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A. H. Berry and Duarte Trigueiros 

INTRODUCTION 

This study develops a new approach to the problem of extracting mean
ingful information from samples of accounting reports. Neural net
works are shown to be capable of building structures similar to finandal 
ratios, which are optimal in the context of the particular problem being 
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dealt with. This approach removes the need for an analyst to search for 
appropriate ratios before model building can begin. 

The internal organization of a neural network model helps identify 
key features of accounting data and provides new insights into the 
relative importance of variables for particular modeling tasks. The lack 
of interpretability of neural network parameters so often reported in 
other applications of the approach is removed in the accounting context. 
Much of the internal operation of the networks involves the construc
tion of generalizations of the ratio concepts with which accountants are 
familiar. Thus, traditional modes of understanding can be brought to 
bear. 

ACCOUNTING DECISION MODELS 

Accounting reports are an important source of information for manag
ers, investors, and financial analysts. Statistical techniques have often 
been used to extract information from them. The aim of such exercises 
is to construct models suitable for predictive or classification purposes, 
or for isolating key features of the data. Well-known examples include, 
in the U.S. context, Altman et al1 and, in the U.K. context, Taffler.2 

The procedures used in this vast body of literature are generally 
similar. The· first stage consists of forming a set of ratios from selected 
items in a set of accounting reports. This selection typically is made in 
accordance with the prior beliefs of researchers. Next, the normality of 
these ratio variables is examined and transformations applied, where 
necessary, to bring it about. Finally, some linear modeling technique is 
used to find optimal parameters in the least-square sense. Linear re
gression and Fisher's multiple discriminant analysis are the most pop
ular algorithms. However, logistic regression can also be found in some 
studies. Foster3 provides a review of the general area of statistical mod
eling applied to accounting variables. 

The widespread use of ratios as input variables is particularly sig
nificant in the present context. This seems to be an extension of their 
normal use in financial statement analysis. However, there is a problem; 
there are many possible ratios. Consequently, some researchers utilize 
a large number of ratios as explanatory variables, others use represen
tative ratios, and still others use factor analysis to cope with the mass 
of ratio variables and their linear dependence. 
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THE STATISTICAL CHARACTERIZATION 
OF ACCOUNTING VARIABLES 

The statistical distribution of accounting ratios has been the object of 
considerable studJ.. The common finding is that ratio distributions are 
skewed. Horrigan 4 in an early work on this subject, reports positive 
skewness of ratios and explains it as the result of effective lower limits 
of zero on many ratios. Bames5 in a discussion of the link between firm 
size and ratio values, suggests that skewness of ratios could be the result 
of deviations from strict proportionality between the numerator and 
the denominator variables in the ratio. The underlying idea here, that 
interest should center on the behavior of the component accounting 
variables, and not on the ratios that they have traditionally been used 
to form, is basic to the present research. 

Mcleay,6 in one of the few studies of distributions of accounting 
variables as opposed to ratios of such variables, reports that accounting 
variables which are sums of similar transactions with the same sign, 
such as Sales, Stocks, Creditors, or Current Assets, exhibit cross-section 
lognormality. Empirical work carried out during the current research 
project confirms this finding and suggests that the phenomenon of 
lognormality is much more widespread. Many other positive-valued 
accounting variables have cross-section distributions that are approxi
mately log normal. Furthermore, where variables can take on positive 
and negative values, then lognormality can be observed in the subset 
of positive values and also in the absolute values of the negative subset. 
Size-related nonfinancial variables such as number of employees also 
seem to exhibit lognormality. Distributional evidence for 18 accounting 
and other items, for 14 industry groups over a five-year period, can be 
found in Trigueiros? In this chapter, lognormality is viewed as a uni
versal distributional form for the cross-section behavior of those vari
ables used as inputs to the neural networks that have been built. 

