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Resumo

O documento Fundamental Review of the Trading Book trouxe algumas mudanças nas

normas de Basileia para o cálculo dos requisitos de capital, particularmente com a substi-

tuição do Value at Risk pelo Expected Shortfall. Essa mudança gerou alguma discussão,

uma vez que não existe uma resposta definitiva para a questão de como fazer backtesting

ao último. Esta dissertação avalia os resultados de diferentes métodos de backtesting para

testar o rigor das estimativas de Value at Risk e de Expected Shortfall de uma carteira

de ı́ndices internacionais. O objetivo é avaliar se é posśıvel incluir um requisito direto

de backtesting ao Expected Shortfall em futuras alterações regulamentares, bem como na

validação interna de modelos de risco. Para fazer essa avaliação, as diferentes metodolo-

gias são apresentadas de forma que sejam comparáveis com a abordagem de semáforo

do FRTB, em termos de resultados dos testes e o seu impacto nos requisitos de capi-

tal ao longo dos últimos vinte anos. Os resultados mostram que, embora seja posśıvel

fazer backtesting ao Expected Shortfall, inclúı-lo como requisito nos quadros de Basileia

exigiria mudanças adicionais na regulamentação para evitar um impacto considerável e

possivelmente instável nos requisitos de capital dos bancos.

Palavras Chave: Expected Shortfall, Value at Risk, Backtesting, Requisitos de Capital,

FRTB

Classificação JEL: G28, G32
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Abstract

The Fundamental Review of the Trading Book brought some changes to the Basel stan-

dards for the calculation of capital requirements, particularly with the replacement of

Value at Risk with Expected Shortfall. This change came with some discussion, as there

is no definitive answer to the question of how to backtest the latter. This dissertation ap-

plies existing backtesting methods to test the accuracy of both Value at Risk and Expected

Shortfall estimates of an international equity index portfolio. The aim is to assess if it

is possible to include Expected Shortfall backtesting in future regulation changes, as well

as in internal risk model validation. To do this assessment, different methodologies will

be presented in a way that allows comparisons against the FRTB’s traffic-light-approach,

in terms of testing results and their impact on the capital requirements over the past

twenty years. The results show that even though backtesting Expected Shortfall is pos-

sible, including it in the Basel framework would require further changes in the regulation

to prevent considerable and possibly unstable shifts in the banks’ capital requirements.

Keywords: Expected Shortfall, Value at Risk, Backtesting, Capital Requirements, FRTB

JEL Classification: G28, G32
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1 Introduction

For the past years, Value at Risk (VaR) has been the standard method of quantifying

market risk, recommended by international regulators to determine minimum capital

requirements that banks must hold.

However, VaR proved to be too insensitive to extreme events, as it fails to consider

the severity of potential losses beyond a certain threshold, leading to insufficient liquidity

levels if those events occur (and they have). Essentially, VaR aims to predict the worst

expected outcome within a certain confidence level. However, confidence is not certainty,

and VaR does not provide any information on what happens if the losses are even worse

than the worst expectation. For that reason, the latest international regulatory framework

(Fundamental Review of the Trading Book, published in 2016, revised in 2019) by the

Basel Committee on Banking Supervision (BCBS) points to the replacement of VaR with

Expected Shortfall (ES) as a more prudent way of determining capital adequacy. Expected

Shortfall provides the expected loss in the presence of extreme events, that is, those when

VaR breaches occur. ES, however, has some shortcomings when compared to VaR, with

the most relevant of them regarding model backtesting.

To assess the accuracy of risk models and their parameters, they must be tested

against the realized returns of the assets in question. Additionally, capital surcharges

are applied depending on backtesting results. While for VaR that is straightforward,

consisting essentially of counting the number of losses that surpass it, it is not the case

for ES. To overcome this problem, the FRTB recommends a backtesting procedure that

is still based on the VaR estimate instead of ES. This approach stirred some debate in the

field, as the measure being used to set the capital amounts is not the one that is being

tested, which means that the procedure is not precisely testing the coverage of the capital

requirements. Although VaR is easier to backtest than ES, this does not mean that there

is no way of backtesting the latter, as several methods have been developed.

This dissertation compares some of these methods in terms of admissibility, compu-

tational burden, and model dependence. The tests included in the analysis are two of the

three multinomial tests proposed by Kratz et al. (2018), four of the five tests developed

by Acerbi and Szekely (2014; 2017), the cumulative violations test (Constanzino and Cur-

ran, 2015; Du and Escanciano, 2016) and the secured position test of Moldenhauer and

Pitera (2019). The goal of this study is not exactly to propose changes in the regulation,

but rather to better understand just how feasible backtesting ES directly can be in the

context of both internal and external validation (regulation), how it could be performed,

and the impact it can have on capital requirements.

The study reveals that the presented Expected Shortfall backtesting methods lead to

different outcomes when it comes to model rejections, but are generally less prudent than

the FRTB’s traffic-light approach. Regarding the capital requirements, the simplest way
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of using Expected Shortfall is by calculating the capital surcharge from the ratio of the

average value of VaR breaches to the average ES estimate, leading to a simple, model-free

formula. This is based on the so-called Ridge Backtest (Acerbi and Szekely, 2017) and

results show that this approach is likely to lead to considerably higher capital require-

ments. To the best of my knowledge, this idea and conclusion are new to the existing

literature. Using other methods would require parametric assumptions to determine the

capital add-ons, and their impact would therefore be dependent on those assumptions.

The debate between VaR and ES and the search for the most adequate risk measures

have long been present in the literature, more so since the latest regulation’s shift towards

ES. With this study, I hope to bring a new, different judgment into the discussion and

contribute to banks’ and regulators’ pursuit of prudent practices regarding market risk.

To do that, I start by comparing VaR and ES in common ground in Section 3, ex-

ploring each measure’s attractive properties and disadvantages, paying special attention

to the backtesting problem, with an analysis of FRTB’s approach, other VaR backtesting

methods, and finally the proposed procedures for ES backtesting. Across sections 4 and 5,

both VaR and ES will be computed with different specifications for a hypothetical port-

folio, representative of banks’ assets. The backtesting methods will then be applied to

each of the measures to assess and compare their model rejection frequencies and possible

effects on the capital requirements. Conclusions are presented in section 6.
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2 Literature Review

The 2007-2008 financial crisis exposed the Basel II standards, in practice at the time,

as inadequate and insufficient when it came to market risk capital requirements. To

overcome the weaknesses of the framework, BCBS published the Fundamental Review

of the Trading Book to be implemented into the new minimum capital requirements for

market risk as part of Basel III. One of the proposed changes for banks using internal

models, the so-called Internal Models Approach (IMA), is the use of Expected Shortfall

at a 2.5% significance level (ES2.5%), replacion Value at Risk at a 1% significance level

(VaR1%). By doing this, banks account for tail risk and guarantee more conservative

capital levels. To qualify for the IMA, banks must (among other prerequisites) conduct a

regular backtesting procedure, based on the 1-day VaR1% estimates of the prior 12 months.

This includes a traffic-light test, depending on the number of VaR breaches recorded.

For a given significance level α, VaRα is derived from the α-quantile of the P&L

distribution. This can be estimated in different manners, namely by assigning a parametric

distribution to the returns, using past returns to obtain the quantile, or via Quantile

Regression, among other methodologies. Expected Shortfall (ES) is computed after VaR,

as it consists of the expected value of the losses that surpass that point.

Expected Shortfall’s attractiveness is not only due to being sensitive to tail events but

also due to satisfying the useful properties of coherence. To classify as coherent (Artzner

et al., 1999; Delbaen, 2002) a statistic must be monotonous, sub-additive, positively

homogenous, and translation invariant. By standardizing the definition of ES, Acerbi and

Tasche (2002) prove that this measure is coherent, as opposed to VaR, which is not sub-

additive. They take it one step further by extending the concept of coherence to the very

definition of a risk measure, claiming that any function, such as VaR, not satisfying the

subadditivity or any of the other three axioms, should not be classified as a risk measure

at all. It is at this point, when ES seems to be a favorite, that the problem of backtesting

arises.

Backtesting VaR is a rather simple process, consisting essentially of counting the

number of exceedances, which occur when a loss beyond VaR is recorded. Since VaR is a

quantile, it is expected that the exceedance rate is close to the level of significance. This is

the rationale behind Kupiec’s (1995) Unconditional Coverage test. Under this hypothesis,

the exceedances should follow an independent and identically distributed (i.i.d.) Bernoulli

process. Christoffersen’s (1998) Conditional coverage test tests for both the accuracy

of the predictions and first-order independence of exceedances (Berkowitz et al., 2011,

present a higher-order autocorrelation test).

For ES, it gets more complicated, as we would be dealing not with the number of

exceedances, but with their average magnitude. The first attempts to backtest ES came

from McNeil and Frey (2000), Berkowitz (2001), and Kerkhof and Melenberg (2004), each

3



with their particularities. These methods, however, are somewhat model-dependent, as

they rely on strong parametric assumptions or large exception samples. Both these factors

are very problematic since the tests should be able to be performed on different models

and ideally the sample size, that is the number of exceedances within a year, should be less

than a dozen. Wong (2008) and Rigghi and Ceretta (2013) propose alternatives, based

on the so-called saddle point technique and truncated distribution, respectively, that can

backtest ES with smaller samples. However, these still require considerable assumptions,

while also bearing a heavy computational and analytical burden.

A strong argument against backtesting ES came when Gneiting (2011) demonstrated

that ES, contrary to VaR, lacks a mathematical property called elicitability. A statistic

is elicitable if it minimizes the expected value of some scoring function. This was first re-

ceived as a long-awaited confirmation that ES cannot be backtested at all. However, this

idea has since been refuted by many authors. Acerbi and Szekely (2014) argue that “elic-

itability has in fact nothing to do with backtesting” (Acerbi and Szekely, 2014, p. 9) but

is instead related to relative model selection. They also introduce three non-parametric

testing methods for ES that show more power than the VaR tests but are, however, re-

liant on Monte Carlo simulations or resampling. Finally, this paper also introduces the

concept of joint elicitability of ES and VaR into the debate. Fissler et al. (2016) and

Nolde and Ziegel (2017) further explored this idea by proposing a new comparative ap-

proach to backtesting ES and VaR simultaneously, based on the scoring functions of the

joint elicitability. This procedure redefines the traditional hypothesis by adding a bench-

mark model against which the “internal” model is to be tested. Essentially, this method

works for comparison between models (model selection) and not for individual validation.

