passage_to) (hs4, nhs4, passage_to) (hs4, nhs5, passage_to) (hs5, nhs1, passage_to) (hs6, Xla, passage_to) (hs6, Xba2, passage_to) (nhs1, Xba1, passage_to) (nhs1, nhs4, passage_to) (nhs2, nhs4, passage_to) (nhs3, nhs4, passage_to) (nhs3, nhs5, passage_to) (nhs5, ki, passage_to) (Xki, Xla, passage_to)] [(hs1, nhs3, next_to) (hs1, nhs1, next_to) (hs1, hs4, next_to) (hs2, nhs3, next_to) (hs2, nhs1, next_to) (hs2, hs4, next_to) (nhs2, nhs3, next_to) (nhs2, nhs1, next_to) (nhs2, hs4, next_to) (hs3, nhs5, next_to) (hs4, ki, next_to) (hs4, nhs3, next_to) (hs4, nhs2, next_to) (hs5, Xba1, next_to) (hs5, nhs4, next_to) (hs6, ki, next_to) (nhs1, nhs3, next_to) (nhs1, nhs2, next_to) (nhs3, ki, next_to) (nhs3, nhs2, next_to) (nhs4, Xba1, next_to) (nhs4, nhs5, next_to) (nhs5, Xla, next_to) (Xla, Xba2, next_to)] [(hs1, hs3, close_to) (hs1, hs5, close_to) (hs1, Xba1, close_to) (hs1, nhs5, close_to) (hs2, hs3, close_to) (hs2, hs5, close_to) (hs2, Xba1, close_to) (hs2, nhs5, close_to) (hs3, nhs2, close_to) (hs3, nhs1, close_to) (hs3, hs4, close_to) (hs3, ki, close_to) (hs4, nhs2, close_to) (hs4, nhs1, close_to) (hs4, Xla, close_to) (hs5, nhs2, close_to) (hs5, nhs3, close_to) (nhs1, nhs5, close_to) (nhs2, Xba1, close_to) (nhs2, nhs5, close_to) (nhs3, Xba1, close_to) (nhs3, Xla, close_to) (nhs4, ki, close_to) (nhs5, hs6, close_to) (Ki, Xba2, close_to)] [(hs1, ki, far_from) (hs1, Xla, far_from) (hs1, hs6, far_from) (hs1, Xba2, far_from) (hs2, ki, far_from) (hs2, Xla, far_from) (hs2, hs6, far_from) (hs2, Xba2, far_from) (nhs1, ki, far_from) (nhs1, Xla, far_from) (nhs1, hs6, far_from) (nhs1, Xba2, far_from) (nhs2, ki, far_from) (nhs2, Xla, far_from) (nhs2, hs6, far_from) (nhs2, Xba2, far_from) (hs4, hs6, far_from) (hs4, Xba2, far_from) (hs3, Xla, far_from) (hs3, hs6, far_from) (hs3, Xba2, far_from) (hs5, nhs5, far_from) (hs5, ki, far_from) (hs5, Xla, far_from) (hs5, hs6, far_from) (hs5, Xba2, far_from) (hs6, Xba1, far_from) (hs6, nhs4, far_from) (hs6, nhs3, far_from) (nhs3, Xba2, far_from) (nhs4, Xla, far_from) (nhs4, Xba2, far_from) (nhs5, Xba1, far_from) (nhs5, Xba2, far_from) (Xba1, Xba2, far_from) (Xba1, Xla, far_from) (Xba1, ki, far_from)] >
$\alpha 7 \leftarrow$	< [(hs1, hs2, adjacent) (hs1, nhs2, adjacent) (hs1, nhs4, adjacent) (hs2, nhs4, adjacent) (hs2, hs3, adjacent) (hs3, nhs3, adjacent) (hs4, Xba1, adjacent) (hs4, nhs1, adjacent) (hs4, nhs4, adjacent) (hs4, nhs5, adjacent) (hs4,

