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Abstract: In this work, we propose a CAD (computer-aided diagnosis) system using advanced
deep-learning models and computer vision techniques that can improve diagnostic accuracy and
reduce transmission risks using the YOLOv7 (You Only Look Once, version 7) object detection
architecture. The proposed system is capable of accurate object detection, which provides a bounding
box denoting the area in the X-rays that shows some possibility of TB (tuberculosis). The system
makes use of CNNs (Convolutional Neural Networks) and YOLO models for the detection of the
consolidation of cavitary patterns of the lesions and their detection, respectively. For this study, we
experimented on the TBX11K dataset, which is a publicly available dataset. In our experiment, we
employed class weights and data augmentation techniques to address the data imbalance present in
the dataset. This technique shows a promising improvement in the model’s performance and thus
better generalization. In addition, it also shows that the developed model achieved promising results
with a mAP (mean average precision) of 0.587, addressing class imbalance and yielding a robust
performance for both obsolete pulmonary TB and active TB detection. Thus, our CAD system, rooted
in state-of-the-art deep-learning and computer vision methodologies, not only advances diagnostic
accuracy but also contributes to the mitigation of TB transmission risks. The substantial improvement
in the model’s performance and the ability to handle class imbalance underscore the potential of our
approach for real-world TB detection applications.

Keywords: TB detection; CAD; computer vision; YOLO; TBX11K; CNN

1. Introduction

An important worldwide health issue is the highly contagious bacterial illness tu-
berculosis caused by Mycobacterium tuberculosis. This airborne bacterial disease, which
primarily affects the lungs but can also damage other organs, is spread through respiratory
droplets expelled by infected people. According to the report [1], TB is a major global
health threat, with approximately 8–10 million new TB patients and 2–3 million deaths
from the disease each year. About 10.6 million people were diagnosed with TB in 2021, a
4.5% increase over the 10.1 million cases that were reported in 2020. The report [1] shows
the number of new cases of TB per 100,000 individuals annually had increased by 3.6%
between 2020 and 2021. A decreasing tendency of about 2% per year that had been present
for the previous two decades was reversed by this rise [1]. If left untreated, TB has a high
mortality rate. Furthermore, the prevalence and mortality rate are found to be higher in
countries with lower human development indexes [2].
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TB can be active or obsolete. The term “active TB” describes the condition in which the
bacteria are present in the body actively, causing clinical symptoms and the potential for
transmission to others. On the other hand, “obsolete TB” refers to a condition in which the
bacteria are still present but do not result in an active illness, causing a latent infection [3].
However, early diagnosis and treatment with antibiotics greatly improve survival chances
and help control the spread of active infection [4–6].

The most common TB detection approaches include TST (Tuberculin Skin Test) and
IGRAs (Interferon-Gamma Release Assays). The ancient TST has limitations due to tech-
nical errors and BCG (Bacillus Calmette–Guérin) vaccination influence. Identifying TST
conversion is important for LTBI (latent TB infection) preventive therapy. IGRAs offer
higher specificity but have logistical constraints and are more expensive [7]. This might
also be a challenge for developing countries where most of the population cannot afford
such diagnostic tests.

However, a chest X-ray is the most common and less expensive screening method for
TB. Early TB screening through X-ray has significant implications for the early detection,
treatment, and prevention of TB [8–11]. However, radiologists’ examination of X-rays is
often prone to errors, with experienced radiologists from top hospitals only achieving an
accuracy of 68.7% [9,10]. This is due to the difficulty distinguishing TB areas from other
areas in X-rays, which the human eye is not sensitive enough to detect.

The medical field’s evaluation of chest X-rays can significantly benefit from the inte-
gration of an efficient CAD system paired with precise computer vision models for disease
detection. Detecting TB early is crucial for implementing effective measures to mitigate
risks and prevent the spread of infection. Additionally, such a system can expedite the diag-
nostic process, reducing the risk of infection extension during prolonged testing procedures.
Typically, doctors focus on specific areas in chest X-ray images, searching for consolidation
or cavitary lesions in the lungs as indicators of infection [3]. Utilizing computer vision
technology alongside advanced neural network (NN) architectures enhances the ability
to annotate, locate, and analyze chest X-ray images, predicting the presence of similar
patterns [12].

AI (Artificial Intelligence) aims to make machines mimic and perform like humans in
everyday tasks by utilizing large amounts of data. This enables machines to surpass human
capabilities in tasks such as image analysis and video processing [13–15]. Particularly,
CNN is a deep-learning algorithm designed to take an image as input and acquire knowl-
edge about the image from different perspectives, leveraging the unique properties of a
CNN [16]. This helps the CNN-based AI systems to simulate human-like understanding
and excel in tasks such as image analysis, surpassing human capabilities in these areas.
This technology, along with CAD software, can help medical professionals make effective
decisions. CADs are useful decision-support tools that aid physicians and radiologists
in increasing their precision, effectiveness, and patient outcomes by providing additional
insights and reducing diagnostic errors [17].

In this study, we present a computer vision model based on YOLOv7, a CNN-based
single-shot object detector, accompanied by an effective CAD system trained on the TBX11K
dataset. Throughout our study, we converted Pascal VOC annotations to the YOLO format
using scripts for each annotation and the associated images, ensuring compatibility with
YOLO algorithms. Previously, the authors in [12] applied object detection and segmentation
models such as Faster RCNN (Faster Region-Based Convolutional Neural Network), SSD
(Single-Shot Detector), RetinaNet, and FCOS (Fully Convolutional One-Stage) detectors
on the imbalanced TBX11K dataset. However, to address this imbalance, we introduced
class weights and image augmentations, resulting in the synthesis of a balanced dataset.
Following this, YOLOv7, an approach not previously tested for this specific object detection
problem, was employed with hyperparameter evolution. This implementation results in
more generalized outcomes and a higher mAP than the other formally recorded approaches.
Additionally, the improved efficiency and detection speed of the YOLOv7 model made
it well suited for the seamless integration into our cloud-based CAD system, developed
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on the foundation of this object detection model. Despite the efforts, the approach and
the system can be further improved. Also, the medical data are always hard to obtain; the
model might perform better in a high abundance of data since neural networks are very
data-hungry [13].