This is in line with the idea of Acerbi and Szekely (2014). In another paper (Acerbi

and Szekely, 2017) the same authors dwell on the definition of backtestable statistics (of

which ES is not a part), and its relation with elicitability. A backtest is defined as “a null

expected value involving only the statistic and its random variable, strictly monotonic in

the former” (Acerbi and Szekely, 2017, p. 1).

Another interesting approach comes from approximating ES from VaR. Acerbi and

Tasche (2002) were the first to define ES as an integrated VaR, that is, as the continuous

average of VaRs at different significance levels. Emmer et al. (2015) proposed approxi-

mating the integral as a Riemann sum of VaR with four terms (significance levels) and

then backtest each VaR individually. Kratz et al. (2018) extend this idea to N quantiles

and propose a single multinomial unconditional coverage test for ES. Despite this method

being applicable to any number of quantiles, the authors conducted numerical studies

that point to four or eight different levels as the most powerful approximation.

The integrated VaR representation allowed Du and Escanciano (2016) to develop both

unconditional and conditional coverage tests for ES, based on the so-called cumulative

violation process. These tests are particularly interesting because not only they are anal-
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ogous to Kupiec’s and Christoffersen’s VaR tests, but the test statistics, obtained via the

Probability Integral Transform (PIT), are asymptotically normal and Chi-squared dis-

tributed, respectively. This allows for more direct testing, with no need for resampling or

discrete approximations. Constanzino and Curran (2015) propose a similar unconditional

coverage test with an equivalent statistic, constructed around the concept of spectral risk

measures, introduced by Acerbi (2002).

Deng and Diu (2021) reviewed the most prominent of these procedures and compared

them in terms of testing power (the probability of correctly rejecting the null hypothe-

sis when it is false) and size (the probability of incorrectly rejecting the null hypothesis

when it is true), relating them to the duality between backtesting error and estimation

error. The authors study each method’s performance for different estimating and back-

testing sample sizes. For a fixed backtesting sample of 250 observations, they conclude

that testing size and power generally improve as the estimation sample increases since

the estimation error becomes relatively small. For this backtesting sample size and an

estimation sample above 1000 observations, the authors point to the use of unconditional

instead of conditional coverage ES tests.

Finally, Moldenhauer and Pitera (2018) suggest a different, non-parametric approach

to backtesting ES using the so-called secured position, which consists of the observed

P&L backed by the risk estimate. This procedure is essentially a test of the coverage

of the capital requirements over some period instead of a test of the adequacy of daily

estimates to observed returns. This comes as a clear response to the fact that divergences

between VaR1% and ES2.5% are likely to occur, meaning that the FRTB’s method is not a

proper approximation to the coverage of capital requirements determined by ES2.5%. Nev-

ertheless, the authors claim that their approach is a “natural extension of the regulatory

traffic-light approach for Value-at-Risk” (Moldenhauer and Pitera, 2018, p.1).

The search for an efficient way of backtesting ES directly has preoccupied both re-

searchers and regulators for the past 20 years. However, the connection between the two,

that is the adaptation and applicability of the developed backtesting procedures into the

regulation’s standards and requirements, is something that is not vastly covered in the

literature. With this dissertation, I aim to explore these topics and conclude which of

the procedures, if any, are better suited to be included in the regulatory framework, and

which are better suitable for internal model validation.
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3 Value at Risk vs Expected Shortfall

3.1 Value at Risk

Let Xt represent the daily uncertain P&L of some risky position and Ft(x) the real

unknown cumulative distribution of Xt. For a given significance level α, the 1-day VaRα,t

is defined as the worst expected loss with 1 − α confidence, which corresponds to the

absolute value of the α-quantile of Xt, that is:

V aRα,t = −qα(Xt) = −inf {x : Ft(x) ≥ α} (1)

Naturally, the distribution of Xt is not known. Therefore, VaR must be estimated

from some predictive model Pt. There are many approaches to this, both parametric and

non-parametric. The standard parametric approach consists of assigning some theoretical

distribution Pt(Xt, Θ⃗), where Θ⃗ ∈ Rn is a set of parameters, to the P&L and computing

its quantile. The simplest alternative is using a normal distribution with mean µt and

volatility σt. This allows us to compute VaR as1:

V aRα,t = −µt − σtΦ
−1(α) = −µt + σtΦ

−1(1− α) (2)

where Φ is the cumulative distribution function (c.d.f.) of the standard normal distribu-

tion. For a one-day measurement horizon, the expected return should be close to zero,

making µt negligible
2. Regarding σt, there are many ways to estimate it, other than sim-

ply using the standard deviation of past returns. These include moving average models

such as EWMA3 (Exponentially Weighted Moving Averages).

The normality assumption, however, is usually flawed. Negative skewness and ex-

cess kurtosis (fat tails) are typically present in observed data, meaning that the normal

distribution underestimates the presence of extreme losses. For this reason, alternative

distributions are common, such as generalized versions of Student-t or Pareto distribu-

tions.

More common is the use of non-parametric models. The most popular is the His-

torical Simulation method (HS), which consists of retrieving the quantile directly from

a sufficiently large sample of past returns. This is essentially estimating Pt(X) from the

empirical distribution of past returns. This method has the advantage of not relying on

uncertain parametric assumptions, thus accounting for observable particularities such as

fat tails. The challenge of the HS is its sensitivity to the sample size, which poses the

following dilemma. To obtain a good estimate, a large sample is necessary. However, by

1This result is possible due to the equivariance property of quantiles.
2For longer horizons, ignoring the drift adjustment (−µt) relates to Benchmark VaR (BVaR), relative to

the expected return.
3This is the model used in RiskMetrics, a methodology developed by JP Morgan in 1996, a reference for

risk managers.
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going too far into past returns, the estimates would be influenced by past events that

should not have the same effect as more recent ones. It is logical to presume that more

recent information, regarding returns and volatility, has a higher impact on the P&L

distribution. To accommodate this, adjustments to the sample of past returns are recom-

mended, namely weighting them based on their “age”, making the estimate more sensitive

to recent events. Another alternative is to improve the sample to account for volatility

changes. Hull and White (1998) propose adjusting the returns to the difference between

the historical volatility and the current or predicted volatility (this methodology will be

better detailed in section 4). With these adjustments, it becomes possible to combine

the advantages of HS with the structure of econometric models like GARCH processes.

Barone-Adesi and Giannopoulos (1998) extend a similar approach to h-day ahead VaR,

in a methodology called Filtered Historical Simulation (FHS).

Other relevant methodologies include computing VaR from Monte Carlo simulations

or using Quantile Regressions (Engle and Manganelli, 2004; Xiao et al., 2014).

VaR’s attractiveness is mostly reliant on its simplicity, easy interpretation, and prac-

tical application. Its main disadvantage is the fact that it is limited to its confidence level

and says nothing about the potential severity of the worst α of scenarios.

3.1.1 Backtesting Value at Risk

The standard VaR backtesting procedure begins by identifying VaR violations, or excep-

tions. One can define the violation function as the indicator function of a VaR violation,

that is:

Iα,t = 1{rt<−V aRα,t)} (3)

where rt represents the return (P&L) observed at time t, that is, the realized Xt.

If the model is well specified, Iα,t should follow an i.i.d. Bernoulli process with prob-

ability of success (a violation) α, meaning the total number of violations in a sample of

T days would be distributed along a Binomial(T, α) distribution. From here, it is already

possible to assess the accuracy of a VaR model, by comparing the number of VaR excep-

tions recorded over some time with the probability of such an amount occurring in that

binomial distribution.

This is the rationale behind the VaR backtesting requirements present in the FRTB.

The procedure is performed over a sample of 250 trading days, shortly under 1 year, and

is summarized in Table 3.1.

Models are classified in one of three zones, determined from the cumulative probability

of the recorded exceptions. They are allocated to the green zone when the cumulative

probability is below 95%, in the amber zone if it exceeds 95% but is below 99.99%, and

in the red zone for cumulative probabilities equal to or higher than 99.99%. For models

8



placed in the amber and red zones, a capital add-on is enforced based on the number of

exceptions recorded.

Backtesting Number of Backtesting Cumulative
Zone exceptions Multiplier Probability

Green

0 1.50 8.11%
1 1.50 28.58%
2 1.50 54.32%
3 1.50 75.81%
4 1.50 89.22%

Amber

5 1.70 95.88%
6 1.76 98.63%
7 1.83 99.60%
8 1.88 99.89%
9 1.92 99.97%

Red ≥ 10 2.00 99.99%

Table 3.1. FRTB’s traffic-light backtesting zones. The cu-
mulative probability is that of the Binomial Distribution with 250
trials and probability of success of 0.01.

There are other more statistically evolved methods for VaR backtesting. The most

prominent are the unconditional coverage test (Kupiec, 1995) and the conditional cover-

age test (Christoffersen, 1998), the latter of which tests both the frequency of exceptions

and their (1 lag) independence. Considering the regulatory framework’s disregard for

conditional coverage testing, as well as the conclusion of Deng and Diu (2021) that un-

conditional coverage tests for ES are often more reliable than conditional coverage, I will

focus on unconditional coverage testing in this study.

Kupiec’s test also sets from the null assumption that exceptions are i.i.d. Bernoulli

variables. It then checks if the observed exception rate (πobs) is equal to the expected

exception rate (πexp ≡ α), via the likelihood ratio (LR):

LR =

(
πexp

πobs

)n1
(
1− πexp

1− πobs

)n0

(4)

where n1 =
∑T

t=1 Iα,t, n0 = T − n1, πobs = n1/T, and πexp = α.

With the logarithm of LR, it is possible to obtain a Chi-squared distributed test

statistic, as follows:

−2 ln(LR) ∼ χ2
1 (5)

which allows one to test whether the observed exception rate is statistically equal to α,

which for the purpose of the analysis in this dissertation is hypothesized as :
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Hypothesis 1. Kupiec’s unconditional coverage test:

H0 : πobs = α

H1 : πobs ̸= α

This is the standard conditional coverage testing method and, along with the FRTB’s

procedure, it will be included in the analysis ahead, in comparison with existing Expected

Shortfall backtesting methodologies.

3.2 Expected Shortfall

Expected Shortfall (ES) with significance level α is defined as the expected loss of a VaRα

exception, that is, losses that equal or exceed VaRα:

ESα,t = −E[Xt|Xt ≤ −V aRα,t] (6)

To estimate ES, the same methodologies as VaR can usually be applied. In the case of a

normal distribution parametric model, it will be (ignoring the drift adjustment)4:

ESα,t =
σt

α

∫ Φ−1(α)

0

xϕt(x)dx =
σt

α
ϕ(Φ−1(α)) (7)

where ϕ is the standar normal probability density function (p.d.f.).