Xba2, adjacent) (hs5, Xba1, adjacent) (hs5, nhs2, adjacent) (hs5, nhs1, adjacent) (hs6 Xba2, adjacent) (hs6, ki, adjacent) (hs6, Xla, adjacent) (nhs1, Xba1, adjacent) (nhs1, nhs4, adjacent) (nhs2, nhs4, adjacent) (nhs3, nhs4, adjacent) (nhs3, nhs5, adjacent) (nhs5, ki, adjacent) (Xba2, ki, adjacent) (ki, Xla, adjacent)]>

$\alpha 8 \leftarrow$	< (f, us) (b, us) (p, us) (s, usi) >
$\alpha 9 \leftarrow$	< [(Wub(hs1, hs2, 4)) ($\left.W_{\mathrm{ub}}(h s 1, n h s 2,2)\right)\left(W_{u b}(h s 1, n h s 4,1)\right)\left(w_{u b}(h s 2, n h s 4,3.2)\right)\left(W_{u b}(h s 2, h s 3,4)\right)\left(W_{u b}(h s 3\right.$, nhs3, 2)) (Wub (hs4, Xba1, 2.35)) (Wub (hs4, nhs1, 1.1)) (Wub (hs4, nhs4, 2.75)) (Wub (hs4, nhs5, 3.7)) (Wub (hs4, 1.75)) ($\mathrm{wub}_{\mathrm{ub}}(\mathrm{hs6}, \mathrm{Xla}, 1.05)$) (Wub (nhs1, Xba1, 1.45)) (Wub (nhs1, nhs4, 1.45)) (Wub (nhs2, nhs4, 1)) (Wub (nhs3, nhs4, 1)) (w_{ub} (nhs3, nhs5, 1)) (w_{ub} (nhs5, ki, 1)) (w_{ub} (Xba2, ki, 1.1)) (w_{ub} ($\left.\mathbf{k i}, \mathrm{Xla}, 2.65\right)$)]>
$\alpha 10 \leftarrow$	< SO >

