

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2023-07-25

Deposited version:
Publisher Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Botelho, L., Fernández, A., Fries, B., Klusch, M., Pereira, L., Santos, T....Vasirani, M. (2008). Service
discovery. In Michael Schumacher, Heikki Helin and Heiko Schuldt (Ed.), CASCOM: Intelligent service
coordination in the semantic web: Conference proceedings. (pp. 205-233). Zurich: Birkhäuser.

Further information on publisher's website:
10.1007/978-3-7643-8575-0_10

Publisher's copyright statement:
This is the peer reviewed version of the following article: Botelho, L., Fernández, A., Fries, B., Klusch,
M., Pereira, L., Santos, T....Vasirani, M. (2008). Service discovery. In Michael Schumacher, Heikki
Helin and Heiko Schuldt (Ed.), CASCOM: Intelligent service coordination in the semantic web:
Conference proceedings. (pp. 205-233). Zurich: Birkhäuser., which has been published in final form
at https://dx.doi.org/10.1007/978-3-7643-8575-0_10. This article may be used for non-commercial
purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1007/978-3-7643-8575-0_10

Chapter 10

Service Discovery
Luis Botelho, Alberto Fernández, Benedikt Fries, Matthias Klusch, Lino Pereira,
Tiago Santos, Pedro Pais, Matteo Vasirani

10.1 Introduction

Semantic service discovery is the process of locating Web Services based on the
description of their functional and non-functional semantics. Both service oriented
computing and the semantic Web envision intelligent agents to proactively pursue
this task on behalf of their clients. Service discovery can be performed in differ-
ent ways depending on the service description framework, on means of service
selection, and on its coordination through assisted mediation or in a peer-to-peer
fashion.

In the CASCOM system, semantic service discovery is realised by the in-
terplay between a service discovery agent (SDA), a project distributed service
repository (WSDir), and a semantic service matchmaker (SMA). On request, the
SDA searches for relevant services in both the WSDir and in its own local service
repository. Service selection is implemented through means of a rather coarse-
grained keyword-based matching of services as a quick filtering operation by the
SDA which is complemented by a more fine-grained logic-based analysis of service
semantics by the SMA.

This chapter is structured as follows. First, we provide an overview of the
discovery approach based on the interaction between SDA, WSDir, and SMA. This
is followed by a more detailed description of both agents, the SDA and the SMA
with focus on the integrated service matchmaking algorithms. The chapter ends
with a conclusions section.

10.2 Overview

In the CASCOM system, service discovery results of the cooperation between the
requester (Personal Agent), the Service Discovery Agent (SDA) that coordinates

210 Chapter 10. Service Discovery

Figure 10.1: Service selection process in CASCOM

the search process, the WSDIR (a distributed service directory described in Chap-
ter 9), and the Service Matchmaking Agent (SMA) with several integrated match-
making algorithms. The WSDIR stores advertised OWL-S service descriptions
and supports searching for them according to both functional and non-functional
service semantics. The typical semantic service discovery process in CASCOM is
depicted in Figure 10.1.

In step 1, the requester asks the SDA for services or service providers match-
ing specified criteria. In step 2, the SDA extracts the specified service category
from the received request and consults its own service database and the WSDIR
to acquire the services that match the specified category. This coarse-grained step
corresponds to a quick filtering operation that is part of the whole service selection
process.

Next, the SDA matches the services that passed the quick filter with the
remaining criteria specified in the request. Service selection can be entirely per-
formed by the SDA itself based on its internal service repository or consultance
of the distributed service directory (WSDir), or by calling the semantic service
matchmaker SMA depending on the service selection criteria specified in the re-
ceived request.

If all specified criteria involve only simple matching operations (e.g., category
matching) the matching process is done by the SDA only. If the specified criteria
require complex matching processes, such as preconditions and effects matchmak-
ing, subsumption reasoning, or role-based matchmaking, the matching process is
performed by the SMA. If the SDA can solely perform the matching process with-
out the SMA, it sends the resultant set of services to the requester (step 3a). If
it is necessary to involve the SMA, the SDA sends the discovered set of services
together with the original request to the SMA (step 3b).

In the fourth step, the SMA selects the set of services that match according
to the specified criteria. In step 5, the results are returned to the SDA and conse-
quently to the requester. Although context processing is not explicitly represented
in Figure 10.1, each agent acquires relevant context information, possibly from
the context acquisition and management system (see Chapter 13), and uses it to
better adapt its performance to the current situation.

10.3. The CASCOM Service Discovery Agent 211

In summary, the SDA can initially prune the set of available services to those
that match according to a given criteria. The SDA may trigger an additional logic-
based matching process on those initially selected services by the SMA. Finally, the
SDA internal service database and the WSDIR store service descriptions according
to different policies and ensure privacy and security.

Finally, please note that the separation between the SDA, the SMA and the
WSDir, although allowing for better and easier system development and man-
agement, also has the disadvantage of requiring more intense communication of
service descriptions. Besides, it has to be appropriately upgraded to also work for
service discovery in totally distributed networks without service directories.

10.3 The CASCOM Service Discovery Agent

Besides service discovery, the SDA may also be used by service providers to register
their services in the WSDIR or in its database. This is an important feature
because the WSDIR, being a Web Service, does not provide an agent interface.
Therefore, if a service registration agent interface with WSDir is desired, the SDA
may be used. Currently, the SDA offers the following functionalities:

• Request a set of complete service descriptions, service profiles, service pro-
cesses, or service groundings that match the specified criteria

• Register a complete service description, a service profile, a service process or
service grounding.

• Associate a profile, a process, or grounding to a specified service

• Remove a complete service description, or a service profile, service process
or service grounding

• Register or remove a service provider.

The separated manipulation of the several elements of the service description
(service profile, service process and service grounding) is an important feature
because a service can have several profiles or several groundings. Unfortunately,
this separation is possible only when using the SDA internal service database;
The WSDir does not support such separation. The SDA, as all other agents of
the CASCOM service coordination system, uses the FIPA ACL communication
language with FIPA SL contents. Figure 10.2 shows an example of a message used
to request a set of complete service descriptions that match a given service profile,
which is specified through an URL.

The interaction with the Service Discovery Agent is based on the FIPA Re-
quest interaction protocol, which is used for an agent to request another one to
perform some specified action Figure 10.3.

The receiving agent can accept or refuse to perform the requested action.
If the receiver refuses to execute the requested action, the conversation stops,

212 Chapter 10. Service Discovery

(REQUEST
:sender (agent-identifier :name client@cascom)
:receiver (set (agent-identifier :name sda@cascom))
:content "((action

(agent-identifier :name sda@cascom)
(getMatchingServices

:profileURI
\"http://www.daml.org/services/owl-s/1.1/BravoAirProfile.owl\"

:profileLocation \"http//localhost/BravoAirProfile.owl
:useMatchmaker false\")))"

:language fipa-sl
:protocol fipa-request)

Figure 10.2: Example request message for relevant services

otherwise, the receiver must try to execute it. In case of success, the receiver sends
the results to the sender or merely informs it that the action was successfully
executed. In case of failure, the receiver must inform the sender that the execution
failed, and the reasons of failure.