The lognormal distribution is characterized by a lower bound of 
zero and a tail consisting of a few relatively large values. In any statis
tical analysis of such variables, based on the least-squares criterion, 
these few large values will dominate coefficient estimates. Conse
quently, an analyst is well advised to apply the logarithmic transfor
mation to accounting variables that are to be inputs to least
squares-based techniques to counteract this effect. In what follows, logs 
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of accounting variables will appear in various linear combinations, hav
ing the general form: 

If the logarithmic transformation is reversed, this linear combination is 
seen to be equivalent to: 

(2) 

This is a complex ratio form. Had the linear combination been restricted 
to the difference between two variables, and the coefficients to the value 
one, then a simple ratio of two variables would have been produced 
by reversing the logarithmic transformation. The observation that a 
linear combination, including both positive and negative coefficients, 
in log space, is equivalent to a ratio form in ordinary space, is funda
mental to the interpretation of the neural network coefficients presented 
in this chapter. 

NEURAL NETWORKS 

A neural n~twork is a collection of simple computational elements, 
neurons, that are interconnected. The connections between neurons 
have weights attached to them. A neuron can receive inputs from other 
neurons or from sources outside the network, form a weighted combi
nation of these inputs (often called NET), the weights being those as
signed to the connections along with the inputs travel, and produce an 
output (often called OUT) that is sent to other neurons. The output may 
be simply the weighted combination of inputs, NET, or a nonlinear 
transformation of NET. This nonlinear transformation is known as a 
transfer, or squashing, function. The number and pattern of intercon
nection of the neurons in a network determine the task a network is 
capable of performing. 

The particular network form used in this chapter is known as a 
multilayer perceptron (MLP). A simple example is shown in Figure 6.1. 
There are three layers of neurons (each neuron being represented by a 
rectangle): an input layer, a hidden layer, and an output layer. The 
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I Figure 6.1 
A Multilayer Perceptron 

Input Hidden Output 

neurons in the input layer do not perform weighting or non-linear 
transformation. They simply send inputs from the world outside the 
network to the hidden-layer neurons. In Figure 6.1, each input neuron 
sends its signal to each of the neurons in the hidden-layer. Each of these 
hidden layer neurons forms a weighted linear combination of the input 
values and then applies a nonlinear transformation to generate its own 
output. A common transfer function is the sigmoid, which generates a 
signal 0 s OUT s 1: 

OUT.. 1 

1 +e-NET 
(3) 

The signals from the hidden-layer neurons are sent to the output layer 
neurons. In Figure 6.1, each output-layer neuron receives input from 
each hidden-layer neuron. The neurons in the output layer each form 
linear combinations of their inputs and apply a nonlinear transforma-
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tion before sending their own signals onwards, in their case to the 
outside world. The sigmoid function again serves as the nonlinear trans
formation. The circles in Figure 6.1 do not represent neurons. They each 
send a signal that has a constant value of 1 along weighted connections. 
This weighted signal becomes part of NET for each receiving neuron. 
This has the effect of generating a threshold value of NET in each 
neuron's OUT calculation, above which OUT rises rapidly. 

The particular MLP shown in Figure 6.1 is capable of performing a 
relatively complex classification task, given that appropriate weights 
have been attached to the interconnections between neurons. Figure 6.2 
shows a convex set of (x,y) values. The convex region is formed by the 
intersection of three half-spaces, each defined by a linear inequality. 
Each of the three linear relations that define the convex set can be 
represented by a linear combination of (x,y) values. Thus, each can be 
represented by one of the three neurons in the hidden layer of the MLP 
shown in Figure 6.1. Each output-layer neuron then receives 
over I under signals from the hidden-layer neurons, and, again by 
weighting and transforming the signals, carries out AND/OR operations 
to produce an output. 

In the network shown in Figure 6.1, one output neuron will produce 
a value close to 1 if the (x,y) pair being input lies within the convex 

I Figure 6.2 
Classification Problem 

y 

0 

X 
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region. The other will produce a value close to 0 in these circumstances. 
The input of an (x,y) pair outside the convex region will cause a reversal 
of this output pattern. (Given the binary nature of the output signal 
required, one output neuron amid theoretically do the job. However, 
computational experience shows that economizing on output neurons 
is a mistake.) In order to model more difficult nonlinear boundaries, 
additional hidden layers of neurons might have to be added to the 
network. 

The problem left unresolved in the preceding description of the 
operation of the MLP is, where do the values of the interconnection 
weights come from? To carry out the classification task appropriately, 
each interconnection must have an appropriate weight. 

