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Abstract—Despite the robust security features inherent in the
5G framework, attackers will still discover ways to disrupt 5G
unmanned aerial vehicle (UAV) operations and decrease UAV
control communication performance in Air-to-Ground (A2G)
links. Operating under the assumption that the 5G UAV com-
munications infrastructure will never be entirely secure, we
propose Deep Attention Recognition (DAtR) as a solution to
identify attacks based on a small deep network embedded in
authenticated UAVs. Our proposed solution uses two observable
parameters: the Signal to Interference plus Noise Ratio (SINR)
and the Received Signal Strength Indicator (RSSI) to recognize
attacks under Line-of-Sight (LoS), Non-Line-of-Sight (NLoS),
and a probabilistic combination of the two conditions. Several
attackers are located in random positions in the tested scenarios,
while their power varies between simulations. Moreover, terres-
trial users are included in the network to impose additional
complexity on attack detection. Additionally to the application
and deep network architecture, our work innovates by mixing
both observable parameters inside DAtR and adding two new
pre-processing and post-processing techniques embedded in the
deep network results to improve accuracy. We compare several
performance parameters in our proposed Deep Network. For
example, the impact of Long Short-Term-Memory (LSTM) and
Attention layers in terms of their overall accuracy, the window
size effect, and test the accuracy when only partial data is
available in the training process. Finally, we benchmark our deep
network with six widely used classifiers regarding classification
accuracy. The eXtreme Gradient Boosting (XGB) outperforms
all other algorithms in the deep network, for instance, the three
top scoring algorithms: Random Forest (RF), CatBoost (CAT),
and XGB obtain mean accuracy of 83.24 %, 85.60 %, and
86.33% in LoS conditions, respectively. When compared to XGB,
our algorithm improves accuracy by more than 4% in the LoS
condition (90.80% with Method 2) and by around 3% in the
short-distance NLoS condition (83.07% with Method 1).

Index Terms—Security, Convolutional Neural Networks, Deep
Learning, Jamming Detection, Jamming Identification, UAY,
Unmanned Aerial Vehicles, 4G, 5G;

I. INTRODUCTION

nmanned aerial vehicles (UAVs) have the potential to
bring revolutionary changes that will fulfill consumer
demands in several industry verticals[1]. UAVs will play a

§Collaborative authors with equal contribution.

crucial role in emergency response [2l 3|, package delivery
in the logistics industry, temporal events [3]] and remote areas
[4) |5]. UAVs are becoming more common and reliable [6]
due to technological advancements [7, |8], as well as the
improvements in energy-efficient UAV trajectory optimiza-
tion algorithms [9), |10, [11] that are able to be executed
in practice to take into account the dynamics of the UAV
as a parameterized method. Thus integrating UAVs into 5G
and 6G networks will increase telecommunication coverage
and reduce costs for businesses willing to invest in this
technology. However, UAVs can easily be hacked by malicious
users [[12f] throughout their wireless communication channels,
which might divert delivery packets from their destinations.
This can have disastrous consequences in unfortunate climate
events where UAVs are transporting people to hospitals or
in cases of criminal investigations. A jamming attack can
lead to loss of UAV communication control, UAV robbery,
UAV destruction, and property damage in urban areas, which
would generate problems for business leaders. The authors
in [13] |14, (15 |16] emphasize the need for research on
new robust methods for attack detection and its associated
challenges in 5G UAV communications. The ability to rec-
ognize different patterns in communication connectivity plays
a vital role in the UAV security paradigm. Therefore, a Self-
Identifying Solution against Attacks (SISA) becomes essential
for UAV communication control. Furthermore, According to
[17], identifying interference must be the basis for selecting
anti-jamming solutions. Statistical models have recently been
recognized as a viable way to monitor network activity in
wireless communications and detect suspicious attacks through
wireless parameters. Using Bayesian estimators, Cheng et al.
[18] employ a sequential change point detection algorithm
to detect the state changes in the time series. The authors
of [19]] present a jamming detection approach based on a
Naive Bayes classifier trained on a small sample of data and
addresses just noise effects. Lu et al. [20] propose the message
invalidation ratio as a new metric for evaluating performance
under jamming attacks in time-critical applications. In [21]],
the authors offer a jamming detection strategy for Global
Navigation Satellite System (GNSS) based trained localization



TABLE I: Abbreviation list.

Abbreviation  Definition Abbreviation  Definition

ASA Azimuth Spread of Arrival LST™M Long Short-Term Memory

ASD Azimuth Spread of Departure MVA Majority Voting Algorithm

A2G Air to Ground NLoS Non-Line-of-Sight

CAT CatBoost OFDM Orthogonal Frequency Division Multiplexing
CDL Clustered Delay Line RF Random Forest

CNN/ConvlD  Convolutional Neural Network RSSI Received Signal Strength Indicator

CPU Central Processing Unit SINR Signal to Interference plus Noise Ratio
C-RAN Cloud Radio Access Network SISA Self-Identifying Solution against Attacks
DAtR Deep Attention Recognition SVD Singular Value Decomposition

DL Deep Learning SVM Support Vector Machines

DNN Deep Neural Network TSA Time Series Augmentation

GNB Gaussian Naive Bayes UAV Unmanned Aerial Vehicle

GNSS Global Navigation Satellite System UMi Urban Micro Scenario

MH-DNN Multi-Headed Deep Neural Network URD Uniformly Random Distributed

ML-IDS Machine Learning Intrusion Detection System XGB eXtreme Gradient Boosting

LoS Line-of-Sight ZSA Zenith Spread of Arrival

LR Logistic Regression ZSD Zenith Spread of Departure

that makes use of Singular Value Decomposition (SVD).
However, most research needs to account for the effects of
the wireless propagation channel in their solutions.

Concerning machine learning, Krayani et al. use a Bayesian
network to identify jammers [22]. Youness et al. [23]] create a
dataset based on signal property observations and use Random
Forest (RF), Support Vector Machines (SVM), and a neural
network algorithm to classify the features extracted by the
jamming signal. [24] also uses an SVM and a Self-Taught
Learning method to identify attacks in UAV Networks. In [25]],
the authors utilize a Machine Learning Intrusion Detection
System (ML-IDS) based on SVM to identify jamming in the
Cloud Radio Access Network (C-RAN). Deep Learning (DL)
has been used to create models with high-level data abstraction
by utilizing numerous layers with activation function process-
ing.

