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Abstract

Malaria models have evolved since Ross and Macdonald. By using an agent-based

stochastic model we have looked into different aspects of disease transmission:

1. Gametocytemia phase transition between epidemic stability and disease

elimination, and the potential benefit of combining gametocidal agents and iver-

mectin. 2. Heterogeneity promotes disease spreading. 3. Disease supression from

the combined use of ivermectin and primaquine. 4. Utility of Hurst exponent and

Shannon entropy in malaria forecasting.

Results and conclusion:

Malaria transmission was simulated with a computational agent-based model

assuming a small African village. We have confirmed gametocytemia as a critical

factor in disease transmission, revealing an abrupt phase transition between epi-

demic stability and disease elimination [326]. We have also found that synergism

between gametocidal agents (primaquine) and ivermectin (a selective Anophelocide

drug affecting parasite maturation after mosquito infection) could effectively sup-

press human-to-mosquito disease transmission [326]. We have found that hetero-

geneity amplifies disease transmission (roughly three times in our model). Dif-

ferent aspects of heterogeneity were analyzed such as human migration, mosquito

density, and rainfall [327]. We have confirmed the potential benefit of suppressing

heterogeneity-induced disease transmission with the use of gametocidal agents and

ivermectin. Hurst exponent has been used in hydrology and in the stock market.

No previous evidence of its application to infectious theory has been found. Yet,

our data suggests that Hurst exponent and information entropy could be useful

in malaria forecasting [328]. Our results support the combined use of gametocidal

agents (primaquine or methylene blue) and ivermectin as part of an integrated

approach to malaria.

Keywords— Gametocytemia, Agent-based model, Heterogeneity, Primaquine,

Ivermectin, Hurst exponent.
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Resumo

Os modelos de malária são úteis desde Ross e Macdonald. Através de um modelo

estocástico de agente, foram analisados vários aspectos da transmissão da malária:

1. A existência de uma transição de fase entre estabilidade e eliminação da

doença em função da gametocitemia. 2. O uso combinado de fármacos gameto-

cidas e ivermectina na redução da transmissão. 3. O papel da heterogeneidade

na propagação da malária. 4. A utilidade do expoente de Hurst e da entropia de

Shannon na previsão da malária.

Resultados e conclusões:

Foi utilizado um modelo computacional de agente com simulação da trans-

missão de malária numa pequena aldeia africana. Confirmámos a gametocitemia

como um factor cŕıtico na propagação da malária demonstrando uma transição

abrupta de fase entre estabilidade epidémica e eliminação da doença. No nosso

modelo foi demonstrado que na presença de heterogeneidade a transmissão de

malária pode sofrer uma amplificação significativa, de aproximadamente três vezes.

Foram analisados diferentes aspectos da heterogeneidade tais como a migração hu-

mana, a densidade vectorial e a precipitação sazonal. Foi confirmado o potencial

benef́ıcio de supressão da transmissão da malária na presença de heterogeneidade

com a utilização de fármacos gametocidas (primaquina) e ivermectina. O expoente

de Hurst tem sido aplicado com sucesso nas áreas da hidrologia e do mercado bol-

sista. Não houve até agora evidência da sua aplicação à área da infecciologia.

No entanto, os dados apresentados sugerem a sua utilidade, a par da entropia de

Shannon, na previsão da incidência da malária. Foi demonstrado que o uso com-

binado de agentes gametocidas (primaquina ou azul de metileno) e ivermectina

pode constituir uma abordagem eficaz na prevenção da malária.

Palavras-chave—Gametocitemia, Modelo-de-agente, Heterogeneidade, Pri-

maquina, Ivermectina, Expoente de Hurst.

iii



Dedication

iv



Dedication

To my wife Raquel, and to my three children, Inês, Leonor and Miguel.

v



Declaration

vi



Declaration

I am aware of and understand the university’s policy on plagiarism and I certify

that this thesis was based on my research work, has been written by me except

where indicated by referencing, and has not be submitted for any other degree or

professional qualification.

Some of the work presented here has been previously published in Journal

of Theoretical Biology and Applied Sciences, with the kind collaboration of

my thesis advisors.

My personal contribution and those of the other authors to the published work

is presented in detail in the following references [326–328].

vii



Contents

viii



Contents

List of Tables xv

List of Figures xix

I BACKGROUND 2

1 Introduction 5

1.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Dissertation structure . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 The impact of malaria 11

2.1 Historical perspective . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Malaria biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Disease dynamics . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 The parasite: Plasmodium . . . . . . . . . . . . . . . . . . . 12

2.2.3 The vector: Anopheles mosquito . . . . . . . . . . . . . . . 13

2.3 Disease prevention . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Vector control . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Barrier protection (LLIN/ITN/IRS) . . . . . . . . . . . . . 15

2.3.3 Rapid diagnostic testing (RDT) . . . . . . . . . . . . . . . . 15

2.3.4 Human immunity . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.5 Antimalarial drugs . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.6 Plasmodium drug resistance . . . . . . . . . . . . . . . . . . 16

2.3.7 Climate conditions and seasonality . . . . . . . . . . . . . . 18

2.3.8 Risk of disease resurgence . . . . . . . . . . . . . . . . . . . 19

2.3.9 Primaquine and gametocytemia suppression . . . . . . . . . 20

2.3.10 Ivermectin and malaria prevention . . . . . . . . . . . . . . 20

ix



Contents

2.3.11 Insight from malaria modeling . . . . . . . . . . . . . . . . 21

3 Malaria modeling: State-of-the-art 23

3.1 Early disease models . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 The Kermack-McKendrick SIR model . . . . . . . . . . . . . . . . 25

3.3 Stochastic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Reed-Frost and Greenwood models . . . . . . . . . . . . . . 26

3.3.2 Gillispie algorithm . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.3 Stochastic algorithms and Ross-Macdonald theory . . . . . 27

3.4 Ross-Macdonald theory . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 The Ross-Macdonald model . . . . . . . . . . . . . . . . . . 27

3.4.2 Classic model assumptions . . . . . . . . . . . . . . . . . . 28

3.4.3 The role of biological parameters and secondary indices . . 28

3.5 The basic reproductive number – R0 . . . . . . . . . . . . . . . . . 32

3.6 Malaria modeling – Historical perspective . . . . . . . . . . . . . . 32

3.6.1 Early years – From the XIX century to 1995 . . . . . . . . 33

3.6.2 From 1995 to 1999 . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.3 From 2000 to 2009 . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.4 From 2010 to 2015 . . . . . . . . . . . . . . . . . . . . . . . 38

3.6.5 From 2016 to 2022 . . . . . . . . . . . . . . . . . . . . . . . 41

3.6.6 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Mathematical background 51

4.1 Model adaptation to Ross-Macdonald theory . . . . . . . . . . . . 51

4.1.1 Malaria parameters . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.2 Secondary indices . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 SIR deterministic model . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Simplified Kermack-McKendrick SIS mathematical model . 55

4.2.2 SIS model – differential equations . . . . . . . . . . . . . . . 56

4.2.3 Stability analysis of SIS differential equation model . . . . . 57

4.2.4 Critical points in a two-variable dynamical system . . . . . 58

II CONTRIBUTIONS 61

5 An agent-based stochastic model of malaria transmission 64

5.1 Model background . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Model design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

x



Contents

5.3 Human/mosquito infection equations . . . . . . . . . . . . . . . . . 73

5.4 Model rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Model assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 Model master equation . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Vector control 79

6.1 Mosquito density and malaria transmission . . . . . . . . . . . . . 79

6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 Gametocytemia and ivermectin in disease dynamics 85

7.1 Assessing the effect of gametocytemia in phase transition . . . . . 85

7.2 The role of ivermectin in transmission prevention . . . . . . . . . 88

7.3 Combined use of gametocidal agents and ivermectin: a copula ap-

proach for predicting optimal administration intensities . . . . . . 90

7.4 Model validation and consistency tests: comparison with malaria

transmission results in Chimoio . . . . . . . . . . . . . . . . . . . . 91

7.5 Towards improved medical strategies . . . . . . . . . . . . . . . . . 95

8 Heterogeneity in malaria transmission 99

8.1 Heterogeneity background . . . . . . . . . . . . . . . . . . . . . . 99

8.2 Modeling heterogeneity in malaria transmission . . . . . . . . . . 101

8.3 Human-to-mosquito transmission and drug administration in a het-

erogeneity setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.4 Predictive rates for assessing the strength of malaria transmission

and the annual entomological inoculation . . . . . . . . . . . . . . 106

8.5 From disease persistence to elimination in a scenario of increasing

heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.5.1 Heterogeneity and ivermectin . . . . . . . . . . . . . . . . . 107

8.5.2 The role of transmission efficiency combined with ivermectin

treatment in heterogeneous scenario . . . . . . . . . . . . . 107

8.5.3 Mosquito survival patterns . . . . . . . . . . . . . . . . . . 108

8.6 Towards parameters for assessing malaria incidence . . . . . . . . 109

8.6.1 Utility of Plasmodium infection metrics . . . . . . . . . . . 109

8.6.2 Performance of classical Ross-Macdonald parameters in het-

erogeneity scenarios . . . . . . . . . . . . . . . . . . . . . . 110

8.7 Gametocytemia and heterogeneity in disease transmission . . . . . 112

8.8 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . 112

xi



Contents

9 Migration and malaria transmission 120

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9.2 Impact of human migration . . . . . . . . . . . . . . . . . . . . . . 122

9.2.1 Europe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.2.2 Central and Far East Asia . . . . . . . . . . . . . . . . . . . 123

9.2.3 Central and South America . . . . . . . . . . . . . . . . . . 124

9.2.4 Africa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.3 Methods to implement the impact of migration . . . . . . . . . . . 125

9.3.1 Human migration . . . . . . . . . . . . . . . . . . . . . . . . 125

9.3.2 Ivermectin prevention . . . . . . . . . . . . . . . . . . . . . 126

9.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 127

10 Seasonal malaria transmission 131

10.1 Historical background . . . . . . . . . . . . . . . . . . . . . . . . . 131

10.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

10.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 132

11 Hurst exponent and malaria transmission 136

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

11.2 Data, modeling methods and analysis tools . . . . . . . . . . . . . 138

11.2.1 Empirical series of malaria incidence . . . . . . . . . . . . . 138

11.2.2 Agent model for malaria spreading . . . . . . . . . . . . . . 139

11.2.3 Hurst exponent and entropy to assess memory effects in

stochastic series . . . . . . . . . . . . . . . . . . . . . . . . 141

11.2.4 Estimating Hurst exponent and entropy in series of malaria

incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

11.3 Qualitative analysis and robustness assessment of Hurst exponent

and entropy in empirical time series behavior . . . . . . . . . . . . 144

11.4 Autocorrelation function and stochastic memory in malaria empir-

ical series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

11.5 A more quantitative malaria model for predicting effective gameto-

cytemia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

11.5.1 Models for the three observables as function of parameter

gametocytemia . . . . . . . . . . . . . . . . . . . . . . . . . 148

11.5.2 Prediction of effective gametocytemia in empirical cases . . 149

11.6 Qualitative analysis of Hurst exponent and entropy: case-by-case

description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

11.7 Inspecting the robustness of 36-month averages . . . . . . . . . . . 155

xii



Contents

11.8 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . 156

12 Model validation 162

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

12.2 Model validation methodology . . . . . . . . . . . . . . . . . . . . . 162

12.3 Model verification and calibration . . . . . . . . . . . . . . . . . . . 164

12.4 Empirical time series validation . . . . . . . . . . . . . . . . . . . . 164

12.4.1 Landoh,2012 . . . . . . . . . . . . . . . . . . . . . . . . . . 165

12.4.2 Ganguly,2016 . . . . . . . . . . . . . . . . . . . . . . . . . . 168

12.4.3 Alhassan,2017 . . . . . . . . . . . . . . . . . . . . . . . . . . 169

12.4.4 Chirombo,2020 . . . . . . . . . . . . . . . . . . . . . . . . . 172

12.4.5 Ferrão,2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

12.5 Ivermectin model validation . . . . . . . . . . . . . . . . . . . . . 179

12.6 Ross-Macdonald theoretical validation . . . . . . . . . . . . . . . . 180

12.6.1 Ross-Macdonald parameters and H-to-M gametocytemia trans-

mission efficiency . . . . . . . . . . . . . . . . . . . . . . . . 181

12.6.2 Ross-Macdonald parameters and ivermectin prevention . . . 182

12.6.3 Ross-Macdonald parameters and initial conditions . . . . . 182

III DISCUSSION 185

13 Discussion 188

13.1 Phase transition and gametocytemia . . . . . . . . . . . . . . . . . 188

13.2 Heterogeneity in malaria transmission . . . . . . . . . . . . . . . . 190

13.3 Vector control, migration and seasonality . . . . . . . . . . . . . . 192

13.4 Time series analysis of malaria epidemics . . . . . . . . . . . . . . 192

13.5 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

13.6 An integrated strategy towards malaria elimination . . . . . . . . . 194

13.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

14 Bibliography 200

IV APPENDICES 232

A Markov transition matrix 235

A.1 Markov chain model . . . . . . . . . . . . . . . . . . . . . . . . . . 235

A.2 The Markov transition matrix P and generator matrix Q . . . . . 236

A.3 The embedded Markov chain matrix T . . . . . . . . . . . . . . . . 237

xiii



Contents

A.4 Mosquito bite algorithm . . . . . . . . . . . . . . . . . . . . . . . . 238

A.4.1 Healthy mosquito bites healthy human individual . . . . . . 239

A.4.2 Healthy mosquito bites infected human individual . . . . . 239

A.4.3 Infected mosquito bites healthy human individual . . . . . . 239

A.4.4 Infected mosquito bites infected human individual – Super-

infection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

A.5 Markov transition probabilities matrix . . . . . . . . . . . . . . . . 241

A.5.1 Mosquito transition probabilities matrix PM . . . . . . . . 241

A.5.2 Human transition probabilities matrix PH . . . . . . . . . . 242

B Stochastic master equation 250

B.1 Taylor approximation – one dimension . . . . . . . . . . . . . . . . 250

B.2 Taylor approximation – two dimensions . . . . . . . . . . . . . . . 257

B.3 Diffusion equation, master equation and Itô formulation . . . . . . 266
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Chapter 1

Introduction

1.1 Preamble

In Babylon, during the year 323 BC, Alexander the Great fell ill after returning

from Persia, and died shortly after at the age of 32. The reason of his death was

most probably a disease now known to be caused by an infection with the parasite

P.falciparum [316].

Throughout the ages, malaria has persisted in the history of mankind as one

of the most recurrent and life-threatening infectious diseases worldwide. In partic-

ular, it stands as a disease globally epidemic in tropical regions, having stronger

impact in sub-Saharan Africa and Southeast Asia.

Malaria cases have declined globally from 238 million cases, in 2000, to 227

million, in 2019 [288, 289]. However, in 2020, malaria cases have increased again to

241 million, mainly related to disruption of health services as a result of COVID-19

pandemic [289].

During the XXI century, malaria incidence decreased all over the world from

8.1 in the year 2000, to 5.6 annual malaria cases per

100 human inhabitants-year (phy) in the year 2019, before increasing again in

2020 to 5.9 cases phy [288, 289].

However, this last result has not changed significantly in recent years, main-

taining similar levels in 2020 in relation to 2015 (5.9 cases phy) [288]. Global

malaria incidence declined 27% between 2000 and 2015, but only 2% from 2015 to

2019, rising again in 2020 to similar results of 2015 due to the COVID-19 pandemic

[288, 289].

Malaria mortality also decreased worldwide from around 896 000 in 2000 to

562 000 in 2015, and to 558 000 malaria deaths in 2019 [288, 289]. However, in

2020, the number of malaria deaths stepped up again to 627 000, corresponding

to an increase in fatal cases by 12%, when compared to 2019 [289].

Globally, the malaria mortality rate decreased by half from about 30 deaths
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per 100 000 population at risk in 2000, to 15 in 2015 [289] while decreasing more

slowly until 2019, to 13 deaths per 100 000 population at risk. However, in 2020,

malaria mortality risk increased again to 15 deaths per 100 000 population at risk

[289]. And as a result of lower immunity protection, children under 5 years old

were still a highly vulnerable group, accounting for 77% of all global fatal cases in

2020 [289].

Twenty-nine countries were responsible for 96% of all malaria cases worldwide.

And only six African countries notified 55% of all malaria cases globally: Nigeria

(27%), the Democratic Republic of the Congo (12%), Uganda (5%), Mozambique

(4%), Angola (3.4%) and Burkina Faso (3.4%). The World Health Organization

(WHO) African Region alone was responsible for 95% of all cases globally with an

estimated 228 million cases in 2020 [289]. Although the total of malaria cases in

Africa was higher in 2019 with an estimated 215 million cases, malaria incidence

in that region actually declined from 36.8 to 22.2 cases phy from 2000 to 2019, due

to the significant increase in African population from about 665 million in 2000

to 1.1 billion in 2019. However, in 2020, malaria incidence stepped up again to

23.2 cases phy as a result of health services disruption from COVID-19 pandemic

[288, 289].

This significant improvement was the result of a more effective public health

policy concerning preventive actions such as adequate vector control, implemen-

tation of rapid diagnostic testing (RDT), drug administration of artemisinin-

combined therapy (ACT), and the widespread use of barrier protection measures

such as insecticide-treated nets (ITN), long-lasting insecticide-treated bed nets

(LLIN) or insecticide residual spraying (IRS).

The protozoan parasite P.falciparum (Pf ) was the cause of the most prevalent

form of malaria in the African continent during 2018 (99.7% of all estimated cases

in Africa [287]), and has been implicated in the vast majority of fatal cases assum-

ing severe clinical presentations such as cerebral malaria, renal failure or hemolytic

anemia, amongst others. Pf genetic diversity is a critical issue to be addressed in

future vaccination programs. However, two other Plasmodium species may also be

responsible for severe forms of the disease – P.vivax (Pv) and P.knowlesi (rare,

and mostly restricted to a small region in Asia).

In 2018, the prevalence of Pf was lower in the WHO Eastern Mediterranean

region (71% of all malaria cases), WHO Western Pacific region (65% of all cases)

and WHO South-East Asia region (50% of all cases) ([287]). The second most

important clinical form of Plasmodium infection consisted in P.vivax infection,

being responsible for 75% of all malaria cases in WHO Americas region and 53%

of all cases in the WHO South-East Asia region, (the majority of which in India

with 47% of all cases), but resulting in milder clinical forms of the disease with

much lower mortality than the Pf infection. However, globally, the proportion of

cases resulting from P.vivax infection decreased from around 8% in 2000 to 2% in

2020 [288, 289].
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Concerning malaria mortality, the WHO African region alone was responsible

for 93% of all malaria deaths in the year of 2017. And the following six African

countries accounted for nearly half of all global malaria deaths during 2017: Nige-

ria (19%), Democratic Republic of the Congo (11%), Burkina Faso (6%), United

Republic of Tanzania (5%), Sierra Leone (4%) and Niger (4%) [286].

