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Levels Assessment based on Multiple Physiological 

Parameters Monitoring 
 

Gonçalo Ribeiro, Student Member, IEEE, Octavian Postolache, Senior Member, IEEE, Francisco Ferrero Martín, 

Member, IEEE 

Abstract—Stress is a natural feeling of not being able to cope 
with specific demands and events, and it may even worsen a 
person's health, especially in chronic disease patients. Stress 
questionnaires are inefficient and time-consuming. Several models 

for stress estimation are based on facial analysis, voice recognition, 
Thermography, Electrocardiography, and 
Photoplethysmography, but they are not practical for patients. 
More robust systems with multiple parameters use devices that are 
incompatible in the same ecosystem. Machine learning techniques 
can also be used, but most studies only detect stress, few classify it, 
and none quantify it. The latest developments in health state 
monitoring present Photoplethysmography as the leading solution. 
Since it's non-invasive and can be integrated into wearable devices, 
it's more user-friendly and could be used in smart environments. 
Since it's non-invasive and can be integrated into wearable devices, 
it's more user-friendly and could be used in smart environments. 

The proposed work introduces novelty regarding 
Photoplethysmography signal processing algorithms to extract 
multiple physiological parameters simultaneously. In terms of 
innovations, a multi-channel detection system with a distributed 
computing platform is considered, which, besides containing the 

algorithms, also includes the introduction of new physiological 
parameters and the proposal of a model for estimating stress levels 
based on Fuzzy Logic, classifying stress into 5 levels. To validate 
the results, experimental protocols were created to induce thermal 
stress in volunteers, which yielded excellent system efficiency and 
accuracy indicators. The health status monitoring results and 
estimations are presented using a mobile application that was also 
developed. 

 
Index Terms—Blood Oxygen Saturation, Digital Signal 

Processing, Embedded Systems, Fuzzy Logic, Galvanic Skin 
Response, Heart Rate, Heart Rate Variability, Mobile Application, 
Photoplethysmography, Respiratory Rate Estimation, Stress 
Levels Classification. 

I. INTRODUCTION 

TRESS is a serious health problem that affects a large 

percentage of society, regardless of age, environment, 

social status, and other aspects. The fact that it is 
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common and that the term "stress" is generalized, causes people 

to neglect this condition. 

According to the Labour Force Survey (LFS) in 2019/2020, 

about 51% of work-related illnesses were a direct consequence 

of stress [1]. These consequences do not only translate into the 

feeling of fatigue but may even contribute to the aggravation of 

several chronic diseases in long term. Therefore, it is extremely 

important to monitor stress at an early stage, not only in a work 

environment, but throughout the daily routine. 

Technology plays a key role in our society, in order to try to 

solve existing problems, and as such, within the scope of stress 

assessment, several proposals have emerged, mostly making 

use of smartphones, smartwatches and smart bands, in order to 

acquire relevant physiological parameters, such as Heart Rate 

(HR), Heart Rate Variability (HRV), Galvanic Skin Response 

(GSR) or also called Electrodermal Activity (EDA), Body 

Temperature (BT), among others. A robust system for the 

acquisition of multiple parameters has not yet been proposed, 

as there are numerous obstacles, including battery life, the 

inability to collect data in multiple situations, noise artefacts, 

device compatibility, system mobility, system parameter 

relevance, user acceptance, and accuracy, among others. In 

addition, most of the suggested research merely differentiate 

between states of stress and relaxation, which is not reflective 

of the vast array of conceivable details that determine the 

classification of stress levels. 

The main objective of this work is to study the impact of 

stress on people's health conditions, through real-time 

monitoring of relevant physiological parameters. As such, in 

this work we present a multichannel sensory system, based on 

the acquisition and processing of Photoplethysmography (PPG) 

signals, to which was added the acquisition of GSR data, a 

parameter strongly related to stress. This system also includes 

the implementation of intelligent algorithms for physiologic 

parameters estimation, and machine learning for the 
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classification of stress levels. Through the mobile application 

developed, each user can monitor his/her health status, which 

includes detailed information related to the multiple vital signs 

acquired and stress levels monitoring. 

This work represents a compromise between methods 

reliability and mobility/practicality of the system. Our goal was 

to develop a system with high levels of reliability, accuracy but 

also usability.  

In terms of novelty, this work introduces a multichannel 

system capable of acquiring up to six physiological parameters 

in real time, with HR, HRV, Respiratory Rate (RR) and Blood 

Oxygen Saturation (SpO2) being estimated based on PPG 

signal processing, to which BT and GSR were also added, 

making it possible not only to monitor the user´s health status, 

but also to classify in real time the stress levels in a more 

accurate manner and adapted to a great diversity of users. 

Furthermore, this system differs from others, also betting on 

mobility, and although it is not an ultra-small device, it is a 

robust and autonomous system, which guarantees the safety and 

reliability of data, non-invasive and easy to use, not requiring 

any placement of sensors/devices, working only based on user’s 

touch. Another aspect to mention in terms of novelty was the 

development of a mobile application from which users can 

consult all the collected data, providing real-time values, daily 

averages and monthly averages, as well as the arrangement of 

information in graphs for better perception, classification of 

each physiological parameter according to the values tabulated 

by the World Health Organization, giving advices based on that 

classification, and estimation and classification of stress levels, 

also including important tips for their good management. 

In terms of innovation, this work introduces improvements 

to the algorithms previously developed in [2] for the extraction 

of physiological parameters based on PPG signal acquisition 

and processing, with particular emphasis on the algorithms for 

RR and HRV estimation. In the case of RR, this parameter lacks 

models for its estimation that do not involve counting the 

number of breaths per minute manually, which is a frequent 

practice in hospitals, or more complex approaches based on 

Electrocardiography (ECG) or Thermography. Thus, we 

improved the proposed model for estimating RR [2] based on 

the mathematical analysis of several PPG signal components. 

In the case of HRV, most proposed methods are based on a 

period for data acquisition (usually 5 minutes), after which the 

processing is performed, and an estimation is obtained. 

Nevertheless, in this research we propose a new technique 

based on ultra-short intervals with a 10-second periodicity. 

Another important aspect in terms of innovation is the 

intelligent algorithm proposed for the stress levels estimation 

based on Fuzzy Logic. In this model, each physiological 

parameter is classified, from which its Membership Function is 

extracted. These Membership Functions are then utilized to 

establish five rules, from which the coefficients allow to 

classify the stress in 5 levels, something completely new. 