In DL, Deep Neural Networks (DNNs), such as Convolu-
tional Neural Networks (CNNs), can define trends and sea-
sonality in time series data [26| |27, 28|]. These characteristics
make deep network-based algorithms helpful in discovering
patterns in wireless networks by analyzing time series and
spatial information [29]. The authors in [30]] also identify jam-
ming samples using signal-extracted features, but the authors
add another way to detect attacks that employs 2D samples and
pre-trained networks, such as AlexNet, VGG-16, and ResNet-
50. In [31]], the authors also use pre-trained deep networks to
develop a three-step framework to identify jamming in radar
scenarios. In [32f], the signal features in the time domain,
frequency domain, fractal dimensions, and deep networks are
used to recognize jamming attacks. Nevertheless, DL presents
its own challenges when applied in the wireless context:

1) It is challenging to collect network parameters for DL
input layers. All deep learning algorithms need training
and testing. In each phase, the DNN’s input layer com-
prises the parameters of the data samples. The greater

the sample coverage in terms of data qualities, the better
the DL can identify network features. However, some
wireless data may be missing due to the stochastic nature
of the communication paths. Consequently, DL models
should be built to tolerate missing parameters, data errors,
and out-of-range values in their input layers;

2) UAVs have constraints in memory, CPU capabilities,
and available batteries. In addition, complex algorithms
cannot be programmed into their current protocols be-
cause DL is iterative in nature. This may prolong system
response time. The DL algorithms should use techniques
to save memory space without increasing the number of
layers, nodes, or trainable parameters. Also, the algo-
rithms should be optimized to minimize execution time;

3) DL needs entire or nearly complete training samples
to effectively detect network patterns. However, because
of the difficulty of collecting so many data points for
each potential network condition, the training samples
may be relatively restricted. This dictates that DL should
be capable of adding additional samples after failing to
recognize a new pattern. The fresh samples may help to
increase the accuracy of the DL models;

4) Furthermore, network engineers/programmers are re-
quired to carefully design the DL data formats since
various network parameters have extremely distinct data
properties and formatting requirements. The correct nu-
merical representations and data normalization algorithms
must be explicitly stated to combine numerous network
parameters into the same DL input layer;

A. Objectives and contributions

In this paper, we study the attack identification problem in
authenticated UAVs in 5G communications. To enable UAVs
to cope with jamming recognition, we propose a deep network
called DAtR (Deep Attention Recognition) that uses only two



observable parameters: Signal to Interference plus Noise Ratio
(SINR) and Received Signal Strength Indicator (RSSI). We
demonstrate that utilizing these two parameters as inputs to
our deep neural network (DNN) enables precise and reliable
identification of jamming attacks because channel variations
impact both values, and their values include information
regarding the wireless channel state.The SINR represents the
ratio of the desired signal power to the combined interference
and noise power. In the presence of channel variations, such
as fading, multipath propagation, and interference, the SINR
can fluctuate, leading to changes in the quality and reliability
of the received signal. The RSSI quantifies the power level of
the total received signal, considering the useful signal plus
interference and noise components. Channel variations can
cause fluctuations in the RSSI value, as the received signal
power may vary due to factors like distance, obstacles, fading,
and interference.

5G communication networks provide these measurements
in the receivers in Line-of-Sight (LoS), Non-Line-of-Sight
(NLoS), and probabilistic LoS and NLoS conditions in the
deep network and compare the accuracy for each channel
condition case. We use a neural network that includes At-
tention layers with optimized parameters to decrease the
chances of low accuracy when adding users and attackers to
the network. We demonstrate that the DAtR can recognize
jamming attacks from other malicious aerial agents in complex
urban environments where terrestrial users are connected to
the network. The final goal is to demonstrate that it is
possible to identify attacks in the UAV’s receiver that deal
with the temporal dynamic behavior of the 5G network using
learning techniques, such as deep network architectures, which
have significantly fewer layers than well-known pre-trained
networks. Also, the deep network does not rely on transfer
learning techniques, and it could provide better accuracy than
other well-known classifiers.

Taking these into account, the main contributions of this
work are highlighted in the following:

1) A novel, robust, and effective Convolutional Attention
deep network for UAVs, named DAtR, detects jamming
in complex environments under LoS and NLoS conditions
and tolerates incomplete raw data inputs. To the best of
the authors’ knowledge, this is the first time an Attention
model has been proposed to detect jamming in LoS,
NLoS, and hybrid conditions;

2) Two new complementary methods are named Time Series
Augmentation (TSA) and Majority Voting Algorithm
(MVA) to improve classification accuracy and detect false
alarms for deep networks.;

3) A study of deep network architectures for UAVs consid-
ering Long Short-Term-Memory (LSTM) and Attention
layers for 5G UAV communication data;

4) An accuracy comparison with six other state-of-the-art
machine learning classifiers;

5) An analysis of the trade-offs between accuracy and added
latency in the model while identifying attacks;

The remaining parts of this paper are organized as follows.
Section [lI| presents the preliminaries and the attack identifica-

tion problem in authenticated UAVs. Additionally, it describes
the transmission and channel models, as well as the observable
parameters of SINR and RSSI and the attacks dataset we
developed. Section [III] illustrates the proposed deep network
architecture for jamming identification. In this section, we
discuss the layer’s selection and implementation in detail.
Section [IV] describes the novel proposed pre-processing and
post-processing techniques that we embed in the deep network
to improve accuracy results. Section [V] presents the accuracy
analysis of the network simulation results, comparisons of
parameter configurations, comparisons between the proposed
deep network with six different classifiers, and the average
processing time for each classifier. Finally, section [VI|includes
our conclusions. Table I summarizes the abbreviations used in
this paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Scenarios

Fig. 1] illustrates the UAV simulation environment. In addi-
tion, it identifies the adopted X-Y-Z Cartesian coordinates. We
consider a scenario where authenticated UAVs fly in a 1 km
x 1 km square area while they are connected to a serving
small cell through Air-to-Ground (A2G) 5G wireless data
links. In this environment, we include authenticated terrestrial
users placed on the ground. UAV attackers are placed in
predetermined, randomly assigned spots. They fly towards the
authenticated UAVs inside the coverage area of the small
cell. To create our model, we assume that the authenticated
UAV transmission power is fixed during each simulation,
and we use Clustered Delay Line (CDL) channels, including
slow and fast fading components, to model their propagation
conditions. UAV attackers use the same propagation models
as authenticated UAVs [33]], [34]. For the terrestrial users, we
follow the 5G wireless terrestrial propagation models defined
in [34] instead. Fig. |[l| shows a configuration example with
two authenticated UAVs, three terrestrial users, three UAV
attackers, and one small cell.

For the sake of simplicity, the authors considered the UAV
to be a "flying antenna"; assuming that the UAV’s mechanical
components are not considered for this experiment and the
antenna location in the UAV is ideal.

When UAV attackers move, their speed is kept constant,
and they head toward the authenticated UAVs getting closer
to them as simulation time evolves. The attackers’ and au-
thenticated UAVs’ positions are at higher altitudes and follow
the losses according to the standards in [33] and [34]. Our
research presumes that terrestrial users may likewise be in
fixed locations or can change their positions according to
mobility models [35]]. The small cells are configured with an
antenna height of 10 m, typically seen in urban environments.