Table 16 - Step \#5 of the derivation

STEP \#6 ASSIGNMENT OF THE HALL

$\alpha 1 \leftarrow$	<A ${ }^{\text {c }}$
$\alpha 2 \leftarrow$	(nhsz,isolated) (hl,isolated) (nhs4,isolated) (nhss,isolated) (ki,isolated) (Xla,demarcated) (Xba1,isolated) (Xbaz,isolated)] >
$\alpha 3 \leftarrow$	< 100 >
$\alpha 4 \leftarrow$	$<[(h s 1,13.3)(h s 2,13.1)(h s 3,14.1)(h s 4,14.1)(h s 5,7.6)(h s 6,6.3)(n h s 1,1.6)(n h s 2,2)(h 1,3.3)(n h s 4,4.45)$ (nhs5, 3.7) (ki, 8.1) (Xla, 3.2) (Xba1, 3.4) (Xba2, 1.9)] >
$\alpha 5 \leftarrow$	$<[(h s 1,4,3.25)(h s 2,4,3.2)(h s 3,3.65,3.72)(h s 4,3.7,3.75) \quad(h s 5,3.7,2)(h s 6,2.9,2.1)$ (nhs1,1.1,1.45) (nhs2,1,2) (hl, 1.65,2) (nhs4,1,4.45) (nhs5,3.7,1) (ki,3.1,2.62) (Xla,1.25,2.62) (Xba,2.35,1.45) (Xba, 1.1,1.3)]>
$\alpha 6 \leftarrow$	< [(hs1, nhs4, passage_to) (hs2, nhs4, passage_to) (hs3, hl, passage_to) (hs4, nhs4, passage_to) (hs4, nhs5, passage_to) (hs5, nhs1, passage_to) (hs6, Xla, passage_to) (hs6, Xba2, passage_to) (nhs1, Xba1, passage_to) (nhs1, nhs4, passage_to) (nhs2, nhs4, passage_to) (hl, nhs4, passage_to) (hl, nhs5, passage_to) (nhs5, ki, passage_to) (Xki, Xla, passage_to)] [(hs1, hl, next_to) (hs1, nhs1, next_to) (hs1, hs4, next_to) (hs2, hl, next_to) (hs2, nhs1, next_to) (hs2, hs4, next_to) (nhs2, hl, next_to) (nhs2, nhs1, next_to) (nhs2, hs4, next_to) (hs3, nhs5, next_to) (hs4, ki, next_to) (hs4, hl, next_to) (hs4, nhs2, next_to) (hs5, Xba1, next_to) (hs5, nhs4, next_to) (hs6, ki, next_to) (nhs1, hl, next_to) (nhs1, nhs2, next_to) (hl, ki, next_to) (hl, nhs2, next_to) (nhs4, Xba1, next_to) (nhs4, nhs5, next_to) (nhs5, Xla, next_to) (Xla, Xba2, next_to)] [(hs1, hs3, close_to) (hs1, hs5, close_to) (hs1, Xba1, close_to) (hs1, nhs5, close_to) (hs2, hs3, close_to) (hs2, hs5, close_to) (hs2, Xba1, close_to) (hs2, nhs5, close_to) (hs3, nhs2, close_to) (hs3, nhs1, close_to) (hs3, hs4, close_to) (hs3, ki, close_to) (hs4, nhs2, close_to) (hs4, nhs1, close_to) (hs4, Xla, close_to) (hs5, nhs2, close_to) (hs5, hl, close_to) (nhs1, nhs5, close_to) (nhs2, Xba1, close_to) (nhs2, nhs5, close_to) (hl, Xba1, close_to) (hl, Xla, close_to) (nhs4, ki, close_to) (nhs5, hs6, close_to) (Ki, Xba2, close_to)] [(hs1, ki, far_from) (hs1, Xla, far_from) (hs1, hs6, far_from) (hs1, Xba2, far_from) (hs2, ki, far_from) (hs2, Xla, far_from) (hs2, hs6, far_from) (hs2, Xba2, far_from) (nhs1, ki, far_from) (nhs1, Xla, far_from) (nhs1, hs6, far_from) (nhs1, Xba2, far_from) (nhs2, ki, far_from) (nhs2, Xla, far_from) (nhs2, hs6, far_from) (nhs2, Xba2, far_from) (hs4, hs6, far_from) (hs4, Xba2, far_from) (hs3, Xla, far_from) (hs3, hs6, far_from) (hs3, Xba2, far_from) (hs5, nhs5, far_from) (hs5, ki, far_from) (hs5, Xla, far_from) (hs5, hs6, far_from) (hs5, Xba2, far_from) (hs6, Xba1, far_from) (hs6, nhs4, far_from) (hs6, hl, far_from) (hl, Xba2, far_from) (nhs4, Xla, far_from) (nhs4, Xba2, far_from) (nhs5, Xba1, far_from) (nhs5, Xba2, far_from) (Xba1, Xba2, far_from) (Xba1, Xla, far_from) (Xba1, ki, far_from)] >
$\alpha 7 \leftarrow$	< [(hs1, hs2, adjacent) (hs1, nhs2, adjacent) (hs1, nhs4, adjacent) (hs2, nhs4, adjacent) (hs2, hs3, adjacent) (hs3, hl, adjacent) (hs4, Xba1, adjacent) (hs4, nhs1, adjacent) (hs4, nhs4, adjacent) (hs4, nhs5, adjacent) (hs4, Xba2, adjacent) (hs5, Xba1, adjacent) (hs5, nhs2, adjacent) (hs5, nhs1, adjacent) (hs6 Xba2, adjacent) (hs6, ki, adjacent) (hs6, Xla, adjacent) (nhs1, Xba1, adjacent) (nhs1, nhs4, adjacent) (nhs2, nhs4, adjacent) (hl, nhs4, adjacent) (hl, nhs5, adjacent) (nhs5, ki, adjacent) (Xba2, ki, adjacent) (ki, Xla, adjacent)]>