It is also important to mention that the work proposed in this 

paper is an extension of the MeMeA 2022 conference paper [2], 

developed by the same authors, and as such, the efficiency of 

the previously proposed methods has been enhanced. 

Furthermore, this work also combines the use of mobile 

interfaces for stress monitoring [3]. 

This paper is organized as follows. Section II portrays the 

background related to health monitoring and stress assessment, 

and a review of literature related to the topic, both for a better 

theoretical framework. Section III discusses the methodology 

adopted, that is, the work that was performed and the material 

used. Section IV presents the discussion of the results obtained 

from the experimental procedures performed. Conclusion and 

future work follow. 

II. RELATED WORK 

This section discusses the relation between stress and health 

status, considering the stress assessment solutions including the 

acquisition of physiological parameters that can be related to the 

stress levels.  

A. Stress and Health 

When confronted with a stressor, the human body generates 

an autonomous response, that is, the autonomic nervous system 

triggers hormonal reactions, among them the release of cortisol 

(typically known as the stress hormone) into the bloodstream, 

thus leading to changes in several physiological parameters, 

such as HR, RR, SpO2, Muscle Tension, among others. This 

autonomous response depends on the duration for which the 

stressor is active. If a person is subjected to stress for long 

periods, he/she becomes more susceptible to develop serious 

health problems, such as Cardiovascular Diseases, Respiratory 

Diseases, Mental Illnesses, Diabetes, Sleep disorders, Immune 

System Degradation, Cancer, Anxiety, Depression, among 

others [4]. 

Beyond that, when stressful experiences are repeated without 

proper recovery intervals, the physiologic responses to stress 

alter cognitive-behavioural processes in usually sensitive and 

robust individuals. Imperfect perception, insufficient attention, 

inadequate or delayed information processing, and mistakes of 

judgment are all common side effects of repeated exposure to 

stressful situations, and they can have major repercussions, 

especially in the working environments [5]. 

Given that everyone is susceptible to stress, determining 

which types of stressors will influence everyone is highly 

subjective, especially given the wide variety of stressors, 

including thermal stressors, neurological stressors, 

environmental stressors, psychological stressors, physiological 

stressors, among others. Through contact with physicians and 

psychologists, it was possible to identify environmental and 

physiological stressors as the primary sources of stress for all 

individuals. Variations in temperature (extreme heat or cold), 

the effect of certain noises (various audible frequencies), the 

impact of light beams (bright light, glaring light, insufficient 

light, flash, etc.), and even the influence of music (dissonant, 

irregular rhythms, impactful, etc.) are examples of stressors. 

From the standpoint of detection and classification of stress 

levels, the type of stressors used is clinically irrelevant, so long 

as it is ensured that the induction of stress is effective for the 

intended purpose and does not exceed certain limits, thereby 

ensuring the physical integrity of the patients. However, given 
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that the general population is more susceptible to environmental 

conditions in their daily lives and that many professions involve 

exposure to indoor or outdoor thermal environments that can 

affect work capacity and, ultimately, health, thermal stressors 

were considered [6,7]. 

B. Stress Assessment 

Currently, the monitoring of stress levels is not objective 

because it is primarily based on self-assessment questionnaires, 

such as the Perceived Stress Scale (PSS) [8], or even through 

the monitoring of brain activity via Electroencephalogram 

(EEG) [9], which is performed in controlled environments, such 

as laboratories, thereby limiting the applicability of these 

techniques in everyday life. 

There have also been reports of face recognition-based stress 

monitoring [10,11], employing the capabilities of mobile 

devices such as smartphones and tablets [12,13]. For example, 

face recognition seeks to assess a person's emotional state by 

comparing the captured facial expression to a database 

containing samples of facial expressions with a specified 

meaning.

 

TABLE I 

RECENT RELATED WORKS ON STRESS ASSESSMENT 

Article Stress Signal Base Method Classification Sample Size Accuracy [%] Environment 

[4] (2017) 

ECG, GSR, 

Respiration, Blood 

Pressure, SpO2 

Support Vector 

Machine, k-Nearest 

Neighbours 

Stressed, Relaxed 32 subjects 95,80% Real Life 

[9] (2016) EEG 
Support Vector 

Machine 

Neutral, Medium, 

Low, High 
6 subjects 89,07% Laboratory 

[12] (2020) HRV, GSR 

Random Forest, 

Support Vector 

Machine, k-Nearest 

Neighbours 

Baseline, Cognitive 

Load, Stressed 
32 subjects 92,15% Real Life 

[13] (2018) Mobile Application 

Support Vector 

Machine, Artificial 

Neural Network, k-

Nearest Neighbours 

Stressed, Baseline 13 subjects 70,00% Real Life 

[14] (2019) PPG, GSR 
MATLAB, WEKA 

Toolkit 
Stress, No Stress 21 subjects 90,40% Laboratory 

[16] (2017) GSR, PPG 

Support Vector 

Machine, Logistic 

Regression, 

Random Forest 

Stressed, Relaxed 9 subjects 88,88% Laboratory 

[18] (2016) 
Empatica Wrist 

Device 

Activity 

Recognition 

Classifier, Device 

Stress Detector 

Stress, No Stress 21 subjects 92,00% 
Laboratory, Real 

Life 

[51] (2012) GSR 
MATLAB, WEKA 

Toolkit 
Relaxed, Nervous 15 subjects 76,56% Laboratory 

[19] (2021) 

PPG, Inter-beat 

Interval, Blood 

Volume Pulse  

Convolutional 

Neural Network, 

Average Pixel 

Intensity with Trees 

Classifier 

Baseline, Stress, 

Amusement 
6 subjects 99,18% Laboratory 

[20] (2018) EEG, GSR 

Data Fusion, Linear 

Regression, 

Keystroke Analysis 

Low Stress, High 

Stress 
22 subjects 77,25% Laboratory 

[21] (2019) EEG, GSR, PPG 

Support Vector 

Machine, Naïve 

Bayes, Multi-layer 

Perceptron 

Stress, No Stress 28 subjects 75,00% Laboratory 

[22] (2018) 
HRV, GSR, EEG, 

Salivar Cortisol 

Support Vector 

Machine, 

Correlation 

Analysis 

Baseline, Stress 15 subjects 86,00% Laboratory 

[23] (2021) HRV 

Principal 

Component 

Analysis, Random 

Forest Algorithm 

Stress, No Stress 30 subjects 74,51% Laboratory 

[24] (2016) 

PPG, GSR, 

Respiration, Thermal 

Cam 

Decision Tree Stressed, Relaxed 50 subjects 73,00% Real Life 

[27] (2017) HRV, GSR F-State Machine 
Low, High Stress, 

High Alert 
166 subjects 98,40% Laboratory 
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Unfortunately, in terms of continuous monitoring in the real 

world, where solutions characterized by higher autonomy, 

mobility, and unobtrusively are preferred, facial recognition 

presents some limitations that made it less applied in real life. 