This paper has been organized as follows. In Section 2, we present the related work. In
Section 3, we discuss the materials and methods of this study. The results and discussions
are presented in Section 4. Finally, Section 5 covers the conclusion and future work.

2. Related Work

Most of the recent approaches in the field cover the classification aspect from chest
X-rays and some infection location techniques without employing the actual annotated
dataset for training and validation. For instance, in the proposed model from [18], Ima-
geNet fine-tuned NFNets (Normalization-Free Networks) are employed for chest X-ray
classification using the Score-Cam algorithm to highlight diagnostic regions. The proposed
method achieves a high accuracy, AUC, sensitivity, and specificity for both binary and mul-
ticlass classification, with results reaching 96.91% accuracy, 99.38% AUC, 91.81% sensitivity,
and 98.42% specificity on the multiclass dataset.

Likewise, the study from [19] proposes a TB detection system employing advanced
deep-learning models. Segmentation networks are utilized to extract the region of interest
from CXR images, leading to an improved classification performance. Among the tested
CNN models, the proposed model achieves the highest accuracy of 99.1% on three publicly
available CXR datasets, demonstrating the superiority of segmented lung CXR images over
raw ones.

The authors in [12] conducted a comparison of object detection and classification
methods for TB detection using annotated chest X-ray images. The goal was to distinguish
between TB and non-TB X-rays, with a focus on predicting the boundary box of TB in the
X-ray images. They evaluated several models, including SSD with VGGNet-16 backbone,
RetinaNet with ResNet-50 backbone and FPN, and Faster R-CNN with ResNet-50 backbone
and FPN.

In the case of classification models, the results showed that using pre-trained back-
bones significantly improved the performance of the models. SSD with pre-trained
VGGNet-16 achieved an accuracy of 84.7% and an AUC of 93.0%. RetinaNet with pre-
trained ResNet-50 achieved an accuracy of 87.4% and an AUC of 91.8%. Faster R-CNN
with pre-trained ResNet-50 achieved an accuracy of 89.7% and an AUC of 93.6%.

However, without pre-training, the performance of the models decreased. SSD without
pre-trained weights achieved an accuracy of 88.2%, RetinaNet without pre-trained weights
achieved an accuracy of 79.0%, and Faster R-CNN without pre-trained weights achieved
an accuracy of 81.3%.

The evaluation also focused on the models’ ability to detect active TB and latent TB
cases. Faster R-CNN with ResNet-50 backbone and FPN demonstrated the highest accuracy
of 53.3% and sensitivity of 21.9% for active TB detection. For latent TB detection, RetinaNet
with ResNet-50 backbone and FPN achieved the highest accuracy of 37.8% and sensitivity
of 12.7%.

The study also evaluates the performance of object detection models to make the
boundary box prediction of the infected regions of active and latent TB. Here, many
approaches have been considered with separate backgrounds and with the option of using
pre-trained weights. Then, the respective AP scores are compared with each other, and the
models are compared. It is illustrated in Table 1.
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Table 1. TB area detection results with different architecture on TBX11K dataset [12].

Method Data Pre-Trained Backbone
Active TB Latent TB

AP50 AP AP50 AP

SSD

ALL

Yes

VGGNet-16 50.5 22.8 8.1 3.2
RetinaNet ResNet-50 w/FPN 45.4 19.6 6.2 2.4

Faster R-CNN ResNet-50 w/PPN 53.3 21.9 9.6 2.9
FCOS ResNet-50 w/FPN 40.3 16.8 6.2 2.1

SSD
No

VGGNet 16 60 26.2 8.2 2.9
RetinaNet ResNet-50 w/FPN 19.1 6.4 1.6 0.6

Faster R-CNN ResNet-50 w/FPN 21.2 7.1 2.7 0.8

SSD

TB

Yes

VGGNet-16 63.7 28 10.7 4
RetinaNet ResNet-50 w/FPN 61.5 25.3 10.2 4.1

Faster R-CNN ResNet-50 w/FPN 58.7 23.7 9.6 2.8
FCOS ResNet-50 w/FPN 47.9 19.8 7.4 2.4

SSD

No

VGGNet-16 67 29 9.9 3.5
RetinaNet ResNet-50 w/FPN 37.8 12.7 3.2 1.1

Faster R-CNN ResNet-50 w/FPN 35.3 11.3 3.9 1.1
FCOS ResNet-50 w/FPN 38.5 13.6 4.3 1.1

Table 1 compares different deep-learning architectures for TB detection on the TBX11K
dataset, emphasizing the impact of backbones, pre-trained models, and data configurations.
Faster R-CNN with ResNet-50 and FPN consistently excels in detecting active TB and latent
TB, showcasing its clinical potential.

Overall, the study emphasized the importance of using appropriate backbone net-
works and pre-trained weights for improved performance in TB detection from chest X-ray
images. The authors acknowledged the challenge of data imbalance when detecting latent
TB cases. Further research and optimization are necessary to improve the detection rates for
latent TB, as it poses additional challenges due to its subtler manifestations in X-ray images
compared to active TB. Similarly, the method did not consider one of the state-of-the-art
computer vision algorithms: YOLO.