In the presence of an HS model, ESα is derived from the observed average of the α-tail

of the sample.

The reason for the significance level when changing from VaR1% to ES2.5% is that the

values are nearly identical for Gaussian returns, with ES2.5% increasing over VaR1% for

distributions with heavier tails. This serves as a penalization for the latter in the form of

higher capital requirements. Table 3.2. shows the different discrepancies between ES2.5%

and VaR1% for the normal and Student-t distributions with different degrees of freedom

(different tail weights).

Std. Student-t
Normal ν = 10 ν = 5 ν = 2.5

VaR1% 2.3263 2.7638 3.3649 5.3531
ES2.5% 2.3378 2.8190 3.5216 6.2057

Table 3.2. ES2.5% and VaR1% for different-tailed Normal
and Student-t distributions. ν represents the degrees of confi-
dence. A lower ν means heavier tails.

ES is a natural response to VaR’s unaccountability of extreme losses. It is, however,

not so simplistic as VaR, and necessarily requires the calculation of VaR, posing a slightly

4The second equality in Equation (7) is exclusive to the normal distribution.
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higher computational burden (which is not a big problem). On the other hand, unlike

VaR, counting ES exceptions has no significance whatsoever. Instead of the number of

exceptions observed, an ES backtest would be based on their average magnitude, which

is not as direct.

A useful representation of ES, first introduced by Acerbi and Tasche (2002), comes

by performing a variable change and defining ES from an integrated VaR, yielding:

ESα,t =
1

α

∫ α

0

V aR(u)du (8)

where VaR(u) ≡ VaRu. From Equation (8) it is possible to define the cumulative violation

process (Constanzino and Curran, 2015, Escanciano and Du, 2016), analogous to Equation

(3):

Hα,t =
1

α

∫ α

0

1{rt<−V aR(u)}du (9)

It is possible to construct a test statistic from this process, that would allow for

coverage tests of ES. However, as I will show later on, it is not as straightforward or as

easily interpretable as for VaR.

The next section will present and analyze the properties and singularities of both

measures that relate to their advantages and disadvantages, to better understand the

backtesting problem.

3.3 Attractive properties of risk measures

Before entering into the backtestability question, I will start by covering the aforemen-

tioned property of coherence.

3.3.1 Coherence

Introduced by Artzner et al. (1999), coherence distinguishes the class of risk measures

that satisfy the four axioms of monotonicity, positive homogeneity, translation invariance,

and sub-additivity. For a risk measure y(·), these are defined as:

(i) Monotonicity: y(X) ≥ y(W ) iff X ≤ W

(ii) Positive homogeneity: y(cX) = cy(X)

(iii) Translation invariance: y(X + c) = y(X)− c

(iv) Subadditivity: y(X +W ) ≤ y(X) + y(W )

Where W and X are random variables and c ∈ R is a constant. The interpretation of

these properties in the context of financial markets is both simple and important. If W
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and X represent the uncertain P&L distributions of two risky positions, (i) means that

lower-valued positions will bear higher risk, (ii) and (iii) relate to the effect on the risk

measure of the scale of the position and of risk-free assets, respectively and (iv) ensures

diversification benefits, stating that the overall risk of the portfolio shall not be greater

than the sum of individual positions’ risk. The latter takes a particularly important role

in this discussion because it establishes a disadvantage of VaR compared to ES.

While ES satisfies the four properties of coherence (Acerbi & Tasche, 20025), VaR

does not generally satisfy the property of sub-additivity and therefore is not coherent.

Nonsubadditivity of VaR is demonstrated when it comes to portfolios with nonlinear

payoffs, such as including options (Artzner et al., 1999). This constitutes a problem

regarding the admissibility of VaR.

3.3.2 Elicitabilty

Coined by Lambert et al. (2008), elicitability of a statistic y(X) of a random variable X

is defined as the existence of some scoring function S, whose expected value is minimized

by y. That is, y is elicitable if there is a function S such that:

y = arg min
y

E[Sy(y,X)] (10)

The α-quantile of the random variable’s distribution (the symmetric of VaR) mini-

mizes the average absolute error between the observed variable and the estimator, weighted

by α for observations above the quantile and 1−α for observations below it. This means

that the α-quantile is elicited by the scoring function6

Sqα(y, x) = α(x− y)+ + (1− α)(x− y)− (11)

On the other hand, it is not possible to construct a scoring function whose expected value

is minimized by ES alone, making it not elicitable (Gneiting, 2011).

The importance of elicitability stems from the fact that the mean score (realized

mean of the score function) allows us to qualify a predictive model for a statistic using

only a sample of model estimates and realizations of the random variable, establishing a

clear relation with backtesting. However, elicitability alone does not relate to the desired

backtesting procedure as the value of the realized mean score has no absolute significance.

One can only use it in a comparison between two or more models.

Although useful, elicitability is not sufficient to guarantee backtestability for model

validation.

5To guarantee sub-additivity for discrete distributions, ES must be defined slightly differently from Equa-
tion (6), with no impact whenever Ft(V aRα,t) = α, which is the generality of cases. For simplicity, I
will make that assumption.

6The notation used is the same as the authors’, that is: (a)+ = max(a, 0) and (a)− = −min(a, 0).
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3.3.3 Backtestability

According to Acerbi and Szekely (2017), a statistic y of a random variable X is back-

testable if there exists a function Z(y, x) that has a null expected value and is strictly

monotonic in y, that is:

E[Zy(y,X)] = 0,

E[Zy(y1, X)] < E[Zy(y2, X)] iff y1 < y2
(12)

In the financial context, Acerbi and Szekely’s backtestability refers to the existence of

a test function of the estimated statistic and the realized P&L, that qualifies predictions

based on their distance from 0 (the further away from 0, the worse a prediction is),

distinguishing overestimations from underestimations by the sign of the function’s value.

This definition is closely related to elicitability. In fact, not only is the latter a

necessary condition for backtestability, but any backtestable function is elicited by the

(convex) antiderivative of the test function Zy:

Sy(y, x) =

∫
Zy(y, x) dy (13)

On the other hand, the convexity of the scoring function of an elicitable statistic is a

sufficient condition for backtestability (and the backtest function will naturally be equal

to the derivative of the scoring function). This means that non-elicitable statistics such

as ES are not single-handedly backtestable. However, ES allows for what the authors

call a Ridge Backtest, using a function of ES and VaR as an auxiliary statistic, taking

advantage of ES-VaR joint-elicitability. This will be detailed in section 3.

At this point, the backtest function still has no absolute value, meaning it is not

enough to perform absolute model validation, that is, hypothesis testing. To do that, one

must know the distribution PZ of Zy under some null hypothesis. Except for VaR, PZ

must be approximated via simulation or resampling, which requires the daily recording

of the entire P&L predictive distribution Pt.

VaR is special in this, due to the Bernoulli distribution of Iα,t (Equation 3), which

allows for the computation of the p-value without recording the entire predictive model

to simulate the test statistic’s distribution. This is a particularity of the quantile inherent

to its nature, and unrelated to the fact that it is a backtestable statistic. In fact, other

backtestable statistics, like the expectile (Newey and Powell, 1987; Ziegel, 2014), do not

show this advantage and require the predictive distribution to determine the p-value of

the test.

When it comes to backtesting, the ideal procedure is based on a model-free test func-

tion, such that has no parametric assumptions and does not need the recording model

information, be it for resampling purposes (determining the p-value) or for the computa-
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tion of the test statistic itself.

3.4 Backtesting Expected Shorfall

In practice, what separates ES from VaR is not just the fact that the former is elicitable

and backtestable and the latter is neither, but the fact that VaR allows for absolute,

model-independent hypothesis testing using only the estimates and the realized P&L. For

ES, this is, strictly speaking, impossible. To perform model validation on ES one can

either approximate it from VaR (this is essentially the case for the FRTB’s procedure) or

relax the model information requirement. Kratz et al. (2016) follow the first option to

propose approximating ES from VaR at N significance levels, while other authors propose

different approaches that fall on the second option. The next sections will detail the most

interesting and prominent existing methodologies.

3.4.1 Multinomial tests

This method comes as an extension of that by Emmer et al. (2015) where the authors

suggest approximating ESα as the average of VaR at four confidence levels, that is:

ES1−β(L) ≈
1

4
[qβ(L) + q0.75β+0.25(L) + q0.5β+0.5(L) + q0.25β+0.75(L)] (14)

where β = 1− α7 and L = (X)− represents the distribution of portfolio losses.

Kratz et al. (2016) extend this approximation to N discrete equally spaced levels,

between β and 1, yielding:

βj = β +
(j − 1)

N
(1− β), j = 1, 2, . . . N (15)

which means that β1 ≡ β = 1 − α. Additionally, β0 = 0 and βN+1 = 1. In this study, I

will focus on β = 0.975, as that is the ES confidence level used in the FRTB.

Using Ij,t ≡ I1−βj ,t, as defined in Equation (3), would lead to N binomial VaR back-

tests. Defining Vt as

Vt =
N∑
j=1

It,j, t = 1, . . . , T (16)

Vt ∈ {0, 1, . . . N} counts the levels that are violated by each observation. If the model is

7The authors use α to refer to the confidence and not the significance level. I will maintain the usual
notation.
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accurate, we should have, analogously to VaR:

Pr(Vt ≤ j) = βj+1 and Vs, Vt independent for all s ̸= t (17)

which is equivalent to saying that Vt follows a multinomial distribution with 1 trial and

N+1 possible outcomes. To test this statement over a sample of T observations, one must

define the random vector O⃗ such that:

Oj =
T∑
t=1

1{Vt=j} j = 0, 1, . . . N. (18)

Oj can be seen as the exception rate for each cell, that is the number of occasions in

T days in which Xt is between VaR1−βj
and VaR1−βj+1

. By definition, O⃗ = {O0, . . . , ON}
should follow the same muntinomial distribution as Vt but with T trials. That is:

O⃗ ∼ MN(T, (β1 − β0, . . . , βN+1 − βN)) (19)

Under the assumption that O⃗ ∼ MN(T, (θ1− θ0, . . . , θN+1− θN)), this procedure tests

the hypotheses given by:

Hypothesis 2. Multinomial tests:

H0 : βj = θj for all j ∈ {1, . . . , N}
H1 : βj ̸= θj for some j ∈ {1, . . . , N}

The null states that each cell’s exception rate is equal to (1−β)/N = α/N . To assess

that, the authors propose 3 tests: The Pearson test, the Nass corrected test, and an LRT

(likelihood ratio test). The first two are rather simple, while the latter is a more complex

procedure that involves estimating the parameters via maximum likelihood. Since this is

not a standard procedure in backtesting and adds a new out-of-model estimation step,

this test will not be included in the analysis. I will now detail the Pearson and Nass test

statistics.