Table [II] displays the four different experimental setups we
created, in which basically multiple combinations of mobility
for UAV attackers and/or terrestrial users are considered.
During the simulations, as further explained in Section [V]
we vary the scenarios to account for different mobility/speed
options, as well as different distances between the small cells
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Fig. 1: Simulation scenario.

TABLE II: Speed configuration scenario.

. Attackers configured Users configured
Scenario

with speed with speed
None Speed N N
Attackers Speed Y N
Users Speed N Y
Both Speed Y Y

and authenticated UAVs, UAV attacker power, number of UAV
attackers, and number of terrestrial users.

The authenticated UAVs try to identify if there are any
attackers attempting to disrupt the communication link by
using the proposed DAtR mechanism, which is fed with
the RSSI and SINR measurements that are available in the
receiver. For each scenario listed in Table we create a
dataset with 600 files, including up to four attackers and
thirty terrestrial users connected at the same time. We group
them together to form a complete dataset composed of 2400
files split into RSSI and SINR parameters in constant LoS
condition. Then, we change the channel condition in the
dataset and check if it is possible to identify the attackers
in persistent NLoS condition, and in randomly combined LoS
and NLoS conditions through the 3rd Generation Partnership
Project (3GPP) stochastic models in [33] and [34]. In the end,
we have three datasets with 2400 files each, corresponding
to LoS, NLoS, and hybrid LoS/NLoS conditions. Additional
information on the dataset’s development and possible applica-
tions are available in [37]]. The study of the attacks in urban
environments is an intriguing problem due to the fact that in
LoS cases, channel variations and terrestrial users increase
the difficulty of self-identifying attacks. The deep network
must distinguish grounded users from intruders considering the
channel variations due to speed and environment changes over
time. Under the NLoS condition, the lower received power
makes it more challenging to recognize the UAV attackers.
Finally, let us notice that the connection link between the
authenticated UAV and the small cell exists during the entire
simulation, even in low SINR circumstances.

B. Communication model

We consider an A2G connection between the small cell and
the authenticated UAVs, as depicted in Fig. [I] The scenario
consists of an urban environment where buildings, trees, and
other structures may cause significant path loss and shadowing
degradation. We define the A2G large-scale effect with two
components, i.e., path loss and shadowing, as follows:

L(d, f) = PL(d, f) + 1" [dB], (D

where PL%(d, f) is the path loss at distance d from the
authenticated UAV to the respective small cell (in km) when
transmitting over the carrier frequency f (in MHz), n® is
the shadowing (in dB), and « reflects the LoS and NLoS
conditions, i.e., « € {LoS, NLoS}.

In A2G communications, the path loss PL*(d, f) in Eq.
(T) depends on the high/low altitude configurations and the
LoS/NLoS conditions. We compute it as follows:

PL™%(d, f)
PLNLOS (d7 f‘)

if LoS

if NLoS. @

PL(d, f) = {

For urban UAV scenarios, the path loss in the LoS condition

is given by the maximum between high/low altitude path loss
computations:

PLLOS(daf) :ma‘X(PLh(da f)7PLl(da f))7 (3)
PL(d, f) = 201og(d)+201og(f)+20log(4m/c),
PLi(d, f) = 30.94(22.25—0.51log(h)) log(d)+20log(f),

where c is the speed of light (in m/s), h is the altitude (in
m), PLy(d, f) is the free space path loss for high altitudes,
and PL;(d, f) is the low altitude path loss.

Under NLoS condition, the path loss is given by the
maximum between the LoS path loss and the NLoS path loss
expression:

PLN"S(d, f) = max(PL"5(d, f), PLn(d, f)), )
PL,(d, f)o = 32.4+(43.2—7.6 log(h)) log(d)+20log(f).

In our scenario, we assume that all the UAVs fly with a
height within the margin of 22.5 m < h < 300 m. With that
in mind, the remaining shadowing component (n®) in Eq. (1)
is defined by 3GPP as an additional variation over the path
loss with a certain standard deviation, depending on LoS/
NLoS conditions as well. Table [[II] includes the shadowing
characterization for LoS and NLoS.

TABLE III: Shadowing for UAVs in UMi [34} 33].

Std. deviation (dB)

LoS max(5 x exp(—0.01h), 2)
NLoS 8

Altitude (m)

22.5 < h < 300
22.5 < h < 300

To determine the LoS or NLoS condition for each commu-
nication link, 3GPP uses a stochastic model. The probability
of being in LoS (prLos) is given by:
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where p = —233.98 log,,(h) — 0.95, h is the height of the

UAV, d; = max(294.05 logag(h)—432.94, 18), and dap is the
2D distance between the UAV and the small cell. Accordingly,
the probability of being in NLoS is pnros = 1 — pros. For
small-scale fading, we adopt CDL models, as in and
[33]]. 3GPP defines in tabular mode the parameters that model
the fading, including the powers, delays, Angle of Arrival
(AoA), and Angle of Departure (AoD) that contain spreads
in Azimuth Spread of Arrival (ASA), Azimuth Spread of
Departure (ASD), Zenith Spread of Arrival (ZSA), and Zenith
Spread of Departure (ZSD) of each cluster for the UAV
scenario. The scenario assumes large and small-scale fading
in the link between the UAVs and the small cells. Given this
model, the received power at the UAV with no jammers or
interferences can be expressed as:
Puow =P+ G—L*d, f)— S(n,m), (6)
where P is the transmission power, G is the overall antenna
gain in the link considering UAV and small cell antenna gains,
ie., G = (Guav+Gse), and S(n,m) is the small-scale fading
effect, which corresponds to the superposition of n clusters
with m rays in the communication link, as per [34} 33]]. Our
model considers single antenna elements in the small cell
and the UAVs. The simulation in this work uses CDL-A and
CDL-D models for small-scale fading in the NLoS and LoS
conditions. In this case, each CDL comprises 23 clusters with
20 multi-path components (rays) each. Each cluster has an
Ao0A and an AoD. These values are used to create the rays’
Ao0As/AoDs according to the azimuth/zenith arrival/departure
spreads (ASA/ASD, ZSA/ZSD), respectively.

The SINR, I',.., between the authenticated UAV and the
small cell at distance d, in the presence of interference coming

S from jammers and terrestrial users, is given by:
P,
Tiw =557 D
C + Zi:l Puser + Zj:l ]Djammer
where Pl and Pjimmer represent the received power at

the UAV coming from the ¢-th user and the j-th jammer,
respectively, which act as interfering signals (including the
channel gain with the authenticated UAV, ( 2 is the noise
power, U is the total number of terrestrial users transmitting at
the same time as the authenticated UAV, and J is the number
of jammers transmitting in the scenario. A is the RSSI which
includes the linear average of the total received power in
Watt from all sources, including co-channel serving and non-
serving cells, adjacent channel interference, thermal noise, etc.
Considering Ag as the RSSI value at a reference distance, we
have

A = Mo — 10plog(d), ®)

where p = L(d, f) + S(n,m) includes path loss and fast
fading components, and d is the link distance.