$\alpha 8 \leftarrow$	< (f, us) (b, us) (p, us) (s, usi) >
$\alpha 9 \leftarrow$	< [(Wub(hs1, hs2, 4)) (Wub (hs1, nhs2, 2)) (Wub (hs1, nhs4,1)) (Wub (hs2, nhs4, 3.2)) (Wub (hs2, hs3, 4)) (Wub (hs3, hl, 2)) (w_{ub} (hs4, Xba1, 2.35)) (w_{ub} (hs4, nhs1, 1.1)) ($\mathrm{wub}_{\mathrm{ub}}$ (hs4, nhs4, 2.75)) (w_{ub} (hs4, nhs5, 3.7)) (w_{ub} (hs4, Xba2, 1.6)) ($W_{u b}$ (hs5, Xba1, 3.7)) ($W_{u b}$ (hs5, nhs2, 2)) ($\mathrm{wub}_{\mathrm{ub}}$ (hs5, nhs1, 1.1)) (w_{ub} (hs6, Xba2, 1.6)) (w_{ub} (hs6, ki, 1.75)) (Wub (hs6, Xla, 1.05)) ($\mathrm{Wub}_{\mathrm{ub}}(\mathrm{nhs} 1, \mathrm{Xba1}, 1.45)$) (Wub (nhs1, nhs4, 1.45)) ($\mathrm{Wub}_{\mathrm{ub}}$ (nhs2, nhs4, 1)) (Wub (hl, nhs4, 1))
$\alpha 10 \leftarrow$	< S1 >

Table 17 - Step \#6 of the derivation

STEP \#12 _ CHANGING THE DIMENSIONS OF A ROOM (ENLARGING OR REDUCING) BY "MOVING" A WALL (ELIMINATING AND ADDING A WALL)

