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We use ray-tracing techniques to determine the evolution of the event horizon of a large black hole
that “gobbles” a tiny, traversable wormhole. This calculation has physical meaning in the extreme
mass ratio limit. Two setups are considered: a single-mouth wormhole connecting two otherwise
independent universes, and a double-mouth zero-length wormhole within the same universe. In the
first setting it turns out that, at early times, there exist two disconnected horizons, one in each
universe, which then merge as the wormhole falls into the large black hole. In the second setup,
we observe the appearance of an ‘island’, a region of spacetime that is spatially disconnected from
the exterior of the black hole, but in causal contact with future null infinity. The island shrinks as
time evolves and eventually disappears after sufficient time has elapsed, as compared to the distance
between the two mouths. This provides a communication channel with the interior of the large black
hole for a certain time interval. We compute numerically the lifetime of the island and verify that
it depends linearly on the inter-mouth distance. Extending the analysis to wormholes with finite
length, we show that the achronal averaged null energy condition prevents the appearance of islands.

I. INTRODUCTION

Over the past few years, the LIGO/VIRGO collabo-
ration has provided a wealth of information about the
dynamics and properties of highly compact objects such
as black holes (BH) and neutron stars [1]. These ob-
servations have confirmed many predictions of Einstein’s
theory of general relativity (GR) and sparked a strong
interest in better understanding the merging of com-
pact objects. Other experimental observations regard the
shadow of black holes and indirect measures of them in-
stead [2]. However, none of these measurements offers
any information about what happens in the interior of a
black hole.

Once GR is coupled to matter, additional solutions
arise. Notably, topologically non-trivial spacetimes, such
as wormholes (WH), can be found [3–7]. These are struc-
tures that connect two distant regions of space-time, pro-
viding a possible shortcut for travel through the universe,
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or even two otherwise disconnected universes. However,
the existence of wormholes typically requires exotic or
negative-energy matter, violating the standard energy
conditions [5, 8–12]. This has been a significant obstacle
to the viability of wormholes. Nevertheless, several ways
to overcome this issue have been discussed over the past
years, including classical solutions of general relativity
coupled to massless charged fermions [13, 14] or massless
scalar fields [8, 15], alternative (higher derivative) the-
ories of gravity [16–18], models involving extra dimen-
sions [19–21] or backreaction from quantum fields [22]
and quantum gravity [23]. These are only some of the
possibilities that are currently being explored to under-
stand better the nature of wormholes and their potential
theoretical implications.
In this paper, we are interested in studying the shape

and features of the event horizon when a wormhole
plunges into a black hole. To the best of our knowl-
edge, the idea of using a wormhole as a means to access
the interior of a black hole was first pointed out and
investigated by Frolov and Novikov [24]. Most of the de-
tails worked out in that early study relied on a simplified
model to describe the infalling wormhole, in the sense
that it was taken to be point-like, while also considering
a quasi-Newtonian approximation to describe the grav-
itational field in the vicinity of the wormhole mouths.
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Here we will obtain the full fledged evolution of the event
horizon as it responds to the presence of an extended
wormhole. In the process, we clarify certain results of
the Frolov-Novikov model, and point out novel phenom-
ena occurring in this setting: the possibility of a black
hole region exterior to an event horizon, and the appear-
ance of an ephemeral island. We shall see that the former
feature is present when the wormhole connects to a dif-
ferent universe, while the latter feature arises when the
wormhole exhibits two mouths within the same universe.

The analogous problem of the fusion of two black holes
has been studied in a regime in which the ratio of their
masses, m and M , is very small —the extreme mass ra-
tio limit (EMR). The full evolution of the event hori-
zon in such a setting can be obtained exactly and with
elementary techniques when m/M → 0 [25]. The key
idea is that, in the rest frame of the large black hole,
and at scales much shorter than its mass (in fact, taking
M → ∞), the small black hole is freely falling in flat
space while the large black hole horizon can be thought
of as just an acceleration horizon.

Returning to the case of a BH-WHmerger, the extreme
mass ratio limit was also implicitly considered in [24] but
in that study it was the mass of the large black hole M
that was kept fixed, while the size of the wormhole was
taken to zero. In that context, one has to consider —and
speculate about— what happens when the wormhole fi-
nally hits the black hole singularity. When taking the
extreme mass ratio limit as we shall do, the BH singular-
ity is infinitely far away and the wormhole never really
reaches it. Instead, we will be able to capture the time
evolution of the horizon as it falls through the wormhole
throat. This is only possible if the size of the wormhole
is kept finite.

Therefore, this approximation reveals the spacetime
geometry of the merger and the determination of the
event horizon reduces to finding the congruence of null
geodesics that approaches a null plane at late times [25].
This limit provides a boundary condition on the null gen-
erators of the event horizon and allows one to integrate
the geodesic equations back in time up to the caustic
points (the set of points where the horizon generators fo-
cus). This same approach was also employed to study
mergers with rotating [26] or charged [27] black holes, as
well as the fusion of a neutron star with a large black
hole [28].

Hereafter, we apply these well-established techniques
to the study of the merger of a small wormhole with a
large black hole in the EMR limit. We will adopt the
Ellis-Bronnikov [3, 4] spacetime to model the wormhole.
As mentioned, wormholes can either connect two differ-
ent universes or two distant regions in the same universe.
A single solution of Einstein’s equations can be used to
tackle both types of wormhole described, the essential
difference being that they differ at the level of the topol-
ogy of the global spacetime. In this paper, we compute
the null generators considering both these topologies in
order to determine the evolution of the associated event

horizon. In particular, in Sec. II, we introduce the spe-
cific wormhole metric we will use for our calculations.
The method adopted is explained in detail in Sec. III
while in Sec. IV and Sec. V the results for the merger
of a large BH with inter- and intra-universe wormholes,
respectively, are presented. Finally, we conclude and dis-
cuss future prospects in Sec. VI. Throughout this work,
we adopt geometrized units, for which c = 1.