Yet, malaria mortality decreased 63% in the World Health Organization (WHO)

African Region, from a total of 840 000 malaria deaths reported in 2000, to 534

000 malaria deaths in 2019 (corresponding to 96% of all malaria deaths worldwide,

in 2019). The African mortality rate reduced by 67% over the same time period

from 121 to 40 deaths per 100 000 population at risk [288, 289].

This data seems to indicate that despite all recent efforts in improving disease

control in tropical Africa, effective malaria prevention is still unsatisfactory. The

risk of an epidemic resurgence remains a persistent threat to regions where the

disease was assumed to have been eliminated. A recent malaria outbreak in Bu-

rundi highlights the need for better and more consistent anti-malaria interventions

[338].

Lack of consistency in implementing region-wide programs for preventive pro-

tection with IRS or effective barrier protection with ITN/LLIN, failure in early

diagnosis from lack of RDT, irregular use of ACT leading to a higher Pf drug

resistance, and growing Anopheles resilience as a result of the widespread use of

insecticides are altogether responsible for the recent lack of progress in the fight

against malaria. Children under 5 years of age have been particularly vulnerable

to the disease, with an increased fatality rate.

Disease transmission depends on several geophysical factors such as humidity,

rainfall, vegetation density and atmospheric temperature. These factors play a

critical role in the vector (Anopheles mosquito) life cycle, with a decisive impact

on vector density. Global warming stands as a potential threat as it may promote

disease transmission in nontropical latitudes, where the disease had previously

been considered eliminated.

Seasonality resulting from extreme weather conditions amplified by climate

change, and disease resurgence due to human migration and imported disease

cases have been severely implicated in sustained and delayed disease transmission.

Anopheles mosquito subsists as the critical vector in transmission of the most

dangerous form of the parasite – P.falciparum.

Although disease elimination may become a realistic possibility in some parts

of the world, induced drug resistance from massive administration of quinine and

artemisinin derivative therapy still remains a threat to an effective fight against

malaria.
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1.2 Research questions

Deterministic models have been classically employed in defining more effective

strategies for malaria transmission suppression. Stochastic models have been used

with moderate success in infectious epidemiology. However, few agent-based mod-

els have tried to reproduce the full scale multi-variable dimension of the mosquito-

human system involved in malaria transmission dynamics.

Here, we present the essential research questions derived from our present

work:

1. Is it possible to create a single stochastic computational model that can

capture the full range of complex interactions between all relevant variables in

malaria transmission?

2. How important is to adequately suppress gametocytemia during human

disease?

3. Is ivermectin a reliable drug in suppressing disease transmission by early

mosquito killing after gametocyte transmission from an infected human?

4. Could there be any benefits from combining the gametocytemia suppression

effect resulting from gametocidal agents (like primaquine or methylene blue) with

the administration of ivermectin?

5. How relevant is heterogeneity in malaria spreading, especially in the pres-

ence of high transmission hot-spots?

6. In the presence of heterogeneity how effective is the combined use of a

gametocidal agent (like primaquine) and ivermectin?

7. In malaria time series, how useful can it be the application of Hurst ex-

ponent and Shannon information entropy to the Box-Jenkins theory in disease

forecasting?

1.3 Objectives

In this PhD dissertation it was the author intention to:

1. Answer the research questions previously defined in section 1.2., by using

a stochastic computational agent-based model in different disease transmission

scenarios.

2. Prove the existence of a gametocytemia phase transition between epidemic

stability and disease elimination.

3. Prove the effectiveness of a combined preventive strategy using a gameto-

cidal agent like primaquine along with ivermectin.

4. Prove heterogeneity enhancement of malaria transmission.

5. Prove that the combined use of a gametocidal agent and invermectin could

effectively suppress disease transmission in the presence of high heterogeneity.
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6. Prove that the combined use of a gametocidal agent and invermectin could

effectively suppress disease transmission in the presence of other forms of hetero-

geneity like human migration, rainfall seasonality, a wide variation in mosquito

density and transmission hot-spots.

7. Prove that the use of Hurst exponent and Shannon entropy in malaria time

series could be useful in disease forecasting.

1.4 Dissertation structure

The present dissertation will be divided in three parts, with four Appendices:

Background:

A brief introduction to the dissertation theme, along with the main research

questions, will be displayed in chapter 1. The impact of malaria will be presented

along with a simple description of malaria biology in chapter 2. State-of-the-art

on the subject will be described in relation to a chronological timeline of all the

relevant references concerning malaria modeling in chapter 3. The mathematical

background of malaria theory will be presented in chapter 4.

Contributions:

Our model design will be described in detail in chapter 5, including the math-

ematical background in support of the agent-based model of malaria transmission.

The influence of vector control in our malaria transmission model will be presented

in chapter 6. In chapter 7 we will prove the existence of a gametocytemia phase

transition between epidemic stability and disease elimination. The importance of

combining a gametocidal agent with ivermectin will also be determined in chap-

ter 7. The impact of heterogeneity in malaria transmission and the interaction

between gametocytemia and heterogeneity will be determined and quantified in

chapter 8. The importance of human migration will be presented in chapter 9.

Seasonal malaria transmission will be discussed in chapter 10. The importance of

the Hurst exponent and Shannon entropy in forecasting malaria incidence will be

established in chapter 11.

Model validation procedures will be presented in chapter 12.

Discussion:

Discussion and conclusions will be presented in chapter 13.

Appendices:

The appendices will cover a mathematical supplement on Markov transition

processes in Appendix A, the mathematical formalism of the master equation in

one- and two-dimensions with Taylor approximation, as well as the Itô master

equation formulation in Appendix B, the importance of initial conditions and final

outcome in Appendix C, and malaria time series in the perspective of Box-Jenkins

theory in Appendix D.
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Chapter 2

The impact of malaria

2.1 Historical perspective

The malaria parasite Plasmodium was first described in a blood sample by

Alphonse Laveran in 1880 [86, 118, 382]. A few years later (1883) Albert King,

an American doctor, assumed the suspicion that mosquitoes could somehow be

related to malaria transmission. That suspicion was confirmed by Sir Ronald Ross

in 1899, in Sierra Leone, in partnership with Patrick Manson since 1894 [86]. In

India, during the early years of the XX century, Ross conducted a remarkable epi-

demiological work on malaria prevention [86, 237, 317, 343]. He was the author of

the first reliable mathematical model of malaria transmission. During the 1950s,

Macdonald improved on Ross original theory, introducing the concept of mosquito

mortality and disease latency; more recent models added human mortality as an

important model parameter. However, deterministic mathematical models have

revealed limitations in the analysis of subtle problems resulting from stochastic

computational disease simulations. More recently, the results of stochastic model-

ing in malaria based in current views on the dynamics and biology of the parasite

Plasmodium, the vector Anopheles mosquito, and the disease behavior of the hu-

man individual, have proven useful in the search for more effective strategies of

disease control [232, 237, 317, 343]. Unraveling the mathematical complexity of the

malaria epidemic has become a decisive step in developing more powerful models

for disease prevention in the long term. Yet, malaria elimination remains a major

challenge for health services all around the world.

2.2 Malaria biology

2.2.1 Disease dynamics

P.falciparum is the agent responsible for most of the fatal cases of malaria. The

disease vector is the Anopheles mosquito. When an infected mosquito with Plas-
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modium sporozoites inside the salivary glands bites a healthy human individual,

these forms of the parasite travel rapidly through the human blood stream into

the liver. There, they invade and replicate inside liver cells, differentiating into

merozoites. Infected liver hepatocytes may harbor a large number of merozoites

(as close as 30 000 in a single cell). The liver cycle is completed after 1 to 2

weeks. After rupture of infected liver cells, it follows a blood stage with merozoite

invasion of red blood cells. Inside red blood cells (erythrocytes), merozoite dif-

ferentiation proceeds to trophozoite and schizont forms, during a period of 48-72

hours. After this time, schizont forms may rupture releasing 10-30 merozoites in

the blood stream. These will re-infect new erythrocytes. Inside the red blood

cell, some merozoites will differentiate to sexual forms called gametocytes. These

sexual forms may be of male or female gender. When a mosquito bites an infec-

tious human host, it ingests 1.0 − 2.5 µl of human blood with infected red blood

cells. Already inside the mosquito gut, gametocytes will emerge from the aspirated

erythrocytes, and cross-fertilize to form diploid zygotes. These will further differ-

entiate into ookinetes, and later to oocysts. Each oocyst may contain up to 1 000

sporozoites that will later migrate through the mosquito hemolymph and invade

its salivary glands. These sporozoites will then be able to infect human individuals

during the next mosquito feeding, thus perpetuating the parasite life cycle. When

a healthy mosquito feeds on an infected human individual carrying gametocytes in

his blood circulation, it will become infected. After that event, it follows an incu-

bation period of 7-14 days before that mosquito will become infectious. Likewise,

on healthy human individuals, after an infectious mosquito bite, a long incubation

time may also occur from the initial infectious bite to gametocyte development

inside red blood cells. This time period, corresponds to the liver cell/red blood

cell cycle and is usually in the range from 10 to 21 days [118, 382] – see figure 2.1.

2.2.2 The parasite: Plasmodium

In nature, we may find five Plasmodium species responsible for malaria:

P.falciparum (Pf), P.vivax (Pv), P.ovale (Po) (with two different forms),

P.malariae (Pm), and P.knowlesi (Pk). Rarer species like P.cynomolgi (Pc) and

P.simium (Ps) have been related to documented animal infection, but rarely af-

fecting humans, and if so, only in specific geographic locations [118, 228, 382].

Among the four different species of the parasite Plasmodium that usually pro-

mote human infection (P.falciparum, P.vivax, P.ovale and P.malariae),

P.falciparum, stands as the most prevalent malaria parasite in Africa, being re-

sponsible for more than 99% of all malaria cases during 2017 [286]. However, in

the Americas, P.vivax is the most prevalent malaria parasite, representing almost

three quarters of all malaria cases [286].

From the study of genetic evolution and specific mutations in human

hemoglobin, it is possible to track down how the parasite evolved in time in human

populations. Apparently, P.falciparum infection was transmitted to man, from the
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Figure 2.1: Malaria biology: Human-mosquito cycle (obtained from Centers for
Disease Control and Prevention – CDC [60]).

gorilla, around 10 000 years ago [223, 354]. This form of malaria corresponds to

the malignant tertiary form of the disease (also denominated sledgehammer pre-

sentation) in the form of fever and malaise resurgence every 48 hours, by the third

day of disease manifestations.

P.vivax, also clinically known as benign tertiary malaria (also presenting with

symptoms every 48 hours like Pf ) probably migrated with the first human popu-

lations out of Africa, around 100,000 years ago, spreading thereafter to all parts

of the globe. However, the more recent occurrence in the African population of

a particular mutation in red blood cells leading to an absent expression of a spe-

cific red blood receptor essential for the erythrocyte uptake of P.vivax merozoites

– the Duffy antigen – turned P.vivax infection into a rare event in Africa [226].

P.ovale is geographically limited to tropical West Africa and is responsible for

a benign form of the disease symptoms every 48 hours (benign tertiary form).

P.malariae is responsible for the quartan form of the disease (symptoms recurring

every 72 hours). The different periodicities of the sledgehammer disease symptoms

in malaria – with either a 48 or 72 interval between fever peaks – are responsible

for these different clinical patterns of fever [378].

2.2.3 The vector: Anopheles mosquito

Of over 3 000 mosquito species, around 400 belong to the Anopheles genus (Diptera

and Culicidae).
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The female Anopheles mosquito is the malaria vector. The male Anopheles

mosquito does not transmit malaria, and its main biological purpose resides in be-

ing able to mate with a female mosquito and secure species reproduction. Different

species of Anopheles mosquito have been involved in disease transmission to hu-

mans. Although close to 70 Anopheles species may have the potential for malaria

transmission, there are significant differences in that ability between different sub-

species. Less than half of those Anopheles species are important in disease trans-

mission. The wide presence in antiquity of an Anopheles species – An.atroparvus

– with lower capacity for sporozoite transmission to human hosts may explain why

malaria was probably a rarer event in Ancient Rome and Greece. However, at

the time of the fall of the Roman Empire of the West, more effective Anopheles

mosquito vectors were quite abundant in northern Africa (An.labranchiae) and

Asia (An.sacharovi). Henceforth, Pf malaria became a widespread disease with

harmful consequences to human demography [90].

The main mosquito species responsible for malaria transmission in Africa is

An.gambiae. Its survival depends on two critical weather factors: heat and rain

precipitation. In tropical countries, around two weeks after the beginning of the

rainy season, mosquitoes will evolve into the last of four stages of development

(egg-larva-pupa-mosquito). After emerging from this cycle, the female mosquito

will need to have a blood feed, mate with a male mosquito, and be able to lay eggs

completing the oviposition cycle (usually lasting 2 to 3 days). The life expectancy

of mosquitoes is usually short. Some of them will eventually die before reaching

the end of the latency time, necessary for the presence of sporozoites in mosquito

salivary glands after feeding on human hosts with gametocytes, and therefore

will never be able to transmit malaria. The small proportion of mosquitoes sur-

viving the incubation period, will be responsible for disease transmission. These

mosquitoes will eventually repeat the process of oviposition-biting, more than once

during their lifetime [17, 244, 344]

2.3 Disease prevention

2.3.1 Vector control

The capacity of flying longer distances in search of a blood meal depends on proper

mosquito feeding, and oviposition is not possible without it. Thus, mosquito sur-

vival beyond incubation time (time needed between ingestion of gametocytes and

the presence of sporozoites in mosquito saliva) seems to be a crucial parameter for

effective disease transmission. A significant reduction in this time could possibly,

and decisively, reduce the potential for human infection.

Mosquito survival is also essential for an effective disease transmission. Daily

mosquito mortality is usually high, depending on climate conditions and host-
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feeding availability.

2.3.2 Barrier protection (LLIN/ITN/IRS)

For several years now, the effect of barrier protection induced by insecticide treated

bed-nets (ITN), long-lasting insecticide-treated nets (LLIN) and active indoor

residual insecticide spraying (IRS), has played a decisive role in malaria prevention

[320, 381]. Its widespread implementation has significantly improved the efforts to

reduce malaria transmission, as has been shown, for example, in the island of S.

Tomé e Pŕıncipe [217].

2.3.3 Rapid diagnostic testing (RDT)

The use of highly-sensitive rapid diagnostic tests (RDT) is crucial for early iden-

tification of a large proportion of all malaria patients. Detection of asymptomatic

patients has become a necessary goal for an effective malaria prevention strategy.

Yet, low antigen concentration is a common problem in diagnostic immunoassays

[91, 303].

The use of point-of-care (POC) effective diagnostic tools is divided in two well-

defined strategies: case management and laboratory-based surveillance methods.

The use of microscopy-based direct identification of the parasite and of medium

to high sensitivity RDT (results usually obtained in less than 20 minutes) stands

as the standard approach to case management of symptomatic patients. Ultra-

highly sensitive rapid diagnostic tests, molecular diagnostic testing with poly-

merase chain reaction (PCR) and loop mediated isothermal amplification (LAMP)

are laboratory-based tools, and may also become essential in surveillance for the

purpose of early detection of asymptomatic patients [303].

Conventional RDT are usually based in the detection of histidine-rich protein 2

(PfHRP2) and P.falciparum lactate dehydrogenase (PfpLDH) identification. They

are low cost and easy to use, while allowing for faster results. The desired level of

detection (LOD) is defined in the average range between 50 to 200 parasites/µL,

but may be lower, in the range between 4 and 20 parasites/µL, in the case of

well-trained medical lab experts. Microscopy and fast RDT are particularly ef-

fective methods in low-resource settings (LRS). While implementing an adequate

surveillance strategy, ultra-sensitive RDT will usually define an acceptable LOD

at close to 5 parasites/µL or less. When using the detection of PfHRP2, the con-

centration range may stand between 6 and 12 ng/mL [303]. In the case of PCR

testing the LOD may be defined as lower as 0.5 to 5.0 parasites/µL. The use of

LAMP may also allow a lower value for the LOD, usually below 2 parasites/µL

[82, 366]. Detection of placental malaria during pregnancy is usually based on the

detection of circulating antigen. In this setting, the use of methods like PCR or

microscopy may prove less useful in the diagnosis of malaria during pregnancy.
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2.3.4 Human immunity

Plasmodium extreme antigenic diversity presents a problem in achieving adequate

acquired immunity in human population [106, 118, 142, 158, 325, 380, 382]. This

diversity is responsible for less effective immunity protection induced by specific

malaria vaccination programs. Acquired immunity protects human individuals

from more severe forms of malaria, and to some extent may also reduce the proba-

bility of disease transmission, while not assuring full protection against the disease.

The parasite spends an important part of its life inside the erythrocyte, assuring

it partial protection against cell-mediated immune recognition. This fact may par-

tially explain the shortcomings of malaria vaccination, so far. However, the para-

site liver stage may become an alternative and reliable target in the development

of an effective vaccine capable of long-term immunity protection [219, 251, 311].

2.3.5 Antimalarial drugs

In 2015, the WHO defined three strategic pillars in malaria prevention (univer-

sal access to prevention, drugs and diagnosis, elimination and surveillance) [285].

From the failure of some of the initial strategies involving vector control, to the

incapability of specific vaccination in inducing mass immunity in the population

at risk, we can draw the conclusion that only with proper and aggressive anti-

malarial strategy will it be possible to significantly reduce malaria transmission

risk [30, 65, 217, 315, 320, 381]. Antimalarial drugs like quinine derivatives and

artemisinin, alone or in combination such as in artemether-lumefantrine (AL) or

dihydroartemisinin-piperaquine (DHA-PPQ), have been extensively used world-

wide in malaria prevention and treatment [63, 279, 300]. However, the importance

of selectively eliminating gametocytemia with gametocidal drugs could also be

critical in the control of parasite transmission to mosquitoes [1, 42, 44, 187, 201].

Different strategies have been implemented in order to increase the effectiveness of

antimalarial drugs, while reducing the risk of drug resistance. In mass drug admin-

istration (MDA), an entire population will be under treatment with antimalarial

drugs. However, MDA in preventive campaigns should be used cautiously as it

may contribute to an undesirable boost in antimalarial drug resistance. Other

promising strategies are currently under scrutiny [187]. The mass screening and

treatment approach (MSAT ), has been tested in Burkina Faso [80]. A similar

strategy with focal screening and treatment was used against artemisinin-resistant

P.falciparum malaria in western Cambodia [105]. MSAT could still be more effec-

tive if combined with an active policy favoring the mass use of insecticide treated

bed-nets (ITN), and indoor residual insecticide spraying (IRS) [134].