$\alpha 1 \leftarrow$	<A>
$\alpha 2 \leftarrow$	< [(be.d,isolated) (be.s,isolated) (hs3,isolated) (hs4,isolated) (be.s,isolated) (hs6,isolated) (nhs 1 ,demarcated) (ba.p,isolated) (hl,isolated) (nhs4,isolated) (nhs 5 ,isolated) (ki,isolated) (Xla,demarcated) (ba.p,isolated) (Xba2,isolated)] >
$\alpha 3 \leftarrow$	< 100 >
$\alpha 4 \leftarrow$	< [(be.d, 11) (be.s, 13.1) (hs3, 14.1) (hs4, 14.1) (be.s, 7.6) (hs6, 6.3) (nhs1, 1.6) (ba.p, 4) (hl, 3.3) (nhs4, 4.45) (nhs5, 3.7) (ki, 8.1) (Xla, 3.2) (ba.p, 3.4) (Xba2, 1.9)] >
$\alpha 5 \leftarrow$	< [(be.d, 3,3.25) (be.s,4,3.2) (hs3,3.65,3.72) (hs4,3.7,3.75) (be.s,3.7,2) (hs6,2.9,2.1) (nhs1,1.1,1.45) (ba.p,2,2) (hl, 1.65,2) (nhs4,1,4.45) (nhs5,3.7,1) (ki,3.1,2.62) (Xla,1.25,2.62) (ba.p,2.35,1.45) (Xba,1.1,1.3)] >
$\alpha 6 \leftarrow$	[(be.d, nhs4, passage_to) (be.s, nhs4, passage_to) (hs3, hl, passage_to) (hs4, nhs4, passage_to) (hs4, nhs5, passage_to) (be.s, nhs1, passage_to) (hs6, Xla, passage_to) (hs6, Xba2, passage_to) (nhs1, ba.p, passage_to) (nhs1, nhs4, passage_to) (ba.p, nhs4, passage_to) (hl, nhs4, passage_to) (hl, nhs5, passage_to) (nhs5, ki, passage_to) (Xki, Xla, passage_to)] [(be.d, hl, next_to) (be.d, nhs1, next_to) (be.d, hs4, next_to) (be.s, hl, next_to) (be.s, nhs1, next_to) (be.s, hs4, next_to) (ba.p, hl, next_to) (ba.p, nhs1, next_to) (ba.p, hs4, next_to) (hs3, nhs5, next_to) (hs4, ki, next_to) (hs4, hl, next_to) (hs4, ba.p, next_to) (be.s, ba.p, next_to) (be.s, nhs4, next_to) (hs6, ki, next_to) (nhs1, hl, next_to) (nhs1, ba.p, next_to) (hl, ki, next_to) (hl, ba.p, next_to) (nhs4, ba.p, next_to) (nhs4, nhs5, next_to) (nhs5, Xla, next_to) (Xla, Xba2, next_to)] [(be.d, hs3, close_to) (be.d, be.s, close_to) (be.d, ba.p, close_to) (be.d, nhs5, close_to) (be.s, hs3, close_to) (be.s, be.s, close_to) (be.s, ba.p, close_to) (be.s, nhs5, close_to) (hs3, ba.p, close_to) (hs3, nhs1, close_to) (hs3, hs4, close_to) (hs3, ki, close_to) (hs4, ba.p, close_to) (hs4, nhs1, close_to) (hs4, Xla, close_to) (be.s, ba.p, close_to) (be.s, hl, close_to) (nhs1, nhs5, close_to) (ba.p, ba.p, close_to) (ba.p, nhs5, close_to) (hl, ba.p, close_to) (hl, Xla, close_to) (nhs4, ki, close_to) (nhs5, hs6, close_to) (Ki, Xba2, close_to)] [(be.d, ki, far_from) (be.d, Xla, far_from) (be.d, hs6, far_from) (be.d, Xba2, far_from) (be.s, ki, far_from) (be.s, Xla, far_from) (be.s, hs6, far_from) (be.s, Xba2, far_from) (nhs1, ki, far_from) (nhs1, Xla, far_from) (nhs1, hs6, far_from) (nhs1, Xba2, far_from) (ba.p, ki, far_from) (ba.p, Xla, far_from) (ba.p, hs6, far_from) (ba.p, Xba2, far_from) (hs4, hs6, far_from) (hs4, Xba2, far_from) (hs3, Xaa, far_from) (hs3, hs6, far_from) (hs3, Xba2, far_from) (be.s, nhs5, far_from) (be.s, ki, far_from) (be.s, Xla, far_from) (be.s, hs6, far_from) (be.s, Xba2, far_from) (hs6, ba.p, far_from) (hs6, nhs4, far_from) (hs6, hl, far_from) (hl, Xba2, far_from) (nhs4, Xla, far_from) (nhs4, Xba2, far_from) (nhs5, ba.p, far_from) (nhs5, Xba2, far_from) (Xba1, Xba2, far_from) (Xba1, Xla, far_from) (Xba1, ki, far_from)] >
$\alpha 7 \leftarrow$	< [(be.d, be.s, adjacent) (be.d, ba.p, adjacent) (be.d, nhs4, adjacent) (be.s, nhs4, adjacent) (be.s, hs3, adjacent) (hs3, hl, adjacent) (hs4, ba.p, adjacent) (hs4, nhs1, adjacent) (hs4, nhs4, adjacent) (hs4, nhs5, adjacent) (hs4, Xba2, adjacent) (be.s, ba.p, adjacent) (be.s, ba.p, adjacent) (be.s, nhs1, adjacent) (hs6, Xba2, adjacent) (hs6, ki, adjacent) (hs6, Xla, adjacent) (nhs1, ba.p, adjacent) (nhs1, nhs4, adjacent) (ba.p, nhs4, adjacent) (hl, nhs4, adjacent) (hl, nhs5, adjacent) (nhs5, ki, adjacent) (Xba2, ki,

	adjacent) (ki, Xla, adjacent)]>
$\alpha 8 \leftarrow$	< (f, us) (b, us) (p, us) (s, usi) >
$\alpha 9 \leftarrow$	< [(Wub (be.d, be.s, 4)) ($W_{u b}$ (be.d, ba.p, 2+0.75)) ($W_{u b}$ (be.d, nhs4,1)) ($\left.W_{u b}(b e . s, n h s 4,3.2)\right)\left(W_{u b}\right.$ (be.s, hs3, 4)) (w_{ub} (hs3, hl, 2)) (w_{ub} (hs4, ba.p, 2.35)) (w_{ub} (hs4, nhs1, 1.1)) (w_{ub} (hs4, nhs4, 2.75)) ($\mathrm{wub}_{\mathrm{ub}}$ (hs4, nhs5, 3.7)) (Wub (hs4, Xba2, 1.6)) (Wub (be.s, ba.p, 3.7)) (Wub (be.s, ba.p, 2)) (Wub (be.s, nhs1, 1.1)) ($\mathrm{Wub}_{\mathrm{ub}}$ (hs6, Xba2, 1.6)) (w_{ub} (hs6, ki, 1.75)) (w_{ub} (hs6, Xla, 1.05)) (w_{ub} (nhs1, ba.p, 1.45)) ($\mathrm{Wub}_{\text {ut }}$ (nhs1, nhs4, Xla, 2.65))]>
$\alpha 10 \leftarrow$	< S7 >