The SDA was completely implemented in JAVA. It uses the OWL-S API1 to
read and process OWL-S service descriptions2. For results of evaluating the SDA
discovery agent, we refer to Chapter 16.

10.4 The CASCOM Service Matchmaker

Within the CASCOM coordination system, the semantic service selection func-
tionality is provided by the Service Matchmaking Agent (SMA). This agent is
constituted by three building blocks, each of them corresponding to a different Se-
mantic Web Service matchmaker: the hybrid service I/O matchmaker OWLS-MX,
the Precondition and Effect matchmaker PCEM, and the Role-based matchmaker
ROWLS.

The OWLS-MX matchmaker (see Section 10.5) performs hybrid service sig-
nature matching through complementing logic-based semantic I/O matching with
syntactic token-based similarity metrics to obtain the best of both worlds - descrip-
tion logics and information retrieval. The Precondition and Effect matchmaker
PCEM (see Section 10.6) exploits pre-conditions and effects of service descriptions,
converting them in logic predicates and using a Prolog reasoner to determine exact
and inferred relations. The Role-based matchmaker ROWLS (see Section 10.7) ex-
ploits the structuring of services in terms of organisational concepts such as roles

1See http://www.mindswap.org/
2Further details about SDA (including a Demo) can be found at http://www.we-b-

mind.org/sda

10.4. The CASCOM Service Matchmaker 213

Figure 10.3: FIPA-Request Protocol of SDA

and types of social interactions.

10.4.1 Configurations

How to properly integrate these different matchmakers into the CASCOM service
matchmaker? In the project, we implemented the following configurations:

1. Sequential. Using the three matchmakers sequentially, where each match-
maker acts as a pre-filter of the next one in the sequence. A possible config-
uration can be the one depicted in Figure 10.4, where the role-based match-
maker possibly reduces the number of input services of OWLS-MX, which in
turn reduces the number of input services of the PCEM matchmaker. This
order has been chosen on the basis of the computational complexity of the

214 Chapter 10. Service Discovery

Figure 10.4: Sequential configuration

matchmakers.

2. Concurrent. Running all three matchmakers with the same set of services and
then combining the returned degrees of match with an aggregation function
(Figure 10.5).

At the time the SMA is called by another agent, the individual configuration
of utilizing the matchmaking modules can be chosen by setting a special parameter
in the request message.

Sequential Matching by the SMA A possible configuration is executing firstly
the role-based matchmaker. The role-based matchmaker assigns to every service
a real valued number between 0 and 1.

Then, a reduced set of these services are given to OWLS-MX as input. This
reduced set can be composed by

• All the services which have a role-based degree of match greater than a
threshold

• The first K services of the ordered set, where K is fixed

• The first M services of the ordered set, where M is a percentage of the
original set size

10.4. The CASCOM Service Matchmaker 215

OWLS-MX performs the matchmaking with this reduced set of services, and
returns an ordered list of services, depending of the parametrization of the match-
maker. There are five possible instantiations of OWLS-MX, M0 to M4, where M0
stands for a purely logic-based semantic matching, while the others instantiations
additionally use a token-based syntactic similarity metric (namely, the known
“Loss-of-information”, “Extended Jacquard”, “Cosine”, and “Jensen-Shannon di-
vergence” based similarity measure). The configurable parameters comprises the
minimum degree of match, the matchmaker type and, in case of use of syn-
tactic similarity metric, the syntactic similarity threshold. The minimum degree
of match can be EXACT, PLUG IN, SUBSUMES, SUBSUMED BY or NEAR-
EST NEIGHBOUR, while the syntactic similarity threshold is a real value used
only for SUBSUMED BY or NEAREST NEIGHBOUR match.

Finally, the output of OWLS-MX is passed to the PCEM matchmaker as
input. Since this matchmaker does not return a real valued degree of matching,
the SMA calculates the (final) matching value as follows (cf. Section 10.6)

(Precondition Exact Matching ∨ Precondition Reasoning Matching) ∧
(Effect Exact Matching ∨ Effect Reasoning Matching)

The return value of this formula (TRUE or FALSE) is used to create the final
returned set of services. We have chosen this order of the matchmakers because
the computational complexity of the role-based matchmaker ROWLS is lower than
the computational complexity of OWLS-MX, which is in turn lower than the
computational complexity of the PCEM matchmaker. Hence, the matchmaker
that is supposed to work with the greatest set of services is the role-based one
(ROWLS); OWLS-MX will work with a smaller set of services, and PCEM with
an even smaller one.

The parameters that need to be set in this configuration of the SMA are

• The filter parameter of the role-based matchmaker ROWLS (threshold or K
or M);

• The type of OWLS-MX matchmaker (M0, M1, M2, M3, M4), the minimum
degree of match and the similarity threshold.

Aggregated Matching by the SMA Another possible configuration of the SMA
is the execution of all three matchmakers in parallel with the same set of services,
and the aggregation of the results by means of special aggregation function.

For this purpose, it is necessary that every matchmaker assigns a matching
value for every service. However, only the role-based matchmaker returns a real
number between 0 and 1 as degree of match, while a degree of match for the
PCEM matchmaker can be generated applying the above logic formula (returning
a value equal to either 0 or 1). The OWLS-MX, on the other hand, returns the
degree of match as a category, which can be EXACT, PLUG IN, SUBSUMES,
SUBSUMED BY and NEAREST NEIGHBOUR, while all the other services that
are not returned can be considered having a degree of match equal to FAIL. So,

216 Chapter 10. Service Discovery

Figure 10.5: Aggregation of the three matchmakers’ results by the SMA

for the OWLS-MX it is necessary to assign to every category, a real valued number
between 0 and 1 (for example, EXACT = 1, PLUG IN = 0.7, SUBSUMES = 0.5,
SUBSUMED BY = 0.3, NEAREST NEIGHBOUR = 0.1, FAIL = 0).

Having assigned a degree of match for every service matched by every match-
maker, it is possible to combine the three results with an aggregation function,
and order the original set of services on the basis of the aggregation value. Possi-
ble aggregation functions are the minimum, the product, the weighted product or
more complex ones.