(i) Pearson chi-squared test (Pearson, 1900):

SN =
N∑
j=0

(Oj − T (βj+1 − βj))
2

T (βj+1 − βj)

a∼
H0

χ2
N (20)

The Pearson test is a standard procedure to assess the inference of a random variable’s

parameters. In this case, it measures the mean squared difference between the observed

and the expected cell violations.

(ii) Nass size-corrected test (Nass, 1959):

cSN
a∼
H0

χ2
ν (21)
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where c = 2E[SN ]
var[SN ]

, ν = cE[SN ], E[SN ] = N and var[SN ] = 2N−N2+4N+1
T

+ 1
T

∑N
j=0

1
βj+1−βj

.

This correction comes because the Pearson test reveals excessive size when the cell

probabilities are small, that is, as N increases. This does however come with a price, as

the Nass test shows slightly less power. Kratz et al. (2016) state that the Nass test with

N = 8 should be preferable to the Pearson test with N = 4.

3.4.2 Acerbi and Szekely’s Z tests

Along with some research on elicitability, Acerbi and Szelely (2014) suggest 3 methods

for unconditional coverage of ES. The first originates in the conditional expectation

E

[
Xt

ESα,t

+ 1

∣∣∣∣Xt + V aRα,t < 0

]
= 0 (22)

from which the authors define the test statistic Z1 as:

Z1 =

∑T
t=1(rtIα,t/ESα,t)

n1

+ 1 (23)

where n1 =
∑T

t=1 Iα,t, as in Equation (4). This naturally implies that n1 > 0 (if it isn’t,

there would be no need for exceptions backtesting). Hypothesis 3 describes the null and

alternative of this test.

Hypothesis 3. Acerbi and Szekely’s Z1:

H0 : P
[α]
t = F

[α]
t

H1 : ESF
α,t ≥ ESα,t, for all t and > for some t

V aRF
α,t = V aRα,t, for all t

where P
[α]
t and F

[α]
t are the α-tail distributions of Pt and Ft (introduced in section 3.1).

Note that VaRα is still correct under the alternative hypothesis. This method assumes

that VaRα is properly specified, testing only the coverage of ESα, and therefore requires

previous VaRα backtesting. The second test backtests VaRα and ESα simultaneously. Z2

comes from the unconditional expectation

ESα,t = −E

[
XtIα,t
α

]
(24)

and is defined as:

Z2 =
T∑
t=1

rtIα,t
TαESα,t

+ 1 (25)
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The hypotheses are then:

Hypothesis 4. Acerbi and Szekely’s Z2:

H0 : P
[α]
t = F

[α]
t

H1 : ESF
α,t ≥ ESα,t, for all t and > for some t

V aRF
α,t ≥ V aRα,t, for all t

While Z1 tests only the average magnitude of the exceptions, completely insensitive

to their frequency, Z2 jointly measures both and therefore does not require previous VaRα

backtesting. From the hypotheses of the tests, it is clear that they are one-sided. However,

their direction is the opposite of the VaR backtests. Both test statistics Z1 and Z2 have

expected value 0 under the null, and illustrate underestimation of ESα when they are

negative.

Z1 and Z2 test whether, on average, the observed losses exceeding VaRα,t are equal

to the estimated ESα,t. However, both null hypotheses regard the whole tail distribution

under the model. This is done because the test statistics’ null distributions need to

be simulated. To do so, one must assume that the predictive model is accurate and

iteratively simulate the distribution (the process is better detailed ahead). If it weren’t

for that necessity, weaker null hypotheses regarding only the ESα and VaRα coverage

would suffice. The same will apply to the Ridge test.

Regarding the third test (Z3), it is considerably more complicated and involves addi-

tional estimations, much like the LRT test of the multinomial approach. Moreover, the

authors conclude that Z3 is not as adequate as Z1 and Z2 for model validation. Z3 will

therefore be excluded from this study.

Finally, after concluding that ES is not strictly backtestable, Acerbi and Szekely

(2017) state that it does however allow for a Ridge Backtest. This is possible when a

statistic can be expressed as the attained minimum of the expected value of some scoring

function (in the sense of the scoring functions mentioned in section 3.3) of an auxiliary

statistic. To apply this logic to ES, aided by VaR, the authors use the results in Rockafellar

and Uryasev (2002):

V aRα,t = arg min
y

E

[
y +

1

α
(Xt + y)−

]
ESα,t = min

y
E

[
y +

1

α
(Xt + y)−

] (26)

From which it is possible to write a test statistic ZES that is no more than the difference

between the average prediction and the realized ES (ÊSα), that is
8:

ZES =
1

T

T∑
t=1

ESα,t − ÊSα (27)

8ZES is the average of the daily backtest ZES,t = ESα,t − V aRα,t − 1
α (rt + V aRα,t)

−
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where

ÊSα =
1

T

T∑
t=1

[
V aRα,t +

1

α
(rt + V aRα,t)

−
]

(28)

The authors conclude that the ridge backtest, henceforth referred to as ZR, should

constitute an improvement on Z1 and Z2, in the sense that it shows small sensitivity to the

VaR predictions. The Z1 strategy of previously backtesting VaR is imperfect since one can

never be sure that the predictions are correct (the backtesting procedure can only reject

large discrepancies). The Z2 test shows significant sensitivity to even relatively small VaR

mispredictions, which can lead to both type I and type II errors, by rejecting correct ES

predictions due to small VaR underestimation and not rejecting ES underestimations due

to VaR overestimation, respectively. On the other hand, the sensitivity of the ZR test is

not only very small for minor VaR mispredictions, it is prudentially biased, which means

that large VaR mispredictions have a negative (prudential) impact on the test statistic.

Since the authors do not state the hypotheses, I will write them equally to Hypothesis

4:

Hypothesis 5. Acerbi and Szekely’s ZR

H0 : P
[α]
t = F

[α]
t

H1 : ESF
α,t ≥ ESα,t, for all t and > for some t

V aRF
α,t ≥ V aRα,t, for all t

Another relevant result in Acerbi and Szekely (2017) is the property of Sharpness,

satisfied by ZR and not by the VaR tests. A test is said to be sharp if it is strictly

decreasing in the real value of the statistic. What this means is that a sharp backtest will

provide information on the discrepancy between the observed and the estimated values of

a statistic.

The number of VaR exceptions says nothing about the real VaR, it only makes it

possible to assess the statistical compatibility of that number with a correctly specified

model. As for the ZR test, the test statistic will be more negative for predictions that

underestimate the realized ES (Equation 28) by a larger difference, that is, for bigger

discrepancies between the predicted and the observed values of ES. This property will

prove very important in the context of this study, particularly for the determination of

capital requirements.

Despite the usefulness of the discrepancy information, the p-values of the tests still

need to be computed. As mentioned before, Acerbi and Szekely’s test statistics lead to no

statistical results (convergence to some theoretical distribution), so the distribution must

be simulated under the null assumption that the predictive P&L distribution is correct.

After computing the observed test statistic Zobs, the process is the following:
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1. Simulate a vector X⃗ i of T independent realizations of Xt ∼ Pt, t = 1, ..., T ;

2. Compute the simulated test statistic Zi
sim from X⃗ i);

3. Repeat M times to obtain the empirical distribution of Z;

4. Estimate the p-value of the realized test statistic Zobs:

p =
1

M

M∑
i=1

1{Zi
sim≥Zobs} (29)

This way, as in the VaR test, the model is rejected with 95% confidence (amber zone)

when p ≥ 0.95 and with 99.99% (red zone) when p ≥ 0.9999.

This process is not limited to parametric models. If one is dealing with a historical

model, then Pt is the empirical distribution of previous returns. In this case, instead of

simulating X⃗ i from some assumed distribution, the random sample is drawn directly from

the past returns (age or volatility standardized if implied by the model), from which Zi
sim

is computed.

In this study, T is fixed at 250. M must be sufficiently large for significant results.

Usual settings are 10 000, 20 000, or 50 000, the same as for Monte Carlo simulations.

3.4.3 Cumulative violations unconditional coverage test

As I previously mentioned, it is possible to backtest ES using the cumulative violation

process (Equation 9). This approach was first presented by Constanzino and Curran

(2015), by defining a coverage test for the class of spectral measures of risk (Acerbi, 2002),

which includes ES. Du and Escanciano (2016) suggest an almost identical methodology

(specific for ES). I will use the inputs of both authors but simply refer to this as the C&C

test (Constanzino and Curran).

Recovering the predictive cumulative distribution Pt, Equation (9) is equivalent to:

Hα,t =
1

α

∫ α

0

1{rt<−V aR(u,t)}du =

(
1− Pt(rt)

α

)
Iα,t (30)

Much like VaR violations, cumulative violations are i.i.d. under correctly specified

models. Therefore, following the Lindeberg–Lévy Central Limit Theorem:

√
N(Hα,t − µH)

a∼
H0

N(0, σ2
H) (31)

where Hα,t is the average Hα,t over T trading days and µH and σ2
H are the expected

value and variance of Hα,t under the null. Both authors then show that µH = α/2 and

σ2
H = α(4− 3α)/12, and consequently Hα,t admits a standard Z-test (not to be confused

with Acerbi and Szekely’s), with standard normal distributed test function ZH :
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ZH =

√
N(Hα,t − µH)

σH

=

√
3N − (2Hα,t − α)√

α(4− 3α)
(32)

The hypotheses are then:

Hypothesis 5. Cumulative violations (C&C) test:

H0 : E[Hα,t] = α/2

H1 : E[Hα,t] > α/2

Along with a conditional coverage test, Du and Escanciano (2016) also derive a cor-

rected test statistic to cover estimation errors, which will not be presented here. Not only

is the correction reliant on assumptions that are not met by non-parametric models, but it

is also insignificant when the estimation period is considerably larger than the backtesting

period.