2.3.6 Plasmodium drug resistance

Antimalarial drug resistance is well documented in P.falciparum and P.vivax. In

recent years, its occurrence has become more severe in several parts of the world
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[114]. Chloroquine and sulfadoxine–pyrimethamine resistance in P.falciparum

were first described in South-East Asia during the late 1950s. During the 1960s

those forms of drug resistance spread across Asia, and later on Africa, with dra-

matic consequences in malaria mortality [105]. Chloroquine resistance is most

frequently related to excessive and sub-therapeutical drug usage in certain parts

of the world such as South-East Asia and sub-Saharan Africa.

Drug resistance to artemisinin-combined therapy (ACT) has become a critical

problem in malaria prevention with new cases being reported every year [105, 288,

362]. However, a strong adaptive and innate population immunity may slow the

spread of that form of drug resistance [198].

During 2002-2003 a new mutation (associated with the S769N mutation in the

PfSERCA gene) concerning artemether resistance was described in P.falciparum.

Some mutations have been identified as molecular markers of partial artemisinin

resistance. The PfKelch13 mutations have been found in the WHO African Region

[288]. In this region, the first approach to treatment directed to P.falciparum in-

cludes different ACT protocols such as artemether-lumefantrine (AL), artesunate-

amodiaquine (AS-AQ) and dihydroartemisinin-piperaquine (DHA-PPQ). Their

overall efficacy rates for P.falciparum are consistently above 98.0% in all cases

[288].

Yet, a high level of clinical immunity may interfere in drug-resistance depend-

ing on the disease transmission setting. Drug-resistance is relatively easier to

spread in a low or unstable transmission setting when compared to a high trans-

mission one [194]. In high transmission intensity settings, the influence of ACT on

drug resistance may become quite limited due to the presence of stronger immunity

in a large fraction of the population. As many infections become asymptomatic,

a smaller proportion of the infections will ultimately receive drug treatment [309].

In areas with low disease transmission, parasitemia can be residual in the

general population. In these settings, drug resistance may spread more slowly by

using therapeutic combination of two or more effective drugs, which do not share

resistance mechanisms. In this case, effective and swift treatment of symptomatic

individuals with ACT-primaquine combinations, or seasonal chemoprophylaxis,

may assume an important role in reducing malaria incidence, with better results

than those from MDA campaigns with the treatment of a small minority of infected

individuals.

MDA with DHA-PPQ has been combined with primaquine with promising

results in gametocytemia reduction and disease transmission suppression. Other

ACT schemes such as AL have also been shown to be effective in MDA campaigns

[176].

While the widespread use of antimalarial drugs may result in the selection of

surviving resistant parasites, implementing the use of MDA is still quite contro-

versial as it may promote this effect and is the reason why it is currently being
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used with caution by the World Health Organization.

MDA can quickly reduce or eliminate parasite reservoirs. It is usually effective

in settings based upon solid health structures with easy access to diagnosis and

treatment, and an effective surveillance system with a strong community adherence

[208, 298].

2.3.7 Climate conditions and seasonality

Malaria is significantly influenced by climate and topography. Warmer tempera-

tures, higher water precipitation, proximity to water surfaces and living at lower

altitudes, may increase malaria incidence [79].

Rainfall, temperature and humidity are the most relevant weather factors af-

fecting the intensity of malaria transmission. Environmental conditions such as

altitude, the presence and distribution of vegetation, the nearness of human pop-

ulations to water reservoirs and topography may also all play a decisive role in

malaria transmission.

High volumes of waterfall provide for significant water surfaces, and adequate

sheltering to mosquito breeding sites, leading to enhanced malaria transmission

with a short delay in time. However, in the case of excessive water precipitation,

mosquito eggs may also be flushed away, compromising global mosquito survival

and maturation. Higher atmospheric temperatures also facilitate malaria transmis-

sion by shortening the duration of Plasmodium development inside the mosquito

[277].

Temperature may affect mosquito biology influencing Anopheles mosquito bit-

ing rate, reproduction and survival conditions [191]. Malaria transmission is appar-

ently facilitated at moderate temperatures in the range between 23◦C and 24◦C,

in a weekly average within a 2 weeks lag. At lower (12◦C) or higher tempera-

tures (27.9◦C), the risk of malaria transmission is lower. At higher temperatures,

mosquito survival could be significantly reduced, affecting the population size of

susceptible mosquitoes [191]. Malaria transmission seems to be stronger at a tem-

perature range between 16◦C and 34◦C, with a peak at 25◦C [257].

However, minimum daily temperature may also have a strong influence in

mosquito survival. In a study from China, Zhang [395] showed that a small increase

of 1◦C in the minimum daily temperature could result in a substantial increase

in malaria incidence (by 12 to 16%). This study also suggests that minimum

daily temperature may even be more decisive than maximum daily temperatures

in mosquito survival, by facilitating Plasmodium and Anopheles survival during

the colder winter months, while resulting in more effective disease transmission

during the warmer rainy seasons [102]

Other climatic factors such as the relative humidity and the normalized differ-

ence vegetation index (NDVI) have also been used in weather malaria prediction

models [16, 134, 358].
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Several studies point to the fact that the observed value of NDVI correlates well

with predictions of parasitemia incidence [134]. NDVI is obtained from satellite

imagery and defined to be lower than 0.350 in drier regions with less vegetated

areas. More vegetated and less dry areas correspond to values of NDVI equal or

above 0.350 [358].

2.3.8 Risk of disease resurgence

There are several examples of successful malaria elimination worldwide. However,

the risk of malaria resurgence may endure indefinitely in regions where Anopheles

mosquitoes persist in the absence of malaria cases [319]. Facilitating conditions

for Anopheles mosquito breeding are supposed to increase the risk of local disease

transmission in the presence of asymptomatic hosts with silent and chronic forms

of submicroscopic gametocytemia, who do not usually seek treatment [179]. Age

patterns of clinical malaria are known to influence local parasite prevalence and

malaria incidence [153]. And human migration has also been strongly linked to

malaria resurgence [101].

Southern Europe is one of the world regions with potential for malaria out-

breaks. A warmer climate, with seasonal rainfall, the existence of

widespread biological pockets of Anopheles mosquito along the Mediterranean

countries, the proximity to migration routes from Northern Africa as well as

from poor countries with increasing population, the presence of increasing malaria

incidence, and the anthropogenic environmental modifications facilitating local

mosquito breeding are all of them important risk conditions that may facilitate

malaria outbreaks in regions where malaria had been previously eliminated [319].

Different subspecies of Anopheles predominate in several European regions in

relation to subtle climate differences affecting temperature and rainfall during the

warmer and coldest months of the year. These climate changes may explain why

An.atroparvus predominate over An.maculipennis in Portugal and Spain, while

An.hyrcanus is most frequent in France, and An.labranchiae is typically found in

Italy [145, 319].

Also, the vulnerability of An.atroparvus toward different P.falciparum strains

may be heterogeneous, being higher in European strains in relation to afro-tropical

strains. However, An.atroparvus may be more susceptible to infection by P.vivax

strains imported from African countries, with a greater risk of resurgence of this

form of malaria in Mediterranean countries such as Portugal, Spain, France and

Greece [145, 319].

Several climate aspects should be considered in terms of the potential risk

of malaria outbreaks. The mean maximum temperature of the warmer quar-

ter (MMT) plays a harmful role to Anopheles breeding, facilitating the death

of mosquito larvae from desiccation at higher temperatures. Also, the mean min-

imum temperature of the coldest quarter (MmT) could be harmful to mosquito
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survival and parasite sporogony in lower winter temperatures. Both the mean total

annual precipitation (MTP), as well as the presence of higher altitude wetland and

agricultural density, are critical to the level of suitability index in vector control,

allowing for greater availability of mosquito breeding sites [145].

The presence of widespread Anopheles insecticide resistance was probably re-

sponsible for reduced vector control effectiveness and the occurrence of severe

malaria outbreaks in several regions of Rwanda and Zambia. Also, the reduced

effectiveness of insecticide-treated nets in the past may have significantly increased

the risk of malaria resurgence in countries like Kenya and Senegal [78].

Disease resurgence risk may be higher in the presence of Plasmodium drug

resistance. Malaria outbreaks such as the one described in Sri Lanka between 1963

and 1968 may be explained by the occurrence of massive chloroquine resistance

from drug overuse [159].

Most importantly, disease resurgence risk appears to be strongly connected to

the massive reduction in financial support of local malaria preventive campaigns,

following significant success in reducing malaria incidence. This “out of sight,

out of mind” negligent approach may be, most likely, the cause of several malaria

outbreaks connected to an increased mortality from long lost population immunity

[179].

2.3.9 Primaquine and gametocytemia suppression

The suppression of Pf gametocytes by mass drug administration (MDA) of pri-

maquine is quite effective in reducing the risk of disease transmission, even in the

setting of the potential risk of hemolysis in glucose-6-phosphate dehydrogenase

(G6PD) deficient individuals. Primaquine base in the dosage of 0.25 mg/Kg is ap-

parently a safe and effective dosage against Pf gametocytes, with a minimal risk of

inducing non-fatal hemolytic anemia. Even lower dosages of primaquine may still

be quite effective in terms of gametocyte reduction. Just by using a smaller dosage

of 0.15 mg/Kg it was possible to obtain a reduction in the percentual presence of

gametocytes from 13 % to 0.8 % [179]. While this drug is usually part of the main

treatment of P.vivax, its role in malaria prevention of P.falciparum infection by

generalized gametocyte suppression in the human population, as a result of MDA,

could become a reliable alternative in reducing malaria resurgence risk [268]. In

South America, malaria is usually caused by P.vivax in the face of decreasing im-

portance of P.falciparum. Also, the dominant Anopheles darlingi species is clearly

related to heavy rainfall incidents, such as in the 2017 malaria outbreak in the

French Guianese and Brazilian border areas [258].

2.3.10 Ivermectin and malaria prevention

Ivermectin in the form of mass drug administration (MDA) is a drug known to

be useful in some African countries as a cheap and effective anti-parasitic agent in
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the control of onchocerciasis and lymphatic filariasis [195, 357]. When ivermectin

is ingested by An.gambiae s.s. during feeding on a human individual under treat-

ment it is known to significantly reduce mosquito survival affecting sporogony of

P.falciparum inside the mosquito [63, 196, 357]. The recommended effective dosage

is in the range between 150 and 400 µg/Kg [357]. Its use could be particularly

useful in synergism with gametocidal agents such as primaquine or methylene blue.

2.3.11 Insight from malaria modeling

Constant malaria prevention is necessary to reduce malaria incidence in high risk

areas like sub-Saharan regions. Several procedures have been adopted for that

matter, sometimes less successful than expected. Modeling malaria is not a very

straightforward task. It involves a subtle and complete knowledge of several vari-

ables with influence on disease transmission.

However, most malaria models have given critical information on the effective-

ness of certain preventive measures, if implemented. Better models lead to more

effective decisions in disease prevention and more reliable information in disease

forecasting.
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Chapter 3

Malaria modeling:

State-of-the-art

Malaria models may be classified according to the type of object in analysis.

From deterministic and mathematical models to stochastic agent-based models,

several methods have been used in malaria modeling. These models may be di-

rected to transmission dynamics involving the parasite (Plasmodium), the vector

population (Anopheles), or the existence of parasite drug resistance and vector

insecticide refractoriness. It may also concern to different environment variables,

such as climatic conditions (temperature, precipitation, or other weather param-

eters), or to territorial topographic characteristics such as the type and intensity

of local vegetation as well as the nearness to mosquito breeding sites. Models are

mainly applied to incidence prediction or estimation of disease transmission risk.

Different technical procedures may be used such as computational simulations,

imaging spatial models based on satellite imaging, or pure theoretical models such

as the original Ross-Macdonald model (RM).

In this chapter we will present a summary of malaria modeling history, with a

detailed timeline explaining the rationale of modern views on the subject. All pre-

sented models are listed from tables 3.5 to 3.8. A selection of the most important

models will be discussed in the text, with further detail.

Since early preliminary work by Sir Ronald Ross, published from 1911 to 1915

[317], the quest for an adequate model explaining malaria epidemics has been per-

sistent. This model was further extended during the 1920s, based upon the use

of compartments in epidemic models by Kermack and McKendrick [186], and the

theory of predator-prey dynamical systems, by Lotka and Volterra [370]. Further

innovation in thinking had to wait for the duration of two world wars until 1952

when George Macdonald was able to further improve Ross initial theory [231]. At

the time, the Ross-Macdonald model explained reasonably well the evolution of

both human and mosquito infection dynamics, while defining the epidemic in a

sound mathematical and deterministic frame. It included modern concepts based

on what was then known, concerning the biological cycles of the parasite, Plas-
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modium, as well as the vector, Anopheles mosquito. This theory will be presented

with further detail in section 3.4 and chapter 4, according to well accepted con-

cepts such as those defined by Smith, 2004 [343]. It has been, since then, properly

named as the Malaria standard model, supporting some of the most important

improvements in the field.

3.1 Early disease models

Most of the early malaria models used a deterministic and mathematical ap-

proach [185, 317, 371]. Some of these mathematical models have uncovered specific

disease aspects such as the role of human gametocytemia in mosquito infection

and disease transmission [181]. The importance of different critical state variables

involved in malaria transmission highlights the complexity of the epidemic dy-

namics. Human and mosquito population size will usually amplify the magnitude

of stochastic noise in multiple dimensions, with unpredictable impact in condi-

tional variance. Some mathematical problems resulting from stochastic handling

of the transmission model are still a challenge in infectious disease modeling [371].

Several physical computational models inspired by the Monte Carlo methodology

and the Metropolis algorithm have also been used with variable enthusiasm in biol-

ogy [59, 104, 348]. Stochastic agent-based models have produced consistent results

[73, 95, 157, 171, 234, 348, 349], while generating more realistic model simulations.

In 1957, MacDonald established the significance of several important param-

eters in malaria modeling and disease prevention (Table 3.5), such as the basic

reproductive number R0 and the transmission coefficient β. A decade later (1968)

he consistently described an improved approach to malaria dynamics [232]. His

model included stochastic modeling of malaria transmission supported on a proba-

bilistic Monte Carlo computational procedure, while requiring four epidemiological

parameters: mosquito man-biting habit, mosquito daily survival, human disease

recovery rate and the mosquito reproduction rate [232].

In 1974, Najera published a critical review of the application of MacDonald

model based upon collected field data obtained from disease transmission statistics

in Nigeria from 1966 to 1969 [269]. That same year, Dietz emphasized the role of

immunity in disease transmission, supported by solid empirical work in the African

savannah, in northern Nigeria [103].

A decade later, Verma (1983) published a refinement of the original malaria

models describing a solid stochastic approach with good fit to realistic field data

[369].

From 1972 to 1991, Anderson and May published several improvements on

Ross-MacDonald malaria model theory [17]. These models included important de-

mographical aspects such as human migration, human population age distribution

and mortality.
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Effective disease models are supposed to rely firmly on three important aspects:

1) accuracy (reproduction of the observed data and reliable prediction of epidemic

disease outcome); 2) transparency (good definition of the dynamical role played

by all model components) and 3) flexibility (flexible model adaptation to different

environments) [185].

For several decades, malaria transmission has been thoroughly evaluated with

the help of different disease models. The complex interaction between climate vari-

ables, vector dynamics, superinfection prevalence, children immunity, microscopic

gametocytemia, and human heterogeneity, is responsible for different epidemiolog-

ical patterns of disease transmission, frequently unpredictable. Network theory

has also been applied to infection dynamics with promising results [95, 222, 225].

However, it has been difficult to determine some of its implications in designing a

more effective disease prevention planning.

The role of spatial heterogeneity in epidemic models was described by Lloyd

in 1996 [224]. The fact that human heterogeneity may influence disease trans-

mission has been the focus of recent research on the subject. Somehow, human

heterogeneity may have been systematically underrated as in the case of children

with lower immunity against P.falciparum and less protection against the vector

Anopheles. These so-called higher transmission hot-spots may act as important

human-mosquito reinfection reservoirs.

In recent years we have witnessed an exponential growth in malaria model-

ing and forecasting procedures (tables 3.5 to 3.8). Stochastic models have im-

proved previous malaria predictive models. Recent research on the subject has

focused on a diversity of stochastic and computational methods to explore disease

dynamics, including perturbation theory, time-series approach, numeric compu-

tation, agent-based modeling, mechanistic within-host modeling, and individual-

based simulations, all of them with considerable relevance to malaria modeling

[12, 25, 53, 109, 110, 141, 143, 152, 157, 158, 177, 180, 228, 272, 290].

3.2 The Kermack-McKendrick SIR model

Several issues should be taken into consideration when building an infectious

disease model: The natural history of the disease, the time frame of the infectious

process, and the phase transition between disease states. The basic susceptible-

infective (SI) and susceptible-infective-susceptible (SIS) compartment models stand

as the standard structures in infection modeling. More detailed models are avail-

able including a latency phase (exposed agents – SEIS), and a recovery phase,

when individuals acquire partial or full immunity protection (recovered agents –

SEIRS) following complete disease recovery [92, 186, 371].

Assuming the absence of fully protected recovered individuals, the SIS model

could be used for the sake of simplicity as the standard malaria mathematical
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model. During the 1950s, Macdonald improved the initial model by using a third

epidemiological compartment of exposed mosquitoes [232]. Later in 1991, Ander-

son and May defined the compartment of exposed human individuals, including it

in the model. The need for a recovered group as a consequence of acquired im-

munity and induced resistance to reinfection was solved by including a recovered

compartment [237, 343].

In the present theory, the SEIRS model assumes humans and mosquitoes to

be in one of four different compartments: susceptible (S), exposed (E), infective

(I), and recovered (R) agents [17, 185, 371].

3.3 Stochastic models

In stochastic dynamics, disease transmission may behave like a Wiener (gaus-

sian) process, including a noise factor applied to mosquito and human host com-

partments, with null average and stable variance. Several types of noise, with

multiple sources, may add to the complexity of the stochastic equations. Different

population mixing patterns, with relevance to heterogeneity in human vulnerabil-

ity to mosquito biting behavior, may also strongly influence disease transmission.

3.3.1 Reed-Frost and Greenwood models

One may define three different settings for stochastic models:

a) Individual agent-based model, when the system keeps track of what happens

to each individual in the population during a predefined time frame. However, it

assumes a computer intensive methodology while requiring more equations.

b) Discrete-time compartmental model, where the susceptible and infective

populations are viewed as single compartments in the epidemic process.

c) Continuous time (or “time to next event”) compartmental model.

The Reed-Frost (RF) equation (1928) defines the risk of infection at each time

step in the algorithm [371]. It is supported by a Markov chain process applied to

a random variable with a binomial distribution. An alternative and very similar

method was also defined by Greenwood in 1931. Both classical models use a

discrete time algorithm to define the outcome of a stochastic event supported by

a Markov transition probability between two potential states of a random state

variable. Both are defined as chain binomial models.