A4:8 DEFINITION OF THE ICAT ELEMENTS

The following table (Table 19) shows the list of ICAT elements (Output 8) that are needed for the proposed dwelling layout.
After defining the adapted ICAT pack functions, the grammar described in Part 2: Chapter 4.4 proposes a method of integrating these functions and ICAT elements into the new dwelling layout after the functional transformation has been processed. In this part of the grammar the focus is on adding technologies to the dwelling and not transforming. Thus the process of ICAT integration uses shape grammar rules that are applied after the transformation grammar and that will enable each of the technologies required to be introduced step by step. As previously stated, this part of the grammar is not developed to its full extend and the final layout with the prescribed ICAT is therefore simulated in Appendix 4, omitting some steps that were not developed.
The final layout with all the domotic elements represents the following:

- The position of sensors (movement, water, gas, smoke and temperature);
- The position of motors for the controlled blinds;
- The position of controlled sockets;
- The position of multifunctional switches, entry modules and control panels;
- The position of the controlled lights;
- The position of the bus cable;
- The domotic controls (connection between the controlled device and switch that controls it);

The electrical circuits, electrical components (lighting, electrical domestic appliances, television, etc) and connections between non-automated lighting and the control panels are not represented.

Output 8
Double bedroom (be.d)

Appendix 4: A dwelling transformation

	Media coupler (allows transmission of RF product messages)
Corridors (co.p1)	
	Bus Cable
	Ethernet and broadband Internet sockets
	Wall mounted multifunction switch (lights)
Corridors (co.p2)	
	Bus Cable
	Ethernet and broadband Internet sockets
	Wall mounted multifunction switch (lights)
Corridors (col)	
	Movement detector facing the entrance to the dwelling
	Bus Cable
	Ethernet and broadband Internet sockets
	Wall mounted multifunction switch (lights)
Corridors (co2)	
	Bus Cable
	Ethernet and broadband Internet sockets
	Wall mounted multifunction switch (lights)

Table 19 - Description of the ICAT elements
${ }^{1}$ Electrical domestic appliances that can be programmed to remain ON without using energy can be remotely controlled by cutting or activating power to the socket to which they are connected. Alternatively, they may use a preprogrammed start function or be activated remotely.

Floor plan

Right Left

Convex map

Justified graph

Distributness

Entire dwelling
Mean: 1,00

Depth

$$
\begin{aligned}
& \text { Entire dwelling } \\
& \text { Mean: } 46,66
\end{aligned}
$$

Graph with a tree configuration with 1 ring Graph with 6 levels of depth
15 spaces/nodes
15 arcs/connections

Habitable spaces (hs)
Non-habitable spaces (nhs)
Existing kitchen (Xki)
Existing bathrooms (Xba)
Existing laundry (Xla)
a _ terminal spaces
b _ reached by two arcs
C reached by two or more arcs and connected in a ring

Entire dwelling
Mean: 3,11

graphs
Overlapped representation on the dwelling

$\frac{0}{0}$
$\stackrel{0}{0}$
0

Overlapped representation on the dwelling

Rules -1.1
Creation of a compound representation

Note: spatial voids will not be represented overlapped with the top representation because it would became graphically too confuse

Rules - 1.2
Creation of a compound representation

Note: graphs (nodes and links) will not be represented overlapped with the top representation because it would became graphically too confuse