II. ELLIS-BRONNIKOV WORMHOLE

The static spherically symmetric Ellis-Bronnikov (EB)
metric is a simple, special case of a traversable wormhole
solution found in 1973 [3, 4] and reads

ds2 = −dt2 + dR2 + (R2 + a2)(dθ2 + sin2 θdϕ2) , (1)

where the parameter a determines the size of the throat
and the radial coordinate ranges in R ∈ (−∞,+∞).
Note, however, that R does not correspond to an areal
radius. The throat occurs at R = 0, and the two lim-
its R → ±∞ correspond to the two asymptotically flat
regions connected through the wormhole throat. The
metric has no horizons. A change of coordinates, r2 =
R2 + a2, shows that the resulting solution

ds2 = −dt2 +
r2

r2 − a2
dr2 + r2(dθ2 + sin2 θdϕ2) , (2)

is of the Morris-Thorne form [5]

ds2 = −e2Φ(r)dt2+
dr2

1− b(r)/r
+r2(dθ2+sin2 θdϕ2) , (3)

with Φ(r) = 0 and b(r) = a2/r. The metric (2), corre-
sponding to a wormhole with zero gravitational mass, has
been studied in detail in [29] with the purpose of inves-
tigating the bending and scattering of light rays passing
near the wormhole as well as ray capture and wormhole
shadows. It has also been studied in [30, 31] to under-
stand the shadows of the EB wormhole surrounded by
nonrotating and rotating dust.
A comment is in order. Since the wormhole has zero

mass, the ratio between the masses of the small worm-
hole and the large black hole is trivially zero. Therefore,
the terminology “extreme mass ratio” cannot strictly be
applied in this context. Nevertheless, one can still define
a small parameter using dimensionful quantities associ-
ated to both the wormhole and the black hole. Instead of
their masses, we consider corresponding length scales: for
the black hole one takes the horizon radius, and for the
wormhole we use the throat radius. However, we shall
continue to refer to the regime of a binary consisting of
a small wormhole and a large black hole as the extreme
mass ratio limit, which is widespread nomenclature. In
practice, we shall take the formal limit of the BH horizon
radius tending to infinity, while keeping the radius a of
the throat fixed.
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III. DESCRIPTION OF THE MERGER

As already mentioned, the merger will be completely
determined by the small object’s metric. The starting
point to identify the causal horizon in such a geometry is
Hamilton’s variational principle for extremal spacetime
paths, that leads to the equations

d2xµ

dλ2
+ Γµ

νρ

dxν

dλ

dxρ

dλ
= 0 , (4)

which are none other than the geodesic equations, where
λ is an affine parameter. Hamilton’s equations, in terms
of the impact parameter q = L/E, for spherically sym-
metric metrics of the type

ds2 = −f(r)dt2 +
dr2

g(r)
+ r2

(
dθ2 + sin2 θdϕ2

)
, (5)

reduce to [28]

ṫ = f(r)−1 ,

ϕ̇ = − q

r2
,

ṙ = g(r)pr ,

ṗr = − f ′(r)

2f(r)2
− g′(r)

2
p2r +

q2

r3
,

(6)

where pr is the conjugate momentum associated to the
radial variable r, dots refer to derivatives with respect
to the normalized affine parameter Eλ, and primes rep-
resent derivatives with respect to r. The spherical sym-
metry of the setup allows one to choose the coordinate
system in such a way that geodesics are always contained
in an equatorial plane1.
At this point, the only missing step towards the nu-

merical integration and, therefore, the determination of
the event horizon of the EMR merger, is the identifica-
tion of the asymptotic behavior of the solutions at large
distances, which also correspond to large values of λ (i.e.,
λ → ∞). It is convenient to use the radial coordinate r
to parametrize the geodesics, instead of λ. In that case,
once functions f(r) and g(r) have been given, the asymp-
totic behavior can be extracted by expanding in powers
of 1/r, and integrating Eqs. (6), thus yielding the coordi-
nates t and ϕ as functions of r. The integration constants
are then fixed by demanding the property, already men-
tioned, that they should asymptote a null plane. We can
then continue the integration of the geodesics numerically
back in time.

In certain cases, it will happen that these null geodesics
intersect. Such intersection points are spacetime events
from which light rays emitted to the future in several
directions belong to the event horizon. In other words,

1 However, note that the equatorial plane for distinct geodesics is,
in general, different.

FIG. 1. Embedding diagram of the inter-universe wormhole,
from two different perspectives. The wormhole connects the
two universes (named A and B) through the throat. Two
kinds of geodesics (green lines) that end up at infinity in uni-
verse A are shown in the figure: geodesics that always remain
in the A side; geodesics that come in from infinity in the B
side and emerge from the throat of the wormhole. The event
horizon of the large black hole is represented by the (contin-
uous) family of geodesics considered.

these are points where new generators enter the horizon.
These points are referred to as caustics. Generally they
show up as a continuous set, forming caustic lines when
they are one-dimensional. Note that caustic lines are not
geodesics. Given the high degree of symmetry involved
in the setup, it is clear that there must exist a caustic line
along ϕ = π. When a geodesic hits that axis, at a given
r = rcaustic, we terminate the numerical integration.

Another subtlety one has to deal with is the existence
of turning points for some of the geodesics. These arise
as points of closest approach between a geodesic and the
wormhole (see Fig. 1), and we shall denote their radial
coordinate by rmin. At r = rmin, the derivative dϕ/dr
necessarily blows up, so the solution jumps to another
branch. In practice, the continuation of the integration
after the turning point is related, by symmetry argu-
ments, with the solutions before the turning point [25],

ϕ(after)(r) = 2ϕ(rmin)− ϕ(before)(r) , (7)

t(after)(r) = 2 t(rmin)− t(before)(r) , (8)

with the understanding that these expressions only apply
in the range r ∈ [rmin, rcaustic].