Using image recognition for stress detection presents practical 

limitations from a user experience, healthcare, and data 

viability perspective. Interpreting stress from images is 

subjective and context-dependent, making the development of 

a universally applicable model challenging. Continuous image 

monitoring raises privacy concerns and can affect user 

acceptance. Acquiring diverse and representative datasets for 

training is difficult, impacting the reliability of stress detection. 

Cultural and gender variations in stress expressions introduce 

complexities. To enhance accuracy, integrating image 

recognition with other data sources is necessary. Technical 

challenges, such as lighting and image quality, can influence 

the precision of stress detection. These limitations highlight the 

importance of adopting a comprehensive and user-centric 

approach when implementing image recognition for stress 

detection in healthcare and user-oriented applications, making 

them too complex for wearable solutions or mobile healthcare 

systems. 

In the case of smartphone use, and more specifically their 

built-in equipment, it is common to attempt to extract the PPG 

signal through the camera and using the flash, although the 

reliability of the resulting signal is questionable. 

As shown in Table I, the most recent works with promising 

results typically address physiological stress, using vital signs 

monitoring, from a variety of methods. Something to highlight 

is the fact that a parameter always present in these works is the 

GSR. Although there is a substantial association between GSR 

and stress, this measure alone is insufficient to quantify stress 

properly. The GSR fluctuates with sweat production, which 

means the more sweat is produced, the greater the GSR value 

will be. Intense physical activity or disorders such as 

Hyperhidrosis (excess sweat production) have a direct effect on 

the GSR, and as a result, it is impossible to tell whether an 

individual has exerted effort or is stressed. Thus, there are 

studies that propose the correlation of GSR with several 

physiological parameters such as HRV [11,27], Blood Pressure 

(BP) [4,19], Respiration [4,25], among others, or even 

combining GSR with techniques such as PPG [13,16], ECG 

[4,18], EEG [20-22] or Electromyography (EMG) [25], 

however, most of them only detect the presence of stress and 

there is no classification or quantification of stress levels. 

Techniques such as the EEG, which is used to analyse brain 

activity, and the EMG, which is used to evaluate the health of 

muscles and nerve cells, are commonly used in medical 

diagnoses. However, these techniques are performed in 

controlled environments and require specialised equipment that 

is not exactly practical. In the specific case of the EEG, it is a 

common mistake to attempt to combine this signal with 

physiological parameters such as GSR [20,21] or HRV [22], as 

they have different natures, i.e., the EEG is something related 

to the brain, human emotions, and psychological lining, and as 

such, it only contributes to monitoring psychological stress. 

Thus, it is not feasible to utilise EEG to validate models for 

assessing stress based on physiological parameters. 

Techniques such as ECG and PPG, which are used to monitor 

different aspects of cardiological activity, are more useful in 

systems designed to estimate stress because they enable the 

extraction of relevant physiological parameters from signal 

processing [4, 22]. However, many proposed works do not 

make the most of this potential, extracting only HRV or SpO2 

[4, 22]. 

C. Acquisition of Stress-related Physiological Parameters 

As was seen in the previous subsection, the most promising 

works in the field of stress assessment explore physiological 

parameters, however the robustness of these models is 

questionable, not in terms of methods efficacy or accuracy, but 

rather in the origin of everything, i.e., in the acquisition of the 

data that feeds these systems, and there is a shortage of relevant 

physiological parameters. In the few studies that explore 

multiple physiological parameters, the system itself lacks 

mobility and practicality, as it involves several devices, which 

often do not allow a complete integration, and that make their 

use unappealing to users. Thus, one of the challenges in this 

research field is to implement a system capable of acquiring 

multiple physiological parameters, but which at the same time 

bets on simplicity for the user, something that can be achieved 

through innovations related to physiological parameters 

acquisition methods.  

In terms of proposed methods for the acquisition of 

physiological parameters related to stress, the ECG technique is 

a gold standard, however, PPG has shown great potential, and 

through data analysis, it is possible to estimate essential 

physiological parameters such as HR [28-30], HRV [29,30], RR 

[28,31,32], SpO2 [33,34], among others.  

In recent years, new wearable device solutions have been 

introduced to the market. The work to developed increasingly 

efficient wearable devices, small, with high connectivity and 

mobility, is followed by different research groups. Multi-

functional sensing platform that provides HR, HRV, RR, SpO2 

and BP, are still on prototype level. Thus, different authors are 

reporting results on systems for multi-parameter monitoring, 

however, the solutions are characterized by several sensors or 

complex methods characterized by high computational load, 

which consequently affects aspects such as mobility or 

autonomy [28,29,31]. 

In more complex systems, the ECG approach is often 

adopted, which is based on monitoring the electrical activity of 

the heart, however, this technique is not quite practical, since it 

requires the placement of electrodes on certain areas of the torso 

and the patient's immobility [35]. Thus, the PPG approach has 

been a strong contender to replace the use of ECG in a 

numerous applications, as it is based on monitoring changes in 

blood flow through the emission of a light beam and its 

detection, requiring only that the patient approach a part of 

his/her body, and as such, in addition to being more practical 

and less expensive than ECG, PPG is a non-invasive technique 

[35,36]. 

Regarding PPG sensors placement, fingers are typically 

used, or as alternative the wrist region. It is important to note 
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that choice between finger and wrist sensors depends on the 

application and specific requirements. While PPG wrist sensors 

are more discrete and do not cause much obstruction or 

discomfort, finger sensors offer important advantages, such as 

more accurate readings (finger has a higher density of blood 

vessels closer to the skin surface, allowing for better detection 

of blood flow changes), better signal quality (sharper and 

clearer wave, facilitating the extraction of precise physiological 

information), and reduced movement artefacts (finger regions 

are less prone to movement artefacts). 

Regarding PPG sensors operation, there are several types 

available on the market, and as a result, it is crucial to select the 

sensor that is most suitable for the intended purpose of the work. 