Equation λt = βIt defines the force-of-infection (where λt represents the pro-

portion of susceptible individuals that become infective in each time step of the

algorithm, and β is equivalent to the rate of effective contact between two specific

individuals during an unit time interval), and will probably overestimate the real

infection risk in small populations. In such a case, one may use the Reed-Frost

(RF) equation for evaluation of λt, where p stands for the probability of an effective
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infective contact between individuals, and It represents the numbers of infectives

at time t – equation 3.1.

λt = 1–(1–p)It (3.1)

In the simplified Greenwood model, the infection dynamics is not related to

the size of the infective compartment, and the probabilities are usually slightly

different from those of the Reed-Frost RF model.

If the time step is small, we will then have p ∼ β [371].

3.3.2 Gillispie algorithm

Stochastic processes applied to biological and demographic parameters will impli-

cate randomness at the individual level of disease transmission. The Gillispie’s

direct algorithm may be used in stochastic modeling as an event-driven approach

[185]. The algorithm estimates the time between events based on the cumulative

rates of all possible events. Then, by using event rates in the form of probabilities,

it will randomly select one of the events. This process will be iterated in time. As

an alternative, one may use the Gillispie’s first reaction method as a simpler but

slower algorithm. The amount of used computer time will depend on the size of

the population, and will assume an important limitation to the algorithm [185].

3.3.3 Stochastic algorithms and Ross-Macdonald theory

These similar algorithms have been applied with reasonable success in stochas-

tic computational models. They have become crucial in defining relevant as-

pects of malaria transmission to be replicated within formal mathematical algo-

rithms relating different SEIRS compartment models. These procedures should

express standard computational relations equivalent to similar concepts within

Ross-Macdonald theory. This will be explained with further detail in the following

section (3.4).

3.4 Ross-Macdonald theory

Ross-Macdonald theory is a fundamental framework in malaria modeling. In

the next subsection, its fundamental concepts will be presented. Later on, they

will also be useful in model validation procedures – chapter 12.

3.4.1 The Ross-Macdonald model

In malaria research, much relevance has been given to R0, the basic reproductive

number. It represents the average number of human infections resulting from a

single contact between one infective person with a healthy individual within a

27



Background

susceptible human population. In malaria, the transmission mechanism is more

complex as it involves both human-to-mosquito and mosquito-to-human trans-

mission in a coupled interaction cycle of human and mosquito infectiousness. In

epidemic disease expansion, R0 is expected to be higher than 1. On the other

hand, in the long term, disease elimination will likely result from a value of R0

lower than 1. From the estimation of R0 it is also possible to infer the concept

of Herd Immunity Threshold (Ht) which stands as a golden landmark in large

population immunization planning:

Ht = 1− 1

R0
(3.2)

In neoclassical models, idealized populations may present with different levels

of risk resulting from mosquito feeding in the presence of heterogeneous trans-

mission. Differences in human spatial mixing and mosquito biting preferences in

relation to biochemical odors, human self-defense ability, human population prox-

imity to larval breeding sites, and human age distribution, among other human

host properties, have been shown to promote disease transmission. This transmis-

sion heterogeneity risk may partially explain some of the differences found in R0

values between stochastic models and empirical data [177, 344, 347].

3.4.2 Classic model assumptions

The initial theory assumed human individuals and mosquitoes as the model agents

to be in one of two compartments: susceptible and infective. During the 1950s,

Macdonald improved the old model by adding a third epidemiological compartment

for exposed mosquitoes. Anderson and May (1991) further added the compartment

of exposed humans to the original model [17, 237].

In these classical models, several assumptions were accepted, called the clas-

sical assumptions – see table 3.1. These assumptions are of axiomatic nature, and

have been used time and again in malaria modeling.

However, recent evidence points out that some of these assumptions may not

be realistic enough in representing malaria transmission, population dynamics and

mosquito ecology [344]. Geographic variation and spatial effects must be also

accounted for. Also, vector transmission models should address the problem that

human populations are biologically diverse, and therefore heterogeneous.

3.4.3 The role of biological parameters and secondary indices

Mathematical models have become crucial in malaria epidemiology, improving the

knowledge of non-linear systems in terms of equilibrium stability. Multiple indices
1 have been useful in defining disease dynamics with a wider scope [177, 343, 347].

1Smith,2004 [343]
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Classical assumptions of malaria models

Mosquito populations are homogeneous
Mosquito senescence is ignored
Adult mosquito population is of constant size
Mosquito biting is random
Human biting is homogeneous
After infection, infected mosquitoes will remain so, indefinitely

Table 3.1: Classical assumptions of malaria mathematical of models [343]

From PQ – see table 3.2 – we will obtain the proportion of mosquito bites oc-

curring in human individuals (anthropophilic feeding behavior). And from PQ and

f , one may also obtain the human feeding rate a, corresponding to the expected

number of bites on human hosts, per mosquito, per day, as in equation 3.3:

a = fPQ (3.3)

Here, we will assume X as the proportion of infected human hosts, and Y as

the proportion of infected mosquitoes, whether infective or during latency in the

latter case. In the event of adopting a straightforward static approach, X will be

held constant – see table 3.3.

Parameter

a Human feeding rate
b Mosquito-to-human infectiousness
c Human-to-mosquito infectiousness

∆m = M
H Mosquito density

f Mosquito feeding rate
qm Mosquito daily mortality rate

τs = 1
f Gonotrophic cycle duration (days)

1
qm

Expected lifespan of one mosquito

ε Mosquito daily emergence rate
τlm Mosquito disease incubation period
PQ Mosquito feeding fraction on human host
τc Average human infectious period
τlh Human disease incubation period

qh = 1
τc

Human disease daily recovery

µh Human yearly mortality rate

Table 3.2: Ross-Macdonald primary biological parameters [237, 343, 344]

Waiting time to biological events

It will also be possible to define some waiting times to biological events [343]:

a) The waiting time τµ to either the first human bite or mosquito death can

be obtained from
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τµ =
1

a+ qm
. (3.4)

b) The waiting time τχ to the first human bite of surviving mosquitoes may

be obtained from

τχ =
1

a
(3.5)

c) The waiting time to infection of the daily surviving mosquitoes – τζ can be

obtained from

τζ =
1

acX
(3.6)

d) The waiting time τξ to one of two events – mosquito death or infection –

may be obtained from

τξ =
1

qm + acX
(3.7)

From these results it will be possible to define Y , as the proportion of infected

mosquitoes (wether or not they are already infective), as in equation 3.8.

Y =
acX

qm + acX
=
τξ
τζ

(3.8)

Indices

X Parasite rate (infected human hosts)
Y Mosquito infection rate (infected mosquitoes)
Z Sporozoite rate (infective mosquitoes)

HBR = ∆m a Human biting rate
EIR = ∆m a Z Entomological inoculation rate

S = a
qm

Stability index (S)

HBI = a
a+qm

Human blood index

R0 Basic reproductive number
λ = b EIR Force of infection

Table 3.3: Ross-Macdonald secondary biological indices [343]

Derived results

It will also be possible to derive other important results:

a) The individual vectorial capacity IC , which is the expected number of in-

fectious bites from a single vector after feeding on an infectious host, as defined in

equation 3.9

IC =
ac

qm
e−qmτlm (3.9)
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b) The vectorial capacity VC , representing the disease transmission potential

of a mosquito population in the absence of Plasmodium, as in equation 3.10:

VC =
∆m a2

qm
e−qmτlm (3.10)

c) The lifetime disease transmission potential τβ, equivalent to transmission

potential of a mosquito population in the absence of Plasmodium, as in equation

3.11:

τβ =
a2bcX

qm(qm + acX)
e−qmτlm (3.11)

d) The rate χ at which mosquitoes become infected is represented in equation

3.12:

χ = acX (3.12)

e) The mosquito emergence parameter ε – defining the vector birth rate – is

obtained from equation 3.13:

ε = ∆m qm (3.13)

Finally, we consider the fundamental sporozoite rate Z, defined as the propor-

tion of infective mosquitoes, as in equation 3.14:

Z = Y e−qmτlm (3.14)

By using Z, one may then obtain the critical entomological inoculation rate

EIR from equation 3.15:

EIR = ∆m a Z (3.15)

These parameters have been considered critical tools in defining the epidemi-

ological equations of malaria analysis, covering different aspects of malaria trans-

mission. EIR and Z are of utmost importance in grasping the full dynamical

aspects of vector behavior.

However, in a global picture of malaria transmission, the basic reproductive

number (R0) has been used as the main benchmark in evaluating the dynamical

impact of malaria, and it will be presented with more detail in the next section

(3.5).
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3.5 The basic reproductive number – R0

From the initial Ross classical formula 2 we may define the earlier and most

consistent expression for R0 (without a term ε for mosquito emergence) [237, 317]:

R0 =
∆m a2bc

qmqh
(3.16)

This expression was reformulated by Macdonald in 1957 [231, 237] with the

introduction of an exponential factor for the mosquito disease incubation time,

τlm:

R0 =
∆m a2bc

qmqh
e−qmτlm (3.17)

Minor improvements in the initial model were later included by Anderson and

May (1991), with respect to the residual impact of human mortality on the global

outcome in the original Ross-Macdonald equations [17, 237].

R0 =
∆m a2bc

qmqh
e−qmτlme−µhτlh (3.18)

Several of the mentioned parameters above assume critical importance in defin-

ing more robust malaria models. In the previous sections we have presented differ-

ent mathematical aspects of malaria transmission derived from Ross-Macdonald

theory.

In the following section (3.6) a detailed chronological perspective of malaria

modeling will be presented.

3.6 Malaria modeling – Historical perspective

Models are supposed to experimentally reproduce what happens in a system

while simulating its dynamics as realistically as possible. Different types of classi-

fication may create a problem, as some of the models share operational character-

istics belonging to more than one of the functional groups. In this case, we could

have chosen to classify each model according to its main operational characteristic

– see table 3.4.

A wide diversity of malaria models have been in use since the early model

created by Sir Ronald Ross in the beginning of the XX century [317]. Different

types of models have evolved since then (tables 3.5 to 3.8).

2Here, we will use qm and qh, instead of the symbols for the mosquito mortality symbol g and
the human disease recovery rate r, respectively, as were used by Smith in 2004 [343]; we will also
use ∆m for mosquito density definition, instead of m originally used by Smith
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Model operational characteristic

Mathematical models (SEIRS models; Ross-Macdonald theory)
Infection dynamical models (human host/vector)
Drug administration and drug-induced resistance models
Models including immunity
Climate models
Geospatial models
Agent-based models
Stochastic models
Time series models (Box-Jenkins theory)
Other unclassifiable models

Table 3.4: Malaria models – Operational classification

Here, we have used a more tedious, but less confusing, chronological approach

in describing all malaria models considered relevant to modeling theory. How-

ever, it would also be possible to classify these models according to its structural

properties and dynamical behavior.

3.6.1 Early years – From the XIX century to 1995

Inspired by the Ross-Macdonald model, a new malaria model was presented by

Dietz in 1974 [103], including the effect of human immunity against the parasite.

This work was based on empirical field results collected in the African savannah of

Kano state, in northern Nigeria, from 1970 to 1976, under the support of the World

Health Organization (WHO). In Nigeria and also under the support of WHO, from

1969 to 1976, the Garki project model for malaria control was implemented, parts

of it being presented by Najera in 1974 [269], and later on in the full project by

Molineaux and Gramiccia in 1980 [255]. This mathematical model evaluated the

effectiveness of insecticide house spraying campaigns and the use of mass anti-

malarial drug administration (MDA) in malaria epidemiological control.

In 1983, Verma presented an interesting model, involving the use of stochastic

processes with the assessment of transition probabilities for prediction of daily

malaria incidence. It was based on longitudinal data, including several biological

parameters, and showed reasonable good fit against observed data [369].

Roy Anderson and Robert May published in 1991 their seminal textbook in

infectious diseases [17], containing a thorough and detailed explanation of mathe-

matical malaria models at the time, including the effect of human latency and the

role of gametocytemia in malaria transmission.

3.6.2 From 1995 to 1999

Martens (1995) used an integrated mathematical model assessing the impact of

climatic factors such as temperature and precipitation in mosquito development

and malaria risk [242].
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The effect of spatial heterogeneity was included as a general SEIR model in a

paper by Lloyd, in 1996 [224]. Although this model did not apply to malaria, it

laid down the ideas for its future application to the epidemic.

Heterogeneity was included for the first time in a malaria epidemic model by

Woolhouse in 1997 [386]. That same year, two quite different papers on malaria

models were published. The first paper concerned the use of genetic algorithms in

the control of vector modeling and vector and parasite resistance to insecticides and

to drug administration, respectively (Janssen [171]), and was based on a previous

work by Martens in 1995 [242]. The second paper focused on the role of human

migration in the risk of a malaria outbreak (Torres-Sorando [360]).

The impact of climate factors in the disease risk was also included as a simple

numerical approach defining disease transmission distribution of a malaria model

in Africa, published by Craig in 1999 [87].

3.6.3 From 2000 to 2009

In 2000, Ngwa presented a mathematical model for malaria transmission with en-

demic behavior in variable human and mosquito populations [273]. It involved a

deterministic approach and used a dynamical system model of differential equa-

tions, where equilibrium points were established by computer simulations in en-

demic malaria. In that same year, Killeen defined a pure mathematical model

of entomological inoculation rate prediction in malaria at different sites in Papua

New Guinea, Tanzania, and Nigeria, based upon several entomological and para-

sitological parameters (human population size and infectiousness, vector emergence

rate, longevity, feeding cycle length and human blood index, and the sporogony

incubation time of the parasite) [188].

From the year 2000 onwards, malaria modeling research steadily gained mo-

mentum, with new and fresh perspectives. Hay (2002) presented a climate model

for evaluation of the risk of malaria resurgence in East African highlands. Long-

term meteorological trends were investigated in four high-altitude sites in East

Africa (Kenya, Uganda, Rwanda and Burundi) [162].

In 2003, Koella described an epidemiological mathematical model based upon

Ross-Macdonald theory to investigate the spread of anti-malarial resistance in

a fraction of treated individuals, taking into account acquired human immunity

dependent on human exposure to infectious vectors [198]. Still in 2003, Gu es-

tablished an individual-based model of Pf transmission based upon the dynamics

of human-mosquito interaction. It also included human immunity as a result of

human history of exposure to the parasite [156].

Hoshen (2004) presented a weather-driven mathematical-biological

malaria model based on parasite dynamics, comprising both the weather-dependent

within-vector stages and the weather-independent within-host stages. Infection

prevalence was estimated based on numerical evaluations of the model in both
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Model specification Author,Year

Primordial malaria mathematical model Ross,1915 [317]
Model with human/mosquito latency Macdonald, 1968 [232]
Ross-Macdonald model application in Nigeria Najera,1974 [269]
Model improvement including immunity Dietz,1974 [103]
The Garki project in Western Africa Molineaux,1980 [255]
Stochastic model predicting malaria incidence Verma,1983 [369]
Improved version of Ross-Macdonald model Anderson,1991 [17]
Climatic factors in malaria risk model Martens,1995 [242]
Spatial heterogeneity in epidemic models Lloyd,1996 [224]
Genetic algorithms in vector control modeling Janssen,1997 [171]
Population migration models Torres-Sorando,1997 [360]
The role of heterogeneity in disease transmission Woolhouse,1997 [386]
Climate model of malaria transmission in Africa Craig,1999 [87]
Entomological inoculation rate (EIR) modeling Killeen,2000 [188]
SEIRS mathematical modeling Hethcote,2000 [164]
Mathematical model of endemic malaria Ngwa,2000 [273]
Climate model and the risk of malaria resurgence Hay,2002 [162]
Model of Pf transmission in Kenya Gu,2003 [156]
Models for spreading of antimalarial resistance Koella,2003 [198]
Upgrade in previous model of endemic malaria Ngwa,2004 [272]
A weather-driven model of malaria transmission Hoshen,2004 [167]
Mosquito availability and malaria transmission Killeen,2004 [189]
Multi-agent malaria modeling Rateb,2005 [313]
Oviposition in disease transmission LeMenach,2005 [216]
Model with within-host dynamics and immunity McKenzie,2005 [249]
A geospatial model of malaria risk in East Africa Omumbo,2005 [282]
Bifurcation analysis in a malaria model Chitnis,2006[69]
Malaria immunity acquisition models Filipe,2007 [126]
Oscillatory model with temporary immunity Tumwiine,2007 [363]
Model of immune-modulated malaria in children Gurarie,2007 [157]
Malaria short-term prediction in Sri Lanka Briët,2008 [52]
Malaria spatio-seasonal modeling in Mozambique Abellana,2008 [3]
Heterogeneity in stochastic models Smith,2008 [349]
Delayed Ross–Macdonald malaria model Ruan,2008 [318]
A model of malaria pathogenesis Mideo,2008 [252]
Role of prophylaxis model in malaria prevention Nyabadza,2008 [275]
Anti-malarial drug resistance mathematical model Pongtavornpinyo,2008 [309]
Artemisinin therapy in disease transmission Okell,2008 [279]

Table 3.5: Malaria modeling – Historical perspective (1911 to 2008)
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time and space [167]. In 2005, Rateb used a multi-agent malaria model for evalua-

tion of the impact of education on malaria healthcare in Haiti [313]. A differential

equation model of malaria was used by McKenzie (2005) supported by within-host

dynamics and including acquired immunity from involvement of different parasite

genotypes [249].

A geospatial approach to modeling of malaria risk in East Africa was presented

by Omumbo, in 2005. Statistical techniques were used in predicting the intensity

of malaria transmission in terms of the childhood parasite rate (X) in a high-

resolution spatial map, according to human settlement and land-use in East Africa

[282]. In 2006, Chitnis investigated the spread of malaria in human and mosquito

populations with endemic stability equilibrium points for R0 > 1. An ordinary

differential equation mathematical model for malaria transmission was used, based

on bifurcation analysis [69].

Tumwiine (2007) presented a malaria model with oscillatory malaria dynamics

in a population with temporary immunity after disease recovery [363]. In 2008,

Abellana presented a malaria model for malaria incidence prediction based on hi-

erarchical Bayesian models, incorporating a seasonal effect on malaria incidence

spatial distribution in children under 10 years old in Manhiça district, Mozam-

bique [3]. Briët (2008) presented different malaria models (ARIMA, SARIMA and

exponentially weighted moving average models) based in the covariation of rainfall

affecting malaria incidence prediction in Sri Lanka, from one to four months ahead

in time [52].