3.4.4 Moldenhauer and Pitera’s secured position test

Moldenhauer and Pitera (2018) suggest a revamped approach to backtesting. Instead of

looking at the risk measure and P&L separately, analyzing discrepancies from one to the

other, the authors bind them into what they call the secured position, which consists of no

more than adding the risk estimate to the returns. In the case of ES, the day t realization

of the secured position s will be:

st = rt + ESα,t (33)

As the name points out, this is simply the daily P&L covered by the capital re-

serves. Logically, the secured position should be positive if the requirements are prudential

enough. Before detailing the test procedure, Moldenhauer and Pitera suggest correcting

st for volatility changes by standardizing it by the risk estimates, yielding:

s̃t =
rt + ESα,t

ESα,t

=
rt

ESα,t

+ 1 (34)

Using either st or s̃t the proposed test statistic will consist of “the biggest number of

worst realizations of the secured position that add up to a negative total” (Moldenhauer

and Pitera, 2018, p.6) that is9:

G =
T∑
t=1

1{s̃(1)+...+s̃(t)<0} (35)

where s̃(k) is the k-th order statistic of the secured position s̃ = {s̃1, ..., s̃T}. Much like

9The authors also divide G by T for a sample general statistic. I will stick to nominal values
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Acerbi and Szekely’s tests, the secured position test (henceforth named M&P test) lacks

statistical results regarding the test statistic distribution. Conveniently, the authors define

this test specifically for a traffic-light approach intended to be analogous to the Basel

procedure.

To establish the amber and red zone thresholds, it is first useful to note that under

a properly specified ES2.5% model, the expected value of G coincides with the expected

amount of VaR2.5% exceptions, that is, 6.25 (6 considering the integer part). From here,

the authors set the thresholds, visible in Table 3.3. in a way that its interpretation is

aligned with that of the VaR1% test.

Table 3.3. Basel and M&P tests traffic-light thresholds

Backtesting VaR1% G
Zone exceptions (M&P test)

Green ≤ 4 ≤ 11
Amber 5 - 9 12 - 24
Red ≥ 10 ≥ 25

The reason for the thresholds at 12 and 25 is to make the implied coverage decreases

equal to those of the VaR test thresholds. That is, 5 and 10 exceptions are associated with

98% and 96% coverage10 respectively, which is an implicit twofold and fourfold increase

in α, from 0.01 to 0.02 and 0.04. Applying the same multiplication to ES2.5% leads to

95% and 90% confidence levels, associated with an expected (integer) G of 12 and 25,

respectively. Additionally, the values of ES5% and ES10% are approximately equal to

VaR2% and VaR4% under Gaussian returns, just like ES2.5% and VaR1%.

The authors don’t present a null hypothesis for this test, which is reasonable given the

ad-hoc nature and lack of statistical conclusions of the procedure. The relevance of this

test relies mostly on the alignment with the FRTB’s traffic-light backtest, including the

possibility of analogously determining capital ad-ons. Nevertheless, the analysis ahead

will also focus on the statistical implications of it.

105 exceptions imply a coverage of 1 - 5/250 = 0.98, 10 exceptions imply 1 - 10/250 = 0.96.
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4 Empirical analysis

4.1 Sample description

The hypothetical portfolio used for this study is meant to be simple yet representative

of banks’ assets. This way, only long spot positions on equity were included. To fo-

cus on systematic, undiversifiable risk, disregarding any idiosyncrasies from the analysis,

without the need to perform risk factor mappings, the positions will be exclusively on

stock indexes, featuring a few of the most relevant international indexes, allowing for a

widespread analysis. This way, 4 indexes were selected in an attempt to significantly cover

international markets. These are the S&P500, STOXX Europe 600, Nikkei 225 and the

Hang Seng Index.

The exposure to each index was determined in a way that it is proportional to its

market cap (relative to the total market cap of the portfolio in April 2023), as it is set

out in Table 4.1. No portfolio value was considered, as the statistics (VaR and ES) will

be computed in % USD. Since three out of four indexes are denominated in different

currencies, the exposure to exchange rate risk must also be included, particularly to the

EUR-USD, JPY-USD, and HKD-USD exchange rates.

Table 4.1. Portfolio exposures

Risk Factor Exposure

S&P500 0.64
Stoxx 600 0.24
Nikkei 225 0.07
Hang Seng 0.05

EUR - USD 0.24
JPY - USD 0.07
HKD - USD 0.05

The daily closing prices of the four indexes and the daily exchange rates were down-

loaded from Bloomberg so that the VaR and ES at the portfolio level can be computed,

as set out in the next section.

4.2 Methodology

After the portfolio P&L is obtained, VaR and ES estimates must be computed. I will use

two different models in this study, one parametric and one historical. The results of both

will be compared to assess the applicability of the backtesting methods to different types

of models, as well as the stability of the conclusions. The parametric model used is the

standard RiskMetrics VaR, a simple yet well-implemented approach, and the HS model
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will consist of adjusting the sample of realized returns to the most recent volatility condi-

tions as in Hull and White (1998) using GJR-GARCH estimates (Glosten, Jagannathan

and Runkle, 1993).

4.2.1 RiskMetrics parametric model

The RiskMetrics (RM) model consists of a parametric model that assumes that returns

follow a normal distribution with EWMA volatilities with a smoothing factor (λ) of 0.94.

The EWMA variance estimates are given by:

σ̂2
t = (1− λ)r2t−1 + λσ̂2

t−1 with 0 < λ < 1 (36)

EWMA models are a simple yet effective way to increase the sensitivity of variance

(and volatility) estimates to the most recent market conditions. By weighing the previous

day’s return with 1− λ, the preponderance given to one particular observation decreases

exponentially as the days pass. The parameter λ determines how fast this decrease hap-

pens, hence the name smoothing factor. It is straightforward to tell that the lower λ is,

the higher the weight of the most recent conditions.

This way, the daily VaRα is computed as:

V aRα,t = σ̂tΦ
−1(1− α) (37)

and ESα as:

ESα,t =
σ̂t

α
ϕ(Φ−1(α)) (38)

From its development in 1994 and upgrade in 1996, the RM VaR approach grew from a

pioneer to an industry standard in risk management. However, as I mentioned before, the

normality assumption has been proven to be inaccurate to model most P&L distributions.

Regardless of that fact, I will still use it in this study, not only due to its significance,

but as a standard representation of a parametric approach. Additionally, since the main

topic of this study is backtesting, it is also useful generality to have an imperfect model.

This way, the RM model will constitute a starting point, and the HS model will serve as

an improvement in a way that it should provide better backtesting results and be more

representative of the models used by banks that qualify for the IMA.

4.2.2 GJR-GARCH Historical Simulation

As I have previously mentioned, the HS method is currently the most used method for

VaR and ES estimation11. To address the sample dependence issue, each VaRα,t and

11See Pérignon and Smith (2009) and Mehta et al. (2012) for studies on this topic.
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ESα,t will be computed from a sample of volatility-adjusted returns from the previous 1

000 days. The volatility adjustment works in the following way:

1. Each daily rt is standardized by the most recent volatility estimate at the end of

t, which is σ̂t+1 (as soon as rt is known, σ̂t+1 can be estimated).

2. To compute VaRα,T+1(t < T ) at the end of T , the series of previous returns is

scaled by σ̂T+1, yielding a series of volatility adjusted returns r̂t, from which the quantile

is computed12:

r̂t =
σ̂T+1

σ̂t+1

rt (39)

This approach allows us to compute VaR and ES, directly from a sample that matches

the current market conditions, still without making any parametric assumptions. Essen-

tially, the assumption is that the P&L at time T +1 will follow the empirical distribution

of the previous 1000 volatility-standardized returns (including T ), scaled by the volatility

estimate for T + 1.

In addition to the model itself, the volatility estimation is also altered in this model.

For the HS approach, they are assumed to follow a GJR-GARCH process.

A GARCH model is a stochastic process used to describe time series where the resid-

uals (in this study these will be equivalent to the demeaned returns) are heteroskedastic

(non-constant variance). This way, a model for the conditional variance, dependent on

past residuals and variance estimates, is set up.

Firstly, some stochastic model must be assumed for the series of returns. Typical

choices are AR(1,1) or ARMA(1,1) processes. However, the choice of model tends to

have little impact on the volatility estimates, being more important for P&L forecasting

purposes. For this reason, and for the sake of simplicity, I will simply demean the returns,

that is:

rt = µ+ εt, εt ∼ N(0, σ2
t ) (40)

A standard GARCH(1,1) is defined by the following equation:

GARCH(1,1): σ2
t = ω + αε2t−1 + βσ2

t−1 (41)

with ω, α, β > 0 and α+β < 1, where α (unrelated to the significance and confidence levels

α and β are the past residuals and past variance parameters, respectively. This model

can be generalized for (p, q) lags, in which case there would naturally be p residuals

parameters and q variance parameters.

There are many possible GARCH specifications. In this study, I will use one slightly

12The quantile can be derived from the standardized returns and then multiplied by σ̂T+1 (equivariance
property).
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more elaborated than Equation (41), entitled GJR-GARCH. A GJR-GARCH(1,1) is de-

fined by the equation:

GJR-GARCH(1,1): σ2
t = ω + (α + γIt−1)ε

2
t−1 + βσ2

t−1 (42)

with ω, α, β > 0, α + γ > 0 and α + β + γ/2 < 1.

The difference between Equations (41) and (42) is simply the parameter γ, which is

introduced to assign different impacts to negative shocks as compared to positive ones.

This way, the coefficient associated with a negative return is now (α + γ) while the

coefficient of a positive return remains α. Typically negative shocks have a stronger

influence in increasing volatility, a phenomenon called asymmetry (Caporin and McAleer,

2012)13.

Having established the model, the parameters are then estimated via maximum like-

lihood, and from the equation along with the realized returns, it is now possible to obtain

a series of volatility estimates. As soon as rt is known the residual εt is drawn as:

εt = rt − µ̂ (43)

from where σ̂t+1 is obtained:

σ̂2
t+1 = ω̂ + (α̂ + γ̂It−1)ε

2
t + β̂σ̂2

t−1 (44)

From the daily P&L of the portfolio described earlier, I repeated the estimation process

once every 65 business days (roughly 3 months), using a sample of the previous 1000

observations to perform the likelihood optimization. This is in line with the FRTB’s

request to update the model data sets every 3 months.

The series of volatility estimates is now complete and I can perform the adjustments

as detailed in Equation (39) and compute the HS VaR and ES starting from day 1001

(early 2007).

13A study by Stavroyiannis (2018) explains the parameter constraints in the presence of asymmetry and
leverage.
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5 Results and discussion

5.1 Rolling sample

Based on the VaR1% and ES2.5% estimates detailed above, each of the following backtesting

methods was applied daily to a rolling sample of the previous 250 days, complying with

the FRTB procedure:

(i) VaR1%: Binomial test as recommended in the FRTB (henceforth entitled Basel

test) and Kupiec’s unconditional coverage test.