The parameters that need to be set in this configuration are

• The type of OWLS-MX matchmaker (M0, M1, M2, M3, M4), the minimum
degree of match and the similarity threshold

• The aggregation function

Predefined Configurations In order to make easier to select the parameters of the
different components of the SMA, several configurations have been programmed,
which can be selected whenever the getMatchingServices action is requested (through
the FIPA-Request protocol). Figure 10.6 shows the predefined configurations.

For each possible configuration, the values for the different parameters of its
internal components are reported. In case that no parameter is provided in the
invocation of the matchmaking, a default configuration is selected.

10.5. Hybrid Semantic Service Matchmaker OWLS-MX 217

Figure 10.6: SMA predefined configurations

10.4.2 SMA Interface

The communication protocol followed by the SMA is the FIPA-Request protocol.
Only one action can be requested to the SMA, getMatchingServices. It accepts as
parameter a URI of a OWL-S service profile as query (request), one or more service
profiles (services) and, optionally, a parameter that defines the configuration of the
three matchmakers (matchType). Figure 10.7 shows an example of a message sent
to the SMA.

After having received the message, the SMA performs the match of the re-
quest against the list of service descriptions and, in case of successful execution of
the matchmaking operation, it returns a sorted set of services (Figure 10.8).

10.5 Hybrid Semantic Service Matchmaker OWLS-MX

One option of the CASCOM matchmaker agent SMA to find relevant OWL-S
services in the semantic Web is through its OWLS-MX matchmaker module.
This module exploits both logic-based reasoning and content-based information
retrieval (IR) techniques for OWL-S service profile I/O matching. In the follow-
ing, we define the hybrid semantic filters of OWLS-MX, the generic matching
algorithm, and its five variants according to the used IR similarity metrics. Famil-
iarity with OWL-S and description logics is assumed. More details and evaluation
results can be found in [4].

10.5.1 Hybrid Matching Filters

OWLS-MX computes the degree of semantic matching for a given pair of service
advertisement and request by successively applying five different filters exact,
plug in, subsumes, subsumed-by and nearest-neighbor. The first three are
logic-based only whereas the last two are hybrid due to the required additional
computation of syntactic similarity values.

218 Chapter 10. Service Discovery

(REQUEST
:sender(agent-identifier :name sda@host1:1099/JADE

:addresses (sequence http://host1:7778/acc))
:receiver(set(agent-identifier :name sma@host2:1099/JADE))
:content "(
(action(agent-identifier :name sda@host1:1099/JADE

:addresses (sequence http://host2:7778/acc))
(getMatchingServices

:request "http://query.owl"
:services (sequence "http://service1.owl"

"http://service2.owl"..."http://serviceN.owl")
:matchType DEFAULT)))"

:language fipa-sl
:ontology cascom-ontology

)

Figure 10.7: Request message to SMA

Let T be the terminology of the OWLS-MX matchmaker ontology specified
in OWL-DL (SHOIN(D)); CTT the concept subsumption hierarchy of T ; LSC(C)
the set of least specific concepts (direct children) C ′ of C, i.e. C ′ is immediate sub-
concept of C in CTT ; LGC(C) the set of least generic concepts (direct parents)
C ′ of C, i.e., C ′ is immediate super-concept of C in CTT ; SimIR(A, B) ∈ [0, 1]
the numeric degree of syntactic similarity between strings A and B according to
chosen IR metric IR with used term weighting scheme and document collection,
and α ∈ [0, 1] given syntactic similarity threshold; .= and $ denote terminological
concept equivalence and subsumption, respectively.

Exact Match. Service S exactly matches request R ⇔ ∀ inS ∃ inR: inS
.= inR ∧

∀ outR ∃ outS : outR
.= outS . The service I/O signature perfectly matches

with the request with respect to logic-based equivalence of their formal se-
mantics.

Plug-in Match. Service S plugs into request R ⇔ ∀ inS ∃ inR: inS $ inR ∧ ∀
outR ∃ outS : outS ∈ LSC(outR). Relaxing the exact matching constraint,
service S may require less input than it has been specified in the request R.
This guarantees at a minimum that S will be executable with the provided
input iff the involved OWL input concepts can be equivalently mapped to
WSDL input messages and corresponding service signature data types. We
assume this as a necessary constraint of each of the subsequent filters.

In addition, S is expected to return more specific output data whose
logically defined semantics is exactly the same or very close to what has been
requested by the user. This kind of match is borrowed from the software engi-
neering domain, where software components are considered to plug-in match

10.5. Hybrid Semantic Service Matchmaker OWLS-MX 219

(INFORM
:sender(agent-identifier :name sma@host2:1099/JADE

:addresses (sequence http://host2:7778/acc))
:receiver(set(agent-identifier :name sda@host1:1099/JADE))
:content "(
(result

(action(....))
(sequence "http://service2.owl"

"http://serviceN.owl"..."http://service1.owl")))"
:language fipa-sl
:ontology cascom-ontology

)

Figure 10.8: Inform message from SMA

with each other as defined above but not restricting the output concepts to
be direct children of those of the query.

Subsumes Match. Request R subsumes service S ⇔ ∀ inS ∃ inR: inS $ inR

∧ ∀ outR ∃ outS : outR $ outS . This filter is weaker than the plug-in
filter with respect to the extent the returned output is more specific than
requested by the user, since it relaxes the constraint of immediate output
concept subsumption. As a consequence, the returned set of relevant services
is extended in principle.

Subsumed-by Match. Request R is subsumed by service S ⇔ ∀ inS ∃ inR: inS $
inR ∧ ∀ outR ∃ outS : (outS

.= outR ∨ outS ∈ LGC(outR)) ∧ SimIR(S,
R) ≥ α. This filter selects services whose output data is more general than
requested, hence, in this sense, subsumes the request. We focus on direct par-
ent output concepts to avoid selecting services returning data which we think
may be too general. Of course, it depends on the individual perspective taken
by the user, the application domain, and the granularity of the underlying
ontology at hand, whether a relaxation of this constraint is appropriate, or
not.

Logic-Based Fail. Service S fails to match with request R according to the above
logic-based semantic filter criteria.

Nearest-Neighbor Match. Service S is nearest neighbor of request R ⇔ ∀ inS

∃ inR: inS $ inR ∧ ∀ outR ∃ outS : outR $ outS ∨ SimIR(S, R) ≥ α.

Fail. Service S does not match with request R according to any of the above filters.

The OWLS-MX matching filters are sorted according to the size of results
they would return, in other words according to how relaxed the semantic matching.
In this respect, we assume that service output data that are more general than

220 Chapter 10. Service Discovery

requested relaxes a semantic match with a given query. As a consequence, we
obtain the following total order of matching filters

Exact < Plug-In < Subsumes < Subsumed-By <
Logic-based Fail < Nearest-neighbor < Fail.