The network learns these weights during a training process. To build 
a network capable of performing a particular classification task, the 
following actions must be undertaken: 

1. The network topology (number of layers and number of neurons 
in each layer) must be specified. 

2. A data set must be collected to allow network training. In the ex
ample under discussion, this training set would consist of (x,y) pairs 
and for each pair, a target value vector (1,0) if the pair lies in the 
convex region of interest, (0,1) if it does not. 

3. Random, small weights are assigned to each interconnection. 

4. An (x,y) pair is input to the network. 

5. The vector of OUT values from the output neurons is compared 
with the appropriate target value vector. 

6. Any errors are used to revise the interconnection weights. 

The training set is processed repeatedly until a measure of network 
performance based on prediction errors for the whole training set 
reaches an acceptably low level. Once training has been completed, the 
network can be used for predictive purposes. There are two styles of 
training. In the first, weight updating occurs after each individual ele
ment of the training set is processed through the MLP. In the second, 
the entire training set is processed before updating occurs. 

The algorithm used to adjust interconnection weights, known as the 
generalized delta rule, or as the back-propagation method, is usually 
associated with Rumelhart et al.8 This algorithm is an enhanced version 
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of the stochastic gradient-descent optimization procedure. Its virtue is 
that it is able to propagate deviations backwards through more than 
one layer of nodes. Thus, it can train networks with one or more hidden 
layers. For the algorithm to work, the transfer function used in the MLP 
must be differentiable. Good descriptions of the algorithm exist in sev
eral sources, including Pao9 and Wasserman.10 Wasserman's approach 
plays down the mathematics and emphasizes the computational steps. 

Minimum least-squares deviation is one possible success criterion 
that could be used to decide when to curtail the training process. How
ever, there are others such as likelihood maximization. In this case the 
weights are adjusted to maximize the probability of obtaining the 
input/ output data that constitute the training set. 

In general, if the number of nodes in hidden layers is large com
pared with the number of important features in the data, the MLP 
behaves just like a storage device. It learns the noise present in the 
training set, as well as the key structures. No generalization ability can 
be expected in these circumstances. Restricting the number of hidden
layer neurons, however, makes the MLP extract only the main features 
of the training set. Thus, a generalization ability appears. 

It is its hidden layers of neurons that make the multilayer perceptron 
attractive as a statistical modeling tool. The outputs of hidden neurons 
can be considered as new variables, which can contain interesting in
formation about the relationship being modeled. Such new variables, 
known as. internal representations, along with the net topology, can 
make the modeling process self-explanatory, and so the neural network 
approach becomes attractive as a form of machine learning. 

As stated earlier, if variables are subjected to a logarithmic trans
formation, then a linear combination of such variables is equivalent to 
a complex ratio form. If the values input to an MLP are the logs of 
variable values, then the neurons in the (first, if there are more than 
one) hidden layer produce NETs that represent complex ratios. The 
nonlinear transformation effectively reverses the logarithmic transfor
mation, so these complex ratios are inputs to the next layer of neurons 
where they are linearly combined to model the relation being investi
gated. 

The hidden layer of neurons in the MLP discussed in this chapter 
is, then, dedicated to building appropriate ratios. The problem of choos
ing the best ratios for a particular task, which has taxed so many re
searchers, is thus avoided. The best ratios are discovered by the 
modeling algorithm, not imposed by the analyst. It will be shown later 
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that by using an appropriate training scheme these extended ratios can 
be encouraged to assume a simple and therefore potentially more in
terpretable form. 

AN APPLICATION: MODELING INDUSTRY HOMOGENEITY 

The approach described above is now applied to the problem of clas
sifying firms to industries on the basis of financial statement data. The 
neural network's performance is compared to that of a more traditional 
discriminant analysis-based approach. To ensure that the discriminant 
analysis exercise is more than a "straw man," an existing, reputable 
study based on discriminant analysis is replicated. The neural network 
approach is then applied using the same raw data. 

All companies quoted on the London Stock Exchange are classified 
into different industry groups· according to the Stock Exchange Indus
trial Classification (SEIC), which groups together companies whose 
results are likely to be affected by the same economic, political, and 
trade influencesY Although the declared criteria are ambitious, the 
practice seems to be more trivial, consisting of classifying firms mainly 
on a end-product basis. The aim here is to attempt to mimic the classi
fication process using accounting variables. 