Although we perform our computations using spherical
coordinates, it is useful to convert to Cartesian coordi-
nates,

x = r sinϕ , z = r cosϕ , (9)

to visualize the results. The third Cartesian coordinate,
y, is forced to vanish since each geodesic is constrained
to lie on an equatorial plane. To consider the time evo-
lution of the event horizon, we draw the congruence of
generators as a two-dimensional surface in the three-
dimensional (t, x, z) spacetime.
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FIG. 2. Projection of the generators of the event horizon in the (x, z) plane, as defined in Eq. (9). The left (right) panel
represents the null geodesics in universe A (universe B). The small arrows indicate the flow of time along each geodesic. All
rays on side A propagate, to the future, towards z → +∞. Green curves are generators emerging from the wormhole and their
specific behavior on side B is determined by imposing continuity and differentiability at the throat. The dotted black curves
correspond to the threshold value of the impact parameter, q = qc, which distinguishes the geodesics that cross the wormhole
(in green) from those that remain always outside (in black). Black curves correspond to (caustic) generators with q > qc. The
red dots in the left panel indicate turning points, i.e., points along the generators at which the distance from the wormhole is
minimized. In both panels, the red lines correspond to the caustic line.

IV. MERGER OF A BLACK HOLE WITH A
SINGLE-MOUTH WORMHOLE

In this section we will compute the generators that
determine the event horizon in the collision of a large
black hole and a single-mouth wormhole, in the extreme
mass ratio limit.

The setup considered is shown in Fig. 1. It illustrates
two universes (sides A and B) which are put in causal con-
tact due to the existence of a wormhole between them.
We assume that we live on side A and hence the bound-
ary conditions mentioned in the previous section will be
imposed on that side of the wormhole only. Integrating
backwards in time, two qualitatively different geodesics
can arise: those that always remain in universe A and
those that traverse the wormhole into side B.

It is clear, from a simple continuity argument, that all
geodesics crossing the throat have an impact parameter
smaller than a certain threshold value, qc. The S

2 throat
is completely fibered by such geodesics which cross it
at varying angles. The outcome is that on side B the
generators come out at all possible angles, revealing a
roughly radial structure that is quite different from the
congruence observed on side A (see Fig. 2).

We now turn to the actual computation of these
geodesics.

A. Horizon generators

Using the metric (2), we see that the first two equa-
tions (6) for the light rays reduce to

ṫ = 1 , ϕ̇ = − q

r2
. (10)

Instead of using the remaining two equations to deter-
mine the expression for ṙ, it is simpler to obtain it from
the quantity ϵ = −gµν ẋ

µẋν , which is conserved and equal
to 0 along a null geodesic. Explicitly, this equation reads

−ṫ2 +

(
r2

r2 − a2

)
ṙ2 + r2ϕ̇2 = 0 . (11)

Multiplying by (r2 − a2)/r2 and using Eqs. (10) results
in

ṙ =
1

r2

√
(r2 − q2) (r2 − a2) . (12)

Directly integrating this equation would give λ(r);
however, this results in a combination of elliptic inte-
grals which cannot be inverted analytically to find r(λ)
and thus ϕ(λ). This problem is circumvented by using r
instead of λ as an independent variable, by rewriting the
integrals as

tq(r) =

∫
dr

ṫ

ṙ
, ϕq(r) =

∫
dr

ϕ̇

ṙ
, (13)
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FIG. 3. Left panel: event horizon in the equatorial plane (i.e., the third spatial coordinate —not shown— is set to y = 0) as a
function of time. Green curves indicate generators that cross the wormhole. The dashed black curves correspond to the critical
generators with impact parameter q = qc. Black curves correspond to caustic generators with q > qc. Right panel: causal
horizon on side B of the universe (and in the equatorial plane) as a function of time. Events below the green cone can influence
side A of the universe, where the merger is happening, outside of the large black hole’s event horizon. Signals emitted from
events to the future of the cone will either remain on side B or else, if they cross the wormhole, they will inevitably end up in
the large black hole interior on side A. The red curve indicates the caustic line. It is apparent that the line of caustics actually
continues through the wormhole into the other universe.

where the label q indicates the (only) parameter of this
family of geodesics. The requirement that this congru-
ence has to approach a planar horizon at infinity is the
boundary condition that fixes the integration constants
in (13).

Now we expand Eqs. (10) and (12) at large distances,
r ≫ a (corresponding to large values of λ). For ϕq, we
have

ϕq(r → ∞) =

∫
dr

ϕ̇

ṙ

∣∣∣∣
r→∞

= αq +
q

r
+O

(
r−3
)
. (14)

We fix the integration constant αq = 0 in such a way that
asymptotically the geodesics are aligned with the z axis.
For tq, we get

tq (r → ∞) = r + βq +O
(
r−1
)
. (15)

Requiring that all generators approach a null plane de-
mands that βq is a constant independent of q. Since the
line element (2) is static, we can fix βq = 0 without loss
of generality.

The general results for Eqs. (13) are given in terms of

elliptic integrals2,

tq(r) =

∫
r2dr√

(r2 − q2)(r2 − a2)
, (16)

ϕq(r) = −
∫

q dr√
(r2 − q2)(r2 − a2)

, (17)

but, in practice, we integrate the expressions for dtq/dr
and dϕq/dr numerically, starting from a very large ra-
dius. It is possible to obtain analytic expressions but
they are cumbersome, and therefore we relegate them to
the Appendix A. We employ them to compute explic-
itly the caustic line. Nevertheless, note that the central
generator, having q = 0, has a very simple form:

tq=0(r) =
√

r2 − a2 , (18)

ϕq=0(r) = 0 . (19)

Because the generators with q < qc fall through the
wormhole, it is important —in order to have the com-
plete picture of the problem— to follow them back in
time on the other side of the wormhole. This is done by
spatially reflecting the solutions already found in the A

2 It is important, when evaluating these expressions, to be careful
with the prescription for the square root of complex numbers and
with the branch cuts in the elliptic functions. The prescriptions
used here are those implemented in Mathematica 12.
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universe3. Alternatively, for each geodesic one can per-
form a new set of integrations on the B universe, using as
initial conditions the endpoints of the previous integra-
tions in the A side. Continuity of the geodesic across the
throat is easily achieved by starting the integration from
the same point on the throat. Continuity of the veloc-
ity also demands that the crossing angle be the same on
both sides of the throat. More precisely, a ray entering
the wormhole at a certain angle relative to the tangent
of the wormhole, will exit on the other side at the sup-
plementary angle compared to the tangent at that same
point:

ϕ(B)
q (r) = 2ϕq(a)− ϕq(r) , (20)

t(B)
q (r) = 2tq(a)− tq(r) , (21)

where the superscript B refers to the coordinates in the
B universe.