(ii) ES2.5%: Pearson and Nass tests, each with N = 2, 4, 8, Cumulative Violations test

(C&C) and Secured Position test (M&P).

Due to the computational burden of simulating the test statistics’ distributions daily,

the Z tests of Acerbi and Szekely were excluded from the rolling sample analysis. Acerbi

and Szekely (2014) argue that the Z2 test leads to stable 95% and 99.99% thresholds,

around the values of -0.7 and -1.8, respectively, which would make the simulation process

unnecessary. However, these thresholds will not be considered for this study, and only

simulated p-values will be used further ahead. A comparative analysis of these values

against simulated thresholds under the RM and HS models was conducted, concluding

that convergence to the -1.8 (99.99%) threshold is uncertain, especially in the HS model14.

Each day, the RM and HS models were placed in the traffic-light zones, according to

the same criteria as in the FRTB backtesting procedure extended to each of our alternative

methods. Table 5.1. summarizes the results.

Parametric model (RM) Historical model (HS)
Test G (%) A (%) R (%) G (%) A (%) R (%)

VaR1%
Basel 21.41 66.54 12.05 88.13 11.87 0.00
Kupiec 47.43 46.57 6.00 93.14 6.86 0.00

ES2.5%

Pearson N=2 39.36 49.48 11.16 96.23 3.77 0.00
Pearson N=4 42.60 44.75 12.66 94.99 5.01 0.00
Pearson N=8 33.54 53.66 12.81 86.41 12.98 0.61
Nass N=2 45.28 45.05 9.67 97.54 2.46 0.00
Nass N=4 42.62 46.22 11.16 95.87 4.13 0.00
Nass N=8 41.66 51.46 6.88 92.41 7.59 0.00
C&C 24.50 56.09 19.41 94.46 5.54 0.00
M&P 16.38 78.54 5.09 93.57 6.43 0.00

Table 5.1. Rolling sample backtesting results (2007 - 2022).
The values displayed are the percentage of placements in each zone.

The first thing Table 5.1. tells us is that, as expected, the HS model performs much

better than the RM, in all tests. In fact, not only would these results imply a higher

capital burden for the RM model, but the model would at one point (between March and

14The results of this analysis are presented in Annex C.
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April 2020) not even qualify for the IMA, due to the occurrence of too many exceptions15.

On the other hand, the HS model proves to be much more adequate, never falling in the

Basel red zone.

Compared to the Basel binomial test, all but one of the multinomial ES tests lead

to considerably fewer 95% level rejections, that is, more green zone allocations. Despite

being significant in both models, this increase is much larger in the RM model, peaking

at the Nass test with N = 2, more than doubling the Basel test’s result (the percentage

of green zone allocations from the latter was as low as 21.41%). Still regarding the RM

model, in particular the Nass test, there is also a considerable decrease in red zones for all

N . This means that a change to the Nass test from the Basel test would be less prudential

by decreasing the capital add-ons of poorly performing models. As for the Pearson test,

the percentage of red zone allocations does not change dramatically. The changes in the

HS model are much lighter but still relevant, also peaking at the Nass test with N = 2.

Looking closely at the multinomial ES backtesting results, it is possible to tell that

increasing N in both test statistics of the multinomial approach generally leads to an

increase in 95% rejections. In the HS model, the percentage of green zones from the

Pearson test decreases by nearly 10 p.p. from N = 2 to N = 8, while the Nass test

decrease is around 5 p.p. This difference in sensitivity is in line with Pearson’s decrease in

effectiveness with increasing N , associated with higher test size, as mentioned in section

3.4. This means that the Pearson test’s rejections with N=8 are less trustworthy and

more likely to be incorrect than in the Nass test. In fact, the Pearson test with N = 8

is the only one to have 99.99% rejections of the HS model. In the RM model, the zone

shifts are less stable, as the green zones even increase slightly in the Pearson test from

N = 2 to N = 4, decreasing back about 9 p.p. with N = 8, reflecting again a big

rise in (possibly incorrect) rejections with the largest N . Looking at the red zone in the

Nass test, these reach a maximum with N = 4 and minimum with N = 8, exposing the

correction properties of this test with higher N .

It is interesting to note that the multinomial test results, while differing a lot from

the Basel test, are very close to Kupiec’s, especially in the case of the Nass test. These

procedures have in common the fact that they are based on asymptotic convergences

to the Chi-Square distribution that lead to less restrictive critical values. In particular,

Kupiec’s test rejects the null with 95% confidence only in the presence of 7 or more VaR1%

exceptions, and with 99.99% only from 11 exceptions, as opposed to Basel’s 5 and 10. This

essentially means that the Basel Committee prioritized simplicity and prudentiality when

defining the backtesting method. This exercise grows more elaborate with the multinomial

tests, as the thresholds are dependent on N16.

15Models are disqualified if more than 12 exceptions are observed.
16Kratz et al. (2016) display a figure illustrating the amber and red zone thresholds of the Nass test with

N = 2, dependent on the combinations of the two cells’s exceptions.
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On the other hand, the C&C, and M&P tests present outcomes that are more aligned

with the Basel VaR test, particularly in the RM model. Given their nature, this was an

expected conclusion, however, they show some remarkable differences between each other.

In the MP model, the M&P test outcomes are more centered in the amber zone. It has

the lowest amount of both green and red zones out of all the tests displayed, which can

be worrying. While it shows prudentiality by rejecting more models on the 95% level, it

is the opposite when it comes to the 99.99% threshold, which has dubious implications

in the capital requirements. For a procedure intended to mimic the output of the Basel

test, 5.09% is a surprisingly low amount of red zone allocations, a decrease of nearly 7

p.p.. When it comes to the HS model, it is less prudent in both the 95% and 99.99%

thresholds. The C&C leads to more dispersed results in the MP model, with more green

and red zones than both the Basel and the M&P tests. In fact, this is the test with the

most red zone allocations overall, with over 19%. In the HS model, it does not drift much

from the other tests.

The conclusions from this analysis must take into account the fact that they come from

a rolling sample, meaning each day the sample changes only one observation, maintaining

the other 249. This naturally leads to the repetition of exceptions. In the real world, a red

or even amber zone allocation would lead to changes in the model that should prevent it

from being placed in the same zone in the future. To better understand the time dynamics

of the backtesting results, they should be drawn from more “discrete” 250-day samples.

5.2 Discrete samples

For this analysis, 31 samples of the previous 250 trading days were drawn every 130 days

(roughly a half year). Tables 5.2. and 5.3. detail the results using the RM and HS models,

respectively. This time, Acerbi and Szekely’s Z tests were included in the analysis, with

a simulation sample (test statistic distribution under the null) of 20 000 observations.

Regarding the Z1 test, a VaR2.5% backtest, identical to the Basel test17, was performed

beforehand. In both tables, in the Z1 column, A* means that the VaR2.5% was rejected

with 95% confidence but ES2.5% was not.

For the Multinomial, C&C, and M&P tests, the conclusions from the discrete sample

analysis are mostly in line with those of the rolling sample. That being said, with fewer

backtesting samples, the multinomial tests move closer to the Basel test. As for Acerbi

and Szekely’s tests, Z1 stands out with only two green zones and 29 amber zones. This is

of course not a good trait, for the same reasons that were pointed out before regarding the

M&P test. However, on five occasions, the Z1 test did not reject the hypothesis with 95%

confidence, with the model being placed in the Amber zone due to VaR 97.5% backtesting.

Nevertheless, the absence of red zones perfectly illustrates one of the weaknesses of the

17The 95% and 99.99% thresholds are, in this case, 11 and 17, respectively.
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Basel Kupiec
Pearson Nass

C&C M&P ZR Z1 Z2
Testing period N=2 N=8

Jan/07 - Jan/08 A A R A R A A A A

Jul/07 - Jul/08 R A A A R A A A* A

Jan/08 - Jan/09 A G G A A A G A A

Jul/08 - Jul/09 G G A A A A G A* A

Jan/09 - Jan/10 G G G G G G G G G

Jul/09 - Jul/10 A A A A A A A A A

Jan/10 - Jan/11 A A A A A A A A A

Jul/10 - Jul/11 A A A G A A A A* A

Jan/11 - Jan/12 R A R A R A A A A

Jul/11 - Jul/12 A G A A A A A A* A

Jan/12 - Jan/13 G G G G G G G G G

Jul/12 - Jul/13 A G G G G A A A G

Jan/13 - Jan/14 A G G G G A A A G

Jul/13 - Jul/14 G G G G G G G A G

Jan/14 - Jan/15 A A A A R A A A A

Jul/14 - Jul/15 A A A A R A A A A

Jan/15 - Jan/16 A A A A A A A A A

Jul/15 - Jul/16 A A G G A A A A A

Jan/16 - Jan/17 G G G G G A A A G

Jul/16 - Jul/17 G G G G G G G A G

Jan/17 - Jan/18 A G G G G G G A G

Jul/17 - Jul/18 A A A A A A R A A

Jan/18 - Jan/19 R R R A R R R A R

Jul/18 - Jul/19 A A A A A A A A A

Jan/19 - Jan/20 A A A A A A A A G

Jul/19 - Jul/20 R R R R R R R A R

Jan/20 - Jan/21 R A R R R R R A R

Jul/20 - Jul/21 A G A G A A A A A

Jan/21 - Jan/22 A A A A A A A A A

Jul/21 - Jun/22 A G A A A A A A A

Jan/22 - Dec/22 G G A A A A G A* A

Total (%)

G 22.58 45.16 32.26 35.48 25.81 16.13 25.81 6.45 29.03

A 61.29 48.39 51.61 58.06 48.39 74.19 61.29 93.55 61.29

R 16.13 6.45 16.13 6.45 25.81 9.68 12.90 0.00 9.68

Table 5.2. Discrete samples traffic-light backtesting results
- RM model (2007 - 2022). The bottom rows display the per-
centage of placements in each zone over the 31 samples.

Z-tests, which is the absence of statistical results and the necessity to simulate the p-

value. Not only does this make the results dependent on the number of simulations (M),

but it also creates uncertainty when the simulated p-values are close to the thresholds

since nothing guarantees a strong convergence of the test statistic distribution. To better

illustrate this point, the procedure was repeated with M = 50 000, which changed the

amber zone of the Jan/13 - Jan/14 sample to green (no further changes were recorded

among the three tests). Even with the same M , infinitesimal changes may occur in the

p-value from one run to another that can impact the tests’ conclusion.
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Regarding the ZR and Z2 tests, these present similar results, that are also very close

to the Basel test. It is safe to say that the ZR is the test that is closer to the Basel

test when it comes to the traffic-light results, with the same amount of amber zones, one

more green, and consequently one fewer red. These are also similarly distributed in time,

although not identically.