YOLO has been found to be promising for the automation of the detection of TB.
A basic CNN’s maximum speed cap is exceeded by YOLO, which achieves an excellent
balance between speed and accuracy. One of the swiftest all-purpose item detectors is
YOLO. Furthermore, YOLO is the best model for applications that require quick, accurate
object recognition because it generalizes objects better than other models. Because of these
outstanding and valuable benefits, it merits being strongly suggested and receiving more
exposure over time [20].

YOLO in CAD is its ability to detect multiple objects in a single image. This is
particularly useful in medical imaging, where multiple abnormalities or lesions may be
present in a single image. By detecting and localizing multiple objects in a single pass,
YOLO can help improve the efficiency and accuracy of CAD systems [21]. Additionally,
YOLO can be trained on datasets of annotated medical images, allowing it to learn and
recognize patterns that are characteristic of various diseases and conditions. This can help
improve the accuracy of CAD systems, as they can be trained to detect subtle changes in
images that may be difficult for human experts to detect. Overall, YOLO has the potential
to significantly improve the accuracy and efficiency of CAD systems, leading to earlier and
more accurate diagnoses of various medical conditions With the introduction of YOLO and
its architectural successors/descendants, YOLOs are widely used in many applications,
primarily because of their quicker conclusions and respectable accuracy, due to which
YOLO is a perfect fit for boundary box detection in medical images along with its quick
inference in the CAD software [22].

The YOLO architecture in Figure 1 is a pioneering object detection model that combines
speed and accuracy. It consists of 24 convolutional layers followed by 2 fully connected
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layers. Notably, the YOLO architecture incorporates alternating 1 × 1 convolutional layers,
which effectively reduce the feature space from the preceding layers. This reduction aids
in capturing and consolidating essential information while maintaining computational
efficiency. To leverage the power of transfer learning, the YOLO model adopts a pre-trained
approach. The convolutional layers are initially pre-trained on the ImageNet classification
task using a resolution of 224 × 224 input images. This pre-training step enables the
network to learn discriminative features and high-level representations from a large-scale
dataset. Subsequently, the resolution is doubled for object detection, enhancing the spatial
resolution of the final predictions [23].
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Figure 1. Architecture of the YOLO object detection model.

The output of the YOLO network is a tensor with dimensions of 7 × 7 × 30. This
tensor represents a grid that divides the input image into spatial cells, with each cell
responsible for predicting multiple bounding boxes and corresponding class probabilities.
The 7 × 7 grid allows for efficient detection across the image while maintaining a balance
between localization accuracy and computational complexity. The 30-dimensional tensor
encompasses various predictions, including bounding box coordinates, class probabilities,
and other parameters needed for object detection tasks [23].

Similarly, the above architecture evolved into many iterations and YOLOV7 (the latest
at the time) was considered during the experiments. The YOLOv7 architecture, known
for its efficiency and real-time object detection capabilities, has undergone advancements
in the form of extended efficient layer aggregation networks (ELANs) and model scaling.
The ELAN introduces variations to the VoVNet architecture, considering factors such as
memory access cost, input/output channel ratio, number of branches, and element-wise
operations. Additionally, the ELAN analyzes the gradient path to enable the learning
of diverse features and achieve faster and more accurate inference. Building upon the
ELAN, the extended-ELAN (E-ELAN) further enhances the network’s learning ability by
employing expand, shuffle, and merge cardinality operations within the computational
blocks. This allows for continuous learning without disrupting the original gradient
path [24].

When it comes to model scaling in concatenation-based architectures like YOLO, a
compound scaling approach is necessary due to the interdependence of scaling factors.
Traditional scaling methods used in other architectures may not be directly applicable
to concatenation-based models. For instance, when scaling up or down the depth of a
computational block in YOLO, it affects the in-degree and out-degree of the subsequent
transition layer, which can impact hardware usage and model performance. To address
this, a compound model scaling method is proposed for concatenation-based models. This
method considers both depth and width scaling, ensuring that changes in one factor are
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accompanied by corresponding adjustments in the other to maintain the optimal structure
and preserve the desired properties of the model [24].

This paper addresses a significant research gap in the domain of TB detection from
chest X-ray images, particularly in relation to the utilization of advanced computer vision
techniques. While previous studies have underscored the importance of appropriate
backbone networks and pre-trained weights for enhanced performance, an underexplored
area pertains to the integration of state-of-the-art algorithms like YOLO, whose efficiency
and inference speed beat all of the other algorithms. This paper also addresses the challenge
of data imbalance, particularly in detecting latent TB cases with subtler manifestations. This
study not only emphasizes the value of optimizing TB detection rates but also introduces
a novel approach through the comprehensive CAD system. By incorporating CNNs and
YOLOv7 architecture, we bridge the gap between accuracy and speed, thereby contributing
to the advancement of automated TB detection in CAD systems.

3. Materials and Methods

This section first discusses the architecture of both a CAD and object detection system
to detect TB. Section 3.1 presents the dataset. The data preprocessing step is presented in
Section 3.2. Sections 3.3 and 3.4 are about class weights and data augmentation to tackle
the data imbalance problem. Section 3.5 discusses more on the experiments. Section 3.6
covers hyperparameter tuning with an approach like hyperparameter evolution. Finally,
Section 3.7 is about the deployment of the model in a CAD system.