B. Physical interpretation

In the alternative universe, the null generators con-
tinue into the past as an expanding cone, and the line
of caustics also extends along that cone. This can be
seen in Fig. 3. This emerging cone can be regarded as
a causal horizon, although in this context its interpre-
tation is quite unconventional. Events inside the cone
are those which can influence universe A in the region
outside the large black hole, i.e., light rays emitted from
points inside this cone can escape to future null infinity
(I+) on side A. On the other hand, events outside the
cone can only influence the A universe in the region in-
side the large black hole. It should be stressed that light
rays originated in the B side —whether inside or outside
the cone— can always escape to I+ on side B. Similarly,
events on side A —whether inside or outside the black
hole— are also in causal contact with I+ on side B.
The resulting picture is that in a BH-WH collision,

as in a binary black hole merger, there are two initially
disconnected event horizons that fuse (at the ‘pinch-on’
time) to become a single connected surface at late times.
The crucial difference is that the ‘small’ horizon lives
almost entirely in the B universe, and as we go back in
time this topologically spherical horizon expands at the
speed of light. In fact, from the perspective of an observer
living in universe A, the (large) black hole corresponds
to the grey region in the bottom part of Fig. 4 together
with the grey region in the exterior of the event horizon
traced in universe B (see Fig. 5). This is a peculiarity
that stems from the fact that the spacetime considered
possesses two asymptotic flat ends (one in side A, and
another in side B, as apparent in Fig. 1).

3 This procedure is extremely similar to the continuation (7-8) of
the geodesics past the turning points.

FIG. 4. Sequence of constant-time slices of the event horizon
in the A universe (from the left panel of Fig. 3) with spa-
tial coordinates centered on the small Ellis-Bronnikov worm-
hole. The shaded gray area represents the interior of the
black hole. Pinch-on occurs at t = t∗ (b). The time interval
∆∗ ≃ 2.31244 a in panel (d) is a natural measure of the du-
ration of the fusion. The full two-dimensional constant-time
slices of the event horizon are obtained by rotating around
x = 0. Axes are in units of a = 1.

C. Quantitative characterization

It is possible to distinguish between rays that enter the
horizon at a caustic with q > qc (black geodesics in Fig. 2)
and rays that emerge from the wormhole with q < qc
(green geodesics). The critical value q = qc corresponds
to rays that go through the point (r, ϕ) = (a, π), which
implies the equation

ϕqc(a) = π . (22)

This can be solved numerically to find

qc = 0.985821 a . (23)

In previous calculations [25], a parameter q∗ has been
introduced to distinguish between generators which enter
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FIG. 5. Sequence of constant-time slices of the event horizon
in the B universe (from the right panel of Fig. 3), with spatial
coordinates centered on the small Ellis-Bronnikov wormhole.
The shaded gray area represents the interior of the black hole.
Pinch-on occurs at t = t∗ (d), at which time the kink along
the caustic has already fell through the wormhole (pinch-on
occurs very close to the wormhole throat but slightly shifted to
side A of the universe). After a time interval ∆∗ = 2.31244 a
the entire universe B is inside the black hole (panel (f)). Axes
are in units of a = 1.

the horizon on the side of the large black hole, q > q∗, and
generators with qc < q < q∗ which enter on the side of the
small object. The value of q∗ (and its associated value
r∗) is determined by the condition ṙ|ϕ=π = 0, together
with Eq. (12), which yields(

r2∗ − q2∗
) (

r2∗ − a2
)
= 0 , ϕq∗(r∗) = π . (24)

These equations have two acceptable solutions. One of
them is trivially q∗ = qc , r∗ = a, corresponding to the
critical impact parameter that reaches the caustic line
ϕ = π exactly at the wormhole throat. Using the ex-
pression (A8) from the Appendix A, one can compute
numerically the other solution to be

q∗ = r∗ = 1.01581 a . (25)

This second solution is, in fact, the relevant one that
separates the generators that enter the horizon on the
side of the large black hole from those that enter on the
side of the small wormhole. This is more easily under-
stood by inspecting the figures in the Appendix, which
are zoomed-in versions of Figs. 2 and 3. The correspond-
ing value of time, t∗ (see panel (b) in Fig. 4, or panel (d)
in Fig. 5), can be obtained by inserting these values into
Eq. (A1):

t∗ = −2.13390 a . (26)

Now, following [25] it is possible to calculate the ‘dura-
tion’ of the merger, ∆∗, defined as the difference between
the horizon’s time th as it crosses r = r∗ (in the direction
ϕ = 0) and the pinch-on instant. An equivalent defini-
tion can be given in terms of retarded times, defined as
v = t+ ρ, where

ρ =

∫ √
r2 − a2

r
dr (27)

is the tortoise coordinate for the metric (2).
In terms of the retarded times, the duration of the

merger is given by

∆∗ := vh − v∗ =
(
th + ρ(r∗)

)
−
(
t∗ + ρ(r∗)

)
. (28)

The time th is the moment at which the central generator
is at r = r∗. This is determined by Eq. (18). Therefore:

∆∗ =
√

r2∗ − a2 − t∗ , (29)

and using the solutions obtained for r∗ and t∗ from (24),
it follows that ∆∗ = 2.31244 a.
The collision of the Ellis-Bronnikov wormhole with a

large BH thus seems to be more than two times faster
than the merger of two Schwarzschild BHs in the extreme
mass ratio limit. In the latter case it was found that
∆∗ = 5.94165 r0 [25], where r0 denotes the horizon radius
of the small black hole.4

V. MERGER OF A LARGE BH WITH AN
INTRA-UNIVERSE WORMHOLE

Considering an intra-universe wormhole (i.e., a worm-
hole with two mouths in the same universe) leads to novel
physical effects regarding the study of the event horizon.
Indeed, we will show that events which in the setup of
Sec. IV were inside the event horizon might now be part
of the domain of outer communications of the BH.
Our setup is as follows (see Fig. 6). We assume that

the axis connecting the two mouths of the wormhole is

4 In making this comparison, we are assuming that the sizes of the
small objects are the same, i.e., r0 = a.
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FIG. 6. Illustration of the intra-universe wormhole. The
wormhole connects two distant parts of the same universe
through the throat. The red lines represent two surfaces along
which we join two halfs of the Ellis-Bronnikov spacetime.

perpendicular to the planar horizon. Other configura-
tions might be considered, and the precise results should
depend on the details of the setup. But qualitatively, the
outcome of this investigation is robust, except for the
special case in which the two mouths fall through the
horizon synchronized.

With this assumption, the closest wormhole mouth
falls into the large black hole before the other one. In
the absence of the wormhole no light rays emitted from
the black hole region can ever reach asymptotic null in-
finity. Once we include the in-falling wormhole, some
of these light rays can enter the leading mouth of the
wormhole and exit from the trailing mouth while it is
still outside the BH. Note that this is possible since we
are also assuming that the wormhole has zero length: a
signal that enters one mouth immediately comes out the
other mouth. If the wormhole length is strictly positive,
this will cause some delay. And if the length of the worm-
hole is greater than the direct path connecting the two
mouths —as is imposed by the achronal averaged null
energy condition (AANEC) [32–36]—, then the in-falling
wormhole does not open any window to observe the in-
terior of the large black hole, as we demonstrate below.

The assumption we made, i.e, that the axis connecting
the two mouths of the wormhole is perpendicular to the
planar horizon, also has the advantage of preserving the
axial symmetry of the congruence of null generators that
form the event horizon. This allows us to obtain all the
null geodesics as a function of a single parameter, namely
the already mentioned impact parameter q. If this were
not the case we would need two parameters to describe
the whole family of generators.

In order to build a global spacetime with two worm-
hole mouths in the same universe, we will glue two equal
copies of the Ellis-Bronnikov metric along a plane (at the
same distance from both mouths), as illustrated in Fig. 6
with the red straight line. This is effectively assuming
that there is a domain wall between the two mouths, and
it must have some form of negative energy —which can
be computed— to prevent the two mouths from falling
into each other. Nevertheless, if the mouths are suffi-

ciently far away, the effect of the negative energy domain
wall can be considered negligible.

A. Horizon generators

We shall use the results of Sec. IV to obtain the gen-
erators around each of the mouths. The only additional
part of the construction that needs to be described con-
cerns the domain wall. Namely, we should specify how
we continue the geodesics across the matching plane. As-
suming the effect of the domain wall to be negligible, the
geodesics should simply be continuous and differentiable
at that surface. This is what we implemented in order to
obtain Fig. 7, where we chose the distance between the
two wormhole mouths to be d = 10 a, for concreteness.

Differently from Sec. IV, the generators that emerge
from the trailing wormhole mouth are the continuation of
null geodesics that entered the leading mouth in the same
universe. Therefore, the green ‘cone’ coexists with the
black ‘plane’. However, contrary to the presentation of
Fig. 3, we now rotate the green ‘cone’ around the vertical
axis by 180◦. This is done in order to reproduce the
intuition provided by Fig. 6. Specifically, we want the
geodesics exiting the trailing mouth (on its right side) to
be connected with geodesics entering the leading mouth
from its left side.

In this intra-universe wormhole setup there are new
caustic lines not aligned with the axis x = 0. These
caustics arise from the intersection of the black ‘plane’
with the green ‘cone’. This is apparent from Fig. 7. Ob-
taining them is more challenging than the caustics we
computed in the previous section, and is not the main
purpose of our analysis. It is important to realize that
the interior of the black hole corresponds in Fig. 7 to the
region above all the generator congruences (i.e., both the
black and the green surfaces).

B. Physical interpretation

Let us now describe the whole evolution of the merger
process.

Upon taking time slices of Fig. 7, at early times (bot-
tom of the figure) we see an almost flat horizon, when
the two wormhole mouths are far from the large BH, but
with an arc of a circle ‘cut out’ from the BH interior (see
also Fig. 8). As time progresses, the horizon gets more
and more deformed, as shown in Fig. 8. Note that, in this
intra-universe setup, we define t∗ as the last moment still
featuring a caustic point along the event horizon. I.e., it
is the maximum t-coordinate of the caustic line. This
definition applies equally well to Sec. IV, but now we are
considering two distinct wormhole mouths in the same
universe, so we may specify that it corresponds to the
saddle point on the congruence of generators closest to
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FIG. 7. Equatorial section of the event horizon as a function of time for an intra-universe wormhole. The distance between
the two mouths was set to d = 10 a to produce this plot. The color coding is the same as for Fig. 3, except now two infinite
cylinders are included, to indicate points that do not belong to the spacetime, as they would be ‘inside’ the wormhole throat.
The surfaces of the two cylinders should be thought of as being identified. The green ‘cone’ and the black ‘plane’ intersect
along a certain curve —not computed, nor shown, explicitly— which is a second caustic line that arises in this model. Even
though the continuation of the green and black generators to the past of this second caustic is shown, it must be noted that
those sections of the generators are not actually part of the event horizon, and the black hole interior is the region that lies
simultaneously above the green ‘cone’ and the black ‘plane’. The lifetime of the island is the difference between the last instant
at which the green ‘cone’ and the black ‘plane’ intersect, and the last instant at which the green ‘cone’ still exists.

the trailing wormhole mouth.5 An important difference
with respect to Sec. IV is that, contrary to what hap-
pens for the inter-universe WH, in this case the black
hole horizon bends away from the leading WH mouth —
while it bends toward the trailing WH mouth.