Still in 2008, Thomas Smith presented a method for heterogeneity quantifica-

tion in malaria models. Entomological inoculation rate (EIR) in relation to malaria

incidence was analyzed using published data cohorts of children in Saradidi, in

Western Kenya. Infection risk was treated assuming a binomial distribution, and

measurement-error (Poisson and negative binomial) models were considered for

EIR determination. Models were fitted using Bayesian Markov chain Monte Carlo

algorithms, and model fit was compared for different model assumptions [349]. In

the same year, Pogtavornpinyo described a model for the prediction of the spread

of drug resistance in different malaria transmissions settings, incorporating several

important human and mosquito factors. This model pretended to evaluate dif-

ferent anti-malarial strategies focusing on artemisinin-based combination therapy

(ACT) [309].

Mideo (2008) published a thorough review paper detailing the conceptual de-

velopment of epidemiological and biological malaria models [252].

Still in the same year, Ruan presented a delayed Ross–Macdonald Model of

malaria transmission including parasite incubation times in mosquitoes and human

hosts, and the effect of time delays on the basic reproduction number R0 result

[318].

Finally, in 2008, Okell described a basic parasite model of malaria transmission
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Model specification Author,Year

Multi-step polynomial regression model Chatterjee,2009 [65]
Larval reduction and insecticide treated nets Yakob,2009 [389]
Insecticide-treated nets and malaria transmission Gu,2009 [155]
Environmental dependency in Mali Gaudart,2009 [134]
Mathematical models in malaria strategy White,2009 [381]
Mathematical model for estimation of malaria risk Massad,2009 [245]
Model of village scale malaria transmission Bomblies,2009 [39]
Multi-variable transmission model in Africa Griffin,2010 [152]
Climate model and malaria transmission Parham,2010 [297]
Temporal modeling with time-series analysis Wangdi,2010 [376]
Model for prediction of transmission hot-spots Bousema,2010 [43]
A spatio-temporal vector distribution model Kashiwada,2010 [183]
Disease transmission model of vector life cycle Bellan,2010 [36]
malERA agenda for modeling malaria eradication malERA,2011 [236]
Artemisinin combined therapy model Kern,2011 [187]
Malaria mathematical models review Mandal,2011 [237]
Ecology model of vector life cycle Eckhoff,2011 [110]
Model with sub-microscopic gametocyte reservoir Karl,2011 [181]
Distribution model of infection duration Bretscher,2011 [49]
Malaria immunity agent-based model Gurarie,2012 [158]
Epidemiology of malaria transmission in Kenya Stuckey,2012 [353]
Ecohydrological model of malaria resurgence Montosi,2012 [256]
Asexual parasitemia model of disease transmission Johnston,2013 [177]
Vector dynamic model and malaria transmission Lunde,2013 [228]
A model of vector exposure risk in west Africa Moiroux,2013 [254]
Cost-effectiveness of mass screening and treatment Crowell,2013 [88]
VECTRI model of malaria transmission dynamics Tompkins,2013 [359]
Model of malaria elimination in South Africa Silal,2014 [335]
Agent-based model of vector dynamics Arifin,2014 [25]
Stochastic simulation analysis in disease modeling Klein,2014 [193]
Comparison of five malaria transmission models Wallace,2014 [373]
Mathematical model of malaria transmission Muhammed,2014 [260]
Challenges for modeling indirect transmission Hollingsworth,2014 [165]
Seasonal forecasting model of malaria in India Lauderdale,2014 [210]
Ivermectin prevention model Slater,2014 [339]
SARIMA model of malaria mortality in Nigeria Dan,2014 [94]

Table 3.6: Malaria modeling – Historical perspective (2009 to 2014)
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in human and mosquito populations, directed at the consequences of artemisinin-

based combination therapy on malaria endemicity [279].

In 2009, Gaudart described a deterministic SIRS-type model of malaria trans-

mission including a stochastic environmental factor where the seasonal pattern

of Pf incidence was reasonably explained by a vegetation density index (NDVI )

issued from satellite imagery series, with a time delay of 15 days. This SIRS-

model of malaria incidence with environmental dependency, was based in data

from Bancoumana locality, in Mali [134].

Lisa White (2009) described a simple deterministic compartmental model in-

cluding key parameters of malaria transmission and integrated control obtained

from data sets of areas with different transmission intensities. It included a clini-

cally immune state that could be maintained through repeated infection boosting

immunity or lost in the absence of parasite exposure [381].

Still in 2009, Dangerfield described an interesting SIS-model deterministic-

stochastic approach to malaria modeling. This model combined a diffusion Orn-

stein–Uhlenbeck approximation for stochastic populations with a pair-wise ap-

proximation of a deterministic malaria SIS-model infection spreading through a

network, highlighting the interaction between local spatial structure and stochas-

ticity [95].

Massad (2009) presented a mathematical model of malaria risk in non-immune

individuals acquiring P.falciparum malaria when traveling to the Amazonas region

of Brazil. The risk of malaria infection was dependent on the duration of human

exposure to the parasite and the season of traveler arrival to the region [245].

Also in 2009, Bomblies presented a mechanistic model that coupled a dis-

tributed hydrology scheme and an entomological model with environmental condi-

tions and associated entomological activity in high spatial- and temporal-resolution,

for accurate simulation of village scale malaria transmission. Model results were

compared to regular field observations of An.gambiae s.s. (sensu lato) mosquito

populations and local hydrology [39].

3.6.4 From 2010 to 2015

In 2010, Griffin presented an individual-based simulation model of the effect of

artemisinin-combined therapy (ACT) with wide coverage of long-lasting insecticide

treated nets (LLIN) in Pf transmission in Africa, concerning three important

vector species (An.gambiae s.s., An.arabiensis, and An.funestus) [152]. In that

same year, Parham developed a simple model dealing with the importance of

rainfall and temperature on mosquito population dynamics, disease persistence

and seasonal transmission in Tanzania [297]. Also in 2010, Kashiwada described a

model of vector spatial and temporal distribution based in the life history of the

Anopheles mosquito, by using an ecophysiological approach with the availability

and temperature of surface water in Monsoon Asia (China, Japan, South Korea,
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Thailand and India) [183].

Wangdi (2010) used an ARIMA malaria model for prediction of malaria inci-

dence built from a data set from 1994 to 2006 in seven malaria endemic districts

in Bhutan. This model was developed taking into account the trend of malaria

cases over the years with assumed stability of all other conditions (climate factors,

preventive measures, and human migration) [376].

Still in 2010, Bellan designed a model on how age-dependent mosquito mortal-

ity could affect the effectiveness of anti-vectorial interventions in reducing disease

transmission [36]. In that same year, Bousema designed a spatial methodology for

identification of malaria transmission hot-spots. Environmental, household fac-

tors and serological markers of malaria exposure were used to develop a model for

prediction of malaria transmission hot-spot areas [43].

In 2011, the malERA group proposed an important agenda for malaria model

research and development, with a broader eradication research agenda. It detailed

modeling objectives and data management methods, pointing to further aspects of

model development such as models concerning within-host dynamics of Plasmod-

ium infections, as well as the importance of human infectious reservoir, bionomics

and ecology of the vectors. It included genetically modified mosquitoes, parasite

dynamics, host and vector movements, and drug dynamics. Also of concern were

how could human immunity and the use of vaccines be able to interrupt malaria

transmission in the presence of host and vector heterogeneity [236].

Mandal (2011) published an important and detailed review on the evolution

in time of mathematical malaria models with the most critical features of host-

vector-parasite interactions. Models were presented, evolving from the original

Ross equations to a hierarchical structure of deterministic models with different

levels of complexity [237].

Eckhoff, in 2011, presented a reliable model for mosquito population dynamics

including mosquito feeding behavior, weather conditions and the impact of vec-

tor control interventions such as bed nets, indoor residual spraying (IRS), larval

control and space spraying, both alone and in combination, for a single-location

simulation with seasonality typical of central Tanzania [110]. Still in 2011, Karl

presented an important model focused on the presence of low-level gametocytemia

and its consequences in disease transmission. This model was a refinement of the

classical Ross-Macdonald model of malaria transmission, and incorporated mul-

tiple infectious compartments with potential impact on low-level gametocytemia

reservoirs in the population [181].

Bretscher (2011) presented an infection dynamic model focused on the prob-

ability distribution curves of human disease duration with several parameter set-

tings, with validation by empirical data from the region of Navrongo, in North-

ern Ghana [49]. Finally, in 2011, Kern presented a computer simulation model

directed at the impact of community screening campaigns (CSC) followed by sys-
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tematic treatment of P.falciparum asymptomatic carriers (AC) with artemether-

lumefantrine (AL), incorporating a seasonality effect. This model was based on a

basic parasite model of malaria transmission in human and mosquito populations

published by Okell in 2008 [279], and directed at the consequences of artemisinin-

based combination therapy on malaria endemicity [187].

In 2012, Stuckey described an individual-based stochastic simulation model of

malaria in humans coupled with a deterministic model of malaria for mosquitoes

while reproducing the seasonal pattern of the entomological rate. The transmis-

sion model was supported by a periodically-forced difference equation for mosquito

feeding and human and mosquito infectiousness, in a heterogeneous human pop-

ulation background [353]. In that same year, Gurarie described a new in-host

agent-based model combining deterministic and stochastic components of in-host

dynamics with several features of the parasite replication cycle and parasite-host

interaction, such as antigenic variation of P.falciparum, human immunity and par-

asite clearance [158]. Also in 2012, Montosi described a full eco-hydrological model

of malaria transmission dynamics coupled with a hydrological model of soil water

content in relation to climatic factors such as the minimum monthly temperature

and the presence of precipitation anomalies [256].

In 2013, Johnston described a mechanistic within-host model of P.falciparum

infection in humans and pathogen transmission to Anopheles mosquitoes during

the entire parasite life-cycle, from intra-erythrocytic asexual forms, to mature

transmissible gametocytes with high human-to-mosquito infectiousness [177]. Dur-

ing that same year, Moiroux described a spatio-temporal malaria risk model based

on human-vector interaction concerning two Anopheles species (An.funestus and

molecular forms M and S of An.gambiae s.s.) in an area of Benin with strong

vector control intervention [254]. Also in 2013, Crowell presented a dynamic,

individual-based, stochastic model of malaria biology and epidemiology intending

to evaluate effectiveness of mass screening and treatment (MSAT) strategy for

P.falciparum disease-burden reduction [88]. Lunde (2013) presented a detailed

biophysical model with spatial distribution and time-dependent vector density of

two competing species (An.gambiae s.s. and An.arabiensis), and where vector

survival is dependent on mosquito size and climate factors such as temperature

and relative humidity [228].

The first published version of the VECTRI malaria dynamics model originated

in Trieste and was presented in 2013 by Tompkins. This model analyzed the im-

portance of rainfall, and water and air temperature on the P.falciparum parasite

and the An.gambiae vector life cycles, in close interaction with the human host

population. Larval life cycle and larval mortality along with Anopheles mosquito

gonotrophic and sporogony cycles were considered in mathematical detail. Human

host population density and surface hydrology were also included in the transmis-

sion model [359].

In 2014, Arifin presented an agent-based entomological model of vector popula-
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tion dynamics, with analysis of the impact of vector control interventions in specific

phases of the mosquito life cycle [25]. In that same year, Klein, among other mod-

els, presented an individual malaria simulation model based in a detailed computer

simulation using the Separatrix Algorithm. This algorithm combined binomial re-

gression, based on specific kernel methods, with an experimental design procedure

for optimized information gain. This model focused on the goal of local malaria

elimination by the use of insecticide treated bed nets (ITN) and pre-erythrocytic

vaccination (PEV) [193]. Still in 2014, Wallace published a comparative analysis

of five malaria models concerning several aspects of disease transmission dynam-

ics at equilibrium such as malaria incidence in human and mosquito populations,

human-biting rate, and entomological inoculation rate (EIR) [373].

Muhammed (2014) presented a malaria mathematical model based on a pre-

viously published SEIRS/SEI model for human/mosquito populations by Shu and

Ngwa [273]. It included drug effectiveness evaluation, but excluded direct human

recovery from the infection to the susceptible compartment [260].

Also in 2014, Silal presented a deterministic non-linear compartmental model

of malaria transmission dynamics in the human population of Mpumalanga, South

Africa, including seasonality and elimination-focused interventions such as vector

control and mass drug administration [335]. Dan (2014) used a seasonal ARIMA

(SARIMA) model for analysis and forecasting of malaria mortality rate in Nigeria,

adopting the reliable Box and Jenkins methodology [94].

In 2015, Kamgang presented a mathematical compartmental model of malaria

transmission including several aspects of malaria dynamics like intrinsic vector

behavior variables, parasite biological parameters and specific human factors such

as immunity and immigration [180]. Meanwhile, in 2015, Sharma presented a

machine-learning model for prediction of malaria incidence by using two popu-

lar data mining classification algorithms (Support Vector Machine and Artificial

Neural Network) based upon a large data set from Maharashtra state [331]. Also

in 2015, Gebremeskel published a mathematical model describing the dynamics

of malaria in different human population compartments. This model was sup-

ported by a system of ordinary differential equations (ODEs) applying dimensional

analysis, scaling, perturbation techniques and stability theory of ODE systems in

defining the stability of all equilibrium points in the model [135].

3.6.5 From 2016 to 2022

In 2016, Yamana presented a mechanistic modeling tool to investigate the effects

of hysteresis in malaria transmission in Banizoumbou, a small village in Niger. A

process-based model was used to simulate the dynamics of malaria transmission

including vector and parasite variables and intrinsic factors such as human immu-

nity and prior population infection status [390]. Also in 2016, Anwar presented

an autoregressive integrated moving average (ARIMA) model with environmental

and climate data, for malaria incidence prediction in Afghanistan [22].
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The year of 2017 was an important one for innovation in new malaria models.

Alam presented a spatial agent-based model of An.vagus biological attributes and

life-cycle, concerning the role of climatic factors such as daily temperature and

rainfall, and the impact of combined vector control interventions in Bandarbaran,

Bangladesh [10]. That same year, Ferreira presented an agent-based stochastic

model simulating the impact of insecticide-treated bed nets (ITN) and indoor

residual spraying (IRS) on mosquito survival and biting rate, allowing for the pos-

sibility of genetic natural selection of insecticide-resistant mosquitoes under the

pressure of adopted control strategies [124]. Slater (2017) published a compre-

hensive review of the role of mathematical models in antimalarial drug research,

focusing on drug properties and effectiveness in malaria control, and mechanisms

of parasite drug resistance [341]. Still in 2017, Winskill presented a mathematical

model of control intervention cost-effectiveness in Sub-Saharan Africa with RTS,S

malaria vaccine, long-lasting insecticide net (LLIN), indoor residual spraying (IRS)

and seasonal malaria chemoprevention (SMC) over a 10-year period [383]. Ger-

ardin (2017) described a dynamical model of malaria transmission with spatially-

connected household local variation in vectorial capacity and intervention coverage

according to empirical data from Gwembe District, Gambia [138]. Belay (2017)

presented a model relating mosquito abundance and time to malaria incidence in

a Bayesian joint framework [35]. Zhu (2017) described a spatial individual-based

model of malaria transmission in a hypothetical isolated African village setting

with the use of LLIN and outdoor attractive toxic sugar bait (ATSB) stations as

vector control measures [396].

Also in 2017, Girond presented a SARIMA model for malaria outbreak fore-

casting based in an automated web-based sentinel malaria early warning system

(MEWS) [143]. Getnet (2017) developed GARCH and seasonal ARIMA models

aimed at forecasting malaria incidence in Addis Zemen, Ethiopia [141].

In 2017, concerning models on MDA, Brady studied its effects in the presence

of low malaria transmission [48], while Pemberton-Ross, with the help of proba-

bility generating functions, presented a compartmental model for analysis of the

probability of malaria stochastic extinction in different scenarios of MDA coverage,

population size, and in terms of its effect on the reproduction number, R0 [301].

In 2018, Bakary presented a mathematical model of malaria transmission dy-

namics considering vector age, vector periodic biting rate, and human immunity

status. Equilibrium points in the dynamical system were analyzed with detail.

Numerical simulations were used to illustrate the system evolution in time [29]. In

that same year, Smith presented a systematic review of 90 agent-based models of

malaria transmission published between 1998 and 2018, that were considered the

most relevant at the time [346]. Meanwhile, Coalson (2018) developed a math-

ematical model to estimate the proportion of new mosquito infections according

to the age and gametocyte density of infectious human hosts, and the type of

season in terms of rainfall [76]. Still in 2018, Koutou presented a SIR-SI malaria
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Model specification Author

A model of malaria transmission dynamics Kamgang,2015 [180]
Times series analysis of malaria cases in Ghana Appiah,2015 [23]
Vector model with non-linear forces of infection Avila-Vales,2015 [27]
Infection duration model and acquired immunity Bretscher,2015 [50]
Stochastic epidemic models review Britton,2015 [53]
Disease ecology models in multi-agent systems Buhnerkempe,2015 [54]
Pre-erythrocytic vaccine in intra-host malaria McCarthy,2015 [248]
Malaria diagnosis model in african children Phillips,2015 [304]
Insect sterilization and vector control model Gentile,2015 [136]
Machine learning malaria prediction model Sharma,2015 [331]
Mathematical model of malaria dynamics Gebremeskel,2015 [135]
ARIMA models in malaria time series Anwar,2016 [22]
Malaria and weather time series analysis in Iran Ostovar,2016 [290]
Malaria prevention efficiency model Walker,2016 [372]
Bistable equilibrium and malaria elimination Griffin,2016 [151]
Artemisinin and drug resistance model in Africa Slater,2016 [340]
Climate conditions in malaria transmission Yamana,2016 [390]
Spatial effects in Pf multiple infections Karl,2016 [182]
Cost-effectiveness modeling of a malaria vaccine Winskill,2017 [383]
Reactive case detection and malaria elimination Gerardin,2017 [138]
Bayesian weather model of malaria incidence Belay,2017 [35]
Individual-based model of outdoor vector control Zhu,2017 [396]
Malaria forecasting model in Madagascar Girond,2017 [143]
Stochastic model for time series in Ethiopia Getnet,2017 [141]
Time series malaria analysis in Ghana Alhassan,2017 [12]
Time series malaria control model in South Africa Ebhuoma,2017 [109]
Diagnostic testing and Pf selection Watson,2017 [377]
Long-acting/transmission blocking drugs model Bretscher,2017 [51]
Malaria prevention in HIV+ pregnant women Choi,2017 [72]
Diagnostic testing and Pf selection Gatton,2017 [133]
Impact of ITN use in Anopheles biting time Ferreira,2017 [124]
Agent-based model of An.vagus epidemiology Alam2017 [10]
Drug development model for malaria elimination Slater,2017 [341]
MDA model in low malaria transmission areas Brady,2017 [48]
MDA model and disease extinction probability Pemberton-Ross,2017 [301]
Pf sexual stage immunity in infection dynamics Ouédraogo,2018 [292]
Wind and water proximity in disease transmission Endo,2018 [111]
Mass drug use and disease transmission Gerardin,2018 [139]
Human movement and disease transmission model Pizzitutti,2018 [307]
Host-seeking vector behavior and LLIN model Shcherbacheva,2018 [332]
ARIMA model of malaria incidence in Ghana Anokye,2018 [21]
Mathematical model of malaria transmission Bakary,2018 [29]
Role of children in disease transmission in Malawi Coalson,2018 [76]
Systematic review of malaria agent-based models Smith,2018 [346]
A mathematical model of malaria transmission Koutou,2018 [200]
Threshold conditions in dynamic malaria models Wanduku,2018 [374]
A stochastic model of malaria transmission Mbogo,2018 [247]

Table 3.7: Malaria modeling – Historical perspective (2015 to 2018)
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transmission model to analyze the effects of infection incubation time in disease

transmission, considering a variable human immunity status [200]. Anokye (2018)

analyzed the use of ARIMA models in malaria incidence forecasting, in Kumasi,

Ghana [21].