These sensors can be classified based on their signal acquisition 

mode, LED emitter configuration, and LED emitter type. PPG 

sensors may be Transmissive (using light transmitted through 

tissues) or Reflective (using light reflected by tissues). They can 

also be classified according to the arrangement and colour of 

the emitting LEDs: one emitting LED (green) and one 

photodetector LED, or two emitting LEDs (one infrared and 

one red) with one photodetector LED. PPG sensors employing 

a single green LED are resistant to movement artefacts but have 

a limited penetrating depth. They can be used to monitor Heart 

Rate (HR). PPG sensors with a red LED provide superior light 

penetration and are useful for collecting additional data, such as 

Heart Rate Variability (HRV) and Respiratory Rate (RR). A 

PPG sensor with two LED emitters (red and infrared) is 

required to measure Blood Oxygen Saturation (SpO2). The 

choice of PPG sensor should align with the specific 

physiological parameters to be measured, as discussed in more 

detail in the preceding paper [2]. 

The scientific literature reports the acquisition of 

physiological parameters such as HR, HRV, RR and SpO2, and 

the presented solutions are varying from author to author. Thus, 

different PPG specifications and noise artifacts must be 

considered, requiring a pre-processing and filtering procedure 

for the PPG signal, which may require the implementation of 

different types of filters [28,32-34]. In the case of using a PPG 

sensor based on IR and RED, both signals must be filtered. 

In general, obtaining HR from the PPG signal, requires 

determining the time elapsed between two consecutive 

maximum peaks, a time that serves to estimate the number of 

Beats Per Minute (BPM) [18,30]. 

In the case of obtaining the RR from the PPG signal, several 

methods have been proposed over the years, such as the 

development of machine learning algorithms based on the 

correlation of data present in medical databases, as is the case 

of MIMIC-III [28]. The problem with these approaches, is that 

they become dependent on the reliability of the data, and if the 

data is contaminated, the entire process can be called into 

question. Another issue is the context in which the data were 

collected and if they can be replicated, such as during specific 

physical activities or the experience of specific emotions or 

stress levels. In addition to the above-mentioned method for the 

acquisition of RR from the PPG signal, it is important to note 

other approaches based on the amplitude and frequency 

modulation of the PPG signal, from which the maximum and 

minimum peaks of the signal are obtained and correlated to 

estimate RR [32,40,41]. 

As mentioned previously, a PPG sensor coupled with an IR 

LED and a RED LED is required to extract the SpO2 from the 

PPG signal. This measurement is based on the variation of 

values relating to light absorption by body tissues.  

III. METHODOLOGY 

In this section, the proposed system for health status monitoring 

is presented, which also has a user interface based on a mobile 

application. The data acquired from measurement channels related 

with physiological parameter monitoring is used to implement the 

Fuzzy Logic classification algorithm for induced stress. 

The proposed system was initially designed with the purpose of 

performing stress monitoring in chronically ill people during their 

daily life, however, the system can be used for general purposes, 

being very useful for anyone who wants to monitor their health 

status, and particularly the assessment of their stress levels. 

Compared to other works previously proposed and mentioned, our 

work presents innovation in terms of offering more to the users and 

everything compact in a system of considered small dimension, 

and with autonomy to be used anywhere. The purpose of the design 

lies in the fact that users interact with the system through simple 

touch, having only to approach their hand, without the need for 

great complexity and placement of equipment. 

 
Fig. 1. System Architecture. The proposed system presents 3 

layers, being the Sensing System, Database and User Interface 

(Mobile Application). All communication between the layers is 

done via Wi-Fi. 

In this section, the experimental procedure carried out to 

monitor the human body's response to induced thermal stress is 

also described, thus allowing the implementation of an accurate 

algorithm for stress classification. 

Stress can be represented in several ways, depending on the type 

of stressor in question, such as, Pathophysiological Stress 

(associated with unusual oscillations in body temperature), 

Neurological Stress (associated with the overloading of neurons 

and consequent increase in the brain's electrical activity), Chronic 

Stress (associated with chronic diseases such as Hypertension, 
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Type 2 Diabetes, weight gain, Dyslipidaemia), Psychological 

Stress (associated with emotions), and in our case, Thermal Stress 

(associated with temperature variation outside the individual). 

Note that the aim of this work is to propose a new model for stress 

levels monitoring. Any of the stress types mentioned is present in 

people's everyday life, and as such, any one of them could be 

induced to validate the proposed system. The choice of Thermal 

Stress resided in the fact that it is more accessible compared to 

other types of stress, also opening future perspectives for the 

introduction of Thermography. 

A. Sensing System 

The proposed sensing system for health status monitoring, is 

composed by two ESP32 microcontrollers, an OLED LCD 

display (SSD1306), a microSD memory card reader/writer 

module, a Real Time Clock (RTC), a Radio Frequency 

Identifier (RFID), a PPG sensor (MAX30102), a GSR sensor 

(Grove - GSR sensor - Seeed), an Infrared Temperature Sensor 

(GY-906 Infrared Temperature Sensor Module MLX90614) 

and two Li-Po batteries (3.7V, 850mAh). The main system 

components communicate with the system microcontrollers 

using either the Inter-Integrated Circuit (I2C) or Serial 

Peripheral Interface (SPI) protocols. 

The usage of SSD1306 allows the real-time display of the 

acquired data. The RTC and microSD memory card 

reader/writer modules, are used to ensure that the acquired data 

are stored for future analysis tasks. If the microcontrollers 

establish a Wi-Fi connection successfully, the data is remotely 

stored in the database. The inclusion of an RFID reader into the 

sensorial system enables user identification, associating the 

unique RFID identifier of each user with each acquired data. 

Also related to the user’s identification, when creating an 

account in the developed mobile application, users must also 

associate the number of their RFID identifier. 

 
Fig. 2. Sensing System Architecture. (a) ESP32 

Microcontroller 2. (b) ESP32 Microcontroller 1. (c) Real Time 

Clock. (d) MicroSD Memory Card Reader/Writer Module. (e) 

OLED LCD Display. (f) GSR Sensor. (g) Infrared Temperature 

Sensor. (h) PPG Sensor. (i) Radio Frequency Identifier Reader. 

The ESP32 microcontrollers used in the sensing system are 

characterised by Dual-Core 32-bit CPU, maximum Clock of 

240 MHz, ROM memory of 448 Kbytes, RAM capacity of 520 

Kbytes, and Flash memory of 4 MB. 