At a given time, tp, a precursor forms between the two
mouths. This precursor is a spatial region that belongs
to the BH but is disconnected from the rest of its interior.
(See panels (b) and (c) in Fig. 8.) The same phenomenon
appears in the merger of a neutron star with a large black
hole [28]. The precursor expands until it connects, at a
later time, ti > tp, with the large horizon, thus closing off
an ‘island’ region. This island is spatially located behind
the large horizon but is actually not part of the black
hole interior because one can escape the BH through the
WH. As time further elapses, the island shrinks until it
disappears into the wormhole mouth. Finally, when the
two mouths are both inside the BH, the WH ceases to
offer an escaping route and the horizon flattens out again.

The possibility of creating an island is a consequence
of our assumptions. In particular, we chose to connect

5 There would also exist a saddle point on the congruence of gen-
erators closest to the leading wormhole mouth, but that is not
part of the event horizon. See Fig. 7.

the two mouths with a zero length bridge which effec-
tively provides a shortcut in spacetime. Imposing the
physically-relevant achronal averaged null energy condi-
tion amounts to making the length through the wormhole
longer than the direct path without crossing the worm-
hole [13, 34, 37]. In practice, this will move down the
green cone in Fig. 7 in such a way that the novel effects
we describe in this section (the precursor and the island)
will be limited to a region closer to the leading mouth. If
the length of the WH is taken to be too long, these effects
will be completely absent. This statement might need to
be revised if a twist along the wormhole is included, as
discussed in section VI.
We emphasize that the islands we discuss here have no

direct relation with the quantum extremal islands [38–41]
that have been recently proposed, in the context of the
black hole information paradox, to reproduce the Page
curve for evaporating black holes [42–46]. Despite some
clear differences at the level of the details, the spirit is,
nevertheless, the same: there is a region within the black
hole that is, in a sense, not part of it.
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FIG. 8. Time slices of the event horizon for an infalling intra-
universe wormhole. As in Fig. 7, the inter-mouth distance
is set to d = 10 a and the value of t∗ (defined in Sec. VB)
is the same as in Sec. IV, namely t∗ = −2.13390 a. Among
the six panels shown we highlight two. Panel (b) is a still
shot of the event horizon at the moment of the formation
of the precursor, which is visible as a tiny dot near (x, z) =
(0,−5). Panel (c) illustrates the configuration occurring when
the precursor merges with the rest of the black hole region,
and it corresponds to the birth of the island.

C. Quantitative characterization

As already described, in this setup the merger between
the two objects starts with the formation of a precursor.
The time evolution of the whole process can be obtained

by taking constant time slices of Fig. 7, and this is illus-
trated in Fig. 8.
In this section, we characterize this process by com-

puting the island lifetime, ∆◦, which measures the time
between the precursor formation and the collapse of the
island. To be precise, this is a slight overestimate because
the island only forms when the precursor fuses with the
large horizon. However, that instant is difficult to com-
pute exactly, since the pinch-on does not occur along the
x = 0 axis (see Fig. 8, panel (c)). Given that the precur-
sor remains disconnected from the rest of the black hole
region only for a very short time when compared to the
lifetime of the island —especially for large d ≫ a—, this
is a reasonable approximation.
While the last instant for which the island still exists

is tf = 0 —obtained from Eq. (18) with r = a—, the
moment of birth of the island, ti, is much harder to de-
termine. We will use, as a proxy, the instant at which
the two caustic lines along x = 0 cross. I.e., we shall take
ti = tp. The characteristic lifetime of the island can then
be defined, naturally, as ∆◦ = tf − ti.
Once d is fixed relative to a, the lifetime can be com-

puted numerically. We have calculated it for a range of
ratios d/a and, as expected, a linear law of the form

∆◦ = a+
1

2
d (30)

yields a good fit, with a precision better than 2.5% for
all inter-mouth distances d greater than 4a. This linear
fit remains appropriate even for small inter-mouth dis-
tances, d/2− a ≪ a, although that would mean the two
mouths are very close to each other. As a result, the
domain wall keeping them apart would have a strong im-
pact on the generators, and so such cases are outside the
regime of validity of our analysis.
As mentioned before, we adopted a zero-length worm-

hole to conduct our calculations. If one considers a worm-
hole with a finite length L, a time corresponding to half
this length must be deducted from the island’s lifetime,
when the intermouth distance is much larger than the size
of the throat, so the previous relation must be modified
according to

∆◦ ≃ d− L

2
, for d ≫ a . (31)

The lifetime of the island —as we defined it above—
does not employ the retarded time, in contrast with what
was done in sec. IV for the duration of the merger. Unfor-
tunately, in this setting a similar definition using retarded
time appears to be out of reach.6

6 The main obstacle to defining a retarded time associated to the
birth of the island is a simple topological fact: in such a space-
time, light rays emitted along the axis x = 0 from that event,
corresponding to the intersection of the caustic lines, can never
reach infinity. Instead, they would keep eternally cycling through
the wormhole. In addition, the spacetime is not spherically sym-
metric, which also poses a difficulty of technical nature.
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It should be noted that imposing the AANEC amounts
to requiring that L > d, so that the wormhole is
‘long’ [13, 34, 37]. Eq. (31) then implies that the lifetime
would be negative, meaning that the island is necessarily
absent under these conditions.