We considered the inclusion of additional parameters, such
as the Reference-Signal-Receive-Power (RSRP). However, our
experimental analysis revealed that RSRP parameter did not
make a significant contribution to the overall results. This
outcome was expected, as RSRP and SINR are closely related
to each other.

C. Problem formulation and dataset

The SISA goal for the authenticated UAV is to quickly
identify malicious changes in the received power caused by
UAV jammers in the environment. For that, we use a small
deep network, where the number of trainable parameters 7'



is smaller than 100k (7' < 10°), that is composed of a
combination of layers, including CNNs, Attention, Dropout,
and Batch Normalization, among others. The details of the
DNN architecture are provided in Section [LI]

First, we study the case where UAV attackers try to disrupt
communication when the UAV and the small cell can directly
see each other (LoS condition). Then, we simulate the NLoS
condition, where buildings and other elements in the city may
block the direct communication between the UAV and the
small cell. Finally, we study a probabilistic combination of
LoS and NLoS conditions. As such, we assume the following
in the three datasets we create for the experiment:

o LoS: The UAV is always in LoS condition throughout all
the simulations available in the dataset;

e NLoS: The UAV is in NLoS condition for the entire time
during all the simulations included in the dataset;

e LoS and NLoS: The link between the UAV and the small
cell is in either LoS or NLoS condition with a probability
of pros and pnLos = 1 — pros (according to Eq. (B)) for
all the simulations in the dataset.

Table [IIl describes the four scenarios in each dataset. The
differences between the scenarios inside the dataset relate to
the following parameters: the UAVs’ and terrestrial users’
mobility and speed, the distance between the small cell and
the authenticated UAVs, the number of attackers and their
power, and the number of terrestrial users in the network.
It is important to note that the scenarios in the dataset, such
as Attackers’ Speed, Users’ Speed, Both speed,
and None Speed are unbalanced, meaning that the propor-
tion between attackers and no attackers in the raw data is
different. For example, the dataset has data for 1, 2, 3, and
4 attackers, while for no attacks, there is O attacker data.
Therefore, to avoid bias toward the classification, it is neces-
sary to implement countermeasures to balance the data during
the pre-processing phase. Our deep network design aims to
achieve maximum performance. To this end, we compare the
use of LSTM and Attention layers. We improve the capabilities
of the Multi-Headed Deep Neural Network (MH-DNN) by
integrating TSA and MVA techniques, which results in the
proposed DAtR. We benchmark our DAtR with six other well-
known ML algorithms and analyze other parameters, such as
the optimum window size, the attack accuracy when the deep
network sees the data for the first time during the test, and the
latency added due to the DAR processing time.

III. CONVOLUTIONAL ATTENTION-BASED ATTACK
DETECTION

The proposed SISA model is based on an MH-DNN. The
proposed architecture is shown in Fig. 2] It contains (i) three
CNN blocks and (ii) an Attention or an LSTM block in each
head. The body of the deep network consists of: (i) a Con-
catenate and Reshape layer, (ii) three CNN blocks, (iii) two
Fully connected blocks, and (iv) the output layer (Softmax) for
two classification classes. Although RSSI and SINR measure
different parameters from the telecommunication perspective,
both values may be related. For example, when RSSI in-
creases, SINR may decrease; The multi-headed structure of the

MH-DNN allows the extraction of the essential characteristics
of the RSSI and SINR separately before combining both
signals in the MH-DNN body. Also, it enables scalability
when considering other telecommunication parameters such as
Reference Signal Received Power (RSRP) by adding another
head with the same structure and using transfer learning of
the existing RSSI and SINR heads. This method can save the
training process in the future for a new M-headed DNN while
utilizing the advantage of the current pre-trained DNN.

ConvlD
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Fig. 3: Detailed block components in the proposed
MH-DNN model (a) Convolutional block, (b) Attention
block, (¢) LSTM block, (d) Dense block.

Using our proposed MH-DNN, we can simultaneously
extract features from both parameters in each head at each
window size. The window size defines the length of each
sequence that the deep network will receive as an input in each
head. Fig. [3] presents the components of each block illustrated
in Fig. [2| Each Convolutional block sequentially aggregates
Convl1D, dropout, batch normalization, and the Relu layers.
The Attention block contains Self-Attention, dropout, and
batch normalization layers followed by the global average
pooling 1D layer. The LSTM block includes the LSTM,
the dropout, and the batch Normalization layers, and the
Dense block encloses the same structure as the Convolutional
block, except that the Conv1D layer is replaced by the Dense
layer. Each block component performs an essential function
to facilitate the MH-DNN head and body integration. The
supplementary layers also keep the output sizes consistent
and reduce the over-fitting chances. For example, adding
dropout immediately after the main layers (i.e., Conv1D, Self-
Attention, LSTM, and Dense) is one of the techniques that
we used to avoid the MH-DNN over-fitting. The dropout
configuration value D is the same for all blocks (D = 0.4).
It defines the probability of each output node to be enabled
temporally and randomly during the training process. In other
words, it prevents the deep network from memorizing the input
parameters instead of learning the patterns in the sequences.
The Batch normalization layer speeds up convergence by
normalizing data for the next input layer. Note that batch
normalization is applied after the dropout layer to prevent
information leakage from one layer to another.
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In the Convolutional block, we convolute both signals in
each head in the three CNN layers, as Fig[2] indicates. Each
layer creates a Convolution kernel that is convoluted with the
layer input over a single temporal dimension to produce a
tensor of outputs. Thanks to the configuration of strides and
kernels, this operation returns a single tensor with several
channels (i.e., 1 x width x channel). The Convolution oper-
ation extracts different features from the time series sequences
available in each head. The result from the Convolutional
blocks is computed in parallel in the Attention layer.

The Attention layer utilizes an auxiliary vector to selectively
weight the input features by computing a set of Attention
weights based on the information from the previous and
current states. These weights are then used to adjust the
importance of different input parts when making predictions
[38]]. For example, the Attention mechanism may look for
parts of the signal which might contain attack characteristics.
The input tensor in the Attention block has the shape of
batch size by width by filters (i.e., 32 x 50 x 16), and
the global average pooling layer reduces dimensionality to
batch size by filters (i.e., 32 x 16). The width dimension is
related to the window size of input sequences of each head of
MH-DNN. In a similar architecture, we use the LSTM block
with 16 units for the LSTM layer instead of the Attention
block to compare these two different blocks in performance.
A fair comparison between LSTM and the Attention layer’s
overall performance requires that both blocks’ output create
almost the same tensor size. The LSTM layer with 16 units
creates the same output tensor shape as the Attention block
(i.e., 32 x 16). Another metric to compare is the number
of MH-DNN parameters generated with Attention or LSTM
blocks. For example, table compares trainable and total
parameters of the MH-DNN configured with LSTM blocks
(16 units) and Attention configured with different heads and
keys. According to table the first two Attention settings
(4 x 4) and (8 x 8) produce a number of parameters close to
the MH-DNN embedded with the LSTM (16). However, there
is a high leap when the MH-DNN uses the Attention blocks
with (16 x 16) heads and keys. Therefore, based on the knee
(elbow) rule, we choose the Attention configuration (8 x 8), the
highest configuration before the leap in the amount of trainable
parameters related to the attention layer. Notice that, even
though Attention produces more trainable parameters than
LSTM, the benefits in accuracy in NLoS scenarios compensate

for this difference.