The first microcontroller (Micro1) is responsible for users’ 

authentication through RFID identifier, data acquisition from 

the PPG sensor, and the embedded Digital Signal Processing 

(DSP). The embedded DSP includes PPG maximum, minimum 

and average values calculation, followed by HR, HRV, RR and 

SpO2 estimation. The PPG sensor will be discussed in more 

detail in the following “1) Data Acquisition” subsection.  

The communication between both microcontrollers is done 

through Universal Asynchronous Transmitter Receiver 

(UART). Since this connection is asynchronous, steps were 

taken to synchronize both microcontrollers by implementing 

locking algorithms, widely used in Concurrent and Distributed 

Programming. In this way, Micro1 sends to the second 

microcontroller (Micro2) the user RFID identifier number 

along with the data extracted from the PPG signal processing. 

In turn, Micro2 is responsible for data acquisition from GSR 

and infrared temperature sensors, and storing the PPG, GSR and 

Temperature data locally, through SD memory card, or 

remotely via Wi-Fi connection with database. GSR and infrared 

temperature sensors will be discussed in more detail in the 

following “1) Data Acquisition” subsection.  The system 

includes two microcontrollers that achieves functioning 

reliability without compromising its efficiency. 

The next subsections will cover in more detail the different 

stages of the sensory system, such as data acquisition and 

processing, physiological parameter estimation, and data 

storage. 

1) Data Acquisition 

The GSR sensor is responsible for galvanic skin response 

evolution in the induced stress context. High level of stress 

may stimulate the nervous system, resulting in increased sweat 

secreted by the sweat glands. This sensor contains two 

electrodes that are designed to be placed on two fingers of the 

same hand. This sensor's conditioning module operates as an 

analog-to-digital converter, enabling us to extract the GSR 

value in resistance (Ohm). 

The Infrared temperature sensor enables systems to acquire 

temperature data with or without direct object contact. In the 

proposed sensory system, this sensor is used to acquire the 

user's body temperature. This sensor has a measurement range 

between -70 and +380ºC with an accuracy of 0.5ºC. The sensor 

itself has an operational temperature range between -40 and 

+125ºC. 

The MAX30102 sensor was used as PPG sensor. It allows 

the acquisition of the IR component of the PPG signal, 

necessary to estimate the HR, HRV and RR, but also the 

acquisition of the RED component necessary to estimate the 

SpO2. This sensor uses the I2C communication protocol, thus 

featuring four connections, being the 5-volt power supply, 

Ground (GND), Serial Data Line (DAS) and Serial Clock Line 

(SCL). According with the experimental obtained signals the 

noise and artifacts level requires the filter implementation to 

increase the SNR. It is important to point out that the 

MAX30102 sensor presents an Analog Digital Converter 

(ADC) with a resolution of 14 bits, that is, the maximum value 

acquired by this sensor can go up to 16383 bits. In this way, to 
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visualize the data acquired by MAX30102, it was necessary to 

make a conversion from bits to voltage, through Equation 1. 

 ������ ���	��
 =
����������∗�������� !���

������ "!���
 (1) 

 

2) PPG Signal Pre-processing and Feature Extraction 

In the work preceding this one [2], the extraction of multi-

parameters from PPG signal processing was presented, along 

with a significant module for signal filtering that accounted for 

the substantial amount of noise associated with motion 

artefacts. All filter selection and design stages were outlined in 

[2], and a first-order low-pass filter with a cutoff frequency of 

30 Hz and a sampling frequency of 300 Hz was used, resulting 

in the Continuous Time Transfer Function (H) represented in 

Equation 2, and in the Discrete Time Transfer Function (Hd) 

represented in Equation 3. Based on Equation 3, it was possible 

to determine the final equation for the digital filter, represented 

in Equation 4. To filter the IR signal and the RED signal, this 

equation was implemented in the microcontroller. Note that in 

Equation 4, "x" represents the original signal samples acquired 

by the MAX30102 sensor prior to filtering, whereas "y" 

represents the signal samples obtained following filtering. The 

result of filtering the IR component of the PPG signal can be 

seen in Fig. 3. bellow. 

 #$%& =
'((.*

�+'((.*
 (2) 

 #,$-& =
../00*

12..*33*
 (3) 

 4$�& = 0.5335 ∗ 4$� − 1& + 0.4665 ∗ =$�& (4) 

 
Fig. 3. IR Component of the Filtered PPG Signal. Note that in 

blue is the plot of values relative to the IR component of the 

unfiltered PPG signal, and in red is the plot of values relative to 

the IR component of the filtered PPG signal. 

 

 

 

3) Physiological Data Extraction from PPG Signal 
In this stage, the filtered PPG signal was processed to extract 

the maximum, minimum and mean values, as presented in [2], 

from which several physiological parameters were extracted, 

such as HR, HRV, RR, SpO2. 

For the HR estimation, the peak values of the IR component 

of the PPG are used. Thus, the HR values is obtained in real-

time considering the time interval between two consecutive 

maximum peaks. This time interval is commonly named as 

Pulse-to-Pulse Interval (PPI). Each cycle of the PPG signal 

corresponds to one beat, and as such, by determining the time 

elapsed between two consecutive maximum peaks, it is possible 

to estimate how many beats per minute one would have. The 

estimated HR is given by Equation 5 and expressed in BPM. 

 #> =  
0.

$??@�2??@�AB&
 (5) 

In the case of HRV estimation, typically named Pulse Rate 

Variability (PRV) in the context of PPG, once again the 

maximum values of the PPG signal are fundamental, since 

HRV is determined based on the time difference between two 

consecutive heartbeats. 

There are several methods for estimating HRV, depending 

on the microcontroller characteristics and time duration for data 

acquisition [43]. For this work, the method developed for PRV 

estimation was based on the Root Mean Square of Successive 

Differences (RMSSD) between heartbeats, expressed in 

milliseconds. This method suggests an acquisition interval of 

60 seconds. 

As such, the estimation of HRV is based on the summation 

of the square of the difference between the Inter Beat Interval 

(IBI) at time t and the IBI at time t+1, where t varies from 0 to 

60 seconds. Thus, the RMSSD is given by the square root of the 

mean of the summation. An important aspect to be considered, 

is that from the system user's point of view, a 60 second 

acquisition period is too long, while from the clinical point of 

view, the recommended acquisition interval is 5 minutes. Thus, 

the methodology proposed for HRV (PRV) estimation applies 

the RMSSD method to acquisition intervals of 60, 30, 20 and 

10 seconds, then compared with the values obtained in an 

acquisition interval of 5 minutes. Based on the results obtained 

in [2], the final algorithm proposed for HRV estimation 

considers which interval is more appropriate and is also capable 

of apply variable acquisition intervals according to the 

acquisition phase. Additionally, this methodology implements 

multiple timeslots with a 5-second interval between them to 

increase the periodicity of the values update. 