VI. CONCLUSIONS AND DISCUSSION

In this work, we have studied the merging process be-
tween a large black hole and two different wormholes in
the extreme mass ratio limit; namely, in Sec. IV a single-
mouth wormhole, and in Sec. V a two-mouth worm-
hole. The whole analysis was performed using the Ellis-
Bronnikov metric and employing ray-tracing techniques.
Both setups present novel features together with some
already well-described phenomena occurring in the black
hole-black hole [25] and the black hole-neutron star fu-
sions [28]. We have shown that basically all of the fea-
tures observed in previous studies of (non-rotating) merg-
ers in the EMR limit are —in some cases surprisingly—
present also here: most notably, the fusion of initially
disconnected horizons in Sec. IV, and the appearance of
precursors in Sec. V.

The inter-universe wormhole case resembles the merg-
ing of two black hole horizons, but, in this case, the finite
horizon with S2 topology lives almost entirely on the side
of the universe beyond the wormhole throat, and it is the
exterior of that surface that forms part of the black hole
region. In this collision, as in a binary black hole merger,
two initially disconnected event horizons fuse to become
a single connected surface at late times. The point at
which the two horizons first touch occurs very near the
throat of the wormhole, at least for the Ellis-Bronnikov
geometry we adopted. Let us stress again that this back-
ground geometry has no horizon; therefore, one might
amusingly call such a situation “the fusion of two hori-
zons in a spacetime without horizons”.

Building on the results of Sec. IV, we have performed
the calculations also for the collision with an intra-
universe wormhole, in Sec. V. This setup shows the pos-
sibility of creating an ‘island’ — a region behind the in-
finitely large horizon which, nevertheless, does not belong
to the black hole interior. This occurs because signals
emitted from within can escape the black hole by falling
into the leading mouth of the wormhole and exiting from
the trailing mouth, which is still traveling through the
domain of outer communications. The life-time of such
islands depends essentially linearly on the distance be-
tween the two mouths of the wormhole and on the worm-
hole length.

Many of the features borne out of the calculations per-
formed in Sec. V can be inferred from a simpler model
of a wormhole, which is obtained by identifying two slits
in a flat spacetime.7 That simpler model immediately

7 We thank Roberto Emparan for having pointed out to us the

makes it apparent that the island lifetime scales like half
the distance between the two mouths. The more involved
model we have used allowed us to compute corrections to
that linear law stemming from the curvature of the space-
time. As expected, in the limit of large separations the
two expressions agree. What is somewhat surprising is
that even at relatively small inter-distances compared to
the throat size, the departure from linearity continues to
be negligible.
A notable difference between the results of sections IV

and V, apart from the appearance or not of an island,
concerns the bending of the large horizon. While the
geometry of the wormhole dictates that the large horizon
bends towards the wormhole in Sec. IV, once a shortcut
through spacetime is created by connecting two mouths
within the same universe, as in Sec. V , it follows that
the large horizon recedes away from the leading mouth
of the wormhole, as expected.
It is interesting and instructive to compare our find-

ings with the original study by Frolov and Novikov [24],
which proposed a wormhole falling into a black hole as a
gedanken experiment to access the interior of the BH. As
in our case, those authors considered a traversable worm-
hole in the limit of vanishingly small mass for the mouths
and zero length for the handle between the two mouths.
However, in contrast with our analysis, they investigated
the propagation of null geodesics in the Schwarzschild
spacetime (instead of the EB background), and explicit
results were obtained by assuming the wormhole mouths
to be point-like. Therefore, Ref. [24] also explored the
extreme mass ratio regime, although in a different guise:
in [24] it is the large BH whose size is kept finite while
the WH size is taken to zero; in the present paper we
chose to keep the size of the WH finite and let the BH
horizon become infinitely large.
Given that both studies analyze the same gravita-

tional system in similar regimes, one should expect agree-
ment between the main results. This is indeed the case.
Ref. [24] showed how the absorption of a wormhole gen-
erates a temporary shrinking of the black hole’s horizon
while leaving the outside gravitational field largely un-
changed. This is the same feature we observed in Sec. V.
However, the presence of a precursor and the related is-
land went unnoticed in that case. Nevertheless, a careful
reading of [24] demonstrates that their analysis also sup-
ports our result about the existence of an island. The cru-
cial point is that Ref. [24] adopted Eddington-Finkelstein
coordinates, where the time-like coordinate is replaced
by a light-like coordinate. The upshot is that the exte-
rior of the black hole in those coordinates is connected.
But if one were to revert back to a time-like coordinate,
slices of constant time would be tilted and then it be-
comes clear that, for a certain time interval, there is a
region contained within the outermost horizon which is,

similarities with this model.
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nonetheless, part of the exterior of the black hole. This
is the island.

The intriguing conclusion of [24] was that it is possi-
ble to extract information from the interior of a black
hole if only one allows a tiny violation of the weak en-
ergy condition, since drastic modifications to the event
horizon can be produced by a WH as small as desired.
The analysis we have presented allows a full description
of the changes suffered by the event horizon on the scales
of the wormhole that causes its deformation. Our results
support the expectation that, once physically reasonable
energy conditions are imposed (i.e., the achronal aver-
aged null energy condition, which forbids the existence
of short wormholes), then our ability to recover informa-
tion classically from within a black hole by using WHs is
lost. In any case, we hope this study can serve as a useful
testbed for ideas concerning the information paradox.

Let us finally discuss possible future directions. We
have made a number of choices in the modelling of the
intra-universe wormhole, so a natural extension would be
to consider other configurations. Quantitatively, the re-
sults will depend on the details of the setup. We have
already considered changes to the distance between the
two mouths (relative to the size of the wormhole mouth),
and the length of the wormhole. Other parameters of
the model that might play a role are the twist along the
wormhole, and the orientation of the axis connecting the
two mouths compared to the planar horizon. For exam-
ple, there could be a chance to create a short-lived island
without any violation of the AANEC if the wormhole
twists. Although this seems unlikely, it is still an open
possibility that requires a dedicated analysis.