TABLE IV: Comparison between trainable and total
parameters in MH-DNN with Attention or LSTM blocks.

Trainable Total

parameters  parameters
Attention (4, 4) 57,936 58,540
Attention (8, 8) 64,368 64,972
Attention (16, 16) 90,096 90,700
LSTM (16) 59,984 60,588

The concatenation procedure merges the features extracted
from RSSI and SINR in each head, and the reshape method
prepares them for the following CNN blocks. After using the
CNN blocks in the body, we apply two Dense blocks. The first
one is followed by an additive Gaussian noise N (N = 0.3).
Additive noise injection during the training process increases
our model’s stability and robustness. Moreover, it performs as
a regularizer to prevent over-fitting and improve generalization
[39]. We ended our MH-DNN with a Softmax layer with
two nodes for binary classification and the categorical cross
entropy as a loss function. Table [V]shows the main parameters
for the MH-DNN. Notice that we did not employ padding for
any of the Conv1D layers, since it decreases the output width
after each Convolutional block. We apply L2 regularization
only in the Convolutional, Attention, LSTM, and Dense layers
weights with no bias decay. Also, we use the batch normaliza-
tion layers with no regularization, as recommended by [40].

IV. IMPROVEMENTS IN MH-DNN ROBUSTNESS

In this section, we introduce the TSA method combined
with the MVA to improve the performance of our deep neural
network under the NLoS condition, which tends to present
lower total received power compared to the LoS condition.
Fig. @] summarizes the significant additions to the MH-DNN
to include these two new methods. After incorporating both
techniques into the system, we named the new system DAtR.

A. Time Series Augmentation technique

TSA aims to supplement the original dataset with additional
augmented samples for the MH-DNN to process further. We
create the additional data using data augmentation and flipping
techniques applied in the training set to increase data diversity



TABLE V: MH-DNN Configuration Parameters.

Deep network Parameters Values
Number of input heads 2
Base learning rate 2.5 x 1072
Base batch size 32
Optimizer Adam
Heads
Conv1D (filters, kernel size, stride) 8, 6,2
Conv1D (filters, kernel size, stride) 16, 6, 1
Conv1D (filters, kernel size, stride) 16, 5, 2
Self-Attention (heads, keys) 8, 8
(or LSTM) (16)
Body
Conv1D (filters, kernel size, stride) 8,3, 1
Conv1D (filters, kernel size, stride) 16, 2, 1
Conv1D (filters, kernel size, stride) 16, 2, 1
Fully connected (Dense) 100
Gaussian noise 0.3
Fully connected (Dense) 50
Softmax 2
blocks
Dropout layers 0.4
L2 regularization for ConvlD, and LSTM layers 1 x 10~
L2 regularization for Dense and Attention layers 1 x 107°

and prevent over-fitting during the training process. Also, we
use this technique in both training and test sets combined
majority voting method, which converts binary classification
into three classes in section As Fig. [ shows, we
transform the input samples into four augmented samples. In
Table we display an example of generating the four new
expanded instances according to TSA.

TABLE VI: Output of the TSA.

RSSI SINR
Sequence  Sequence

Sample 1 Same Same
Sample 2 Same Flipped

Sample 3 Flipped Same
Sample 4  Flipped Flipped

By randomly inverting each RSSI and SINR sequence, we
can generate four different augmented samples from each
occurrence. Other data augmentation strategies could also be
considered to generate the extended data. After pre-processing
the dataset, which converts the data to augmented samples with
an appropriate rolling window, each augmented instance has
two data sequences representing the RSSI and the SINR. Then,
we feed the extended samples to MH-DNN, as in Fig. [

B. Proposed Majority Voting Algorithm

DAtR uses TSA and MVA as pre-processing and post-
processing techniques, respectively. After feature classification
is done in the Softmax layer, we use the MVA to reclassify
the features to have better accuracy.

Algorithm 1 Majority Voting Algorithm.

Require: 7, Aug
Ensure: Assign 7 to Classes 1 or 2 or 3
Class 1 || Class 2 < Classify Aug
if 3Aug/4 > Class 1, then
Class 1 < Classify 7
else if 3Aug/4 > Class 2, then
Class 2 <+ Classify 7
else if Aug/2 == Class 1 and another Aug/2 == Class
2 then
Class 3 + Classify 7
end if

MVA divide into two methods (see Fig. EII) In Method 1,
MVA uses one hot encoding probability values between 0 and
1 as input from the MH-DNN classification prediction and
rounds them. This process applies to all augmented instances
made from the previously explained TSA method for each
sample. Next, the mean of all four results is calculated and
used to classify the sample into three classes. Suppose the
sample is classified in class 1 (attack) or 2 (no attack). In
that case, the code finishes, the classification achieves high
accuracy, minimal false alarms, and the number of features in
class 3 (no decision) is low. However, if the feature is classified
in class 3, we try to reclassify using other ML algorithms.
In Method 2, we try to classify the samples as class 1 or
2 by inverting the algorithm order. Instead of rounding them
first and then calculating the mean, we calculate the mean of
probability values and then round them. If after Method 2,
the feature can not be classified in class 1 or 2, we apply
other well-known ML algorithms to classify the features that
methods 1 or 2 could not classify. Notice that although the
proposed DAtR results are efficient in LoS channel conditions
(as will be demonstrated in Section E) the motivation for
using pre-processing and post-processing techniques in MH-
DNN arises from the fact that the attack detection accuracy
might decrease in cases of low received power conditions,
as they happen in NLoS channel conditions. As such, we
target to increase accuracy by applying TSA and MVA. In
the end, DAtR proved to be efficient also in LoS conditions.
Algorithmﬂ] illustrates the details of methods 1 and 2, where 7
is the primary sample, and Aug represents the four augmented
samples for the 7 example. When categorizing features into
classes in the Softmax layer is impossible, the algorithm tries
to classify them. For example, a sample classifies as a specific
class 1 or 2 if 3 of its four augmented instances classify in the
same class. In the case of a draw, the feature goes into class
3.