In the case of RR estimation, the PPG signal is analysed in 

real-time to identify maximum values. These values are then 

used to create the so-called respiration wave. Each time this 

wave reaches a maximum, a breath is counted. At each 

microcontroller clock cycle, the system checks the number of 

breaths in the counter (bCounter) and depending on the time 

elapsed since the beginning of the acquisition (bTime), 

estimates the RR, as shown in Equation 6 and expressed in 

Breaths Per Minute (BPM’). 

 >> =  
$C��D�E��∗0.&

$CFGH�&
 (6) 
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For SpO2 estimation, the data related to the IR component 

and the RED component, both from the PPG signal, were 

correlated. For this purpose, the coefficients AC (difference 

between maximum and minimum peak) and DC (mean value 

between maximum and minimum peak) of both components 

were determined. The importance of determining these 

coefficients lies in the need to calculate the perfusion index 

(division of the AC coefficient by the DC coefficient) of each 

component, from which the Ratio (R) is calculated using 

Equation 7 [45]. However, depending on the specifications of 

the type of sensor used, empirical coefficients must be defined 

for sensor calibration [34,39]. In the case of the sensor in use, 

the estimation of SpO2 is given according to Equation 8 and 

expressed in percentage (%). 

 #> =  
$��IJK∗�LI&

$�IJK∗��LI&
 (7) 

 #> =  110 − 25 ∗ > − 1 (8) 

4) Remote Data Storage 
Intelligent systems are increasingly dependent on 

technologies capable of processing data quickly and 

automatically, such as Machine Learning techniques, Neural 

Networks, Deep Learning, and Data Mining. To fulfil their 

functions effectively and precisely, these tools require huge 

amounts of data stored in databases. Thus, selecting the best 

suitable database for a system is essential. 

For NoSQL database implementation, the Google 

"Firebase" database was chosen, considering its advantages for 

mobile and web application development, offering 

compatibility with IOS, Android, Web, Unity, and C++. 

Firebase not only allows fast real-time access, but also provides 

a high level of integration with cloud storage, the usage use of 

machine learning techniques as so as the fast and secure 

authentication methods [46]. 

B. Mobile User Interface 

The system’ user interface is based on Android mobile 

application. The mobile application allows users to perform the 

real-time monitoring of their physiological parameters. 

Additionally, daily averages, monthly averages and 

classification results can be visualized, to help users for better 

manage their health condition. 

In addition to physiological parameters monitoring, the 

application is also responsible for the assessment of stress 

levels, through the implementation of Fuzzy Logic. To 

implement the Fuzzy Logic, we defined for each physiological 

parameter its reference values (HR [47], HRV [48], RR [49], 

SpO2 [50] and GSR [51]), the classification and the type of 

Membership Function, according to Table II. 

 

 
Fig. 4. Different Mobile Application Layouts. 
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TABLE II 

PHYSIOLOGICAL PARAMETERS TREATMENT 

Parameter 
Classification based on Parameter Reference Values 

Very 

Low 
Low Normal High Very High  

HR [BPM] 0 – 50 50 – 60  60 – 90 90 – 100 100 – 200 

HRV [ms] 9 – 19 19 – 32 32 – 77 77 – 107 107 – 160 

RR [BPM’] 0 – 10 10 – 12 12 – 18 18 – 22 22 – 30 

SpO2 [%] 85 – 90 90 – 95 95 – 97 97 – 99 100 

GSR 

[KOhm] 
10 – 20 20 – 30 30 – 50 50 – 70 70 – 100 

 

A Membership function for a Fuzzy set A on the universe of 

discourse X is defined as µA:X → [0,1], where each element of 

X is mapped to a value between 0 and 1. This value, called 

membership value or degree of membership, quantifies the 

grade of membership of the element in X to the fuzzy set A. 

Based on previous Table II, the Membership Functions used 

in the proposed model are categorised as Trapezoidal Function 

Type R for “Very Low”, defined in Equation 9, Trapezoidal 

Function Type L for “Very High”, defined in Equation 10, and 

Triangular Function for “Low”, “Normal” and “High”, defined 

in Equation 11. According to physiological parameter 

classification based on the reference value ranges, the minimum 

value is "a", the maximum value is "b", and the average value 

is defined as "c". 

To define the Fuzzy Logic, 5 rules were also created, one for 

each classification of stress levels. These rules are presented 

below in Table III. The quantification of stress is then given by 

Equation 12. 

 

TABLE III 

CLASSIFICATION OF STRESS LEVELS ACCORDING TO THE 

FUZZY LOGIC ALGORITHM 

Stress Rules (R) Stress Level (S) 

Very Calm 

VeryLow(HR) Λ 
VeryLow(HRV) Λ 
VeryLow(RR) Λ 

VeryHigh(SpO2) Λ 
VeryHigh(GSR) 

N1 = > ∗ 1 

Calm 

Low(HR) Λ Low(HRV) Λ 
Low(RR) Λ High(SpO2) Λ 

High(GSR) 
N2 = > ∗ 2 

Normal 

Normal(HR) Λ Normal(HRV) Λ 
Normal(RR) Λ Normal(SpO2) 

Λ Normal(GSR) 
N3 = > ∗ 3 

Stressed 

High(HR) Λ High(HRV) Λ 
High(RR) Λ Low(SpO2) Λ 

Low(GSR) 
N4 = > ∗ 4 

Very Stressed 

VeryHigh(HR) Λ 
VeryHigh(HRV) Λ 
VeryHigh(RR) Λ 

VeryLow(SpO2) Λ 
VeryLow(GSR) 

N5 = > ∗ 5 

 Trapezoidal_Type_R = \ 0     , = > _C2`C2a      , � ≤ = ≤ _1     , = < �  (9) 

 Trapezoidal_Type_L = \ 0     , = < �`2aC2a      , � ≤ = ≤ _1     , = > _  (10) 

 Triangular_Function =
⎩⎪⎨
⎪⎧ 0     , = ≤ �`2ao2a      , � < = ≤ pC2`C2o      , p < = < _0     , = ≥ _

 (11) 

 N	r
%% =  �'+�s+�3+�/+�*t'+ts+t3+t/+t* (12) 

C. Experimental Procedure 

In the scope of this work, experiments were carried out, with 

16 volunteers. Specific biometric information for the volunteers 

is presented in Table IV below. All participants were informed 

about the experiments and gave their verbal consent. None of 

the participants reported any mental, cardiac, respiratory, or 

other disturbances. However, due to the poor quality of some 

physiological signs obtained, data from 2 participants were 

excluded from the analysis. 