The architectural design of the system in Figure 2 revolves around distinct views and
routes, aligning with specific functionalities of the computer vision model. The server effec-
tively handles image data received via POST requests, utilizing the TB detection computer
vision model to compute potential infection region coordinates. These coordinates are then
transmitted to the front end, where the image is rendered with infection predictions. To
facilitate communication between the front end and the backend application programming
interface (API), the Django REST Framework is employed.
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The system ensures ease of use for doctors by incorporating features such as create,
retrieve, update, and delete (CRUD) functionality, thereby enhancing accessibility and
supporting informed decision-making. In addition, the platform maintains detailed records
of each doctor’s interactions, enabling further analysis of infections.
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The backend server relies on the Postgresql database engine, while pivotal libraries
like TensorFlow, Scikit, Keras, PyTorch, Pandas, and NumPy are utilized to effectively serve
the model. This configuration allows for the seamless integration of CAD software, thereby
augmenting the analysis of TB infections in medical imaging.

Figure 3 illustrates the schematics of the deep-learning models for TB classification
and detection. First and foremost, the image preprocessing was performed to improve
the image quality, reduce noise, and standardize the format of the X-ray images. To
determine whether the X-ray depicts a sick patient, a healthy patient, or a patient with TB,
a CNN was employed. The model was trained on a labeled dataset that contained X-ray
pictures of patients with and without TB after the CNN determined that the patient had
been diagnosed with TB. Assuming the infection classification task was effective, the next
phase involved locating and identifying items in an X-ray by employing the YOLO object
detection technique. In this instance, it was used to identify particular TB subtypes in the
X-ray pictures, such as pulmonary TB and obsolete TB. An extensive and varied dataset
of X-ray pictures with associated labels for which X-rays were tagged and were necessary
for an accurate diagnosis. Deep-learning-based medical image analysis has demonstrated
considerable promise for supporting medical practitioners with early diagnosis and therapy
planning. However, it is essential to validate the models and ensure they are integrated into
the medical workflow responsibly to avoid any potential harm caused by misdiagnosis.
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3.1. Dataset

The TBX11K dataset, a publicly available and labeled dataset, was utilized to train
and evaluate the performance of our model. According to the authors in [12], there are a
total of 11,200 chest X-ray images; the dataset encompasses various categories, including
5000 healthy cases, 5000 cases with diseases other than TB, and 1200 cases exhibiting
manifestations of TB. Notably, each X-ray image corresponds to a distinct individual.
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Within the subset of TB X-rays, there are 924 cases of active TB, 212 cases of latent TB,
54 cases exhibiting both active and latent TB simultaneously, and 10 cases where the TB type
cannot be definitively determined under current medical conditions. All images possess a
standardized size of 512 × 512 pixels.

The writers from [13] meticulously curated the dataset to guarantee its quality and
dependability. Bounding box annotations for TB locations in the X-ray pictures were carried
out by seasoned radiologists from prominent hospitals. The annotation process required
two parts. The first involved labeling the bounding boxes and assigning TB types (active
or latent) for each box by a radiologist with 5–10 years of experience in TB diagnosis. The
correctness and consistency of the bounding box labels and TB-type designations were
subsequently confirmed by cross-checking the annotations with another radiologist with
more than 10 years of expertise in diagnosing TB. To maintain consistency across the dataset,
efforts were also made to align the classified TB kinds with the image-level labels.

The TBX11K dataset represents a significant contribution as the first publicly available
dataset for TB detection, encompassing not only classification but also bounding box anno-
tations. With its carefully curated diverse cases, including different stages and variations of
TB, as well as other common chest pathologies, the dataset serves as a valuable benchmark
for the development and evaluation of algorithms and models aimed at TB diagnosis using
chest X-ray images.

The dataset split presented in Table 2 illustrates the comprehensive partitioning strat-
egy adopted for the TBX11K dataset. This meticulous allocation aims to ensure a balanced
and representative distribution of classes, facilitating the robust training and evaluation
of our proposed TB detection system. The dataset encompasses three primary classes:
Non-TB, Sick and Non-TB, and TB for the classification task. Within the TB class, further
distinctions are made between active TB and latent TB. The training set consists of 6600 sam-
ples, with 3000 dedicated to the Non-TB class, 3000 to the Sick and Non-TB class, and 600
to various TB classes. These are the numbers for the unannotated images and are useful for
the classification task. However, there are 1200 annotated images emphasizing both active
TB and latent TB for the images consisting of the TB infection that can be used by the object
detection model.

Table 2. Proposed dataset split for TBX11K dataset [12].

Class Train Val Test Total

Non-TB
Healthy 3000 800 1200 5000

Sick and Non-TB 3000 800 1200 5000

TB

Active TB 473 157 294 924
Latent TB 104 36 72 212

Active and latent TB 23 7 24 54
Uncertain TB 0 0 10 10

Total 6600 1800 2800 11,200

3.2. Preprocessing

A comprehensive analysis of gray scale X-ray images was conducted to explore the
characteristics of chest-related complications. A subset of 799 X-ray images, each measuring
512 × 512 pixels, was extracted from the TBX11K dataset. To facilitate further investigation,
the annotation format of the dataset was transformed into the YOLO format, which includes
detailed information about the boundary boxes, such as the class label, x and y coordinates
of the box center, box height, and box width. The original dataset utilized annotations in
the old coco_json and pascal_voc formats, which were incompatible with the latest YOLO
frameworks. Therefore, an annotation conversion process was employed to convert the
annotations into the YOLO format, associating the boundary box information with the
corresponding images and class labels. To facilitate model training and evaluation, the
dataset was randomly partitioned into three sets: training, testing, and validation, with a
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split ratio of 70:20:10, respectively. Subsequently, initial model iteration was conducted,
wherein no hyperparameters were tuned. This initial training process served as a baseline
to establish a starting point for the further refinement and optimization of the model.