The data for exercises were drawn from the Micro-EXSTAT database 
of company financial information provided by EXTEL Statistical Ser
vices Ltd. This covers the top 70 percent of U.K. industrial companies. 
Fourteen manufacturing groups were selected according to the SEIC 
criteria. The list of member firms was then pruned to exclude firms 
known to be distressed, nonmanufacturing representatives of foreign 
companies, recently merged, or highly diversified. After pruning, data 
on 297 firms remained for a six-year period (1982-1987) and a bigger 
sample (502 cases) for the year 1984. The distnbution of firms by in
dustry in this sample is shown in Table 6.1. 

The initial analysis of this data followed the traditional statistical 
modeling approach. This consisted of, first, "forming 18 financial ratios 
chosen as to reflect a broad range of important characteristics relating 
to the economic, financial and trade structure of industries."12 Eight 
principal components were then extracted to form new variables. Next, 
these new variables were used as inputs to a multiple discriminant 
analysis. Only a randomly selected half of the data set was used during 
this estimation phase of the discriminant analysis. 
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Table 6.1 

Industry Groups and Number of Cases in the One-Year (1984) 
Data Set 

Group 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

Name 

Building Mat. 
Metallurgy 
Paper, Pack 
Chemicals 
Electrical 
Industrial Pl. 
Machine Tools 
Electronics 
Motor Comp. · 
Clothing 
Wool 
Misc. Text. 
Leather 
Food 

Cases 

31 
19 
46 
45 
34 
17 
21 
79 
23 
42 
19 
30 
16 
80 

Percent(%) 

6.2 
3.8 
9.2 
9.0 
6.8 
3.4 
4.2 

15.7 
4.6 
8.4 
3.8 
6.0 
3.2 

15.9 

The other half was used as a holdout sample to measure the clas
sification accuracy of the resulting model. The exercise was repeated 
reversing the role of the two half data sets. Lack of consistency of results 
here would have raised doubts about the appropriateness of the sam
pling activity undertaken. A detailed description of the ratios used and 
the modeling procedure adopted can be found in Sundarsanam and 
Taffler.

12 
The results of this exercise were found to be similar to those 

achieved by Sundarsanam and Taffler.12 Thus, it was decided that they 
were an acceptable base case against which to compare the results 
achieved by an MLP constructed with the same data. 

The input data for the neural network approach consisted of eight 
of the accounting variables that had been building blocks for the 18 
ratios previously calculated. The number eight was selected simply to 
mimic the number of explanatory variables in the discriminant analysis. 
It must be emphasized that basic accounting variables, not ratios, were 
used. The selected items were Fixed Assets (FA), Inventory (1), Debtors 
(D), Creditors (C), Long-Term Debt (DB), Net Worth (NW), Wages (W), 
and Operating Expenses Less Wages (EX). The variables were chosen 
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to represent the key balance sheet elements and a rudimentary picture 
of cost structure. 

A logarithmic transformation was applied to these variables. Many 
of these accounting variables were well suited for a logarithmic trans
formation. However, some caused problems because of the presence of 
zero or negative values. In order to transform the negative values of 
such variables, the following rule was applied: 

X-> 
X-> 

log (x}, 
-log (lxl), 

forx>O 
forx<O 

This corresponds to the assumption that negative cases are lognormally 
distributed in a negative direction. 

To avoid the problem of zero values, instead of log 0, a very small 
number, log 1 = 0, was used. Such an approach is acceptable if the unit 
of measurement is not far·away from the typical value in the data set. 
An alternative approach to (some) such problem variables would be to 
ensure that their pattern of variation is reflected in the model by using 
as input variables some, that in combination define the problem vari
able, but which are themselves amenable to the logarithmic transfor
mation. The variability of Profit, say, could be brought to the model by 
the introduction of both Sales and Expenses. 