 

TABLE IV 

VOLUNTEERS SPECIFIC BIOMETRIC INFORMATION 

 

Previous research [2] validated proposed models for 

estimating HR, HRV, RR, and SpO2 from PPG signal 

acquisition and processing. However, the architecture of the 

sensory system was updated, including the replacement of the 

PPG MAX30100 sensor with the PPG MAX30102 sensor, 

which opened the possibility of enhancing the accuracy of the 

methods. 

Bearing this in mind, the goal these experiments was to 

evaluate the response of the human body to induced thermal 

stress. To this end, the experiments were conducted at room 

temperature in a controlled environment. The participants 

remained seated and at rest during the entirety of the 

experiments. Participants were instructed to use their right hand 

to engage with the sensory system to collect physiological 

parameters (HR, HRV, RR, SpO2), and their left hand as the 

target of thermal stress induction (hot and cold). Limits were 

established to guarantee the participants physical integrity, and 

as such, it was defined as low temperature 20ºC [52] and high 

temperature 40ºC [53]. 

Regarding the experimental material, the sensory system 

developed, two containers with water (one with cold water and 

the other with hot water), ice (temperature adjustment), and a 

food thermometer were used. 

The experiments had the following 5 phases: 

- 
Male 

Gender 
Female 
Gender 

Total 

Participants 12 4 16 

Age Range 16 – 91 26 – 71 16 – 91 

Average Age 44 45 44 

Standard Deviation of Ages 23 16 22 
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• Phase 1 - Rest Period: this phase lasted 5 minutes, in 

which the physiological parameters were acquired, thus 

intended to establish a baseline for each participant. 

• Phase 2 - Induction of Thermal Stress with Cold: this 

phase took place immediately after Phase 1 and lasted 

1 minute, in which the participants physiological 

parameters were monitored when in contact with cold. 

This phase did not exceed 1 minute, so as not to 

endanger the participants physical integrity. 

• Phase 3 - Recovery Period: based on specialized 

advice in the Thermography research field, this phase 

lasted 10 minutes, the period necessary for the human 

body to recover from contact with cold. This phase took 

place immediately after Phase 3, that is, the participants 

removed their hands from the cold and kept them at 

room temperature, that is, without any kind of heating, 

thus serving to monitor the participants recovery 

capability. 

• Phase 4 - Induction of Thermal Stress with Heat: this 

phase took place immediately after Phase 3 and lasted 

1 minute, with the participants' physiological 

parameters being monitored when in contact with heat. 

This phase did not exceed 1 minute, so as not to 

endanger the participants physical integrity. 

• Phase 5 - Recovery Period: as in Phase 3, a duration 

of 10 minutes was also defined, the period necessary for 

the human body to recover from the contact with the 

heat. This phase took place immediately after Phase 4, 

that is, the participants removed their hands from the 

heat and kept them at room temperature, that is, without 

any type of cooling, thus serving to monitor the 

participants recovery capability. 

 

At the end of each phase, each participant was asked to assess 

stress level on a scale from 1 to 5, which served as reference 

values for the validation of the Fuzzy Logic technique's results. 

As previously stated, the sensory system acquires samples of 

each physiological parameter every 10 seconds, for a total of 30 

samples every minute. Thus, given the total duration of the 

experiments (27 minutes), a total of 810 samples were acquired, 

consisting of 162 samples per each physiological parameter. 

 
Fig. 5. Experimental Setup. (a) Container with hot water. (b) 

Ice. (c) Container with cold water. (d) Sensing System 

(measured HR, HRV, RR, SpO2 and GSR. (e) RFID identifier. 

(f) Food Thermometer. 

IV. RESULTS AND DISCUSSION 

This section discusses the outcomes of the described 

experimental procedures in terms of enhancing the performance 

of the proposed models for estimating physiological 

parameters, as well as the study regarding thermal stress 

induction and validation of stress levels classification. 

Furthermore, final issues regarding the system's viability, both 

from a technical and user standpoint, are addressed. 

A. Accuracy Enhancement of Physiological Parameter 

Estimation 

Regarding the methods for estimating HR, HRV, RR, and 

SpO2 previously presented in [2], the use of a new PPG sensor 

made it possible to improve the developed algorithms to 

achieve higher accuracy. The analysis of these methods was 

carried out in the same way and replicating the same conditions 

as in [2], with statistical analyses being carried out in 

accordance with the measurement of type A uncertainties, i.e., 

data collected from a series of observations and evaluated using 

statistical methods, namely relative error. The reference values 

were obtained using equipment such as the Medlab P-OX100 

medical metre (HR and SpO2 measurement), methods such as 

RMSSD (HRV measurement), or devices like the 

one developed and validated in [54] (RR measurement). 

Compared to the results previously obtained in [2], the 

maximum relative error in obtaining HR improved from 

2.78% to 1.47%, while the maximum relative error in obtaining 

SpO2 remained at 1.02%. Maximum relative error in RR 

estimation remained at 9.09%. 

As described in [2], HRV estimation relies on varying 

acquisition periods of 60, 30, and 10 seconds. In the case of the 

60-second period, the maximum relative error improved from 

7.41% to 1.45%, while the maximum relative error for the 30-

second period improved from 12.23% to 4.35%. In the 10-

second period, the maximum relative error improved from 

18.52% to 7.25%. In [2] there was still a 20-second period, but 

this was eliminated from the algorithm due to the significant 

maximum relative error of 55.56%, which, although improved 

to 21.73%, was still not satisfactory enough to be considered. 

B. Thermal Stress Induction and Validation of Stress Level 

Classification 

The main goal of this experiment was to investigate the 

effects of temperature stressors on physiological parameters. In 

this instance, HR, HRV, RR, SpO2 and GSR are considered. 

The behaviour of the acquired physiological parameters 

follows a pattern, in the sense that, thermal stress induction 

leads to significant increase in physiological parameters values. 