10.5.2 OWLS-MX Matching Algorithm

The core idea of the OWLS-MX matchmaker is to complement crisp logic-based
with approximate IR-based matching where appropriate to improve the retrieval
performance. It takes any OWL-S service as a query, and returns an ordered set of
relevant services that semantically match the query each of which annotated with
its individual degree of logical matching, and the syntactic similarity value. The
user can specify the desired degree, and individual syntactic similarity threshold.

For each given service query, OWLS-MX first classifies the respective service
I/O concepts into its local matchmaker ontology. For this purpose, it is assumed
that the type of computed terminological subsumption relation determines the
degree of semantic relation between pairs of input and concepts.

Auxiliary information on whether an individual concept is used as an input or
output concept by a registered service is attached to this concept in the ontology.
The respective lists of service identifiers are used by the matchmaker to compute
the set of relevant services that match the given query according to the five hybrid
filters.

In particular, OWLS-MX does not only pairwisely determine the degree of
logical match but syntactic similarity between the conjunctive I/O concept ex-
pressions in OWL-Lite. These expressions are built by recursively unfolding each
query and service input (output) concept in the local matchmaker ontology. As a
result, the unfolded concept expressions are including primitive components of a
basic shared vocabulary only.

Any failure of logical concept subsumption produced by the integrated de-
scription logic reasoner of OWLS-MX will be tolerated, if and only if the degree of
syntactic similarity between the respective unfolded service and request concept
expressions exceeds a given similarity threshold.

10.5.3 OWLS-MX Variants

We implemented different variants of the generic OWLS-MX algorithm, called
OWLS-M1 to OWLS-M4, each of which uses the same logic-based semantic fil-
ters but different IR similarity metric SIMIR(R, S) for content-based service I/O
matching. Based on the experimental results of measuring the performance of sim-
ilarity metrics for text information retrieval provided by Cohen et.al (2003), we
selected the top performing ones to build these variants. The variant OWLS-MO
performs logic-based only semantic service I/O matching.

10.6. Service Precondition and Effect Matchmaker PCEM 221

OWLS-M0. The logic-based semantic filters Exact, Plug-in, and Subsumes are
applied as defined above, whereas the hybrid filter Subsumed-By is utilized
without checking the syntactic similarity constraint.

OWLS-M1 to OWLS-M4. The hybrid semantic matchmaker variants OWLS-M1,
OWLS-M3, and OWLS-M4 compute the syntactic similarity value SimIR

(outS , outR) by use of the loss-of-information measure, extended Jacquard
similarity coefficient, the cosine similarity value, and the Jensen-Shannon
information divergence based similarity value, respectively.

10.5.4 Implementation

We implemented the OWLS-MX matchmaker version 1.1 in Java using the OWL-S
API 1.1 beta with the tableaux OWL-DL reasoner Pellet developed at the univer-
sity of Maryland3. As the OWL-S API is tightly coupled with the Jena Semantic
Web Framework, developed by the HP Labs Semantic Web research group4, the
latter is also used to modify the OWLS-MX matchmaker ontology. The OWLS-MX
matchmaker is available as open source from the portal semwebcentral.org5.

The results of the evaluation of OWLS-MX are provided in Chapter 16.

10.6 Service Precondition and Effect Matchmaker PCEM

Another option of the CASCOM matchmaker agent to determine the degree to
which two service descriptions semantically match is to logically compare their
pre-conditions and effects by means of its Pre-conditions and Effects Matchmaker
(PCEM) module.

10.6.1 Motivation

As mentioned above, main goal of service matchmaking algorithms is to determine
the degree to which two service descriptions match. In general, matchmaking al-
gorithms receive a description that represents the requested service, and a set of
published service descriptions; and returns the degree to which each of the pub-
lished service descriptions matches the request. Service matchmaking is essential
for service coordination because it helps select services that better satisfy the
specified requirements.

Currently, most of the matchmaking algorithms, like LARKS (Language for
Advertisement and Request for Knowledge Sharing) [13], the OWL-S/UDDI [8],
the RACER [6], the MaMaS (MatchMaker-Service) [7], the HotBlu [2] and the
OWLS-MX (Hybrid OWL-S Web Service Matchmaker) [4] take into account the

3cf. http://www.mindswap.org
4cf. http://jena.sourceforge.net/
5http://projects.semwebcentral.org/projects/owls-mx/

222 Chapter 10. Service Discovery

input parameters, the output parameters and the categories of the service descrip-
tions being compared.

However, considering only their inputs, outputs and categories is often not
enough for flexible service matchmaking. Sometimes, it is better to consider other
service characteristics, such as service preconditions and service effects. Service
matchmaking using service preconditions and effects may bring about three main
advantages. First, the matching process may be much more precise than using
inputs, outputs and categories alone. Matchmaking using inputs and outputs pay
attention only to the classes of the service inputs and outputs and, at most, to
constraints relating these parameters (see, for instance [13]). Since it is perfectly
possible to have two services with input and output parameters of the same class
and satisfying the same constraints, that play completely different roles, this simple
matching process is not an accurate one.

The same kind of argument applies to the service categories. In most cases,
service selection aims at identifying services that achieve a given effect if they are
executed in some specified circumstances. This is exactly the information provided
by service preconditions and effects. Second, it is not always necessary to know all
the service input and output parameters. Not all services that achieve some desired
effect have the same set of input and output parameters. For example, a given book
selling service may require as input parameters the book name and the author
name, while another one may also require the client’s identification. If the request
specifies only the book name and the author name, the two mentioned services
would yield different matching degrees with the request. However, considering the
user’s actual needs, maybe each of them is as good as the other.

Third, using preconditions and effects allows the matching algorithm to rea-
son about the compared preconditions and the compared effects. Usually, it is not
necessary to find a service that achieves exactly the specified effect. Most often,
like in plug-in IOPE matching (IOPE - Inputs, Outputs, Preconditions and Ef-
fects), it is enough to find a service whose effects imply the specified effects. By the
same token, it is often enough to find a service whose preconditions are implied
by the specified preconditions.

Only (additional) preconditions and effects matchmaking may take the men-
tioned facts into account. For example, if the client wants to find a service that
can radiograph his finger, it is perfectly acceptable to select a service that can
radiograph the client’s hand or even the client’s limbs. Since finger is neither a
subclass of hand nor a subclass of limb, inputs, outputs and categories matchmak-
ing algorithms would not select the service that radiographs hands or the service
that radiograph limbs.

Given the described motivation, the CASCOM project decided to include pre-
conditions and effects matchmaking in its service matchmaking agent SMA. This
section describes the PCEM (Pre Conditions and Effects Matchmaking) compo-
nent that implements this type of matchmaking process.

10.6. Service Precondition and Effect Matchmaker PCEM 223

Figure 10.9: PCEM architecture

10.6.2 PCEM Architecture

This section describes the architecture of the developed preconditions and effects
matchmaking component PCEM as shown in Figure 10.9.