To assess different tests’ behavior at periods of more stress, it is useful to analyze

the ES tests’ results in the periods that led to Basel red zone allocations. The Nass and

Z1 tests seem the least suitable in these periods. The former fails to recognize red zones

in all but one of the stress periods, that being the year 2020 (marked by the COVID-19

pandemic), while the latter has no red zones at all (although inconclusive in the 2015 and

2020 periods, as mentioned above). The M&P, ZR, and Z2 tests revealed red zones in

2018 and 2020 but failed to do so in 2008 and 2011. The remaining tests, Pearson and

C&C, show themselves as the most prudential in periods of stress, assigning red zones

in about the same periods as the Basel tests. Additionally, the C&C test also led to red

zones in 2015, a period of remarkable losses that yielded “just” amber zones in all of the

other tests, reinforcing detail that this is the test with the most red zone allocations. On

the other hand, it is also relevant to look at amber zones and mention periods such as

2013, in which the Basel test leads to amber zones, accompanied by the M&P and ZR

tests, while Pearson and C&C yield green zones. Finally, a mention to the year 2022, in

which, surprisingly given the economic context, the VaR tests revealed green zones, while

all but the ZR test resulted in amber zones. The same happened in the Jul/08 - Jul/09

period.

Conclusions from the HS model are of course much more limited, due to the prepon-

derance of green and total absence of red in Table 5.3. Still, it is relevant to note that

the ZR test is the only one to match Basel’s two amber zones from 2020. It is interesting

to note none of the remaining tests reject the model in this period, while in the RM,

model all but the Z1 test resulted in red zones. This shows that, once again, ZR presents

the closest results to the Basel test. It differs only in the January 2009 sample, when it

leads to a green zone, as opposed to Basel’s amber. The Nass test is the only ES test to

present an amber zone in this period. On the other hand, in the first backtesting sample

it surprisingly yields an amber zone, contrary to the remaining tests. In the January 2016

sample, it is the only test with an amber zone.
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Basel Kupiec
Pearson Nass

C&C M&P ZR Z1 Z2
Testing period N=2 N=8

Jan/07 - Jan/08 A A A G A A A A* A

Jul 07 - Jul/08 A A A A A A A A* A

Jan/08 - Jan/09 A G G A G G G G G

Jul 08 - Jul/09 G G G G G G G G G

Jan/09 - Jan/10 G G G G G G G G G

Jul 09 - Jul/10 G G G G G G G G G

Jan/10 - Jan/11 G G G G G G G G G

Jul 10 - Jul/11 G G G G G G G G G

Jan/11 - Jan/12 G G G G G G G G G

Jul 11 - Jul/12 G G G G G G G G G

Jan/12 - Jan/13 G G G G G G G G G

Jul/12 - Jul/13 G G G G G G G G G

Jan/13 - Jan/14 G G G G G G G G G

Jul/13 - Jul/14 G G G G G G G A G

Jan/14 - Jan/15 G G G G G G G G G

Jul/14 - Jul/15 G G G G G G G G G

Jan/15 - Jan/16 G G G A G G G G G

Jul/15 - Jul/16 G G G G G G G G G

Jan/16 - Jan/17 G G G G G G G G G

Jul/16 - Jul/17 G G G G G G G G G

Jan/17 - Jan/18 G G G G G G G G G

Jul/17 - Jul/18 G G G G G G G G G

Jan/18 - Jan/19 G G G G G G G G G

Jul/18 - Jul/19 G G G G G G G G G

Jan/19 - Jan/20 G G G G G G G G G

Jul/19 - Jul/20 A G G G G G A G G

Jan/20 - Jan/21 A G G G G G A G G

Jul/20 - Jul/21 G G G G G G G G G

Jan/21 - Jan/22 G G G G G G G G G

Jul/22 - Jun/22 G G G G G G G G G

Jan/22 - Dec/22 G G G G G G G G G

Total (%)
G 83.87 93.55 93.55 90.32 93.55 87.10 93.55 90.32 93.55

A 16.13 6.45 6.45 9.68 6.45 6.45 12.90 9.68 6.45

Table 5.3. Discrete samples traffic-light backtesting results
- HS model (2007 - 2022). The bottom rows display the per-
centage of placements in each zone over the 31 samples.

5.3 Capital multipliers

Other than analyzing model rejections, it is interesting to assess the impact that a change

to ES backtesting could have on the capital add-ons. To do so, it would be useful to

extend the rationale that is currently used to determine the VaR backtesting multipliers

(Table 3.1.) to the ES backtesting results.

The idea behind the multipliers in Table 3.1. is that “the increase in the multiplication

factor should be sufficient to return the model to a 99th percentile standard” (BCBS, 2019,

p. 128). What this means is that based on the coverage levels implied by the amount of
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VaR exceptions, the multiplier is set so that the final coverage is 99%. This requires some

statistical assumptions that are not detailed in the document18. The multiplier (mBasel)

is then determined from the ratio (under said assumptions) of the 99% VaR to the VaR

with a significance level equal to the observed exception rate (πobs), that is:

mBasel = 1.5
P−1(0.01)

P−1(πobs)
(45)

where P is the cdf of the P&L distribution assumed in the FRTB and πobs bears the same

meaning as in Equation (4). As Table 3.1. shows, the factor of 1.5 is always applied,

regardless of backtesting results.

In the case of the M&P test, one can apply the same multipliers to the biggest number

of worst-case observations with negative sum. Extending the relation presented in Table

3.3. to the remaining multiplier levels results in Table 5.4., from which it is possible to

run capital multipliers for the M&P test.

Number of Observed G Backtesting
Exceptions Rate (πobs) (M&P test) Multiplier

5 2% 12, 13, 14 1.70
6 2.4% 15, 16 1.76
7 2.8% 17, 18, 19 1.83
8 3.2% 20, 21 1.88
9 3.6% 22, 23, 24 1.92

≥ 10 4% ≥ 25 2.00

Table 5.4. Basel and M&P backtesting multipliers. When
the exception rate (πobs) leads to a decimal G, its integer value is
considered for that multiplier, for prudentiality.

Figures 5.1. and 5.2. detail the percentual difference from the Basel to the M&P cap-

ital multipliers across the rolling sample periods, in the RM and HS models, respectively.

Additionally, to better understand where the differences come from, Tables 5.5. and 5.6.

show the allocations of both the Basel and the M&P tests simultaneously.

Although the average difference in the capital add-on is around zero in the RM model

(0.1573 % to be precise), figure 5.1. shows that there are large shifts in given moments,

both positive and negative. These can reach up to 20% increases or decreases in the

capital reserves, which is of course extremely relevant. This means that substituting the

Basel with the M&P test could have a very significant but unpredictable impact on the

capital levels.

18For all but 9 and 10 exceptions, the multipliers seem to be in line with a standard normal distribution
assumption
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Figure 5.1. % change in capital requirements from the
Basel to the M&P test - RM model. The red marks refer to
the discrete sample periods used before.

M&P
Green Amber Red

B
as
el Green 550 296

Amber 97 2532 0
Red 275 201

Table 5.5. Rolling sample M&P backtesting results - RM
model (2007 - 2022). The diagonal cells are the occasions when
both tests result in the same zone.

In the HS model, the differences are naturally less common, given the amount of

green zones. However, when capital add-ons are appliable (amber zones), there are again

remarkable discrepancies in their value, but this time always negative, surpassing -18%

in 2008. This occurs when the Basel test yields amber zones and the M&P test returns

green or less significant amber zones (there is no occasion where the Basel test is green

and the M&P test amber, as Table 5.6. shows), reinforcing the idea that the M&P test, as

it is presented, is less prudential than the Basel test in the better performing HS model.

Assuming that this model is unchanged over time, the presented change would lead to a

decrease in the total capital add-on (sum of all periods, including green zones) of 1.49%.

Excluding the green zones, the total decrease would be 10.68% and on average 10.73% a

day.
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Figure 5.2. % change in capital requirements from the
Basel to the M&P test - HS mode. The red marks refer to the
discrete sample periods used before.

M&P
Green Amber Red

B
as
el Green 3482 0

Amber 215 254 0
Red 0 0

Table 5.6. Rolling sample M&P backtesting results - HS
model (2007 - 2022). The diagonal cells are the occasions when
both tests result in the same zone.

The M&P results seem somewhat unsatisfactory, given the authors’ conclusion that it

would allow for a smooth transition from the Basel backtesting procedure. To understand

why, it is necessary to take a closer look at the thresholds used. The choice of thresholds

at 12 and 25 shares the ad-hoc nature of the Basel test, however, the latter does add

some statistical reasoning with the use of the binomial distribution’s 95% and 99.99%

thresholds. If the M&P statistical framework were aligned with the Basel one, we would

not be seeing such discrepancies in both the zone allocations and the capital multipliers.

Naturally, it comes down to the fact that the M&P test statistic does not converge to

any distribution and no conclusion can be made in that regard without assumptions on

the real P&L distribution, upon which the 95% and 99% rejection thresholds will then be

dependent. Figure 5.3. shows how the test statistic’s null distribution can vary according

to the real, unknown, P&L distribution.
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Figure 5.3. Tails of the cumulative distribution of the
M&P test statistic under the null and of the FRTB’s test’s
binomial distribution. The M&P statistic’s distribution is simu-
lated from Gaussian and student-t (2.5 degrees of freedom) returns.
The axes are set so that 5 exceptions are aligned with a G of 12
and 10 with 25.

The empirical distributions in Figure 5.3. are obtained from 50 000 Gaussian and

student-t (2.5 degrees of freedom) simulations and their respective ES2.5%. A student-t

distribution was fitted to the entire P&L sample, resulting in an estimated d.f. of 2.54,

approximated to 2.5. The dotted lines mark the 0.95 and 0.9999 thresholds, making it

clear that the values of 12 and 25 are not guaranteed to be statistically aligned with the

Basel framework. The bottom line is that, despite its useful and simple interpretation,

the test lacks a strong, general statistical background.