In contrast, during the recovery phases, the values of 

physiological parameters tend to decrease. To simplify the data 

analysis, the averages of each physiological parameter collected 

throughout the entire experiment were calculated. As an 

example, the HRV averages for each participant are shown in 

Fig. 6. Note that for the purpose of improving data exposure, 

we chose not to represent all participants.  
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Fig. 6. HRV Averages for each Participant during each Testing 

Phase. 

In the specific case of the GSR, after the first cold 

perturbation, there is a noticeable increase in the values, but in 

the recovery period, a large decrease in the values is not 

observed, as is the case with the other physiological parameters, 

leading us to believe that due to the strong connection between 

GSR and stress, it is affected longer by the stressor. Another 

interesting aspect concerning the GSR is that the hot 

disturbance serves to help relax the participants rather than as a 

stressful factor, as can be seen in Fig. 7.  

 
Fig. 7. GSR averages for each participant during each testing 

phase. 

 Another important thing to mention is that the participants 

age also influences how the human body reacts to the stressor. 

In the case of participants over the age of 65, the time it takes 

their bodies to recover is longer than that of younger 

participants. Furthermore, the reaction time to the stressor itself 

is longer. This is illustrated in Fig. 8 by comparing one of the 

young, randomly selected participants (age criteria ranged from 

16 to 30 years) with an older, equally randomly selected 

participant (age criteria ranged from 60 to 91 years). In addition, 

the choice also had gender as a criterion, with males to be 

chosen (larger number of participants). 

 
Fig. 8. Comparison between the SpO2 Values obtained by a 27-

year-old Participant (highlighted in blue) and a 70-year-old 

Participant (highlighted in orange) throughout the duration of 

experiment 2 (Thermal Stress Induction). 

To validate the model for estimating stress levels using Fuzzy 

Logic, participants were given a slider button and asked to 

estimate their level of stress on a scale of 1 to 5. After the 

experiments, the data was analysed in detail and the Fuzzy 

Logic methodology was applied. This resulted in a 

classification of stress levels from 1 to 5, which was compared 

to the self-classification performed by the participants. The 

performance of this model was evaluated using a multi-class 

confusion matrix presented below in Fig.9, based on which 

performance evaluation metrics including sensitivity, 

specificity, and accuracy were calculated and presented below 

in Table V. 

 
Fig. 9. Multi-class Confusion Matrix for Stress Classification 

Model. 
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TABLE V 

EVALUATION METRICS DERIVED FROM CONFUSION MATRIX 

Metric 

Classification of Stress Levels According to the Model 

Very Low Low Normal High 
Very 

High 

Sensitivity - 0.94 0.87 0.75 - 

Specificity 1 0.92 0.90 0.97 1 

Accuracy 1 0.93 0.89 0.93 0.99 

 

In terms of results, the proposed Fuzzy Logic methodology 

presents satisfactory results in terms of sensitivity, specificity, 

and accuracy. No big discrepancy of results was found between 

the self-classification performed by the participants and the 

classification generated by Fuzzy Logic model. To further 

validate the model, more stress induction tests should be done 

in extreme settings where volunteers may report "very calm" 

and "very stressed" stress scores. In addition to increase the 

number of participants, noise or light stressors could be also 

considered for the stress induction. 

C. Final Considerations  

Volunteers proved the system's viability in real-world 

scenarios. All participants felt comfortable with the system's 

sensing component as well as the mobile application that was 

developed. Usability characteristics such as "intuitive" and 

"easy to comprehend" were underlined for all age groups. 

Positive comments were also provided on the system's 

usability. Moreover, the dynamic format for placing the human 

hand in the system allowed the participants to feel no 

discomfort while ensuring accurate data acquisition, which is 

often a problem because the contact between the person and the 

equipment is not always optimal, thereby compromising the 

accuracy of the acquired data. 

The viability of the system's application outside of a 

laboratory context was also demonstrated. As previously stated 

in the experimental protocol, the experiments were conducted 

in a controlled environment and under the same 

conditions, however, there were situations in which participants 

were asked to repeat the same experimental protocol, but in 

different locations, to determine its impact on the obtained 

results. If the conditions were similar, such as room temperature 

and an environment unfavourable to external disturbances, 

among others, the acquired data were unaffected. This 

demonstrated the system's viability in the real world, outside of 

a laboratory setting. In contrast, if we consider daily activities, 

it is evident that the experiments could not be conducted under 

these conditions owing to the system's limitations, such as its 

size and the immobilisation of the user hand, among others. 

Yet, the goal was to assess the system as a solution for stress 

assessment, and as such, any action outside the context might 

affect the acquired data. Now that the system has been validated 

under more controlled conditions, it is possible to perform 

multiple activities simultaneously using the system, however, 

there are still some limitations in terms of movement, so a new 

wearable version of the system is being considered to improve 

the level of usability and enable the assessment of stress in daily 

life. 

Two potential solutions are being considered for the new 

wearable version of the system. One of the solutions is to 

distribute the sensing system in a glove. Can be also considered 

a second design that closely resembles smartwatches. In this 

case, the size of the system is reduced, but a special measuring 

technique is required, considering the position of the sensors 

that requires voluntary actions of the user. The architecture may 

also be modified by moving the authentication part of the 

sensory system to the user interface, hence reducing the size of 

this new version significantly. In terms of characteristics and 

acquired physiological parameters will remain the same, 

however, the addition of other sensors may be considered. 

V. CONCLUSION AND FUTURE WORK 

Stress is a chronic condition that affects a large part of the 

world's population. New practical solutions that contribute 

positively to improving daily life are ongoing work. The new 

approach presented was successfully implemented, introducing 

a multi-channel sensory system capable of acquiring multiple 

physiological parameters, primarily based on 

Photoplethysmography, and resorting to the implementation of 

intelligent algorithms, which presented satisfactory results not 

only in the monitoring of health status, but also in the detection 

and classification of stress levels. The proposed method for 

estimating HRV, represents one of the main contributions of 

this work, being based on a known method, such as RMSSD, 

but adding a more dynamic behaviour, betting on a greater 

speed in presenting the results, but never compromising its 

accuracy. Another important contribution was the methodology 

adopted for the classification of stress levels based on Fuzzy 

Logic, which presented very satisfactory results. 

As future work, one of the challenges is to make the system 

more robust, with the possible addition of new mechanisms and 

improvements. The replacement of the Fuzzy Logic technique 

by other more robust machine learning techniques is also part 

of the goals. In addition to what has already been mentioned, a 

first wearable prototype for real time monitoring during daily 

life is under development. 
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