Also in 2018, Wanduku presented a family of deterministic SEIRS epidemic

dynamic malaria models in terms of the time to acquisition of immunity and the

time of disease incubation in human hosts and mosquitoes [374]. During that

same year, Mbogo presented a stochastic model for malaria transmission dynam-

ics, deriving relations between the basic reproductive number for malaria and

extinction thresholds of corresponding continuous-time Markov chain models, un-

der certain assumptions. The model was formulated by using the continuous-time

discrete state Galton-Watson branching process [247]. Still in 2018, Pizzitutti

described a spatial agent-based model of human behavior and mobility in local-

scale malaria transmission, and its relation to seasonal flooding of Amazon river,

in Peru [307]. Finally, in 2018, Shcherbacheva presented a malaria transmission

agent-based model concerning the protective efficiency of LLIN and IRS against

different species of Anopheles mosquito [332].

In 2019, Abiodun described a dynamical zero-inflated negative binomial regres-

sion model in Limpopo Province, South Africa. The predictive power of climate

variables such as the daily rainfall and average temperature in malaria incidence

was determined as a function of the number of daily cases, at different time lags

[4]. In that same year, Weiss described a Bayesian space-time geospatial model of

parasite rate, malaria incidence and disease mortality in a cartographic approach

concerning 36 countries with high-burden endemic malaria in sub-Saharan Africa,

while comparing its results with those of other 70 countries where data was col-

lected using the surveillance approach [379]. Still in 2019, Le presented a stochastic

lattice-based malaria model with the ability to make predictions of disease dynam-

ics, vector burden and parasite life cycle, in relation to climate changes in one of

Kenya sub-regions. Climate-driven hydrological changes under global warming

were considered critical for defining vector habitat distribution [215]. Also, in

2019, Onah described a mathematical epidemiological model of malaria transmis-

sion dynamics and stability analysis of endemic equilibrium points concerning the

impact of several disease control measures [284].

With the purpose of defining better strategies for vaccine protective efficacy en-

hancement, Atcheson (2019) described a mathematical probabilistic model of pro-

tective efficacy obtained by the combination of different pre-erythrocytic malaria

vaccine subunits in mice [26].

In 2020, Sequeira (author of the current dissertation) described a multi-variable

agent-based model of disease transmission with a computational demonstration of

the potential utility of combining ivermectin with gametocidal agents such as pri-

maquine or methylene blue in reducing malaria transmission, with no further need

for additional anti-malarial drug intervention [326]. Also in 2020, Sequeira used
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Model specification Author

Malaria regression model in South Africa Abiodun,2019 [4]
Global prevalence of Pf malaria Weiss,2019 [379]
Malaria and climate change impact in Kenya Le,2019 [215]
Mathematical model of malaria prevention Onah,2019 [284]
Model of malaria vaccine combination in mice Atcheson,2019 [26]
Reactive case detection and Pf transmission Reiker,2019 [314]
Impact of falsified anti-malarial drugs in Uganda Ozawa,2019 [293]
Ivermectin and gametocidal drugs model Sequeira,2020 [326]
Model of heterogeneity in malaria transmission Sequeira,2020 [327]
Epidemiological model of malaria transmission Aguilar,2020 [7]
Neural network malaria prediction model Verma,2020 [368]
Mathematical model of malaria transmission Traoré,2020 [361]
Modeling malaria dynamics Olaniyi,2020 [280]
Age of infection in a vector-borne disease model Wang,2020 [375]
Quarantine in the Ross-Macdonald model Jin,2020 [174]
Dynamical model of malaria transmission in India Chaturvedi,2020 [66]
Fourier residual ARIMA model in malaria Eze,2020 [116]
Malaria model with climate variables in India Kumar,2020 [203]
A fuzzy logic based model for malaria prediction Chekol,2020 [67]
A weather-based deterministic model Yiga,2020 [391]
Probabilistic model of malaria recognition Parveen,2021 [299]
Model of malaria population dynamics Witbooi,2021 [384]
Malaria agent-based complex model Amadi,2021 [15]
SIS-SI stochastic model of malaria spreading Syams,2021 [356]
Bayesian decision model for malaria prediction Clearly,2021 [75]
Modeling Anopheles distribution in arid regions Valderrama,2021 [365]
Risk model of mosquito-borne diseases Colón-González,2021 [81]
Malaria temporal variation in a time series model Ferrão,202 [125]
Agent-based model of mosquito aquatic habitats Layie,2021 [214]
Malaria forecasting – Hurst exponent and entropy Sequeira,2022 [328]
Nonlinear differential equations model Sinan,2022 [336]
Time-dependent social deterministic model Olaniyi,2022 [281]
Fractional-order delayed Ross–Macdonald model Cui,2022 [89]
Mathematical model using the Jacobian matrix Ahmed,2022 [8]
Relative humidity dynamical model based in India Santos-Vega,2022 [323]

Table 3.8: Malaria modeling – Historical perspective (2019 to 2022)
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the previous malaria model in establishing the importance of heterogeneity in in-

creasing malaria transmission more than three-fold, as well as the potential benefit

of the combination ivermectin-gametocidal agents in reducing that transmission

amplifying effect [327].

In that same year, Aguilar presented an epidemiological malaria model with

evaluation of the influence of asymptomatic carriers in disease transmission [7].

Meanwhile, Verma described a back-propagation neural network malaria model

defining disease risk in terms of regional climate data [368]. Still in 2020, Traoré

used a global mathematical model of malaria transmission which was based on a

structured mosquito population in Burkina Faso, and included the seasonal varia-

tion of monthly mean temperature [361].

In 2020, Olaniyi presented a mathematical model of malaria dynamics with

partial immunity and the presence of protected travelers. It included different sce-

narios of preventive strategy with the use of IRS and ITN, and a cost-effectiveness

analysis [280]. And in that same year, Wang described a vector-borne disease

model with quantification of human and mosquito age of infection, and its influ-

ence in disease transmission dynamics [375]. Meanwhile, Jin presented a model

based on the Ross-Macdonald theory that included the influence of quarantine in

disease transmission [174].

Chaturvedi (2020) described a climatic dynamical model for estimation of

malaria incidence in India in a setting of a warming environment [66]. Meanwhile,

Eze described an ARIMA model with Fourier residual modification for determina-

tion of malaria incidence rates among pregnant women in Thailand [116]. In 2020,

Kumar presented a time series regression model for malaria prediction based on

climate variables and data collected in the Odish district in India [203].

Yiga (2020) presented a weather-based human host-mosquito vector deter-

ministic model by looking into how temperature and rainfall may influence trans-

mission dynamics. He found a unique endemic equilibrium that was locally and

globally asymptotically stable whenever R0 > 1 . The model was analyzed for

steady states and their stability. Temperature was more important than rainfall

in malaria transmission [391].

Finally, Chekol (2020) presented an unconventional recent model capable of

malaria epidemic prediction based in an innovative mathematical method de-

scribed as type 2-fuzzy logic system, optimized according to Big Bang-Big Crunch

theory. This original method could predict with reasonable accuracy a new malaria

epidemic spike, up to 3 months ahead of its occurrence [67].

Parveen, in 2021, proposed a Bayesian network (BN) probabilistic-based model

in the prediction of malaria. The proposed model was based on patient’s symptoms

and environmental data. The model had an accuracy of 81% when evaluated on

the collected data set [299].

In 2021, Witbooi described a compartmental model based upon ordinary dif-
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ferential equations of malaria disease transmission. It included the effect of IRS

on the vector population, while allowing for the influx of infected immigrants into

the host population, as well as for the outflow of cured emigrants [384]. In a paper

published by Amadi (2021), an agent-based stochastic model was used as a tool for

regression analysis with the help of simulation results compared to experimental

field data, while allowing for the calibration of important classical model param-

eters such as biting rates and vector mortality [15]. Meanwhile, Syams used a

continuous time Markov chain stochastic model adapted in the form of a modified

mathematical model to describe the dynamics of malaria transmission. It focused

on the basic reproduction number R0, the probability of disease outbreak, and the

time to reach disease-free equilibrium [356].

Still in 2021, in Papua New Guinea, Clearly presented a predictive model to an-

alyze P.falciparum and P.vivax malaria prevalence maps by using

Bayesian decision networks and multilevel logistic regression models in terms of

disease spatial risk prediction accuracy [75].

Also in 2021, Valderrama presented a model of the potential distribution of

the malaria vector An.pseudopunctipennus in subtropical regions in northern Chile.

With the help of a minimum number of variables, a logistic regression model was

created defining the spatial distribution of the vector presence probability in the

northern regions of Chile [365].

Colón-González (2021) used a multi-model multi-scenario framework, for es-

timation of the length of the transmission season and global population at risk of

malaria in different altitude settings during an extended time period between 1951

and 1999, according to regional climatic suitability [81].

A Box-Jenkins model was used by Ferrão in 2021, while analyzing the lead-

ing causes of malaria morbidity and mortality in Mozambique. Temporal mod-

eling with autoregressive integrated moving average (ARIMA) was implemented,

based upon empirical malaria incidence data collected from 2015 to 2019 [125].

Layie (2021), used an agent-based model aiming at controlling malaria trans-

mission by focusing on mosquito aquatic habitats management and larval con-

trol around houses through population sensitizing campaigns in a traditional sub-

Sahara region.[214].

In 2022, Sequeira used a previous malaria model [326, 327] in establishing the

importance of the Hurst exponent and information entropy in malaria time series

forecasting, by defining its application to long memory stochastic processes in the

presence of long-range dependence [328].

Also in 2022, Sinan analyzed the dynamics of malaria among human indi-

viduals and vectors with the help of a mathematical model applying non-linear

ordinary differential equations generalized by the Atangana–Baleanu fractional

derivative. This model was found to be globally asymptomatically stable as the

solution converged to its equilibrium [336].
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Cui (2022) proposed a novel fractional-order delayed Ross–Macdonald model

for malaria transmission, by using different mathematical approaches such as in-

equality techniques, contraction mapping theory, fractional linear stability theo-

rem, and bifurcation theory in local stability analysis [89].

In 2022, Olaniyi presented a time-dependent socially structured deterministic

model based upon an eight-dimensional system of differential equations aiming at

the prevention and control of the effects of social differences on the transmission

dynamics of malaria [281].

Meanwhile, in 2022, Ahmed investigated the local stability of critical equilib-

rium points in a mathematical model by applying the Jacobian matrix technique

[8]. The general stochastic fractional Euler method, the Runge–Kutta method,

and a proposed numerical method were used in defining all model solutions [8].

Finally, in 2022, Santos-Vega analyzed the role of relative humidity in the

interannual variability of epidemic malaria in two semi-arid cities of India by using

a process-based dynamical model supported by almost two decades of monthly

surveillance of geophysical data. He found relative humidity to be a critical factor

in the spread of urban malaria and potentially other vector-borne epidemics [323].

3.6.6 Synopsis

With all malaria models here presented we have witnessed an evolution in time,

from the initial mathematical deterministic models [69, 188, 198, 232, 273, 317,

318, 383] based upon SEIRS compartments and the system of differential equations

that supports them, to the more recently used computer-dependent stochastic [124,

247, 369] and agent-based malaria models [10, 25, 158, 214, 307, 326, 332, 346, 396].

A different type of malaria model currently in use has been based upon

geospatial maps of disease prevalence, sometimes supported by satellite imaging

[3, 138, 282, 379].

Models dedicated to disease dynamics in relation to the presence of gameto-

cytemia in human hosts [49, 181] or to special characteristics of vector behavior

[29, 36, 39, 110, 183, 249] are fundamental in our historical review of malaria

modeling.

Finally, models including malaria immunity [26, 156, 236, 363], climate sea-

sonality [87, 162, 167, 242, 256, 297, 359], and drug-induced resistance or mass

drug administration [48, 187, 279, 309] were also taken into consideration in the

construction of our computational and stochastic agent-based model.

In the last decade, malaria models have been used with far more consistency

in malaria prevention by using stronger computer power, more detailed satellite

imaging and new and promising mathematical approaches like neural network pre-

diction models [368], machine learning models [331] and Bayesian weather models

[35]. Although not directly related to the computational approach used in our

stochastic model, some of these unclassifiable, conceptually interesting, and most
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recent models were also listed for the sake of completeness [4, 35, 193, 331, 368].

Our malaria model [326] was created as a detailed, multi-variable, stochastic,

agent-based model reproducing several realistic aspects of malaria transmission in

a typical African village with high malaria incidence.
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Chapter 4

Mathematical background

4.1 Model adaptation to Ross-Macdonald theory

In the current chapter, expected results from classical Ross-Macdonald pa-

rameters to be used in our model will be presented. Some of these parameters will

be correlated with our own model parameters later described in chapter 5 – tables

5.1 and 5.2. We will follow the methodology for EIR and R0 calculation, based

upon the mathematical formalism of D.L. Smith,2004 and 2007, and Mandal,2011

[237, 343, 344]. This theory was previously described in section 3.4.

4.1.1 Malaria parameters

The duration of the gonotrophic cycle (mosquito time spent in feeding mating-

oviposition cycle) will be later defined in tables 5.1 and 5.2, according to τs = 4

days. The time spent out of oviposition in gonotrophic cycle (mosquito time spent

in feeding) is defined as f = 1
τs

= 0.25 days−1.

The human feeding rate – a – is a crucial measure of vector activity in Ross-

Macdonald classical theory. It represents the average number of daily bites from

a single mosquito. Most of the early successes in malaria are the result of effec-

tive vector control strategies in regions where explosive Anopheles breeding takes

place during the tropical wet season (India and Africa). In our model this critical

parameter is obtained from equation 4.1.

a =
1

τs
PQ nb (1− u) σ ≈ 0.238 (4.1)
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where the average number of mosquito individual daily bites (daily bites per

mosquito) is obtained from nb = 2, the animal feeding factor (% of mosquito

human bites in all human and animal bites) results from PQ = 0.9, and the barrier

protection factor (IRS/ITN/LLIN) is defined as u = 0.25 – see tables 5.1 and 5.2,

in chapter 5.

The mosquito-to-human transmission efficiency – b – is equivalent to the prob-

ability of M-to-H disease transmission from an infectious mosquito 1, and is ob-

tained from equation 4.2, where the probability of mosquito-to-human transmis-

sion from one mosquito bite is obtained from kh = 0.2, and ν = 0.1 represents the

average baseline human population immunity against malaria.

b = kh(1− ν) = 0.18 (4.2)

We have used this theoretical definition of b, where all infected mosquito bites

were counted in the model simulation, whether during or after latency, and not

only from strictly infectious mosquitoes (positive for the presence of sporozoites in

salivary glands) as in the theoretical prediction. Thus, the theoretical predicted

value was higher than the value obtained from the simulation result.

In the simulation there is an effect derived from the mosquito mortality re-

sulting from ITN exposure (q
(itn)
m = 0.5). In the model algorithm, that value was

included in the overall mosquito mortality, lowering the number of mosquitoes

that survived after latency. Thus, in the simulation, b is lower than the predicted

theoretical value, as it includes mosquito bites from infected mosquitoes still in

latency (and therefore, not yet infectious).

Finally, the Human-to-Mosquito transmission efficiency – c – is defined in

equation 4.4, assuming a constant value of km = 0.2, and wh = 0.453 (as an

example), that corresponds to 68 days of positive gametocytemia in a total of 150

days of disease duration.

The presence of gametocytemia is obtained from equation 4.3 and will influence

the Human-to-Mosquito transmission efficiency (c) in equation 4.4 .

wh =
τg
τd

=
τg

150
(4.3)

c = kmwh ≈ 0.091 (4.4)

1quoting from DL Smith, 2004 [343] we know that “The lifetime transmission potential of
a mosquito is defined as the expected number of new infections that would be generated by a
newly emerged adult. Let b denote the transmission efficiency from an infectious mosquito to
an uninfected, susceptible human; in other words, b is the probability that an uninfected human
becomes infected after being bitten by an infectious mosquito.”
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4.1.2 Secondary indices

Several important indices can be derived from the traditional Ross-Macdonald pa-

rameters. The sporozoite rate (Z) represents the fraction of infectious mosquitoes

(average of surviving infected mosquito prevalence past latency). It is essential for

the calculus of another critical index, the entomological inoculation rate (EIR). Z

can be obtained from the average value of infected mosquitoes Mi multiplied by

the fraction of mosquitoes surviving past latency (life expectancy above 10 days)

according to equation 4.5.

Z = Mie
−qmτlm (4.5)

Another important index is the Parasite Rate X representing the fraction of

human hosts that are infected (but not necessarily infectious). It is also important

to stress out that the fraction of infected mosquitoes (not necessarily infectious)

is defined by Y – see equation 3.8 and table 3.3, in chapter 3.

Z may also be obtained from the alternative equation 4.6:

Z =
ace−qmτlm

qm + acX
=

0.0586814

0.1 + 0.02158768×X
(4.6)

Assuming a static analysis with c = 1 (D.L.Smith,2004 ) [343] we may still

obtain a slightly overestimated version for Z, as in equation 4.7:

Z =
ae−qmτlm

qm + aX
=

0.08759184

0.1 + 0.02158768×X
(4.7)

4.2 SIR deterministic model

Based upon the original Kermack-McKendrick equations it is possible to create

several simplified compartment models. They include agent transitions between

different compartments. In common practice, the SIR model is most usually used.

It is based in 3 categories (or compartments): Susceptible (previously unexposed

to the pathogen), Infected (currently colonized by the pathogen) and Recovered

agents (that have successfully cleared the infection). By ignoring population de-

mographics (no birth, death or migration) the simplified SIR model is perfectly

acceptable and quite effective in transitions S-I, I-R and R-S. The differential SIR

equations, considering that recovered patients become totally immune, are given

in equations 4.8, 4.9 and 4.10.