3.3. Class Weights

The TBX-11 dataset had a huge data imbalance between active and obsolete TB cases.
This data imbalance caused overfitting and the AP for the obsolete pulmonary TB was
found to be very small and for the active TB, it was found to be very high. The mAP of
both classes for the Intersection over Union (IoU) greater than or equal to 0.5 shrunk and
did not generalize so well. Due to the imbalance in the class, the algorithms tend to become
biased towards the majority values present on active TB and did not perform well on the
obsolete pulmonary TB. To tackle this problem, appropriate class weights were assigned to
the minority (obsolete TB) class during the training of the TB detection model.

The technique called focal loss was used to address this problem, which dynamically
adjusted the loss function based on the difficulty of predicting each class [25]. Focal loss
assigned higher weights to the obsolete pulmonary TB class, which helped the model to pri-
oritize that minority class and resulted in a slightly better outcome. It is primarily intended
to address the issue of class imbalance in object detection tasks, where the proportion of
background (negative) instances to foreground (positive) examples is disproportionately
high by reshaping the standard cross-entropy loss such that it down-weights the loss
assigned to well-classified examples.

The introduction of a new loss function, focal loss, which is a more potent substitute
for prior methods for addressing class imbalance, is formulated as:

FL(pt) = −(1 − pt)γ . log(pt) (1)

It is used for computing ‘p’ with the loss computation, resulting in greater numerical
stability. The loss function is a cross-entropy loss that is dynamically scaled, with the scaling
factor decrementing to zero as confidence in the correct class rises. Intuitively, this scaling
factor can quickly concentrate the model on difficult examples while automatically de-
weighting the contribution of easy examples during training. Focal loss attempts to solve
this issue by down-weighting the loss ascribed to well-classified examples and minimizing
the loss contribution from cases that are easily classified [25].

3.4. Image Augmentations

The TBX-11 dataset had a huge data imbalance between active and obsolete TB cases.
We tried solving this problem using focal loss, which dynamically adjusted the loss function
in favor of the obsolete pulmonary TB class. The approach spiked the mAP@0.5 to 300 per-
cent improvement; however, the model could still not generalize well. Another approach
was to perform image augmentation on the minority class to increase the sample size and
equate it with the sample size of the majority class [26]. Image augmentation is a technique
used to increase the diversity of training data by applying various transformations to the
existing data. The dataset had 148 obsolete pulmonary TB cases and 651 active cases, as
shown in Figure 4.

Four (4) different image augmentation approaches were incorporated in order to
equate the sample size of the obsolete class with the active class. The geometric transfor-
mations like reflection about the Y-axis, rotation of −5 and 5 degrees, and scaling of 0.8
were incorporated into the experiment because they were the transformations that did not
generate noise in the chest X-ray images and did not hamper the model training [26].
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When it comes to X-ray images, rotation is a commonly used augmentation technique,
as shown in Figures 5 and 6. To apply a clockwise and anticlockwise rotation transformation
to the X-ray image by 5 degrees, the Image library was used. The rotation also had to
persist in the respective bounding box, which was also performed with the Image library.
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Similarly, scaling is also a frequently employed augmentation technique, as illustrated
in Figure 7. To implement a scaling transformation with a scaling factor of 0.8, the Image
library was utilized. This involved adjusting the size of the X-ray image uniformly to 80%
of its original dimensions. Notably, the scaling transformation was extended to maintain
consistency within the corresponding bounding box; a process seamlessly executed using
the Image library. This ensures that the scaling effect persists coherently across both the
X-ray image and its associated bounding box.
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Another data augmentation method to broaden the diversity of the training data is
to reflect or horizontally flip the X-ray pictures, as illustrated in Figure 8. By providing
differences in the direction or location of components inside the X-ray, flipping an image
horizontally can aid in the model’s ability to generalize. This augmentation step is proposed
by Elgendi et. al. [26], who had a similar problem set for thorax chest X-ray images.
This augmentation technique might hurt the model’s performance in the context of non-
symmetric and lateral medical objects, but it might not be the case in the context of small
non-lateral objects [27]. The YOLOv7 architecture, with its focus on object detection inside
a small region of interest [24], might be less sensitive to spatial distortions, particularly
when the lesions are confined within a small boundary box. Most of the annotations of
the TBX11k dataset resemble this property. According to the authors in [3], TB results on
mostly non-lateral airspace opacities, cavitation, and effusion. Plus, TB usually affects the
mid and upper lungs. The lower lungs and regions near the heart are uncommon sites of
tuberculosis involvement. That may be one of the reasons why the non-symmetric and
lateral properties of lungs including the placement of the heart will not interfere with the
results of this particular object detection task. Objects like non-lateral airspace opacities,
cavitation, and effusion in the mid and upper lungs are the subject of interest for our
algorithm, thus making horizontal flipping a decent augmentation choice.
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Hence, the sample size of the minority class grew by four times after the augmenta-
tions resulted in 592 obsolete cases’ X-ray images, as illustrated in Figure 9. Thus, data
augmentation had a positive impact on improving the performance of the models, particu-
larly for obsolete cases’ X-rays. Data augmentation increased the diversity of the training
data. This augmented data helped the model learn from a wider range of examples. Further,
it provided a more comprehensive representation of the minority class X-rays, allowing the
model to generalize better and capture important patterns.
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3.5. Experiments

YoloV7 incorporates E-ELANs (extended efficient layer aggregation networks) as its
underlying architecture. The E-ELAN retains the original architecture’s gradient transmis-
sion path without modification. Instead, it leverages group convolution to augment the
cardinality of additional features and combines the features from different groups through
a shuffle and merges the cardinality approach. This operation enhances feature learning
across diverse feature maps and improves the utilization of parameters and computa-
tions [25]. This architecture can further enhance the trivial YOLO architecture, which works
well with medical images, allowing it to learn and recognize patterns that are characteristic
of various diseases and conditions [22]. Therefore, this architecture was incorporated into
the experiments.