The architecture is composed of three main modules. The first module (“Mod-
ule 1 — Component Engine”) controls the two other modules and determines the
global matching degree of the service request with each of the available service
descriptions. A detailed description of this module can be found in the section
“Component Engine Module”.

The second module (“Module 2 — Languages Processing”) is responsible
for language processing. It converts OWL ontologies into Prolog ontologies and
OWL-S preconditions and effects into Prolog preconditions and effects. A detailed
description of this module is presented in section “Languages Processing Module”.

The third module (“Module 3 — Preconditions and Effects Matchmaking”)
implements the actual preconditions and effects matchmaking algorithms. It per-
forms both exact matchmaking (“Pre-conditions and Effects Exact Match”) and
matchmaking using reasoning (“Pre-conditions and Effects Reasoning-based Match”).
The latter uses both general purpose inference rules (e.g., deduction) and domain
specific inference rules valid for a certain service effect or for certain precondition.
These matchmaking algorithms are described in the section “Preconditions and
Effects Matching”.

224 Chapter 10. Service Discovery

10.6.3 PCEM Engine Module

The PCEM Engine module is responsible for controlling the other two modules
and for determining the final matching degree of the matched service descriptions.
All matchmaking requests sent to the component are received by the Component
Engine. After receiving a matchmaking request the module retrieves the OWL-S
description that represents the desired service specification and the set of OWL-S
descriptions of the published available services. The descriptions in the received
request are sent to the Languages Processing module where the Prolog language
descriptions are generated.

The next step consist of sending a request to the Preconditions and Effects
Matchmaking module for determining four partial matching degrees for each of the
received service descriptions: exact preconditions matching degree, exact effects
matching degree, preconditions reasoning matching degree and effects reasoning
matching degree. After receiving the four partial matching degrees for all service
descriptions, the Component Engine computes the global matching degree for
each received service description and returns the list containing the received ser-
vice descriptions and the corresponding degrees to which they match the received
specification of the desired service. Unfortunately, the current implementation of
the PCEM component does not sort the returned list of service descriptions by
matching degree.

10.6.4 PCEM Languages Processing Module

The CASCOM service coordination layer, including the Service Matchmaker Agent
SMA, uses the W3C (World Wide Web Consortium) standard OWL and de-facto
standard OWL-S respectively for ontology and service descriptions. Often the
representation languages used internally in the several service coordination agents
differ from OWL and OWL-S therefore it is necessary to perform language con-
versions. Since there is no agreed upon standard for describing preconditions and
effects available yet, apart from the proposal of (undecidable) SWRL, the PCEM
uses Prolog as its internal representation language and reasoning tool. Therefore
it is necessary to convert relevant OWL and OWL-S representations involved in
any service description into the component internal Prolog representations.

OWL-S service descriptions specify, among many other things such as the
already mentioned preconditions and effects, the service input and output param-
eters and their classes. The service parameter classes are described in domain
ontologies which are represented in OWL. Therefore, it is necessary to convert
the OWL representations pertaining to the classes of service parameters into the
component internal Prolog format. The OWL2Prolog processing mechanism of the
Languages Processing module performs those conversions.

Figure 10.11 shows the Prolog internal representations generated from the
OWL representation presented in Figure 10.10.

OWL-S service description language does not directly support the represen-

10.6. Service Precondition and Effect Matchmaker PCEM 225

1: <owl:Class rdf:ID="RightIndexFinger">
2: <rdfs:subClassOf rdf:resource="#RightFinger">
3: <rdfs:subClassOf>
4: <owl:Restriction>
5: <owl:onProperty rdf:resource="#subPartOf">
6: <owl:allValuesFrom rdf:resource="#RightHand">
7: </owl:Restriction>
8: </rdfs:subClassOf>
9: </owl:Class>

Figure 10.10: OWL Class Representation

subClassOf(rightFinger:rightIndexFinger, finger:rightFinger).
subPartOf(rightFinger:rightIndexFinger, hand:rightHand).

Figure 10.11: OWL Class representation in Prolog

tation of service preconditions and effects [7]. Instead, the OWL-S specification
suggests that conditions (including preconditions and effects) should be repre-
sented in SWRL or in PDDL among other possibilities. Since one of the most
important uses of preconditions and effects is service composition planning, the
project decided to choose PDDLXML, a project brewed XML surface syntax of
PDDL, because PDDL is the lingua franca of the planning algorithms used in
service composition. The OWL-S/PDDLXML processing mechanism of the Lan-
guages Processing module converts PDDLXML representations of preconditions
and effects into the chosen internal Prolog representations. The conversion use the
OWLS2PDDL converter developed at DFKI for the OWLS-XPlan composition
planner (cf. Chapter 11).

Figure 10.12 shows the Prolog internal representations of the preconditions
and effects that were generated from the OWL-S/PDDLXML representations of
Figure 10.1.

10.6.5 Preconditions and Effects Matching

The PCEM component performs two kinds of matching: exact matching and
reasoning-based matching. Since these matching operations are done in Prolog, the
module directly benefits from the Prolog built in pattern matching and reasoning
capabilities. Preconditions and effects exact matching of two service descriptions
(the desired service specification and the available service description) checks if the
preconditions of one of the service descriptions exactly match the preconditions of
the other service descriptions and if the effects of one of the service descriptions
exactly match the effects of the other service description.

The exact matching of two propositions (representing either two precondi-

226 Chapter 10. Service Discovery

<and>
<pred name="AvailableBook">

<param>?Book</param>
</pred>
<pred name="RegisteredUser">

<param>?IDUser</param>
</pred>

</and>

<and>
<and>

<pred name="RequestedBook">
<param>?Book</param>

</pred>
</and>
<not>

<pred name="AvailableBook">
<param>?Book</param>

</pred>
</not>

</and>

(a) Preconditions (b) Effect

Table 10.1: OWL-S service preconditions and effects in PDDXML

service(preconditions,
[availableBook(book:BookName),
registeredUser(number:UserID)]).

service(effect,
[requestedBook(book:BookName),
not(availableBook(book:BookName))]).

Figure 10.12: Final preconditions and effects representation in Prolog

tions or two effects) checks if there is a possibly empty variable substitution that,
when applied to one or both propositions, results into two equal expressions. This
operation is entirely performed by the matching operator of the Prolog language.
As would be expected, reasoning-based matching is more complex than exact
matching. Reasoning-based matching uses general inference rules (i.e., all deduc-
tion inference rules) and domain specific inference rules. All general inference rules
are applicable to all kinds of effects and preconditions. Domain specific rules are
applicable only to some preconditions or effects.