One may also consider more drastic modifications to
the setup, for instance by delaying the plunge of the trail-
ing wormhole mouth or even forcing it to remain fixed
outside of the large BH, while the leading mouth falls
in. At first sight, the latter variant seems to entirely
destroy the horizon, since one could always escape the
black hole by choosing a route through the wormhole to
the exterior. However, this conclusion is also an artifact
of the assumed extreme mass ratio regime, namely that
the black hole was taken to be infinitely large, which im-
plies that its own strong gravitational field is localized
infinitely far away from the horizon.

The Ellis-Bronnikov solution we adopted as a back-
ground in this paper features a single parameter, a, that
simultaneously controls the size of the wormhole and the
curvature of the spacetime. However, a generic worm-
hole solution should allow these two parameters to vary
independently. For example, Ref. [47] derives wormholes
which are massive and for which one can freely adjust
the size of the throat. See also [48] for other such space-
times. Another possibility is to consider “portal” worm-
holes [49], which can be designed in such a way that the
curvature vanishes everywhere outside a negative mass
cosmic string that supports the wormhole. The flatness,
combined with the non-trivial topology of such space-
times, suggests that such a setup might provide a par-

ticularly simple means to reveal many of the essential
features we have studied, in the same spirit as the two-
slit model previously mentioned.
A related topic is the study of the marginally outer

trapped surfaces (both open and closed, possibly self-
intersecting), which can also be considered in the ex-
treme mass ratio case. Following [50], the whole anal-
ysis that we have conducted here can be supplemented
with the study of the properties of such trapped surfaces.
Given that the event horizon must enclose all marginally
outer trapped surfaces, it might be interesting to explore
the connection between the latter and the constant time
slices we have constructed featuring islands.
Finally, it would be worthwhile to improve the con-

struction of the global solution with two wormhole
mouths in the same universe. We achieved that in Sec. V
by gluing two copies of the same EB geometry along a
domain wall, arguing that if the mouths are sufficiently
far apart, the negative energy localized on that surface
is negligibly small. Still it would be desirable to em-
ploy an exact solution without requiring any additional
matter sources. Presently such intra-universe wormhole
solutions are not known exactly and it would be very in-
teresting to derive such geometries, possibly making use
of a high degree of symmetry in order to make the prob-
lem more tractable.
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Appendix A: Derivation of caustic lines

In this appendix, we provide explicit expressions for
the integrals in Eqs. (16) and (17), and use them to com-
pute the caustic line occurring along ϕ = π.
Before presenting the formulae, it is useful to stress

that the background geometry only has a single length
scale, namely the wormhole throat radius, a. There-
fore, all dimensionful quantities can be written entirely
in terms of the ratios ξ = |q|/a and ν = r/a. We also
introduce the dimensionless time coordinate, η = t/a.
Upon fixing the integration constants αq = βq = 0, as

discussed in section IVA, and using results from Ref. [27],
it follows that
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FIG. 9. Close up of Fig. 2, zooming in on the point at which
the generators with the critical impact parameter qc (shown
in dashed green — not to be confused with the throat of
the wormhole) reach the throat radius. All other generators
shown meet the x-axis in an oblique fashion, but the q = qc
generators reach it perpendicularly. The only other genera-
tors for which this happens are obtained for q = q∗ but they
fall outside this zoomed-in region. The horizontal red line is
the caustic.

FIG. 10. Close up of the left panel of Fig. 3, zooming in on
the point (t, r, ϕ) = (t∗, r∗, π), corresponding to a saddle on
the event horizon, which occurs very close to the location of
the throat (r = a). The event horizon is a non-differentiable
surface along the caustic line, shown in red. The magenta
dashed lines identify the q = q∗ generators, while the green
dashed lines correspond to the q = qc generators.

ηq(ν) =
tq
a
(ν) =

√
(ν2 − ξ2)(ν + 1)

ν − 1
+
√
ξ F

(
γ(ν)

∣∣∣β)− 2
√
ξ E

(
γ(ν)

∣∣∣β)− cq , (A1)

ϕq(ν) = sgn(q)
√

ξ
[
F
(
α
∣∣∣β)− F

(
γ(ν)

∣∣∣β)] , (A2)

where the additive constant cq is equal to

cq = 1 +
√
ξ F
(
α
∣∣∣β)− 2

√
ξ E
(
α
∣∣∣β) , (A3)

and

α = arcsin

(√
2

ξ + 1

)
, β =

(1 + ξ)2

4ξ
, γ(ν) = arcsin

(√
2(ν − ξ)

(ξ + 1)(ν − 1)

)
. (A4)

The functions

F (x|y) =

∫ x

0

dθ√
1− y sin2 θ

, (A5)

E(x|y) =

∫ x

0

√
1− y sin2 θ dθ , (A6)

are elliptic integrals of the first and second kind, respectively.
The explicit results given above for the t and ϕ coordinates of the generators clearly break down when r → a, but

are valid otherwise.
Setting ϕq(r) = π one can determine the r-coordinate of the caustic line as a function of the impact parameter q.

The result, again following [27], is written in terms of the sine of the Jacobi amplitude, sn(x|y) = sin (am(x|y)), where

am
(
F (x|y)

∣∣y) = x . (A7)

The final expression can be written as

νc(ξ) =
rc
a
(ξ) =

2ξ − (1 + ξ) sn2
(
F
(
α
∣∣β)− sgn(q)π√

ξ

∣∣∣ β)
2− (1 + ξ) sn2

(
F
(
α
∣∣β)− sgn(q)π√

ξ

∣∣∣ β) . (A8)
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Accordingly, the t-coordinate of the caustic line, as a function of q, is obtained by plugging the above result in
Eq. (A1), i.e., ηc(ξ) = ηq(νc(ξ)), or, restoring dimensions, tc(q) = tq(rc(q)) .
The value reported in Eq. (25) is obtained by equating expression (A8) to ξ.
Figs. 9 and 10 are zoomed-in versions of Figs. 2 and 3 in the main text, obtained by employing the results of this

Appendix. They display the behavior of the caustic line close to the wormhole throat and emphasize that the q = q∗
generators are distinct from the q = qc generators.
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