During the experiment, we used the Adam Optimizer [28] with learning rates of 0.01,
mini-batch size of 32 images, momentum of 0.937, and weight decay of 0.0005 with total
epochs of 600. We used a Linux server with Intel(R) Core(TM) i9-9900X @ 4.40 GHz CPU,
2.5 TB hard disk space with an SSD, and a Cuda-enabled RTX 6000 Quadro GPU alongside
Nvidia Titan V GPU. The networks were implemented using the PyTorch and YOLOv7
libraries in Python 3.10.3.

3.6. Hyperparameter Evolution

In deep learning, hyperparameters play a crucial role in the training process, but
determining the best values for them can be difficult. Traditional methods like grid searches
become impractical due to the large number of hyperparameters, unknown relationships
between them, and the time-consuming nature of evaluating each set of hyperparameters.
Genetic algorithms are a viable solution for hyperparameter searches [29].

In Figure 10, the mAP@0.5 is represented in the Y-axis and the values of the hyper-
parameters are illustrated in the X-axis. The approach, as shown in Figure 10, seeks to
maximize the fitness, which is a metric used to evaluate the hyperparameter selection
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of the model. In the YOLO library, we defined a default fitness function as a weighted
combination of metrics where mAp@0.5 and mAP@0.5:0.95 were given the highest priority.
Then, the evolution is performed about a base scenario, which we seek to improve upon.
Here, the main genetic operators are crossover and mutation. In this work, the mutation
is used to create new offspring based on a combination of the best parents from all previ-
ous generations and give out the best possible offspring (hyperparameters) to maximize
the fitness. This step was carried out in the final best-performing PYtorch model from
the experiments.
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3.7. Deployment in CAD System

The proposed system functions as an assistive technology for medical professionals,
offering efficient annotation of potential TB infections in two classes: obsolete pulmonary
TB and active TB. The primary focus is on early detection to mitigate future risks. To access
the platform, doctors undergo a verification process overseen by the site’s administrator,
requiring the submission of relevant credentials. Once verified, doctors gain access to
the chest X-ray infection detection assistance platform, which includes a computer vision
model deployed in a Django server.

The system’s architecture is structured around individual views and routes that align
with specific functionalities of the computer vision model. The server handles image data
received via POST requests, utilizing the TB detection computer vision model to compute
potential infection region coordinates. These coordinates are then sent to the frontend,
where the image is rendered with infection predictions using the Django REST Framework



Information 2023, 14, 655 14 of 23

to communicate with the backend API. Each doctor’s account retains records of their
interactions with the system, facilitating further analysis of infections.

The platform ensures ease of use for doctors through features like create, retrieve,
update, and delete (CRUD) functionality, enhancing accessibility and supporting informed
decision-making. The system relies on the Postgresql database engine on the server
side, while key libraries like TensorFlow, Scikit, Keras, PyTorch, Pandas, and NumPy
are employed to serve the model effectively from the backend server. This setup enables
the seamless integration of CAD software, enhancing the analysis of TB infections in
medical imaging.

4. Results and Discussions

This section evaluates the model, focusing on precision, recall, AP, and mAP. In
Section 4.1, we discuss these metrics’ role in assessing object detection algorithms for chest
X-ray images. After this, Section 4.2 details the results of experiments addressing class
imbalance, image weights, minority class augmentation, and hyperparameter evolution.
Visualization and analysis of the model predictions are covered in Section 4.3, offering
insights into the true positives, false positives, and false negatives of the random samples
from the professional’s perspective. The learning curve analysis, addressing overfitting
concerns, is presented in Section 4.4. This structured approach provides a concise yet
thorough exploration of our TB detection model’s development and performance.

4.1. Performance Metrics

Precision, recall, average precision (AP), and mean average precision (mAP) are key
performance metrics utilized in this study to evaluate the accuracy and reliability of object
detection algorithms for TB detection using chest X-ray images.

Precision in the context of object detection for active TB and obsolete pulmonary TB
refers to the proportion of correctly detected objects belonging to a specific class (either
active TB or obsolete pulmonary TB) out of all the objects predicted as that class. Precision
indicates the algorithm’s ability to accurately identify and classify objects of interest, thereby
minimizing false positives.

To calculate the precision for a specific class, we use the following formula:

Precision =
(True Positives)

(True Positives + False Positives)
(2)

Recall in the context of object detection for active TB and obsolete pulmonary TB
refers to the proportion of correctly detected objects belonging to a specific class (either
active TB or obsolete pulmonary TB) out of all the ground truth objects of that class. Recall
indicates the algorithm’s ability to capture and identify a high percentage of objects of
interest, minimizing false negatives.

To calculate the recall for a specific class, we use the following formula:

Recall =
(True Positives)

(True Positives + False Negatives)
(3)

Intersection over Union (IoU) is a widely used performance metric in object detection,
including for the detection of active TB and obsolete pulmonary TB. IoU measures the
overlap between the predicted bounding box and the ground truth bounding box for an
object of interest. It quantifies the spatial agreement between the predicted and ground
truth regions and is particularly useful in evaluating the accuracy of object localization. It
is used to deduce true positives, false positives, and false negatives to calculate precision
and recall.

To calculate IoU, we use the following formula:

IOU =
(Area Of Overlap)
(Area Of Union)

(4)
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A higher IoU score indicates a better alignment between the predicted and ground
truth regions, implying a more accurate localization of the TB-related abnormalities.