General purpose inference is performed by the built in Prolog reasoning mech-
anism using resolution and the closed world assumption. Domain specific inference
rules are explicitly represented in Prolog and uniquely identified by rule identifiers.
These rule identifiers are used to specify the domain specific rules that may be
used with each precondition or effect. The representation of the domain specific
inference rules and the specification of such rules that may be used with each
precondition or effect integrate the domain specific knowledge.

The following example will help understand the developed reasoning algo-

10.6. Service Precondition and Effect Matchmaker PCEM 227

rithm, when domain specific inference rules are used. The example request is a
service that radiographs the client right hand index finger. The only available
service in the example is a service that radiographs hands. Using conventional
inputs/outputs matchmaking algorithms, or using exact matching of effects, the
service description does not match the request. However the two effects will be
found to match, if the matching algorithm uses the domain specific inference rule
according to which, if a given service causes a certain effect on a specified object
then it will cause the same effect on any of the object subparts.

The following paragraphs provide a more formal account of the way service
invocations, service effects and preconditions, and domain specific inference rules
are represented and used by the reasoning-based preconditions and effects match-
ing algorithm. In the following explanations, L is a first order logic language whose
terms are used to represent service invocations and whose propositions are used
to represent service effects and preconditions. The relationship between services
and their effects and preconditions as well as domain specific inference rules are
represented in the first order language ML, which is a meta language whose terms
include the propositions and terms of L.

ML possesses several predicates, among them ServiceEffect/2, ServicePrecon-
dition/2, Class/2, and SubPartOf/2. ServiceEffect(α,φ) means that φ is an effect
of the service represented by α. α is a term of L representing a service invocation.
φ is a proposition of L representing a service effect. ServicePrecondition(α, φ)
means that φ is a precondition of the service represented by α . Class(ρ,τ) means
that τ is the class of ρ. ρ is a term of L, while τ is an atom of ML representing
the name of a class of a given domain. Finally, SubPartOf(ρ, σ) means that σ is
a subpart of ρ. ρ and σ are both terms of L.

Using ML, the relevant aspects of the available service are represented through
the following expressions:

1. ServicePrecondition(XRayService(hand), Class(hand, Hand))
2. ServiceEffect(XRayService(hand), Radiographed(hand))

In these expressions, hand is the input parameter of the XRayService service
and “Hand” is the name of a class that represents hands. The requested effect is
represented in the expression ServiceEffect(s, radiographed(RightIndexFinger)) in
which s is an uninstantiated variable representing the desired service and RightIn-
dexFinger is a constant representing the specific finger that has to be radiographed.
The informally stated domain specific inference rule is formally represented in Fig-
ure 10.13.

In the rule represented in Figure 10.13, —x/y represents the expression that
is obtained by replacing x with y. Assuming the matching algorithm learns that
the rule in Figure 10.13 may be applied to the effect Radiographed/1 of the x
ray service, it will apply the rule replacing its variables with their specific val-
ues in the described example as follows: α = XRayService(hand), x = hand,
τ = Hand, i = RightHand, φ = Radiographed (hand), y = RightIndexFinger,
φ—hand/RightIndexFinger = Radiographed (RightIndexFinger).

228 Chapter 10. Service Discovery

Figure 10.13: Domain Specific Inference Rule 1

rule(1, (serviceEffect(ReplacedService, ReplacedEffect):-
servicePrecondition(Service, class(Object, Class)),
serviceEffect(Service, Effect),
class(I, Class),
subPartOf(I, Part),
replace(Part, Object, Effect, ReplacedEffect),
replace(Part, Object, Service, ReplacedService))

).

Figure 10.14: Prolog Representation of Domain Specific Inference Rule 1

The rule premise ∃i Class(i, Hand) ∧ SubPartOf(i, RightIndexFinger) is sat-
isfied since the right hand (i = RightHand) is an instance of the class Hand and the
right hand index finger (RightIndexFinger) is a subpart of the right hand. Using
these replacements, the instantiated conclusion of the inference rule is ServiceEf-
fect(XRayService(RightIndexFinger), Radiographed(RightIndexFinger)), which is
exactly the required effect. The rule in Figure 10.13 is translated into Prolog as
shown in Figure 10.14.

The Prolog representation of domain specific inference rules uses predicate
rule/2. The first argument of rule/2 is the rule identifier; and its second argument
is a Prolog clause representing the rule itself. The rule conclusion is represented by
the head of the clause, and the rule premises are represented by the clause body.
With this design choice, the reasoning-based matching algorithm just has to assert
the clauses representing domain specific rules and then rely on the Prolog built
in inference mechanism to apply the rules to the desired effects and preconditions
whenever necessary.

The inference rule being used in the example is not a general rule, in the sense
that it cannot be applied to all preconditions and effects. For instance, it cannot
be applied to a car painting service. If a car is painted blue, the car engine will
not become blue, although the car engine is a subpart of the car. A given domain
specific inference rule may only be applied to specified effects or preconditions.
Such specifications are represented in Prolog through the predicate validation/3.
The first argument of the validation/3 predicate is the service specification. The
second argument is the specification of the service effect or precondition to which

10.7. Role-Based Matchmaker ROWLS 229

validation(service(xRayService(hand:Hand)),
serviceEffect(radiographed(hand:Hand),
validRule(1)).

Figure 10.15: Inference rule validation clause

the rule is applicable. The third argument is the rule identifier of the applicable
rule.

The validation/3 clause in Figure 10.15 states that rule number 1 may be ap-
plied to the effect radiographed(hand:Hand) of the service xRayService(hand:Hand).
The hand:Hand argument means that the service input parameter Hand is of class
hand.

10.6.6 Implementation

The PCEM component was developed using the OWL-S API [12], which was
extended to enable processing PDDLXML conditions (in conditioned instructions),
preconditions and effects for OWL-S processing; the Protege OWL-API [5] for
OWL processing; and the tuProlog [9], a Java based Prolog, for the matchmaking
algorithm. Prolog was chosen mainly because of its built in pattern matching and
reasoning capabilities.

For results of evaluating the PCEM matchmaker, we refer to Chapter 16.

10.7 Role-Based Matchmaker ROWLS

In the following, we briefly describe the third alternative to semantic service match-
ing used by the service matchmaker agent of the CASCOM system: the ROWLS
matching component.

10.7.1 Motivation

In order to improve both the efficiency and the usability of agent-based service-
oriented architectures, common organisational concepts such as social roles and
types of interactions can be exploited to further characterise the context that
certain semantic services can be used in.

The CASCOM abstract architecture conceives services to be delivered essen-
tially by agents. An agent could provide an implemented Web Service by wrapping
the service within an ACL interface in such a way that any agent can invoke its
execution by sending the adequate (request) message.