The base of logarithms to be used can be selected in a way that 
avoids the need for further scaling. The aim of the transformation is to 
avoid extreme values. With natural logs, the transformed values of the 
variables being examined ranged from 2 to 18 approximately. Base 10 
logs generated a range between 3 and 7. Given the transfer function in 
use, 2 to 18 is too great a range. The training process would break down. 
Thus, base 10 logs were used, and the resulting variable values centered 
on zero for submission to the network 

The eight variables were then input to a succession of differently 
structured MLPs. The basic format consisted of an input layer of eight 
neurons, one or two hidden layers with relatively few neurons in each, 
and an output layer with 14 neurons. Once again the networks were 
trained using only half the data set, the other half being used to test 
classification performance. As with the discriminant analysis, the roles 
of training and testing set were reversed and the consistency of the 
resulting models examined. The most successful network topology in
volved one hidden layer with six nodes. The method of determining 
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this optimal topology, its performance, and the interpretation of its 
weights is discussed below. 

INTERPRETING AND POSTPROCESSING 
THE OUTPUTS OF AN MLP 

There is a problem when using an MLP with multiple output neurons. 
The implied industry classification, given a set of inputs, may not be 
easy to identify. This has implications for both network training and 
use. Each output neuron produces an output value between 0 and 1. It 
would be most unusual to find 13 zeros and a single 1 in the vector of 
outputs. Therefore, identifying the predicted classification when over
lapping distributions are present requires a probabilistic interpretation 
of outputs. In accounting applications, population proportions gener
ally bear no relation to the proportions observed in the sample. There
fore, the approaches adopted by other neural network researchers in 
other application areas, where population and sample probabilities co
incide, may not be appropriate. In particular it is most unlikely that 
sample proportions can be viewed as good estimates of prior probabil
ities. 

Following Baum and Wilczek, 13 several authors advocate a direct 
interpretation of outputs as probabilities, and show how the usual 
squared-error criterion can be corrected to achieve likelihood maximi
zation.14'15 In ~uch cases, the connection weights in the network are 
adjusted in the gradient direction of the log-likelihood rather than the 
squared error. 

An alternative approach is to interpret the outputs of the MLP as a 
multidimensional measure of distance to targets. If departures from 
normality are not severe, this interpretation can be carried out using 
conventional statistics such as chi-square, Penrose, or Mahalanobis dis
tances. Such measures can be regarded as scores, and conditional prob
abilities can be deduced from them allowing further Bayesian 
corrections if required, independent of the proportions observed in the 
sample. A Bayesian correction independent of the sample proportions 
could of course also be applied directly to the MLP' s outputs if they 
were interpreted as probabilities. 

In this application it was found that interpreting neuron outputs 
directly as probabilities produced a clear reduction in classification 
accuracy. There was a severe loss of ability to identify firms belonging 
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to the smaller industry groups. A Bayesian correction independent of 
sample proportions was not pursued. 

Results are reported in Figure 6.3. Direct interpretation, shown in 
Figure 6.3(a), ignores nine of the 14 industry groups, but finally achieves 
a good global performance by classifying the remaining five groups, 
which are the bigger ones, very well. Figure 6.3(b) shows classification 
performance when neuron outputs are postprocessed to produce a mul
tidimensional distance measure. As can be seen, this allows the smaller 
industry groupings to appear. Therefore, although for the sake of effi
ciency of convergence the likelihood cost function was adopted during 
training, node outputs were postprocessed as distances. 

A relatively simple approach was taken to the definition of a mul
tidimensional distance. For a training set with N cases, consider o;m, the 
output signal produced in output layer neuron m, 1 :S m :S M by case i, 
1 :S i :S N. Compute K square deviations, dkim' between neuron m's output 
for that input vector and each possible target value, tkm for that neuron: 
dkim = (tkm- Oim)

2
, with k, 1 :S k :S K. The mean sum of squared deviations 

from the kth target at neuron m over the whole training set will be: 

N 
c}km = ~ dkim 

i ·1 (N -1) (4) 

The standardized distances between a neuron's output and the kth 
target can be added over all nodes to give: 

(5) 

Dki is then the distance between the output vector generated by the ith 
case in the training set and the kth target. The minimum of these dis
tances identifies the appropriate classification if no Bayesian corrections 
are needed, that is, if the assumption of equal prior probabilities is 
acceptable. As part of this research effort, this distance measure's per
formance has been compared with that of a more elaborate measure, 
the Mahalanobis distance. The use of the Mahalanobis distance did not 
produce improved performance. 