∂S

∂t
= −βSI (4.8)
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∂I

∂t
= βSI − γI (4.9)

∂R

∂t
= γI (4.10)

However, if immunity is gradually lost in time, without exposure to the in-

fectious agent, we will then have a different set of equations – see equations 4.11,

4.12 and 4.13:

∂S

∂t
= −βSI + δR (4.11)

∂I

∂t
= βSI − γI (4.12)

∂R

∂t
= γI − δR (4.13)

In these equations, δ represents the rate of immunity loss in the recovered

(R) category. In the presented model, two types of agents are involved: human

individuals and mosquitoes. In such a case we will have two groups of equations:

one applied to humans (equations 4.14, 4.15 and 4.16), and the other to mosquitoes

(equations 4.17, 4.18 and 4.19) .

Humans:

∂Sh
∂t

= −βhShIm + δhRh (4.14)

∂Ih
∂t

= βhShIm − γhIh (4.15)

∂Rh
∂t

= γhIh − δhRh (4.16)

Mosquitoes:

∂Sm
∂t

= −βmSmIh + δmRm (4.17)

∂Im
∂t

= βmSmIh − γmIm (4.18)

∂Rm
∂t

= γmIm − δmRm (4.19)

If the initial fraction of susceptible (S0) is less than γ
β , then the infection will

die out as a result of dIdt < 0. This is well accepted as the “threshold phenomenon”,

described by Kermack and McKendrick [185].
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For the impact of different initial conditions in our model, please refer to

Appendix C.

4.2.1 Simplified Kermack-McKendrick SIS mathematical model

As a support to the present stochastic model, a corresponding

Kermack-McKendrick SEIRS model was deduced. Exposed compartment repre-

sented a small constant fraction of the infected compartment. However, we used

a simplified SIS version of the deterministic model, removing the exposed and re-

covered compartments. As such, the exposed compartment was included in the

infectious group. It was assumed that malaria immunity from infection does not

confer fully protection to human individuals from new infection episodes. All cured

patients were directly moved from the infectious to the susceptible compartment,

removing the recovered compartment. With these assumptions, a simplified SI

mathematical model was used – see equations 4.14 to 4.19.

Figure 4.1: SIS deterministic model
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Figure 4.2: Malaria SIS deterministic model simulation resulting from equations
4.20 and 4.21 (with βh = 0.040, βm = 0.040, and γh = 0.0067, while γm depends
on the mosquito mortality rate qm = 0.10 days−1, assumed constant in our model).

4.2.2 SIS model – differential equations

Humans:

∂Sh
∂t

= −βhShIm + γhIh (4.20)

∂Ih
∂t

= βhShIm − γhIh (4.21)

where oviposition length, ITN/IRS protection, skin protection against sporo-

zoite mosquito-to-human transmission after mosquito bite, and drug prevention,

are all included in βh, and human immunity protection, drug therapy and human

disease cure rate (qh) are included in γh:

Mosquitoes:

∂Sm
∂t

= −βmSmIh + γmIm (4.22)
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∂Im
∂t

= βmSmIh − γmIm (4.23)

where oviposition length, ITN/IRS protection, skin protection against game-

tocyte human-to-mosquito transmission after mosquito bite, and drug prevention,

are all included in βh, and mosquito mortality rate (qm) and drug therapy are

included in γh – see equations 4.20 to 4.23, and figures 4.1 and 4.2.

4.2.3 Stability analysis of SIS differential equation model

Assuming differential equations in support of the SIS simplified model we obtain

a set of equations – see equations 4.24 to 4.27:

sh =
Sh
Nh

(4.24)

sm =
Sm
Nm

(4.25)

ih =
Ih
Nh

(4.26)

im =
Im
Nm

(4.27)

We then have

Sh
Nh

+
Ih
Nh

= 1 (4.28)

and

sm = 1− im (4.29)

sh = 1− ih (4.30)

Only two truly independent equations are needed for the purpose of stability

analysis of critical equilibrium states – equations 4.31 and 4.32:

∂ih
∂t

= βhim(1− ih)− γhih (4.31)

∂im
∂t

= βmih(1− im)− γmim (4.32)
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4.2.4 Critical points in a two-variable dynamical system

At the critical points it is assumed that:

∂ih
∂t

= 0 (4.33)

∂im
∂t

= 0 (4.34)

From equations 4.35 and 4.36 :

fh =
∂ih
∂t

= βhim(1− ih)− γhih (4.35)

fm =
∂im
∂t

= βmih(1− im)− γmim (4.36)

we obtain equations 4.37 and 4.38 :

f∗h = βhi
∗
m (1− i∗h)− γhi∗h = 0 (4.37)

f∗m = βmi
∗
h (1− i∗m)− γmi∗m = 0 (4.38)

and equations 4.39 and 4.40 :

i∗m =
γh
βh

(
i∗h

1− i∗h

)
(4.39)

i∗h =
γm
βm

(
i∗m

1− i∗m

)
(4.40)

Differentiating fh and fm we obtain equations 4.41 to 4.44 :

∂fh
∂ih

= −βhim − γh (4.41)

∂fh
∂im

= βh (1− ih) (4.42)

∂fm
∂ih

= βm (1− im) (4.43)

∂fm
∂im

= −βmih − γm (4.44)
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Evaluating the Jacobian matrix at equilibrium points, we obtain the charac-

teristic equation 4.45:

(J− λI) = 0 (4.45)

with the characteristic matrix 4.46:

J =

[
−βhim − γh βh (1− ih)

βm (1− im) −βmih − γm

]
(4.46)

Expanding the determinant we obtain equation 4.47:

[
−βhim − γh − λ βh (1− ih)

βm (1− im) −βmih − γm − λ

]
= 0 (4.47)

By using equations 4.48, 4.49 and 4.50:

λ2 − Tr(J)λ+Det(J) = 0 (4.48)

B = Tr(J) = −βhim − γh − βmih − γm (4.49)

Eigenvalues λ1,λ2 B B2 − 4C Type of point Stability

complex > 0 < 0 spiral fixed point unstable
complex < 0 < 0 spiral fixed point stable
complex = 0 < 0 center stable
real (opposite sign) > 0 > 0 saddle unstable
real (same sign, negative) < 0 > 0 node stable
real (same sign, positive) > 0 > 0 node unstable
real and identical (positive) > 0 = 0 degenerate node unstable
real and identical (negative) < 0 = 0 degenerate node stable

Table 4.1: Stability analysis of critical points

C = Det(J) = (βhim + γh) (βmih + γm)− βhβm (1− ih) (1− im) (4.50)
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we obtain the following roots for the characteristic equation – see equations

4.51, 4.52 and 4.53:

λ2 −Bλ+ C = 0 (4.51)

λ1 =
B +

√
B2 − 4C

2
(4.52)

λ2 =
B−

√
B2 − 4C

2
(4.53)

From both roots, dynamical aspects of critical points may be determined – see

table 4.1.

In our case, it is obvious from 4.49, that B < 0. In this case, assuming that

B2 − 4C 6= 0, two options remain:

a) B2 − 4C > 0 with a stable node.

b) B2 − 4C < 0 with a stable spiral fixed point.

In both cases, the Human-Mosquito system reveals stability.
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Chapter 5

An agent-based stochastic

model of malaria transmission

5.1 Model background

Malaria is an infectious disease, caused by the Plasmodium parasite, which

is still responsible for the death of nearly half a million individuals every year

worldwide [286]. P.falciparum (Pf) is the most prevalent form of the malaria

parasite in Africa, accounting for 99.7% of all estimated malaria cases in 2017

[286].

While some countries have had reasonable success in rolling back malaria

through a well-planned preventive strategy, disease resurgence remains unpre-

dictable. Different types of factors may contribute to such unpredictability. ”Hid-

den” factors, such as the asymptomatic presence of gametocytes in human systemic

circulation, which are the precursors of male and female gametes of the parasite,

are essential in disease transmission. Migration of just a few asymptomatic hu-

man gametocyte carriers into African regions where the disease is controlled may

act as a potential trigger in malaria outbreaks [217, 294]. The presence of game-

tocytes may be mitigated through the application of gametocidal drugs, such as

primaquine or methylene blue.

Second, malaria transmission can be promoted due to the intrinsic hetero-

geneity in human demography and mosquito behavior [224]. For example, in a

potential outbreak, human fatality rate may rise out of proportion due to the

weaker immunity of local populations from reduced exposure to the parasite [364].

Or, in regions under anti-malaria massive drug administration, drug-resistant par-

asite strains can develop and consequently, through human migratory phenomena,

they may be imported into areas of near eradication, locally strengthening malaria

transmission [99, 217, 294].

Although the decisive role these factors can play on malaria transmission mech-
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Tunable parameters Symbol Value
Probability of ivermectin treatment piv 0.00-0.10
[14, 61, 196, 291, 357]
Duration of positive gametocytemia τg 58-90 (days)
[134, 181, 231]

Fixed global parameters Symbol Value
Human individuals H 2000
[70, 134, 237, 249]
Female mosquitoes M 4000
[70, 134, 237, 249]
Duration of high transmission season δs 150 (days)
[122, 123]
Probability of a mosquito bite during the high season phs 1.0
[122, 123]
Probability of a mosquito bite during the low season pls 0.50
[122, 123]
Seasonality overall mosquito bite probability s 0.7055
[122, 123]

Fixed mosquito parameters Symbol Value
Duration of the gonotrophic reproductive cycle τs 4 (days)
[110, 387]
Fraction of mosquito feeding in human hosts PQ 0.90
(anthropophilic factor) [160, 190]
Probability of daily mosquito mortality qm 0.10
(general causes) [70, 110, 134, 181, 231, 387]
Average mosquito life expectancy τm = 1

qm
10 (days)

[70, 110, 134, 181, 231, 387]
Average number of bites from one mosquito nb 2 (per day)
[134, 175, 181, 231, 237]
Probability of mosquito infection after feeding on km 0.20
infectious human [20, 112, 181, 211, 229, 270, 271]
Maximum life time of one mosquito [231, 237] τmax 40 (days)
Minimum life time of one mosquito [231, 237] τmin 0 (days)
Time for parasite development inside the mosquito τlm 10 (days)
[70, 237]
Mosquito mortality after feeding on human host qiv 0.50
treated with ivermectin [14, 61, 196, 291]
Initial infected mosquito rate [231, 237] Mi0 0.01

Table 5.1: Tunable parameters, and fixed global and mosquito parameters of the
agent-based model for malaria spreading within two interacting communities of
human individuals and mosquitos.
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anisms is well established, the impact on malaria transmission resulting from the

combined effect of different drug therapies in heterogeneous populations is still not

fully understood.

The life cycle of Pf may be summarized as follows. The malaria vector, the

mosquito, Anopheles spp., usually lives, mates and feeds within a few miles distance

from its birthplace [184]. To become infectious to humans, the mosquito needs to

survive 10 or more days after feeding on a Pf gametocyte carrier. This time period

is required to complete parasite sporogonic development inside the mosquito [110],

after which, mosquito-to-human transmission becomes possible. Therefore, strict

gametocidal drugs may not only block human-mosquito transmission, but can

also have a strong impact on it. Other drug agents, such as ivermectin, have

become a promising antimalarial interventions due to its anophelocide properties,

preventing parasite’s maturation inside the mosquito [61, 196, 283, 357]. It is

known that mosquitoes, feeding on human hosts under ivermectin treatment, have

a considerably lower life expectancy, with a large fraction of mosquito deaths

occurring within 4 days after the blood meal [61, 196, 291].

Moreover, interventions including mass administration of ivermectin in pre-

vention of several other African endemic parasites have resulted in a significant

reduction of malaria incidence on those regions [14, 195, 250, 357].

To tackle the specific problem related with malaria transmission in a human

community, several mathematical models have been proposed. Early models, such

as those by Ross and Macdonald, were deterministic [231, 317], having nonetheless

a significant relevance in malaria epidemiology [70, 71, 103, 197, 237, 273, 381] and

being since then refined. More recent variants have been developed with the help

of modern satellite imaging, precise weather and geographical information, com-

putational agent-based modeling, and advanced statistics, such as hidden Markov

processes, time-series analysis and big-data approaches [70, 100, 110, 115, 134,

180, 249, 324]. In particular, agent-based models strengthen the importance of

malaria simulation for disease prevention [110, 137, 346]. Based on the classical

susceptible-infected (SI) model by Kermack and McKendrick, stochastic modeling

approaches were also proposed, with the aim of better implementing the uncer-

tainties inherent to the disease dynamics [122].

Epidemiological field data of malaria transmission is commonly presented as

human monthly or weekly disease incidence [24, 122], while mosquito infection

rates are obtained from data collected through the use of mosquito trapping de-

vices [39]. However, since both are important to understand the transmission

dynamics, one should account for the combined effect of human and mosquito

infection prevalence.
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5.2 Model design

Malaria transmission is a complex infectious process involving two interacting

compartments – human individuals and mosquitoes. Such a sophisticated cou-

pled biological system is responsible for periodic oscillatory behavior of infection

prevalence in stable dynamical systems in endemic equilibrium.

With the purpose of better defining the intrinsic dynamics involved in malaria

transmission, we have created an agent-based computational stochastic model able

to simulate the evolution in time of malaria incidence and human and mosquito

infection prevalence.

Here, we introduce an agent-based model of Pf malaria endemic/epidemic

behavior, incorporating both human-to-mosquito and mosquito-to-human trans-

mission processes. The model assumes a typical isolated African village with lim-

ited access to drug therapy and is based on discrete Markov processes describing

the succession of human-mosquito encounters, which are implemented through a

Monte Carlo algorithm.

We parameterize some of the most important biological aspects of disease

transmission, focusing mainly in the parameters describing the reduction of ga-

metocytemia prevalence in the human host and the extension of ivermectin ad-

ministration in the population. Several biological parameters were included in the

model, while adjusted to a range of realistic values. Multiple time series simula-

tions of disease prevalence were obtained and analyzed in terms of disease stability,

proximity to phase transition and the possibility of disease elimination.

Special attention was devoted to the critical role of human gametocytemia in

disease transmission and the possible intervention with gametocidal agents such

as prima-quine and methylene blue. The assessment of therapeutic intervention

with ivermectin – a less known but quite promising drug – was also included in the

model dynamics. Tuning the parameter defining gametocytemia inside the human

host, or the parameter controlling the fraction of the human population under

ivermectin treatment, we uncover a phase transition between disease elimination

and epidemic prevalence. In both cases, the transition is sensitive to minor changes

in the parameters, and through mathematical analysis, we can predict critical

values separating the two phases, disease elimination and endemic prevalence.

We start by describing the agent model and the main parameters driving Pf

gametocytemia and human-mosquito infection dynamics. In chapter 7 (sections

7.1, 7.2 and 7.3) we present the model results while discussing its impact on possible

clinical and medical strategies. In section 7.4 and chapter 12, we describe the model

validation procedures by using data sets from several world regions.

We consider a system of M = 4000 mosquitoes and H = 2000 human individ-

uals, where each population is divided into a number of healthy and infected indi-
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viduals, represented by H0 and M0 and by Hi and Mi respectively: H = H0 +Hi

and M = M0 +Mi. Although, in reality, the density of mosquitoes is much higher,

we model the number of mosquitoes as the effective fraction of the overall mosquito

mass, imposing an average of two bites per day for each mosquito.

The flowchart describing the computer implementation of the agent model is

sketched in figure 5.1 and is described as follows. The algorithm simulates a total

time interval of 30 years and it starts by evaluating each individual agent (human

host and mosquito), to ascertain if it became cured or not. In the case of human

individuals, the recovered rate qh is a fixed value, dependent on the average time

τc it takes for one individual to be cured,

qh =
1

τc
. (5.1)

In the case of mosquitoes, there is no explicit recovery rate. Every dead

mosquito is replaced by a new healthy mosquito. As such, the mosquito recovery

rate equals its global mortality rate qm, to be determined by its baseline natural life

expectancy, τm, the fraction piv of human hosts with whom the mosquito interacts

that is under ivermectin treatment as well as the life expectancy τ
(iv)
m of a mosquito

after exposure to ivermectin, and q
(itn)
m which represents the mortality resulting

from mosquito contact with ITN, LLIN and IRS barrier protection.

The parameter q
(itn)
m will depend on the average time for mosquito death from

barrier protection (τ
(itn)
m ), to be obtained from:

q(itn)
m =

1

τ
(itn)
m

(5.2)

The average time for mosquito death from barrier protection (τ
(itn)
m ) relates to

q
(itn)
m in equation 5.2, and will be dependent on the effective human-mosquito con-

tact rate before interaction with any form of barrier protection (r), the

ITN/LLIN/IRS protection parameter (u), and the instant mosquito mortality di-

rectly resulting from barrier protection, represented later on as q
(itn)
m = 0.5 (after

defining r in equation 5.5; it represents a 50 % probability of mosquito death upon

contact with ITN/LLIN/IRS):

τ (itn)
m =

1

r u q
(itn)
m

(5.3)

The final expression for the global mosquito mortality will then be obtained

from:

qm = (1− piv)

(
1

τm
+

1

τ
(itn)
m

)
+ piv

1

τ
(iv)
m

. (5.4)

The two rates, qh and qm, are not directly implemented in the agent model.
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Fixed human parameters Symbol Value
Maximum time of human infection (includes τd 150 days
time of parasite development) [50, 119, 231, 237]
Minimum time of human infection (includes τ0 25 days
time of parasite development) [50, 119, 231, 237]
Average human infectious period, cf. equation (5.1) τc 87.5 days
[50, 119, 231, 237]
Probability of human disease daily recovery qh = 1

τc
0.011

[181, 231, 237]
Time for parasite development inside the human host τlh 10 days
[181, 237]
Human-to-mosquito gametocytemia transmission wh =

τg
τd

0.387-0.733

coefficient [134, 181, 231]
Probability of human infection after infectious kh 0.20
mosquito bite [20, 112, 181, 211, 229, 270, 271]
Full human protection from acquired immunity νmax 0.30
[77, 106, 126, 231]
Average initial human population acquired immunity ν0 0.10
[106, 126, 157, 158, 231]
Time to immunity loss in case of absence of infection τν0 2 years
[77, 106, 126, 134, 158, 231, 270, 271]
Time to full immunity in case of persistent reinfection τν 5 years
[77, 106, 126, 134, 158, 231, 270, 271]
Protection from LLIN/ITN/IRS barrier protection u 0.25
[181, 199, 271, 387]

Mosquito mortality due to LLIN/ITN/IRS protection q
(itn)
m 0.50 days−1

[110, 181, 271, 387]
Fraction of children (age < 5 years) in the population hc 0.12
[106, 126, 134]
Gametocytemia probability in children < 5 years of age whc 0.70
[119, 134]
Human yearly mortality rate (global causes) µh 0.015
[123, 237, 287]
Human mortality rate from a single malaria episode µd 0.003
[123, 237, 287]
Time reset in elapsed infection time if human τρ 0.50
reinfection [231, 249, 345]
Initial infected human rate [231, 237] Hi0 0.05

Table 5.2: Human parameters of the agent-based model for malaria spreading
within two interacting communities of human individuals and mosquitos.
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Instead, we impose a maximum time of human infection of τd = 150 days and

a minimum time of 25 days, uniformly distributed, yielding an average human

infectious period of τc = 87.5 days, a maximum mosquito lifetime of 40 days

and a minimum lifetime of 0 days, uniformly distributed, yielding an average life

expectancy of one mosquito τm = 10 days, as well as a probability qiv = 0.5 of one

mosquito to die from feeding on a human host under ivermectin treatment. In case

of an infectious mosquito bite in an infected human host, a human reinfection or

super-infection occurs 1 and the disease time of that human individual is reset to

half of the present disease time. Beyond 5 years of persistent human reinfections,

the human host acquires maximum immunity and after 2 years with no infection

events, the host loses immunity completely.