Regarding the ZR test, it is logical to use the ratio of the realized ES to the average

ES estimate as the ES analogous to Equation (45). The ZR multiplier would then be

given by:

mZR = 1.5
ÊSα

ESα

(46)

The most interesting aspect of this approach is that it requires no parametric as-

sumptions to calculate the capital multiplier. However, it is still necessary to conduct the

simulation process to determine the p-value of the ZR test statistic, since the multipliers
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are meant to be applied only on amber and red zones. Figure 5.4. illustrates the potential

effect on the capital requirements of changing from the Basel to the ZR test.

Figure 5.4. % change in capital requirements from the
Basel to the ZR test (discrete samples). When the p-value is
lower than 0.95, the multipliers are set at 1.5.

Figure 5.4. shows that the impact of the ZR test can be considerably greater than the

M&P test. In the RM model, the change is mostly positive, averaging 7.77%. The two

largest increases come in the 2020 period (Jul/19 - Jul/20 and Jan/20 - Jan/21 samples)

surpassing 40%. Interestingly, these happen in a period in which both the Basel and the

ZR test result in red zones, however, it is relevant to note that the Basel multiplier is

capped at 2.00 (10 or more exceptions), meaning that 11, 12, or more exceptions lead

to the same add-on as 10 exceptions. On the other hand, no limit was set for the ZR

multiplier. If it had been, the differences would naturally be smaller in some occasions, in

particular the Jul/19 - Jul/20 and Jan/18 - Jan/19 samples, in which 12 and 11 VaR1%

exceptions were recorded, respectively. In the HS model, there are both positive and

negative changes, contrary to the M&P which produces only decreases. Increases peak at

5.67% during the 2020 stress period, while the largest decrease is 14.77% in the Jan/08 -

Jan/09 sample, the only period of the HS model in which the ZR test result (green zone)

is different from the Basel test (Amber zone). In each model, there is only one decrease

occurring when both tests place the model in the amber zone, which are in the Jul/10

- Jul/11 period in the RM model and Jul/07 - Jul/08 in the HS model. This points to

the idea that the ZR test, as presented, leads to generally more prudent (higher) capital

multipliers. Figure 5.5. illustrates this conclusion by plotting the multipliers resulting

from the ZR test in the RM model along with their associated p-values (considering only

p-values above 0.95).
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Figure 5.5. Relation between obtained p-values and capital
multipliers. The blue dots are the multipliers obtained from the
ZR test in the RM model. The red dots are the ones from the Basel
test (Table 3.1.)

Figure 5.5. shows that, for the same p-values, the ZR test multipliers are higher than

the Basel test ones. Naturally, the information in Figure 5.5. is dependent on the model,

due to different test statistic distributions. A similar analysis with the HS model results

is not useful due to the preponderance of green zones.

The implementation of the test does not need to be executed in this exact manner,

leaving space for changes that mitigate its impact, if such is the desire of regulators. What

these results show is that it is possible to use the Ridge test to determine ES backtesting

dependent capital add-ons, without statistical assumptions. The add-ons are not derived

from the test statistic (Equation 27) but rather from two observable values that relate

to it. Since the test statistic measures absolute discrepancies, computing the multipliers

directly from it would require statistical assumptions regarding not only the shape but

also the scale of the P&L distribution. With assumptions only on the former, it may be

possible to use the p-value instead of the test statistic. These conclusions are consequences

of the sharpness of the test.
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6 Conclusion

Backtesting Expected Shortfall is possible. In this study, I reviewed and analyzed the

most prominent methods to do so and compared them with the standard VaR proce-

dures. Setting from the unanimous inference that VaR backtesting is far simpler and

easier to interpret, the idea was to understand if using a VaR-based procedure to test

for ES coverage (as recommended in the most recent regulation) is more adequate than

backtesting ES by itself.

To do so, two differently constructed models were estimated for both VaR and ES

and the backtests performed daily from 2007 to 2022 following the (adapted) regulatory

guidelines. This allowed me to compare the rejection rates of the tests and their impli-

cation on capital requirements, as well as their statistical robustness and computational

burden, to distinguish their possible implementation between internal and external model

validation.

The results show that every test procedure has its advantages and shortcomings. The

multinomial tests are the only ES tests that satisfy both requisites of not requiring model

information and being sustained by statistical results. However, these are shown to be

less prudential than the VaR test currently recommended by the regulation, being closer

to Kupiec’s widely used Unconditional Coverage test. Judging by the Basel Committee’s

choice in favor of a simpler yet more prudent binomial test instead of Kupiec’s, a multino-

mial test is not likely to be included in the framework, at least without further changes.

Nevertheless, it should be appropriate for internal validation, in particular the Nass test

with 8 levels, for more significant results.

The cumulative violations test (C&C) and the Z tests share the disadvantage of re-

quiring the storage of model information, although in different steps of the process. Out

of these, the ZR test shows the most promising results, especially for internal validation,

as the simulation requirement should pose little to no difficulties to banks. When it comes

to external validation, the challenge would naturally be to include a detailed unequivocal

simulation process in Basel’s backtesting requirements. One that is suitable for all kinds of

models. If this challenge is overcome, this test brings along a simple, model-independent

way of determining capital add-ons, that may result in higher capital requirements.

Finally, M&P’s secured position test has some very interesting aspects, mostly due

to its convenience and similar nature to the Basel test. The results, however, show that

the two are not as aligned as one could hope, which means that a change to the M&P

test would have a significant and uncertain impact on the capital amounts. This is due

to the absence of robust statistical conclusions, which also means it is not particularly

interesting for internal validation.

Naturally, the results of this study are bounded by the methodology used. The sim-

plicity of the portfolio and non-inclusion of different assets such as bonds of derivatives, as
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well as the disregard of other VaR/ES models (both different specifications within para-

metric and historical approaches, as well as different models entirely, such as Quantile

Regressions) are some limitations of this dissertation that naturally affect the generality

of the conclusions. Additionally, fixing the backtesting sample at 250 throughout the

analysis is also limiting. Although this is the duration recommended in the framework,

when it comes to internal model validation, it is naturally possible to backtest ES over

larger periods, with an impact on the tests’ results.

Further changes to the standards introduced by the FRTB are not expected in the

near future, as those very standards are just starting to be implemented. Nevertheless,

it is not too early to debate the inclusion of ES backtesting in the framework. To do so,

further research is required, mainly regarding the ZR test, given its interesting results.

Additional studies should cover the properties of the ZR test statistic under different

models, in the search for a general way of performing (or avoiding) the simulation process

and a widespread relation between the statistic’s distribution and the capital multipliers.

The possibility of using a relative version of the ZR test, by standardizing the daily test

statistic by the predicted ES is also an interesting aspect to be further analyzed. Other

useful studies include more extensive analyses of the statistical properties of the M&P

test and possible alternative backtesting thresholds.

There is no perfect risk measure and the fact is that the change from VaR to ES

brought along the question of backtesting. This a question which, as standard in risk

management, has no definitive answer. Be that as it may, backtesting ES internally will

surely be a reality for banks, and including it in future regulation changes should be

seriously considered.
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Annex A Descriptive Statistics of the Portfolio

Risk Factor Mean Max Min Median
Standard

Skewness
Excess

Deviation Kurtosis

S&P 500 0.0003 0.1158 -0.1198 0.0004 0.0119 -0.2487 13.0442
STOXX 600 0.0002 0.0987 -0.1148 0.0005 0.0115 -0.2746 8.7522
Nikkei 225 0.0003 0.1415 -0.1140 0.0000 0.0139 -0.2529 7.9188
Hang Seng 0.0002 0.1435 -0.1270 0.0000 0.0141 0.2782 9.4152
EUR - USD 0.0000 0.0351 -0.0240 0.0001 0.0058 0.0996 1.9504
JPY - USD 0.0000 0.0393 -0.0533 0.0000 0.0061 0.1812 5.0551
HKD - USD 0.0000 0.0062 -0.0027 0.0000 0.0004 1.8523 31.4243

Portfolio 0.0003 0.1054 -0.0954 0.0006 0.0103 -0.3238 12.3017

Table A.1. Descriptive statistics of the Portfolio. Daily
returns of each risk factor and the of the combined portfolio.
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Annex B VaR/ES estimation results

Figure B.1. Portfolio P&L combined with VaR1% and
ES2.5% estimates - RM model. The black marks represent the
P&L in the presence of VaR1% exceptions.
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Figure B.2. Portfolio P&L combined with VaR1% and
ES2.5% estimates - HS model. The black marks represent the
P&L in the presence of VaR1% exceptions.
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Annex C Z2 test 95% and 99.99% thresholds

Figure C.1. Simulated Z2 test thresholds (discrete sam-
ples) - RM model, 20 000 simulations. The dotted lines mark
the -0.7 and -1.8 thresholds recommended by Acerbi and Szekely
(2014)

Mean Std. Deviation RMSD

95% -0.701181 0.005706 0.005827
99.99% -1.797774 0.114312 0.114333

Table C.1. Statistics of the simulated thresholds (2007 -
2022) - RM model, 20 000 simulations. RMSD is the root
of the mean squared deviation between the recommended and the
simulated thresholds.
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Figure C.2. Simulated Z2 test thresholds (discrete sam-
ples) - HS model, 20 000 simulations. The dotted lines mark
the -0.7 and -1.8 thresholds recommended by Acerbi and Szekely
(2014)

Mean Std. Deviation RMSD

95% -0.699150 0.012356 0.012385
99.99% -1.721564 0.093692 0.122190

Table C.2. Statistics of the simulated thresholds (2007 -
2022) - HS model, 20 000 simulations. RMSD is the root
of the mean squared deviation between the recommended and the
simulated thresholds.
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Figure C.3. Simulated Z2 test thresholds (discrete sam-
ples) - RM model, 50 000 simulations. The dotted lines mark
the -0.7 and -1.8 thresholds recommended by Acerbi and Szekely
(2014)

Mean Std. Deviation RMSD

95% -0.701220 0.004081 0.004260
99.99% -1.774058 0.063802 0.068874

Table C.3. Statistics of the simulated thresholds (2007 -
2022) - RM model, 50 000 simulations. RMSD is the root
of the mean squared deviation between the recommended and the
simulated thresholds.
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Figure C.4. Simulated Z2 test thresholds (discrete sam-
ples) - HS model, 50 000 simulations. The dotted lines mark
the -0.7 and -1.8 thresholds recommended by Acerbi and Szekely
(2014)

Mean Std. Deviation RMSD

95% -0.702905 0.009002 0.009460
99.99% -1.747567 0.053129 0.074646

Table C.4. Statistics of the simulated thresholds (2007 -
2022) - HS model, 50 000 simulations. RMSD is the root
of the mean squared deviation between the recommended and the
simulated thresholds.
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