V. SIMULATION RESULTS

In this section, we present the performance evaluation of the
proposed DAtR. In particular, we provide five experimental
outcomes related to the robustness of the DAtR. First, we
conduct a comparative study on the efficacy of different layers,
such as Attention and LSTM, in the MH-DNN architecture.
Then, we study the effect of the window size on the DAtR’s



TABLE VII: Network Parameters.

Values

0, 3, 5, 10, 20, and 30

Scenario Parameters

Terrestrial Users

Authenticated UAVs 1

Small Cells 10

Small cell height 10 m

Attackers 0,1,2,3,and 4

Speeds 10 m/s

Modulation scheme OFDM

Small cell power 4 dBm

Authenticated UAV power 2 dBm

Attackers power 0, 2, 5, 10, and 20 dBm
Authenticated UAV position URD*

Attackers position URD*

Small cells position URD*

Scenario UMi

Distance 100, 200, 500, and 1000 m
Simulation time 30 s

*URD - Uniformly Random Distributed.

accuracy. In addition, we examine the performance of the
proposed DAtR when we remove parts of the dataset from
training, and we benchmark the DAtR’s accuracy against six
machine learning alternatives. All these experiments evaluate
LoS and NLoS channel conditions separately. To evaluate the
DAtR’s performance, we compare the overall accuracy based
on the various parameters available in the dataset. Initially, we
analyze the accuracy as a function of the number of attackers
and attackers’ power. After that, we analyze the accuracy
as a function of the attackers’ distance and power. These
simulations set all three conditions presented in the paper:
LoS, NLoS, and a combination of both. For this section, we
adopt attacker amount NN, attacker power P, users amount
N, and distance d. Table presents the parameters used in
the simulation. The speed remains the same for all scenarios,
and the distances in Table [VIIl refer to the distances between
the small cell and authenticated UAVs.

A. The window size impact

Fig.[5] (a) and (b) show the window size impact on the final
accuracy for LoS and NLoS conditions using the MH-DNN
(no improvements, no TSA, and no MVA).

Fig. ] (a) indicates that the accuracy range for w = 100
is roughly 65% to 90%, whereas the range for w = 300 is
approximately 75% to 95%. In the NLoS case (see Fig. |
(b)), the MH-DNN achieves a range of about 67% to 85%
when w = 100, and the percentage ranges from 70% to 87%
when w = 300. Both figures demonstrate that the accuracy
is directly proportional to the window size, independently of
the channel condition. It is worth noting that there is a small
trade-off between the time it takes to calculate the estimate for
each class and the available resources, as will be demonstrated

later in Fig.
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Fig. 5: Impact of the window sizes w = 100 and w = 300
(a) In LoS, (b) In NLoS.

B. Attention vs. LSTM

Both the LSTM and Attention layers are trying to solve the
same problem. They keep track of the old input sequences in
the current node or state. For example, the information flowing
from to to (t — n) is available in a modified/partial form in
the state at time ¢t. The algorithm uses the modified form to
establish a relationship with the incoming data. We compare
LSTM and Attention regarding window size and final accuracy
improvements in LoS and NLoS conditions for each proposed
algorithm in the paper.

The trainable parameters do not change between the dif-
ferent window sizes or conditions. In our example, the MH-
DNN configured with LSTM has 59,984 trainable parameters
compared to 64,368 in the one with the Attention. However,
most well-known deep neural networks, such as VGG
and ResNet [42], employ more than one million trainable
parameters in their architectures, which increases the overall
training time and, consequently, the prediction time. Also,
they require more computation capabilities. Therefore, we
only interchange the Attention and LSTM layers using Table
[V] settings and the proposed DAtR. Table [VIII| shows the



TABLE VIII: Differences in the overall accuracy for each
condition and for each window size (w).

w 50 100 200 300
LoS Attention 82.26 83.04 88.35 89.59
LSTM 79.62 84.67 86.51 88.06
% NLoS Attention 72.58 73.00 74.12 75.60
[a) LSTM 69.43 71.46 65.76 68.67
Both Attention 76.31 79.59 79.19 82.77
LSTM 76.07 78.19 77.10 77.29
; LoS Attention 83.88 8431 88.48 89.98
& LSTM 83.65 84.38 87.10 88.34
g NLoS Attention 82.81 82.53 82.94 83.07
T LSTM 81.87 83.05 81.27 80.19
% Both Attention 80.50 81.27 79.13 83.66
A LSTM 79.82 79.67 78.95 79.02
g LoS Attention 84.10 84.77 89.99 90.80
- LSTM 81.34 86.26 8847 89.49
g NLoS Attention 75.66 76.07 77.13 79.00
¥ LSTM 7220 73.85 68.60 73.10
% Both Attention 78.61 81.52 80.51 84.65
) LSTM 7828 80.11 79.22 79.59

TABLE IX: Accuracy measurements using the XGB
algorithm for each condition with different window sizes (w).

w 50 100 200 300

LoS 83.27 83.69 8557 86.33
NLoS | 83.04 82.58 83.41 80.58
Both | 79.65 79.47 78.40 78.85

differences in the overall accuracy between the Attention and
LSTM layers for different window sizes (ranging from w = 50
to w = 300), various channel conditions (LoS, NLoS, and
both), and the three proposed methods (MH-DNN, MH-DNN
+ Method 1, MH-DNN + Method 2). Table [[X] compares
results to the reference XGB algorithm for different window
sizes and channel conditions. The XGB performs poorly when
the hybrid dataset is applied to the algorithm in contrast to the
results obtained with the DNN and DNN with methods 1 and
2. In comparing the LSTM with Attention, except for four
states, better results are almost seen in the Attention layer.
For example, in MH-DNN + Method 1 in NLoS condition
with window size w = 100, LSTM performs slightly better,
where its difference with Attention is around 0.52%.
Moreover, we notice that an increase in the window size
positively impacts the overall accuracy when using Attention
layers. For LSTM in NLoS conditions, it has the opposite
effect when w > 100. Pattern recognition in NLoS is generally
hard to extract due to the low power received in the authen-
ticated UAV. Still, for this particular case, when w > 100,
it decreases the overall accuracy. Concerning the LoS, NLoS,
and Both conditions, LoS presents the best accuracy because
there is no decrease in the received power due to obstacles
and objects between the authenticated UAV and the small cell.
Therefore, the deep network could learn the attacker pattern
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Fig. 6: Comparison between Attention and LSTM algorithms
for w = 50 and w = 300, N, = 20, Nyt = 2, and Py = 5
dBm (a) In LoS, (b) In NLoS.