AP and mAP are key performance metrics used in object detection, including the
detection of active TB and obsolete pulmonary TB. AP evaluates the detection algorithm’s
precision–recall trade-off by considering precision at different recall levels. It is calculated
by averaging precision values at different recall levels. mAP evaluates the algorithm’s
precision–recall trade-off across multiple classes by averaging AP values for each class. A
higher mAP score indicates a better overall performance.

4.2. Results

The precision–recall curves are studied for various experiments of the model. The
major aspect of the results encompasses the study of the model with the class imbalance
problem, introducing the class weights, minority class augmentation, and the hyperparam-
eter evolution. The effects of each approach are documented, and a final model is trained
based on the results of the previous experiments.

Figure 11 displays the results obtained from training the YOLO model in its original
form, without applying any augmentation techniques, assigning class weights, or perform-
ing hyperparameter tuning. The figure indicates that the AP for the active TB class is 0.489,
while for the obsolete TB class, it is only 0.009. At an IoU threshold of 0.5, the mAP for all
classes is 0.249. Figure 12 illustrates the bias observed in the model, where the majority
class has a significant influence on the minority class due to the limited number of training
samples. This is further depicted in the histogram shown in Figures 4 and 9. Consequently,
the model’s ability to generalize effectively is hindered by this imbalance.

To address the issue of dataset imbalance, the focal loss technique was implemented,
which dynamically adjusted the loss function to assign optimal weights to the minority
class [25]. Figure 11 visually demonstrates the significant improvement in the AP of
the obsolete pulmonary TB class, surpassing a remarkable 300 per cent improvement.
These results were achieved during the training of the original YOLO model, without
the utilization of any augmentation or hyperparameter evolution. However, it should
be noted that the effectiveness of the focal loss technique became more apparent due to
the assignment of class weights. Despite these enhancements, the model still exhibited
limitations in generalizing across all classes, yielding a mAP of 0.211. It is important to
mention that the AP of the majority class suffered degradation as a result of the lower class
weights applied.

In order to address the unsatisfactory effectiveness of assigning class weights to
the model, we experimented with augmenting only the minority class. As a result, the
sample size of the minority class increased fourfold and approached parity with the
majority class, as depicted in Figure 12. This successfully resolved the issue of imbalanced
datasets. Remarkable improvements were observed in the AP scores of the minority
class, as illustrated in Figure 13. These outcomes were obtained while training the YOLO
model without assigning class weights or performing hyperparameter evolution. This
enabled us to visualize the effectiveness of this augmentation method on our model. The
model demonstrated improved generalization; however, there was potential for further
maximizing the AP and mAP scores.
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Based on the conclusions drawn from the aforementioned experiments, we imple-
mented all the methods that demonstrated improvements in the precision, recall, AP, and
mAP of the model. The weights of the model corresponding to the epoch that yielded
the best results on the test set were saved as a PyTorch model. Subsequently, this specific
model served as the starting point for hyperparameter evolution. A genetic algorithm was
identified as a suitable approach for searching the fittest hyperparameters that would maxi-
mize our results [29]. Precision, recall, AP, and mAP were defined as fitness parameters
during the evolution process. The evolution was conducted over 1000 generations, with
each generation consisting of 30 epochs dedicated to searching for the optimal hyperparam-
eters. Ultimately, in generation number 733, the fittest hyperparameters were identified,
significantly optimizing our results. Table 3 provides a list of the fittest hyperparameters
obtained from this evolutionary process.

Table 3. List of hyperparameters and corresponding values selected for the final TB detection model.

Hyperparameter Number Hyperparameter Name Hyperparameter Value

1 Lr0 0.00941
2 Lrf 0.0202
3 Momentum 0.841
4 Weight_decay 0.00047
5 Warmup_epochs 4.21
6 Warmup_momentum 0.252
7 Warmup_bias_lr 0.0647
8 Box 0.0777
9 Cls 0.265
10 Cls_pw 1.05
11 Obj 0.229
12 Obj_pw 0.93
13 Anchor_t 4.34
14 Loss_ota 1.0
15 Anchors 3.0

After conducting our comprehensive experiments with image weights assignment,
minority class augmentation, and evolving the hyperparameter, we achieved promising
results for our TB detection model. The AP for the obsolete pulmonary TB class reached
0.499, while the AP for the active TB class achieved a value of 0.675. As a result, the mAP at
an IoU threshold of 0.5 amounted to 0.587, as illustrated in Figure 14.
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All of the outcomes are summarized in Table 4, which provides an overview of the
successful experiments conducted during the development of our TB detection model.
Notably, our approach effectively addressed the class imbalance issue discussed in [12],
mitigating the bias towards the minority class and yielding a robust TB detection model
with a commendable mAP score. Table 4 serves as a concise summary of our TB detection
computer vision model architecture.

Table 4. TB detection models’ evaluation with respect to mAP of IOU threshold at 0.5 for various
training approaches.

Expt. No. Active TB(AP) Obsolete Pulmonary TB (AP) All Classes (mAP@0.5) Description

1 0.489 0.009 0.249 Base model with class imbalance
2 0.391 0.032 0.211 Base model with image weights

3 0.329 0.232 0.280 Base model with minority class
image augmentation

4 0.675 0.499 0.587 Putting it all together and
evolving the hyperparameter

Table 5 compares the features of the final TB object detection model using YOLO
architecture for both obsolete and active cases. The models have an input size of 512 × 512,
37.2 million parameters, 415 layers, and a size of 71.3 MB, demonstrating their capacity for
accurate TB detection with efficient deployment potential.

Table 5. Feature of the final TB detection model.