However, agents are not only able to execute a service but can also engage
in different types of interaction with that service. For example, in the healthcare
assistance scenario, an agent providing a second opinion service should not only

230 Chapter 10. Service Discovery

be able to provide a diagnostic; it may also be required to explain it, give more
details, recommend a treatment, etc.

This means that the service provider is supposed to engage in several different
interactions during the provision of a service. Thus, if a physician or a patient
needs one or more second opinions, they should look for agents that include those
additional interaction capabilities around the “basic” second opinion service. In a
certain sense, this approach is similar to the abstraction that an object makes by
providing a set of methods to manipulate the data it encapsulates. In this case,
the agent provides a set of interaction capabilities based on the service.

Taking in consideration roles and interaction types can improve the efficiency
of the matchmaking process, for example by previously filtering out those services
that are incompatible in the terms of roles and interactions.

Also the effectiveness of the matchmaking process can be enhanced by includ-
ing information regarding roles and interactions. For instance, a diagnosis service
may require symptoms and medical records as inputs and produce a report as
output. However, the service functionality can be achieved either (i) by actually
generating the report, (ii) by retrieving a previously done or (iii) by a brokering
service to contact other (external) healthcare experts. In all the three cases the
input and output are the same, but the role the service plays in the corresponding
interactions is different.

10.7.2 Interaction Modelling

In order to develop role-based extensions to service matchmaking mechanisms, a
subset of the RICA organisational model described in [11] and [10] was used.

Setting out from this basis, the first step was analysing different use case of
the application domain scenario. For each use case, the types of social interaction
as well as the roles (usually two) that take part in that interaction have been
identified. The next step is an abstraction process in which the social (domain)
roles/interactions are generalised into communicative roles/interactions.

The result of this analysis is a basic ontology of types of interactions and roles
that take part in those interactions. Figure 10.16 shows an example, where the
SecondOpinion interaction can be generalized in a MedicalAdvisement interaction
and then in an Advisement interaction, in which the Advisor informs the Advisee
about his beliefs with the aim of persuading the Advisee of the goodness of these
beliefs. This ontology, and especially its generic (communicative) part, will be used
in the service description and matchmaking extensions.

10.7.3 Role-Based Service Advertisements

Role-based service descriptions comprise two kinds of information related to the
interactions in which the service provider agent can engage:

1. the main role played in the interaction, e.g. the advisor role in the second
opinion service;

10.7. Role-Based Matchmaker ROWLS 231

Figure 10.16: Partial interaction type ontology

Main Role Necessary Roles
Advisor Informer

Explainer -
Informer -

Table 10.2: Second Opinion role-based service advertisement

2. a set of roles that may be necessary to be played by the requester for the
correct accomplishment of the service. For instance, in an advisement in-
teraction of a second opinion service, the provider may need to initiate an
information exchange interaction in which it plays the informee role, and the
requester plays the informer role. Necessary roles are given by a formula in
disjunctive normal form, i.e. a disjunction of conjunctions of roles.

These two fields are repeated for each main role the service can play. A service
advertisement can be graphically represented by a table with two rows, in which
each column contains the main role (first row) and the necessary roles (second
row). Table 10.7.3 shows a role-based service advertisement for the second opinion
example.

10.7.4 Role-Based Service Requests

In the case of a service requests, a query comprises two elements:

232 Chapter 10. Service Discovery

Main Roles Advisor ∧ Explainer
Capabilities Informer,Explainer

Table 10.3: Second Opinion role-based service request

1. Main roles searched. Although one role will be enough in most cases, more
complex search patterns are allowed, in which the provider is able to play
more than one role. As in the case of service advertisements, this expression
comes as a formula in disjunctive normal form.

2. A set of roles that define the capabilities of the requester. These are roles the
requester is able to play. This information is important if the provider requires
interaction capabilities from the requesters. For example, the requester of a
second opinion can inform that it is able to provide information (informer)
if needed.

Table 10.3 shows a role-based service request for the second opinion example.
The request specifies that the requester is able to play the informer and explainer
roles if necessary.

Notice that this approach is compatible with services that do not make use
of the role-based extensions in their description. In case a service description does
not include the role-based approach, it is assumed that it has a main role Commu-
nicator (the top and most general concept of the ontology) and no necessary roles
are required from the requester. If the request does not include a role description,
it is assumed that the requester is not interested in the role-based approach and
the matchmaker will omit that phase in the service matching process.

10.7.5 Role-based Service Matching Algorithm

Within the CASCOM project, a role-based matching algorithm has been devel-
oped, which takes as input a service request (R) and a service advertisement (S),
and returns the degree of match (dom) between them. Essentially, it searches the
role in the advertisement S that best matches the one in the query (R).

The matching algorithm is built around the matching between two roles in the
taxonomy. The semantic match of two roles RA (advertisement) and RQ (query)
is a function that depends on two factors:

1. Level of match. This is the (subsumption) relation between the two concepts
(RA, RQ) in the ontology. A subset of the OWLS-MX filters is considered,
just the same levels of match proposed in [8]:

(a) exact : if RA = RQ

(b) plug-in : if RA subsumes RQ

(c) subsumes : if RQ subsumes RA

10.7. Role-Based Matchmaker ROWLS 233

(d) fail : otherwise

2. The distance (number of arcs) between RA and RQ in the taxonomy.

All roles have the same importance and the generality (depth in the taxon-
omy) of the roles is not relevant. Both criteria are combined into a final degree of
match which is a real number in the range [0, 1], so service providers can be se-
lected by simply comparing these numbers. In this combination, the level of match
always has higher priority: the value representing the degree of match is equal to
1 in case of an exact match, it varies between 1 and 0.5 in case of a plug-in match,
rests between 0.5 and 0 in case of a subsumes match, and it is equal to 0 in case of
a fail. Actually, any triple would work but 0.5 seems reasonable to keep the same
scale in both levels (plug-in and subsumes).

There are infinite functions that fulfil that precondition. One equation that
implements this behaviour is that in equation 10.1, where ‖ RA, RQ ‖ is the
distance between RA and RQ (depth(RA) − depth(RQ)) in the role ontology (if
there is a subsumption relation between them). This kind of function guarantees
that the value of a plug-in match is always greater than the value of a subsumes
match, and it only considers the distance between the two concepts, rather than
the total depth of the ontology tree6, which may change depending on the domain.
Furthermore, the smaller the distance between concepts (either in the case of plug-
in or subsumes match), the more influence will have a change of distance in the
degree of match (see Figure 10.17).

dom(RA, RQ) =

1 if RA = RQ

1
2 + 1

2·e‖RA,RQ‖ if RA is subclass of RQ

1
2 · e‖RA,RQ‖ if RQ is subclass of RA

0 otherwise

(10.1)

The matching algorithm compares every role in the request with the ser-
vice advertisement roles, given the set of capabilities of the requester, using the
aforementioned function, and returns the maximum degree of match. It uses the
minimum and maximum as combination functions for the values in conjunctive
and disjunctive logical expressions respectively.