even in cases with channel variations and more users in the
network. The combined condition presents the second-best
results; as expected, NLoS shows the worst. Notice that by
adding more nodes and layers, the deep network can learn
this pattern; however, there is a trade-off in terms of memory
and energy consumption, which is outside the scope of this
work. The most significant impact of the MVA and TSA
in the DNN is in NLoS conditions. Method 1 increases the
overall accuracy by more than 10% when using LSTM and
by approximately 10% with Attention. Among the methods
in the study, the MH-DNN + Method 2 performs better for
LoS, whereas the MH-DNN + Method 1 performs better
for NLoS conditions. Fig. [6] depicts the accuracy against
the distance between the authenticated UAV and the small
cell in the network for two different window sizes using
Attention and LSTM layers for (a) LoS and (b) NLoS channel
conditions. For each condition, we present the results for MH-
DNN with no additional methods. Fig. [6] (a) shows that, for
LoS, both Attention and LSTM configurations with window
size 300 (w = 300) outperform the structures with window
size 50 (w = 50). In the NLoS condition, see Fig. [§] (b),
the DNN embedded with the Attention layer performs better
independently of the window size.



channel condition. This Fig. shows that Method 1, in this
case, is more effective in short distances. However, note that
the DAtR and Method 2 outperform the benchmark schemes
for short distances but lose accuracy for higher distances.
As such, Method 1 appears to achieve a good compromise
between small and large distances. Comparing both charts,
DAtR can more easily identify attackers in LoS, but it can
also be implemented in NLoS or mixed conditions depending
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D. Attacker number and power

Fig. [§] presents the accuracy over the number of attackers
and their power in (a) LoS, (b) Combined, and (c) NLoS
conditions. If we look closely at the individual charts, we
see that the accuracy increases with more attackers and more
power for LoS and combined conditions. In the NLoS case,
the low accuracy is centered in the scenario with two attackers
when both are configured with power less than 5 dBm. After
that, it increases for more and fewer attackers, and as the
attacker increases, power rises.

In the LoS case, the scenario with one attacker is the

DNN Methad hardest for the proposed algorithms to learn. In the Combined
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Fig. 7: Comparison between the proposed MH-DNN with

MH-DNN + Method 1, MH-DNN + Method 2, RF, CAT,

XGB. w =300, N, = 20, Nyt = 2, Py =5 dBm. (a) In
LoS, (b) In NLoS.

C. Comparison with other machine learning classifiers

Fig. [7] compares the proposed DAtR (composed by MH-
DNN, Method 1, and Method 2) with three other machine
learning methods, namely RF, CAT, and XGB, over the
distances between the small cell and the authenticated UAV
available in the dataset, in LoS and NLoS conditions, sepa-
rately.

We eliminate GNB and LR from the charts because they
fail to achieve 70% accuracy across the range of distances
and SVM because its performance is comparable to the
other ML algorithms for shorter distances but dropped to
75% accuracy for those with d > 200 in LoS conditions. In
Fig. [7] (a), we show that even our primary classifier, which
is the MH-DNN embedded alone with the Attention layer,
consistently outperforms well-known classifiers such as RF,
CAT, and XGB, while Method 1 and 2 present an additional
improvement, especially for considerable distances. CAT and
XGB perform similarly, while RF decreases its accuracy for
significant distances. Compared to all the accuracies obtained
from other algorithms, the proposed DAtR achieves an accu-
racy range from 80% up to 95% overall distance ranges. The
mean accuracy that the DAtR achieves is 89.97%, while the
RF, CAT, and XGB achieved 83.24%, 85.60%, and 86.33%,
respectively. Fig. [7] (b) presents the results for the NLoS

condition, 0 and 1 attacker scenarios are complicated for the
algorithms to understand, and for the NLoS condition, the most
complex scenario is with two attackers. In LoS and Combined
cases, the changes in the power presented improvements in
the accuracy of around 5%. The low accuracy when there are
fewer than three attackers in the scenario might be justified
by the stochastic channel models available in 5G UAV cases
where the channel adjustments experienced by the UAV can
change approximately 30 dB from one channel update to
another. The amount of users affects the total received power
reducing the DAtR’s overall accuracy. In the NLoS case, the
fact that no straight rays are feeding into the receiver impacts
the overall power received and decreases the accuracy of
results. By comparing all the results, the NLoS simulation
presents the lowest overall accuracy from all conditions, but
the best accuracy it can achieve is 93% with four attackers
configured with 20 dBm power.

E. Confusion matrices

Fig. |g| (a) and (b) illustrate the confusion matrices resulting
from the proposed algorithms: MH-DNN, MH-DNN + Method
1 + ML algorithm, and MH-DNN + Method 2 + ML algorithm,
for LoS and NLoS, respectively. In addition, we utilize the
XGB as an ML algorithm for Methods 1 and 2.

We compare the results of MH-DNN with Method 1 and
Method 2 with the results of MH-DNN alone. We notice
that MH-DNN + Method 2 + XGB increases the accuracy in
LoS scenarios, while MH-DNN + Method 1 + XGB is more
suitable for NLoS settings. For example, Fig. [a highlights the
difference between the two True Negative (True Neg) when
we subtract Method 1 and Method 2 values from the MH-
DNN. Method 1 + XGB results in -0.64% less accuracy, while
with Method 2 + XGB, there is +0.38% better accuracy. Also,
Method 1 increases the chances of False Positive (False
Pos) by +0.63%, while Method 2 decreases the likelihood
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of False Pos by -0.39%. We see the opposite effect in
Fig. Method 1 + XGB has better values for True Neg
and False Pos than Method 2 + XGB when comparing
both to the Deep Network. Regarding LoS, the MH-DNN +
Method 2 performs better than the other approaches in the
research, but the MH-DNN + Method 1 is the clear winner
when it comes to NLoS. Taking into account the best outcomes
that we have so far, specifically, MH-DNN configured with
Attention + Method 2 for LoS or + Method 1 for NLoS

12

o ————— -

MH-DNN MH-DNN + Method 1 + ML 1 MH-DNN + Method 2 + ML |

I I
2 ! :
£ False Pos LCERNER] False Pos l True \[Ele] False Pos I
£ 11972 67637 |
LA 7.34% 41.44% 1 |
0 3 1 |
(2]
= 1 |
b4 | |
- |
ge ! :
£ False NegRIEELCH False NegRIVENEN | False NegRIUEREe] 1
£ - 5020 | 3667 1
o 3.08% | 2.25% 1
e 1 1
1 |
! 1 1 |
o o o o) o o 1
£ £ £ S £ £
3 IS 3 3 1 & & 1
1 3 3 15 S & 1
2 d = 2 g 2 I
s 4 £ ¢ 2 g
1
I I