\#3

Rules - 1.3
Insertion of weights

\#4

Rules -1.4
Insertion of labels

Rules 0.1
Assignment of isolated kitchen for strategy 2

p!os lepleds

graphs
\#6

Rules 1.1
Assignment of hall
hs
Note. red is used to signal the transformed element

graphs
\#9

Rules 2.6
Assignment of main private bathroom

Rules 2.7a
Attribution of new bathroom placement weight (type a and b)

floor plan

0
$\stackrel{0}{0}$
$\frac{0}{5}$
\#12

Rules 7.4b
Changing a room's dimension (enlarging or reducing) by moving a wall

Rules 2.16a
Erasing the new bathroom placement weight (type a and b) wall

Rules 2.5
Permuting bedroom assignment due to area criteria
be.s1 ba.p1 hs
ba.p2 hhs
be.s2 be.d hl

Rules 3.1a
Assignment of living room

등
흔
은
plo^ lenteds

graphs

Rules 3.2 b
Assignment
Assignment of dining room

floor plan

spatial void -

\#16

 -

Rules 3.4
Assignment of isolated home office

\#17

\title{

}

floor plan
plos lenteds
graphs

Rules 3.11
Assignment
Assignment of guest bathroom

spatial void
\qquad -

\#18

 -
floor plan

0
0
$\frac{0}{5}$

\#19

Rules 7.6d
Changing a door position (change door to a
perpendicular wall)

[^10]
labels
ho ki
ba.g
be.s1 ba.p1 di
co.p2
ba.p2 co.p1 hl
be.s2
\#20

Rules 4.1
Assignment of private corridors
St+

- Assigne por
sudeı6

p!os ןelueds
graphs $\square+0$

ueld .10이

\#21

Rules 4.2
Assignment of corridors

ue|d ․o이

$\frac{0}{2}$
$\frac{0}{5}$

\#22

Rules 7.3b
Remove part of a room area to assign to circulation area
labels
be.s1 ba.p1 di 8
co.p2
ba.p2 co.p1 hl
be.s2 be.d ii

ba. 9

ueld 100 Y

sydeab
\#24

Rules 7.6
Change door position (change door to a perpendicular wall)

ue|d . .0이

0
$\stackrel{0}{0}$
⿹ㅡㅇ
\#25

Rules 7.3a
Remove part of a room to assign to circulation area

sydeab

ho $\begin{aligned} & \text { la } \\ & \\ & \text { ki }\end{aligned}$
ba. $\mathrm{co2}$
be.s1 ba.p1 di
$\overline{8}$
co.p2
bap2 co.p1 hl
be.s2
labels

\#26

Rules 4.2
Assignment of social corridor

Floor plan

Convex map

Controle

Entire dwelling
Mean: 1,00

Contiguity

Depth

Entire dwelling
Mean: 48,00

Graph with a tree configuration with 1 ring Graph with 5 levels of depth
16 spaces/nodes
16 arcs/connections

Distributness

- Social area
- Private area
- Circulation area

Service area
a a terminal spaces
D _ reached by two arcs
C _ reached by two or more arcs and connected in a ring

Justified graph

Integration

Entire dwelling
Mean: 3,49

Extra divisions requested by the family (in order of priority) and relationships between divisions
_ all bedrooms next to each other

- separated living and dining rooms
- dining room near kitchen
- living room near entrance
- 2 fully equipped private bathrooms
- isolated work area to serve as guest bedroom
_laundry area separate from kitchen

General characteristics

_ Bedrooms and living rooms have natural light and ventilation _ The daytime area (living rooms + kitchens) can be separated from the night-time area (bedrooms and private bathrooms) by doors or a corridor \qquad

Social area

_ The social area is accessed via the circulation areas \qquad
_ The dining room and living room are combined or separate but adjacent, enabling them to be linked \qquad
_ The dining room is close to the kitchen \qquad
_ There is a bathroom for general use with easy access that does not involve passing through private or social areas \qquad _ Social spaces are close to the entrance for easy access \qquad _ The living room is large enough to allow for the possibility of installing furniture for viewing TV or home cinema from a distance of 3 m
_ There is individual access to the living room(s) via a circulation area or other living room \qquad \square
\square

Private area

Bedrooms and private bathrooms are accessed from circulation areas other than those of the hall and the social and service zone circulation areas \qquad \square
_ The bedrooms have access to a bathroom within the same private area
_All bedrooms comply with minimum area requirements \qquad