P.35 
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lfigure 6.3 

jTi1e Impact of Postprocessing Outputs on Classifications 
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DETERMINING NETWORK TOPOLOGY 

The literature gives little guidance on selecting the number of hidden 
layers, or the number of nodes per hidden layer. Nor is there much 
advice on the number of times the training set should pass through the 
network before training is complete. The most common approach to 
the latter problem is to choose a target value for the training set error 
and repeat submission of the training set until this target value is 
achieved. 

For the former problem a reasonable approach would seem to be 
to subdivide the training set into two parts, A and B. Training set A is 
used in the connection weight updating procedure as usual. Different 
topologies can be trained using this training set. The classification per
formance of each of these topologies on training set B can then be 
examined. The topology that. gives best performance is then selected 
for further work. It is this topology that can then be retrained to generate 
a simplified structure as described in the next section. The true gener
alization ability of the network topology can then be checked on the as 
yet unused testing set. 

THE PROCESS OF NETWORK TRAINING 

One of the major goals of this research was the evaluation and improve
ment of the interpretability of multilayer perceptron models. MLPs are 
often considered unsuitable in applications where self-explanatory 
power is required. However, in the case of accounting variables, it seems 
possible to interpret the way the relation has been modeled by looking 
at the weights connecting input variables with the hidden layer's neu
rons. These weights are the exponents of the extended ratios involved 
in the optimal solution. 

In order to enhance interpretability, the normal process of training 
interconnection weights was amended in two ways. First, it was decided 
to assign to one hidden-layer neuron the task of dealing with the scale 
effect in financial variables. The failure of ratios to cope with scale effects 
has been widely discussed in the literature. The weights on connections 
from input neurons to this hidden-layer neuron were fixed at either 0 
or 1 from the outset. Connections with unit weights linked the hidden
layer neuron to only those inputs that were seen as size related. Dedi
cating one neuron of the hidden layer to representing this scale effect 
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generated as a bonus an improvement in speed of convergence of the 
training process. 

The weight generation process was also amended in a second way. 
During training, whenever a new presentation of the entire training set 
was to begin, one of the neurons of the hidden layer was randomly 
selected and the connection weights linking it to the input neurons were 
examined. Any inhibitory weights (close to 0) were penalized by a small 
factor, typically 0. 98. As has been said, the aim was to reduce the number 
of variables featuring in each of the complex ratios being formed. In a 
neural network each. neuron acts as a modeling unit with a certain 
number of free parameters. The same output can be obtained with very 
different combinations of these parameters. Inhibitory weights connect
ing inputs with the hidden layer appear when the network tries to 
weaken the contribution of a variable. Therefore, by randomly intro
ducing small penalizations of inhibitory weights during the training 
the inhibitory weights were encouraged to remain inhibitory. As a by
product, the noninhibitory weights were encouraged to become even 
less inhibitory. Before the end of training, all the weights connecting 
inputs to the hidden layer and exhibiting strong inhibitory values were 
set to 0 and fixed. While this procedure served its purpose, it should 
only be applied when the basic network topology is known with some 
confidence. 

The results produced in the neural network can be seen in Table 
6.2. This show's the extended ratios formed in an MLP with eight inputs, 
six nodes in one hidden layer, and 14 output nodes, trained with 1984 
data. Only two hidden-layer neurons produce ratio forms of substantial 
complexity. The relative simplicity of the ratio structures achieved bodes 
well for other applications in the accounting and finance area. 

Interpretation of the resulting ratios unfortunately is unclear. One 
possible explanation for this is that the data set being used does not 
include an economic basis for the classification decision. Financial state
ment data is hardly an ideal data set for the application in question; 
variables such as product type are obviously more relevant. However, 
the fact that traditional ratios have not been formed does not indicate 
a failure of the approach. It indicates the unsuitability of these tradi
tional ratio constructs and the need for alternatives. 

Apart from these nonstandard training features that stem from the 
particular application area, two further enhancements to the training 
process described in the literature were also applied. The first was the 
utilization of a learning rate particular to each weight.16'17 The second 



Extraction of Knowledge from Accounting Reports 119 

Table 6.2 
Values of Weights Connecting Input Variables Hidden Nodes 
after Training with Penalties 

Node number 

Variable 2 3 4 5 6 
DB -6 
NW 8 
w ·1 -6 
I 8 
D 2 -2 
c 3 
FA -9 -4 6 -4 
EX -10 4 8 -2 3 

was, as has already been mentioned, likelihood maximization instead 
of squared-deviations minimization. 