YOLO Model Features

1. Input size 512 × 512
2. Number of parameters 37.2 million

3. Number of layers 415
4. Size 71.3 MB

4.3. Visualization and Analysis

A random subset comprising 16 chest X-ray images was extracted from the dataset for
analysis. Employing our computer vision model, various regions of imaging anomalies
were detected within these images. To establish a benchmark, the predictions of the model
were juxtaposed with interpretations provided by a radiologist, regarded as the reference
standard. The radiologist identified a total of 25 abnormalities, consisting of 24 cases of
airspace opacity, indicating a robust indication of TB infection, and 1 instance of cavitation.
In terms of the model’s performance, there were 23 true positives, 2 false positives, and
2 false negatives. Specifically, the AI accurately identified 22 instances of airspace opacity
and correctly flagged 1 case of cavitation. However, the model failed to detect two instances
of airspace opacity and erroneously labeled two healthy lung regions as abnormalities.
Figure 15 provides visual representations of the true positive, false positive, and false
negative cases. Here, the orange box indicates an active TB infection, the blue box indicates
an obsolete pulmonary TB infection, the red box indicates a false negative, and the red box
outside the prediction box represents a false positive.
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4.4. Learning Curve Analysis

This study explores the model’s performance on the challenging TBX11k chest X-ray
dataset, showcasing the learning curves for the infection’s classification loss and the bound-
ary box prediction loss for both the training and the validation set.

The YOLOv7 model underwent training on the TBX11k dataset, known for its chal-
lenging chest X-ray samples with limited data. The evaluation encompassed both training
and validation sets, revealing a well-controlled classification loss but a slight overfitting in
box prediction towards the end of training. Despite this, Figure 16 shows the satisfactory
performance of the model, achieving a classification loss below 0.1 and a box prediction loss
below 0.06 on the validation set, showcasing its proficiency in identifying and localizing
lesions in chest X-rays with limited data.
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To address overfitting, the incorporation of additional annotated data is proposed,
aiming to augment the sample size for enhanced generalization. It is pertinent to note
that during training, optimal weights were saved, and checkpoint weights were retained
for practical deployment in a CAD system. This strategic approach ensures the model’s
adaptability and effectiveness in real-world clinical scenarios, further emphasizing its
potential for improved performance with increased dataset diversity.

5. Conclusions and Future Work

In this research study, we have presented a comprehensive CAD system for TB detec-
tion using advanced deep-learning models and computer vision techniques. TB continues
to be a global health concern due to its contagious nature and severe implications for public
health. Chest X-rays are widely used for screening, but the accuracy of visual inspection
by human experts is limited and time-consuming. Our proposed CAD system aims to
overcome these limitations and enhance the diagnostic accuracy for TB detection, thereby
facilitating early intervention and reducing transmission risks.

The utilization of CNNs and YOLOv7 architecture enables the accurate detection and
classification of TB patterns in chest X-ray images. By leveraging the TBX11K dataset, we
demonstrated the effectiveness of the proposed system in distinguishing between active TB
and obsolete pulmonary TB cases. Mitigation of data imbalance in the dataset through class
weights and data augmentation techniques, including focal loss and image augmentation,
resulted in an improved model performance and robust generalization, as illustrated in
Figure 14.

After incorporating genetic algorithms to optimize the hyperparameters in the YOLO
model, our research findings indicate that the proposed CAD system achieved a promis-
ing mAP of 0.587, as illustrated in Figure 14. Our model outperforms previous formally
recorded models, which are recorded in Table 1. Figure 16 also illustrated that the classi-
fication loss generalized well in the validation set with respectable numbers, concluding
there was no overfitting of our model for the boundary box classification task. Also, the
professional’s evaluation of our model in the randomly chosen test set depicts a decent
result and practicality of our model, as shown in Figure 15. The developed CAD system
holds great promise for the medical community, providing a more efficient and accurate
approach to TB detection in chest X-rays. With seamless integration through a Django
server and leveraging key deep-learning libraries like TensorFlow and PyTorch, our system
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can aid healthcare professionals in the early identification and diagnosis of TB, potentially
leading to improved patient outcomes and reduced disease transmission through effective
pattern recognition.

However, it is important to acknowledge that further research and development are
necessary to refine and enhance the CAD system for TB detection. One significant challenge
is the scarcity of medical data, which poses difficulties for neural network models. By
obtaining a more extensive and diverse dataset for training and validation purposes, the
performance of the TB detection model can be improved [31–34]. It will also help the
model to mitigate the slight overfitting of the boundary box prediction loss, as illustrated
in Figure 16.

Incorporating multi-modal data sources, such as clinical information and patient
history, can also contribute to enhancing the accuracy and reliability of the CAD system [35].
By considering a broader range of information and integrating it into the analysis, a more
comprehensive understanding of TB patterns and characteristics can be achieved, which
might be the interest of future research.

There is also a need for further evaluation of the model’s clinical applicability through
a larger prospective study, assessing its impact on clinical outcomes. While our current
study did not encompass such a study due to limitations in data and resources available
at the time, our approach utilizes existing resources to enhance TB detection technology,
positioning it as a relevant tool for pattern recognition.

Importantly, we stress that our model should not replace the expertise of radiologists
but serve as an assistive technology. The mAP of 0.587 on the validation set instills confi-
dence in the model’s pattern recognition capabilities, making it a promising assistive tool
for radiologists. The claim is further supported by the analysis of our model conducted
by a professional radiologist, as presented in Figure 15. The example result of the model’s
predictions on random samples on test set images suggests a fair applicability, strength-
ening confidence in its potential clinical utility in the context of the pattern recognition of
TB infection.
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