Service area

_ The kitchen is accessed by circulation areas or via a living room, if it is not the only one
_ The kitchen includes an eating area for light meals or is close
to an eating area \qquad
_ The kitchen includes a space for laundry work or has a direct
link to a space reserved for this purpose
_ The kitchen complies with minimum area requirements \qquad

Circulation areas

_ There are at least one for alternative paths within the dwelling \qquad
_ There are no obstacles to circulation within the social area \qquad

- There are no obstacles to circulation within the service area
_ There are no obstacles to circulation within the private area \qquad

Demolition work

_ Linear dimensions of walls demolished 5,5m

$\frac{\pi}{\circ}$
$\frac{0}{0}$
$\stackrel{0}{6}$
\#28

Rules 8.1a
Allocating of water detectors
ue|d ․ooly
plos ןelieds

uejd 100 H

syde」6
\#29

Rules 8.1b
Allocating of smoke detectors

$\begin{array}{llll}\text { ho } & & \text { wd la } \\ & \text { ki } & \\ & & \text { wd }\end{array}$
bad co2

be.s1	ba.p1 di		
	wd		$\overline{8}$
	co.p2		
ba.p2	co.p1	hl	
wd	be.d	sd	
be.s2		li	

labels
\#30

Rules 8.1c
Allocating of temperature detectors

등
훈
흔

∞
$\stackrel{\infty}{0}$
$\frac{0}{0}$

\#31

Rules 8.1d
Allocating of gas detectors
.wd
labels
wd ${ }^{+}$
sd $^{+}$

syde_6

Rules 8.1d
Allocating of movement detectors (for the hall and corridors with door to the exterior)
floor plan
p!o^ felpeds
weight

\#32

ueld ․00이
plo^ lenteds

응
$\frac{0}{5}$
\#33

Rules 8.10a1
Allocating of interfaces: control panel

Rules 8.10b1/2/3
Allocating of interfaces: mulfifunctional switches

$\mathrm{ms}_{\times}+{ }_{\mathrm{wd}}^{\mathrm{wd}}{ }_{\mathrm{ms}}^{\mathrm{ms}}$
ms
ms^{\times}

$$
\begin{aligned}
& \mathrm{ms} \\
& \text { +md i+ } \\
& \text { xs sd }
\end{aligned}
$$

\# ... final

	Controlled blinds	+sd Smoke detector
+	Controlled sockets	\times wd Water detector
\bigcirc	Multifunctional switches and entry modules	+md Movement detector
\square	Control panel	+td Temperature detector
$凶$	Domotic cupboard	+gd Gas detector
\bigcirc	Controlled lights	
	Domotic controls	
	Number of buttons on each control panel (e.	
	Two buttons	
	Bus cable	

[^0]: Social area
 Private area
 Circulation area

[^1]: Entire dwelling
 Mean: 1.00

[^2]: Entire dwelling
 Mean: 3.12

[^3]:

 Social area
 Private area
 Circulation area

 - Service area

[^4]: A transformation grammar-based methodology for housing rehabilitation: meeting contemporary functional and ICT requirements |Sara Eloy

[^5]: - Social area
 - Private area
 - Circulation area
 - Service area
 - a _ terminal spaces
 - b _ reached by two or more arcs
 c _reached by two or more arcs and connected in a ring
 \oplus d _ reached by two or more arcs and connected by ≥ 2 rings

[^6]: A transformation grammar-based methodology for housing rehabilitation: meeting contemporary functional and ICT requirements |Sara Eloy

[^7]: Conditions:
 Dimensions:
 $1 \geq 0,8 \mathrm{~m}$
 $0,10 \mathrm{~m} \leq \mathrm{w}, \mathrm{w} 1 \leq 0,55 \mathrm{~m}$
 $0 \mathrm{~m} \leq \mathrm{w} 2 \leq 0,45 \mathrm{~m}$
 $0 \mathrm{~m} \leq 11,12 \leq 0,25 \mathrm{~m}$

[^8]: Rule 3.2.a _Assignment of dining room (minimum level)

[^9]: Description (abbreviated):
 R7.2a < D7: Fb, Ff; $w^{\star} \varnothing>\rightarrow$ D7: Fb, Ff; w^{\star} wul(Fb, Ff) $>$

[^10]: labels