MLP CLASSIFICATION PERFORMANCE 

In order to obtain an estimate of the generalization capacity associated 
with the MLPs examined here, the original samples were divided ran
domly into two subsamples of approximately equal size. All models 
were constructed twice, first with one half of the sample and a check 
carried out with the other half, and again reversing the roles of the two 
half-data sets. Results were considered acceptable if both models, when 
validated with the half sample not used to build them, produced con
sistent results. 

All classification results reported here concern the test set, not the 
training set. That is, they were obtained by measuring the rate of correct 
classification the model produced when evaluated by the half set not 
used to train it. The classification performance on the set used for 
training depends solely on the number of free parameters and can be 
increased simply by introducing more neurons into the l)idden layers. 
Such results are therefore uninteresting and are not presented here. 

The normal approach to testing a model, by deleting a single ob
servation and predicting its value with the model estimated on the rest 
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of the data set, and repeating this procedure, is infeasible here. This is 
because the training of a neural network is time consuming. However, 
the procedure adopted here will work acceptably with a large enough 
data set. 

It was found that the generalization capacity of the neural MLP was 
very much dependent on the topology of the net. The number of nodes 
in the hidden layer seemed to determine the ability of the net to properly 
generalize. Persistentl)j good generalizations were obtained whenever 
the hidden layer had six nodes. Both the 1984 and the six-year data sets 
exhibited such a feature. Figure 6.4 shows some classification results 
for different numbers of nodes in the hidden layer when using the 
six-year data set. Similar patterns, though not showing so great a con
trast, were observed when using the 1984 set. 

Table 6.3 shows the best generalization results achieved with the 
traditional methodology (discriminant analysis and ratios) and also 
with the neural network. As can be seen, the neural network achieved 
a better performance, with half the number of input variables and 
within a much simpler framework. 

Figure 6.4 
Proportion of Correct Classifications versus Hidden-Layer 
Structure: 6-Year Data Set 

0.50 
Proportion of correct classifications 
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Table 6.3 
Classification Results of MLP (Multilayer Perceptron) Compared 
with MDA (Multiple Discriminant Analysis) 

1984 Data (%) 
Input MDA MLP 

18 ratios 29 
8 variables 38 

Six-Year Data (%) 
MDA MLP 

30 
45 

The need for forming appropriate ratios was avoided as well as the 
blind pruning of outliers and the extraction of an arbitrary number of 
factors. 

CONCLUSIONS 

So far, most applications of neural networks have related to the mod
eling of difficult relations (pattern recognition) or the mimicking of brain 
functions. There has been little emphasis on their potential explanatory 
power. Here, however, it has been argued that in accounting-based 
applications networks could generate meaningful internal representa
tions. Numerical, continuous-valued observations such as those found 
in stock returns, or data organized in accounting reports, cannot be 
efficiently used by traditional expert systems knowledge acquisition 
tools. Neural networks can now be seen as an alternative self-explana
tory tool. In this application hidden units formed ratios very different 
to those commonly used. If repeated in other application areas, this 
could shed light on many important issues. 

The emphasis on interpretation should not obscure the other finding 
of the study. The MLP proved able to outperform the classification 
performance of a traditional discriminant analysis approach. Neither 
method came close to adequately classifying the testing sets, but there 
was a substantial improvement when the MLP was used. The fact that 
there was a potential for improvement was a key fact in determining 
the particular application area to be studied. It is perhaps worth point
ing out that redoing the discriminant analysis, using representations of 
the ratios produced by the MLP, captured some but not all of the 
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MLP-based improvement. The remainder may well have related to the 
ability of the MLP to cope with nonlinear boundaries. 

The importance of the MLP' s topology cannot be overemphasized. 
The number of hidden layers, and hidden-layer neurons, can be selected 
by splitting the training set and adopting a two-phase training process. 
However, the principle of parsimony should always be borne in mind. 
If there are too many hidden neurons, the MLP will fail to identify key 
features and will model the noise in the data set as well. Generalization 
ability will then be lost 
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