Predicted Values Predicted Values - Predicted Values

(a) LoS Condition
MH-DNN

|
I
o ! :
€ I REERNER] False Pos I
€ JPZELNN 18201 | MGEEEN 14101 (LI3PAN 16028
o BRI 11.15% | RONIES 8.64% N 39.59% ECR:PIA
h | § I
= 1 |
b4 | |
! !
g l :
£ False NegIENEN | False NegRIEReS I False Neg RIVERH
€ - 21627 1 13533 69027 I 18241
2 13.25% | 829% 1 11.18%
L 1 1
1 |
1 I 1 I I
[« > <) < T o o
£ S £ £ £ £
& IS 1 g £ 1 g £
mE & f{}:‘ & 1 ruE &
S » 105 5 1 og F
= & = RS ;= <
|
I I

Predicted Values - Predicted Values Predicted Values

(b) NLoS Condition

Fig. 9: Overall Confusion Matrices of the proposed
MH-DNN, MH-DNN + Method 1 and ML algorithm, and
MH-DNN + Method 2 and ML algorithm, w = 300, (a) In
LoS, (b) In NLoS. Green arrows indicate enhancement,
while the red ones refer to reduction.

and XGB algorithm, except when explicitly mentioned, we
use this configuration to show detailed performance evaluation
considering all cases and parameters available in the dataset
using DAtR. In the combined condition, we used MH-DNN
configured with Attention + Method 1 for NLoS and XGB
algorithm. The accuracy presented in the confusion matrix is
the average accuracy from all the scenarios in the dataset.
It significantly impacts the specific cases, as shown in the
following sections.
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test data, window size w = 300, Ny = 2, N, = 20 (a) LOS
only, (b) LOS and NLoS, (c) NLoS only.

FE. Attacker power and distance

Fig. shows the accuracy over distance and attackers’
power ratios during training for the three conditions: LoS,
Combined, and NLoS. In the three conditions, attackers with
lower power are more challenging for the deep network to
recognize. In the LoS conditions, the deep network can iden-
tify attacks even though the base station is 1000 m away from
the authenticated UAV and the attacker power is lower than 5
dBm with 96% accuracy. Of course, there are improvements
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when the power increases, but we achieve better results when
increasing distance. In addition, the user interference decreases
at this position so that the deep network can achieve high
accuracy. In the Combined condition, we see the impact of
power on accuracy more clearly than in LoS. For example,
when the attacker power is set to 15 dBm, the accuracy is
85% when the distance between the authenticated UAV and
the Base station is 100 m. However, we see a peak accuracy
when the distance is 500 m and the attacker power is 15 dBm.
While it is easier to identify attackers for the other conditions
when the attacker power is higher than 5 dBm, in the NLoS
condition, the attacker power needs to be adjusted to 15 dBm
so the deep network can have approximately 84% accuracy.

G. Comparison with data that is not in the training

Fig. |];1'| (a) and (b) depict the accuracy results based on
the attacker power when the network users are N, = 20,
for a distance of 500 m, and two attackers. We remove the
data related to the attacker power of 2 dBm and 10 dBm
from the training. Therefore, the deep network sees both these
pieces of data for the first time during testing. We executed
this simulation for LoS and NLoS conditions.
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Fig. 11: Comparison with data that is not in the training
Nyge = 2, N, = 20, and d = 500 m (a) In LoS, (b) In NLoS.

Fig. [ITa] demonstrates the outcomes for LoS. A comparison
of training with all and removed samples noticed a propor-
tional decrease in all instances. This difference is around 1.5%.
For the NLoS case, illustrated in Fig. [ITb] there is a difference
more significant than 0.5% only when the attacker was set up
with 20 dBm power. There are no significant differences for

the other cases, which shows the robustness of our proposed
algorithm.



TABLE X: Prediction timing versus window size (w) for the proposed deep network and three other ML classifiers.

w 50 100 200 300
DNN-Attention | 30.9 ms + 248 us  30.9 ms £ 335us 31.9 ms + 656us 30.8 ms + 391pus
DNN-LSTM 31.3ms + 1.03 ms 31 ms & 351 us 312 ms & 311 s 30.5 ms & 393 us
CAT 0.52 ms £ 561 ns  0.82 ms + 744 ns 149 ms £ 939 ns  2.19 ms + 2.02 us
RF 716 ms £ 128 ms 748 ms + 1.63 ms 76.6 ms = 1.66 ms 794 ms £ 1.76 ms
XGB 0.66 ms £ 224 pus  0.67 ms + 22.5 us  0.68 ms + 23.9 us  0.74 ms £+ 21.6 us

H. Average processing time

Fig. [I2] compares the average prediction time after training
for the three baseline classifiers (RF, CAT, and XGB) and the
proposed MH-DNN configured with Attention or LSTM for
different window sizes to classify each sample. Table [X] shows
the average values with their respective standard deviations.
The prediction time is essential because it shows the latency
in discovering attacks using such UAV algorithms. All timing
tests were done using an Nvidia RTX 3090 GPU system.
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Fig. 12: Average processing time for each classifier.

In Fig. [I2] we can see that the window size has a negli-
gible effect on the XGB and the MH-DNN configured with
Attention or LSTM. However, it has a more significant impact
on CAT and RF. For example, the prediction time for CAT
increases four times when the window size is 300 (w = 300).
For RF, the impact of the window size is smaller than CAT, but
it still increases by approximately 10% for the same window
size (w = 300). There is a minor difference between the LSTM
and Attention prediction times. The RF algorithm displays
the highest prediction time. Our proposed method has a good
trade-off between accuracy and prediction time.

VI. CONCLUSION

This paper studied the attacks Self-Identifying problems in
5G UAV networks assuming scenarios with LoS, NLoS, and a
probabilistic combination of both conditions. Specifically, we
proposed a small deep network system denominated DAtR,
that can cope with the attack Self-Identifying problem, and we
verified its accuracy through extensive simulation campaigns.
Along with the application and deep network design, our
work innovates by combining both RSSI and SINR signals
within the deep network and incorporating two novel pre- and
post-processing methods to increase accuracy. Our research
examined five major implementation issues related to the deep

network: how the key parameters, such as the window size,
impact the deep network accuracy, the impact of different lay-
ers on the overall performance (i.e., Attention vs. LSTM), its
performance compared to other machine learning alternatives
for classification, the robustness of our deep network using
data that is not available in training, and the prediction timing
for the proposed DAtR. Compared to six popular classifiers
available in the literature, we showed that the proposed system
is a competitive option for the attack classification for all
distance ranges in LoS conditions and for short-range dis-
tances in NLoS conditions. The comparison between LSTM
and Attention shows that increasing the window size in the
LSTM setup reduced the performance, while with Attention, it
boosted performance. Attention layers in DAtR outperformed
the same system configured with LSTM. Finally, we present
the performance graphs we created for each case study. Results
have demonstrated that our deep network reliably identifies
attacks across all possible configurations. Identifying attacks
in simulations with three or more attackers, fewer users, and
a power of 10 dBm or higher was more straightforward.
The identification accuracy was also affected by the three-
dimensional distance between the small cell and the authenti-
cated UAV. Here, the chances of identification improved with
increasing distances since there was less interference.
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