10.7.6 Implementation

The role-based matchmaker was developed in Java 1.5, relying on the Mindswap
OWL-S API 1.1 beta7 for parsing OWL-S service profiles. Regarding the manage-

6Note that, for instance, if a linear function is used, the maximum possible distance between
two concepts must be known a priori to establish the equation (e.g. dom(x) = 1− x/6).

7http://www.mindswap.org

234 Chapter 10. Service Discovery

Figure 10.17: Degree of match function between two roles

ment of OWL ontologies, we adopted Jena Semantic Web Framework, a framework
for building Semantic Web applications developed by the HP Labs Semantic Web
research group8.

For evaluation of the ROWLS matchmaker, we refer to Chapter 16.

10.8 Summary

The CASCOM project designed and implemented a service discovery process com-
prising a stage where desired services are sought and a stage where services found
in the first stage are sorted according to the degree to which they satisfy specified
criteria. In the first stage, services are sought according to simple selection crite-
ria. The second stage uses more sophisticated matching criteria involving complex
information processing such reasoning (e.g., subsumption) and role-based match-
making.

The service discovery stage is carried out by the Service Discovery Agent
(SDA), which looks for services in its own database and in the project distributed
service directory (WSDir). In addition to seeking desired services, the SDA also
registers, modifies and deletes service descriptions and service providers in its
own database and in WSDir. The WSDir can be used directly without the SDA
mediation. However, since WSDir is a Web Service, it does not offer an agent-based

8http://jena.sourceforge.net/

10.8. Summary 235

interface. If such an interface is required, the SDA should be used.
The fine grained service selection is performed by the Service Matchmak-

ing Agent (SMA), using three different matching algorithms, each of which was
implemented as a separated module integrated in the SMA architecture:

1. Hybrid input and output subsumption and information retrieval matchmak-
ing algorithm (OWLS MX);

2. Preconditions and effects matchmaking algorithm, which performs exact, do-
main dependent and domain independent reasoning-based matching (PCEM);
and

3. Role-based matchmaking (ROWLS).

The use of these three sophisticated matchmaking algorithms provides clear
advantages in terms of both efficiency and effectiveness. For instance, role-based
matchmaking may significantly reduce the number of considered services in early
stages of the whole service coordination process; and reasoning-based matchmak-
ing may identify perfectly good services, services that meet specified criteria, that
would otherwise be discarded.

The three matchmaking algorithms may be combined in two distinct ways
to produce the final SMA output. One of the possibilities is a sequential combi-
nation; the other is a parallel combination. In the sequential combination, each
algorithm is used as a pre-filter of the next one. In the sequential combination,
we have chosen to apply first the less complex algorithm (ROWLS), followed by
the one with intermediate complexity (OWLS-MX), followed by the most com-
plex of all (PCEM). This way, the more complex algorithms process fewer service
descriptions. Sequential combination of the matching algorithms favors efficiency.

In the parallel combination, all algorithms are used in parallel. The results
produced by each of them are aggregated in an aggregation function. Several aggre-
gation functions (e.g., product, and minimum) may be used. Parallel combination
of the algorithms favors effectiveness. Sequential or parallel combinations as well
as other configuration parameters, such as the similarity threshold, are dynami-
cally chosen during the interaction with SMA. Since these choices may be hard
for SMA clients, we have predefined configurations including one that is used by
default. Therefore, the SMA client has only to select one of the predefined configu-
rations or the default one. This greatly enhances flexibility without compromising
seamless interaction.

SMA and SDA interaction uses interaction protocols, agent communication
language, and content language defined by FIPA; and uses ontology and service
descriptions specified by the W3 Consortium. The use of standardized technologies
improves interoperability and system’s usability.

236 References

References

[1] A. Bernstein and C. Kiefer: Imprecise RDQL: Towards Generic Retrieval in
Ontologies Using Similarity Joins. Proc. ACM Symposium on Applied Com-
puting, Dijon, France, ACM Press, 2006.

[2] I. Constantinescu and B. Faltings: Efficient matchmaking and directory ser-
vices. Proceedings of IEEE/WIC International Conference on Web Intelligence.
2003.

[3] A. Fernández, M. Vasirani, C. Cáceres and S. Ossowski: A Role-Based Support
Mechanism for Service Description and Discovery. Service-Oriented Comput-
ing: Agents, Semantics, and Engineering. LNCS, 4504, pp. 132–146, Springer,
2007.

[4] M. Klusch, B. Fries and K. Sycara: Automated Semantic Web Service Dis-
covery with OWLS-MX. Proceedings of 5th International Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS 2006); Hakodate; Japan;
ACM Press. 2006.

[5] H. Knublauch et al.: Protege-OWL API. Available online at
http://protege.stanford.edu/. September 21, 2006.

[6] L. Li and I. Horrocks: A software framework for matchmaking based on se-
mantic web technology. Proceedings of the twelfth international conference on
World Wide Web, pages 331-339. ACM Press. 2003.

[7] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIl-
raith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srini-
vasan, and K. Sycara: OWL-S 1.1 Release; http://www.daml.org/services/owl-
s/1.1/overview/. 2004.

[8] M. Paolucci, T. Kawamura, T. Payne and K. Sycara: Semantic matching of
Web Services capabilities. In Proceedings of the First International Semantic
Web Conference on The Semantic Web, Springer-Verlag (2002) 333-347

[9] E. Denti, A. Omicini and A. Ricci: tuProlog: A Light-weight Prolog for In-
ternet Applications and Infrastructures. Proceedings of the 3rd International
Symposium on Practical Aspects of Declarative Languages (PADL 2001); Las
Vegas; NV; USA; 11-12; LNCS 1990, Springer-Verlag, 2001.

[10] J. M. Serrano and S. Ossowski: A compositional framework for the specifica-
tion of interaction protocols in multiagent organizations. Web Intelligence and
Agent Systems: An international Journal. IOS Press. 2006.

[11] J. M. Serrano, S. Ossowski and A. Fernández: The Pragmatics of Software
Agents - Analysis and Design of Agent Communication Languages. Intelligent
Information Agents - The European AgentLink (Klusch et al. ed.), pp 234-274,
Springer. 2002.

References 237

[12] E. Sirin and B. Parsia: The OWL-S Java API. Proceedings of the Third
International Semantic Web Conference. 2004.

[13] K. Sycara, S. Widoff, M. Klusch and J. Lu: LARKS: Dynamic Matchmaking
Among Heterogeneous Software Agents in Cyberspace; Journal of Autonomous
Agents and Multiagent Systems. Kluwer Academic Press. 2002.

238 References