In case the mosquito succeeds in overcoming the barrier protection, the algo-

rithm starts to ascertain if transmission will take place or not. This is done by

computing the probability r for one mosquito and one human individual or another

animal to contact through one bite, which is given by

r =
(

(1− s)pls + s phs

)PQ
τs

, (5.5)

where s is the fraction of time in the year with high disease transmission (percent-

age of time in rainy season), pls and phs represent the fractions of the year covered

by the low and high seasons respectively, PQ is the fraction of humans among all

animals able to be bitten by one mosquito within the geographical region covered

by the mosquito community, and τs is the duration of the gonotrophic reproduc-

tive cycle. In the agent model, we use values provided in previous studies, namely

pls = 0.5, phs = 1, PQ = 0.9 and τs = 4 days. In our model a high value of human

blood index was assumed, corresponding to a strong anthropophilic mosquito feed-

ing, more typical of An.gambiae or An.funestus, and different from An.arabiensis.

Moreover, inspired in Mozambique seasonality [122, 123], we consider 150 days for

the duration of the high transmission season, i.e. s = 150/365. Notice that during

transmission season, one considers a non-zero probability of transmission; in this

way, disease transmission may occur during the whole year, although with higher

intensity during the high-transmission season.

Upon updating the number of healthy human individuals and mosquitoes, the

algorithm proceeds to generate one mosquito bite attempt. Here, one will use

the probability u = 0.25 that long lasting insecticide-impregnated nets (LLIN),

insecticide-impregnated nets (ITN) or indoor residual spraying (IRS) may protect

human hosts from mosquito bites. This parameter u (previously introduced in

equation 5.3), represents the degree of human population protection resulting from

1Persistent reinfection is defined as a new contact between an infected human host and an
infected mosquito, during the period of active infection. In practice, since the average time of
infection in one human is 87.5 days, one human host may reacquire a new malaria infection within
three months after the initial infection episode, thus perpetuating disease transmission as well as
immunity individual acquisition.
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Figure 5.1: Flowchart of the agent-based model for human-mosquito interaction
to reproduce scenarios of malaria spreading. Probabilities qh and qm are given in
equations 5.1 and 5.4 respectively. The other probabilities are given in table 5.1.
The probability for infecting a human or a mosquito depends on ph and pm, given
in equations 5.7 and 5.8 respectively, and also on additional details concerning
the dynamics of immunity acquisition of each human individual and the fraction
of the human population composed by children (see text).

LLIN, ITN or IRS preventive measures, and simulates the probability of mosquito

bite failure due to protective barrier. Likewise, the probability of mosquito bite

success after surviving barrier protection assumes the form (1 − u), and the final

effective mosquito bite probability will result from the following expression (see

figure 5.1):

R = r(1− u) (5.6)

In this case, we may use R as a the final simplified version of the global

mosquito-human effective contact rate, after mosquito exposure to barrier protec-

tion preventive measures, as in equation 5.6.

Additionally, we include here the previously used barrier protection effect in

killing the mosquito during the bite attempt – q
(itn)
m . In this model, the probability
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of mosquito mortality induced by protective barriers was defined as q
(itn)
m = 0.5.

In the case one of the above factors succeeds, malaria transmission fails. In

case all barriers fail, the algorithm finds one mosquito-human interaction through

one bite. If the two interacting agents are infected or none of them is, both

populations remain unchanged and the algorithm starts the next iteration. If only

one individual (either human or mosquito) is infected, the algorithm ascertains if

malaria transmission is successful.

The probability ph for such single bite to effectively transmit the parasite

from an infected mosquito to a healthy human depends on four factors, namely

(i) the fraction Mi/M of infected mosquitoes, the probability kh to get infected

from one single mosquito bite 2 , the probability wm that the mosquito is ready

to transmit the parasite, and the probability ν of human individual immunity

protection, yielding

ph =
Mi

M
khwm(1− ν) (5.7)

and similarly, the probability for one single bite to effectively transmit the parasite

from an infected human to a healthy mosquito is

pm =
Hi

H
kmwh. (5.8)

The probability wm is obtained from the fraction of surviving mosquitoes past

the period of parasite development, i.e.

wm = e−qmτlm , (5.9)

where the parameter τlm is the period of parasite development in the mosquito. As

for wh it measures the fraction of time of the duration of positive gametocytemia

from the maximal period of human infection,

wh =
τg
τd
, (5.10)

where τd is the maximal period of human infection and τg is the duration of positive

gametocytemia.

In the agent model we fix km = kh = 0.2, τlm = τlh = 10 days and τd = 150

days – see tables 5.1 and 5.2.

Notice that the duration of positive gametocytemia is a tunable parameter

used for varying wh, which will be one of the important parameters in malaria

transmission.

Since τd takes values between 58 and 90 days (see table 5.1), the probability

2The value of the probability to get infected from one single bite, either for humans as for
mosquitoes, is given by the inverse of the number of infected mosquito bites necessary to infect
one human or one mosquito and it estimated from controlled malaria infection, in laboratory
settings [211, 229].
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wh varies between 0.387 and 0.7333, a range that includes a phase transition from

malaria eradication to malaria endemic behavior.

5.3 Human/mosquito infection equations

While assuming that H and M stand for the total of human individuals and

mosquitoes, respectively, we will define the simplified fraction of infected humans

h, as in h = Hi
H , where Hi represents the absolute count of infected humans.

Likewise, the fraction of infected mosquitoes m will be obtained from m = Mi
M

4, where Mi stands for the absolute count of infected mosquitoes.

From that, it is clear that ph and pm will depend on both h and m.

By using simpler expressions for ph and pm we then may use:

Φh = khwm(1− ν) (5.11)

and

Φm = kmwh (5.12)

resulting in:

ph = mΦh (5.13)

and

pm = hΦm (5.14)

From these equations, we have evidence of non-linearity in the coupled system

H − M , as the human probability ph depends both on human (kh and ν) and

mosquito (m and wm) parameters.

Likewise, the mosquito probability pm will depend both on mosquito (km) and

human (h and wh) parameters.

In this situation, non-linearity will only depend on variables h and m, as the

the remaining parameters will be constant parameters, nested inside Φh and Φm.

From the simplified equations 5.13 and 5.14 we will then obtain the final

probabilities of effective global human-mosquito disease transmission, Ph and Pm:

3Gametocyte detection threshold by light microscopy usually retrieves measurements between
5 and 10 gametocytes per µL. But with current molecular detection methods, that threshold
may be as low as 0.1 per µL [181]. It is assumed that during the period of human disease,
gametocytemia will occur according to a random stochastic process, with a predefined probability
of human-to-mosquito transmission at every mosquito bite in the range of admissible values
[181, 201].

4Not to be mistaken with mosquito density, originally described as m by Smith(2004) [343],
but defined here as ∆m = M

H
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Ph = R ph (5.15)

equivalent to:

Ph = R mΦh (5.16)

and

Pm = R pm (5.17)

equivalent to:

Pm = R hΦm (5.18)

From this, it is clear that functions Pm and Ph will also both depend on m

and h, finally having:

Ph = Ph(h,m) (5.19)

and

Pm = Pm(h,m) (5.20)

This does not happen to qh and qm, which depend only on h and m, respec-

tively, as we already know from equations 5.1 and 5.4:

5.4 Model rationale

It is assumed that a higher gametocyte density will result in higher human-

to-mosquito transmission efficiency. Consequently, the concept of gametocytemia

reduction is considered equivalent to the effects of treatment with gametocidal

agents such as primaquine or methylene blue.

The agent model implements three additional aspects that are not usually

taken into account in simulation of malaria transmission dynamics.

First, in the present model we simulate the use of ivermectin in a fraction of

the human population (piv), assuming a global ivermectin-related mosquito fatality

rate (qiv) of 0.5. Ivermectin inhibits sporogony in the mosquito with evidence

of a partial blocking effect on human-to-mosquito transmission. We used this

mechanism for defining ivermectin treatment biodynamics in our computational

model.

Second, to consider the effect of acquired immunity to malaria infection. Ac-

quired immunity ν against malaria changes according to the history of infection
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and the genetic traits of a particular human individual. The value of ν can increase

in the case of repeated reinfections, or decrease, in case of no infection during a cer-

tain time. The time to acquire protective immunity after every infection episode

is typically longer than that of the immunity loss. We consider that if the hu-

man host does not contact with the parasite during two years, he/she loses the

acquired immunity against the parasite, while maximal immunity is gained after

5 years with persistent reinfection. Moreover, maximum protective immunity is

different from complete protective immunity, as a human cannot be more than

30% immune, νmax = 0.3. Acquired immunity is parameterized through ν, while

being incorporated in parameter ph – see equation 5.7 – which is indicated in one

of the boxes in the flowchart of figure 5.1.

Third, the extreme vulnerability to malaria infection of children under 5 years

of age is a well-known critical factor in the disease morbidity and mortality. We

therefore consider additional effects for the subgroup of children in the human

population. A simplified age effect is considered: the fraction of children under 5

years of age represents 12% of the total human population, and for those children

immunity is considered to be absent, with a higher gametocytemia prevalence

during disease duration, namely during 70% of the time [50, 77, 106, 126, 134, 158].

Malaria unrelated human mortality is also considered in our model. However,

its magnitude is assumed to be low, namely 0.015 cases per year, i.e. it has negligi-

ble effects in disease transmission. The system is always initialized with a fraction

of infected mosquitoes of 1%, a fraction of infected humans of 5% and an initial

acquired immunity of ν0 = 0.1 for every human individual5.

Our model has its limitations. Some variables can be modelled with distri-

butions which are derived from standard mathematical derivations, such as the

time for human disease recovering, treated here as a stochastic variable exponen-

tially distributed. Other random variables, however, not necessarily related with

exponentially decaying processes were taken as uniformly random variables, e.g.

variables related to mosquito biting behavior, human disease duration or game-

tocytemia occurrence, since no other forms of statistical distribution have been

firmly established. Notice that the risk of using other distributions such as Gaus-

sian, Poisson or Gamma distribution, can lead to scenarios and transition features

different from those reported below, but such assumptions need further investiga-

tions and are out of the scope of the present dissertation.

Another simplification is the parameterization of ivermectin. It is known that

ivermectin is an anti-mosquito drug with a fast-decaying rate: mosquitoes taking

a blood meal containing this drug have an enhanced mortality rate that is directly

related to the ivermectin concentration present in the blood.

This fact is incorporated in the model as a simplified procedure, defining

mosquito mortality probability from ivermectin exposure as equal to 50% (qiv =

5Except children under 5 years of age, who are assumed to have an acquired immunity of 0.0
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0.5), similarly to other studies in this topic [196, 291].

5.5 Model assumptions

The chosen values of each model parameter are given in tables 5.1 and 5.2,

and the algorithm keeps track of all attributes for each agent, human or mosquito,

in a particular age, time since infection, and immunity status. Notice that only

two parameters are modulated, namely the fraction piv of the human population

subjected to ivermectin treatment and the effectiveness of gametocidal drugs, mea-

sured as the number τg of days of positive gametocytemia. All other parameters

are kept at constant values and their values were chosen according to previous

studies.

5.6 Model master equation

Stochastic processes that are continuous in time and space represent the math-

ematical background of diffusion processes. These processes result from probabilis-

tic Markov transitions with a continuous sample path and infinitesimal and finite

mean and variance. The present model uses a Markov transition process sup-

porting the computational algorithm. It will be presented with further detail in

Appendix A.

In our case, the presence of a diffusion process in malaria transmission will

lead to the concept of transition probability density function which will become

a solution of the forward and backward Kolgomorov differential equations from

Markov chain theory, leading to the Fokker-Planck equation (FPE).

Combining human and mosquito terms, we obtain a two-dimensional (2D)

Fokker-Planck equation.

We know that in general:

For

dXt = µ(Xt)dt+ Ψ(Xt)dWt (5.21)

and by using vector notation we may obtain

∂p(x, t)

∂t
= −∇ · [µ(x)p(x, t)] +

1

2
∇ · (∇ · [

∑
(x)p(x, t)]) (5.22)

where p(h,m, t) = [u(h,m, t), v(h,m, t)], x = (h,m), µ(x) = µ(h,m), µ1 = h,

µ2 = m, and Ψ(Xt) = Ψ(h,m) for the diffusion matrix coefficient.

Thus, we will have for the general 2D Fokker-Planck equation (FPE):

∂p(x, t)

∂t
= −

2∑
i=1

∂µip(x, t)

∂xi
+

1

2

2∑
i=1

2∑
j=1

∂2

∂xi∂xj
{
∑
ij

(x)p(x, t)} (5.23)
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where
∑

ij(x) = Ψ(x)Ψ(x)T

We may then use Itô formulation in a simpler form of the differential stochastic

equation:

dX = A(h,m, t) dt+B(h,m, t) dW (5.24)

And for the human-mosquito system:

∂p(h,m, t)

∂t
= −∂Ah p(h,m, t)

∂h
− ∂Am p(h,m, t)

∂m
(5.25)

+
1

2
(
∂2Bhh p(h,m, t)

∂h2
+ 2

∂2Bhm p(h,m, t)

∂h∂m
+
∂2Bmm p(h,m, t)

∂m2
)

Here, A(h,m, t) stands for the 2D drift coefficient, and B(h,m, t) stands for

the 2× 2 diffusion matrix coefficient.

In order to derive the 2D Fokker-Planck equation we must consider using a

two-dimensional Taylor approximation. For the one- and two-dimensional Taylor

approximations to the Fokker Planck equation, please consider checking them in

Appendix B.
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Chapter 6

Vector control

6.1 Mosquito density and malaria transmission

Since the early transmission models defined by Sir Ronald Ross in the first

years of the XX century, it has been recognized that the epidemiology and control

of malaria is inextricably linked to the ecology of Anopheles mosquito vectors [189].

In his early work, Ross clearly demonstrated the critical role of mosquito density

in malaria transmission [317].

George Macdonald [231] reformulated the pioneering model of Ross [317] and

identified mosquito vector longevity as the single most important variable in the

force of transmission [167]. Since Macdonald important work (1957) it is well-

established that small variations in mosquito density may result in substantial

changes in human infection prevalence [231].

The effective implementation of several mosquito-control measures

achieved reasonable success in South America during the 1910s. With the addition

of effective mosquito larvicide agents (such as Paris Green spraying or widespread

use of certain fish species like Gambusia with preferential feeding on Anopheles lar-

vae) in ponds or other water depots, a significant suppression of the total mosquito

burden was obtained, leading to a widespread reduction in malaria cases [351]. All

these health policies were directed at reducing the total number of mosquitoes

in heavy populated areas. The role of private foundations such as the Rockefeller

foundation was particularly decisive in establishing better mosquito-control strate-

gies to be implemented worldwide [351]. This anti-malaria strategy gained strength

during the 1920s, with massive reduction of malaria cases in Italy and Sardinia,

and later on during the 1930s in Bulgaria and India [351]. These strategies were

responsible for effective malaria control in more temperate areas in America and

Europe where malaria had been endemic for centuries.

Ross’ equation for the basic reproductive number deduction, was supported

on a well-established malaria SIR model, underscoring the importance played by

mosquito density in disease resurgence events.
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The ratio of mosquitoes to human individuals is defined here as the index

∆m
1, to be included in all equations involving the basic reproductive number R0

– see equations 3.16, 3.17, and 3.18. In the initial formulation of Ross-Macdonald

theory, mosquito density assumed a decisive role in powering disease transmission,

as shown in the definition of R0 in Ross initial equation. The use of widespread

insecticide-treated nets (ITN), long lasting insecticide-treated nets (LLIN) and

insecticide indoor residual spraying (IRS) improved the global strategy of malaria

elimination and reinforced the importance of effective vector control in disease

prevention.

Disease elimination is more difficult in larger population aggregates. Anophe-

les flight is usually limited to a short distance range of less than 4 Km within

larval breeding sites radius [184]. Thus, higher human population densities and

shorter distances between housing in urban centers may facilitate an effective hu-

man contact with mosquitoes, resulting in higher disease transmission (pseudo-

mass action).

Stochasticity also depends on human population size. This effect becomes

more pronounced in simulations with smaller populations[224]. From research in

smallpox eradication [17] we know that high disease transmission rates are higher

in urban aggregations than in isolated villages. This form of human spatial het-

erogeneity may have a stronger impact in diseases where the parasite transmission

cycle involves an intermediate vector, as it is the case in malaria transmission.

The research on chemicals led to the discovery of a new form of insecticide,

dichlorodiphenyltrichloroethane (DDT), by a Swiss firm, Geigy, and its first effec-

tive use took place during the 1940s in North Africa (Algeria), and a few years

later in the region of Rome, Italy, by aerial spraying of mosquito breeding sites.

As a consequence of the selective use of this chemical substance, in water ponds,

swamps and other high risk Anopheles breeding sites, as well as inside the interior

of houses and barns in the region of Fiumicino, the number of mosquitoes fell dras-

tically to zero, followed by the widespread reduction of malaria incidence in Rome.

After World War II, new more selective insecticide chemicals were developed with

success. The eradication of malaria in the island of Sardinia by the massive spray-

ing with DDT was a clear demonstration that vector control would have to play a

crucial role in any strategy concerning the reduction of disease transmission.

However, this early success suffered a temporary setback a few years later with

the demonstration of the first cases of DDT resistance.

In the present research, mosquito density was assumed to be an important

variable for analysis in the setting of dedicated simulations of our computational

model.

Malaria is the result of a two-agents coupled disease transmission system,

revealing heterogeneous cyclic seasonal behavior depending on the world region.

1representing mosquito density in the form of ∆m = Nm
Nh

, based upon D.L.Smith,2004 [343]
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During the XX century, vector control and larval source reduction assumed an

important part in disease prevention. As a consequence of effective management

of larval breeding sites (usually aquatic habitats) malaria transmission was signif-

icantly reduced in several world regions [189, 389].

Larval source management consists of habitat interventions aimed at the mod-

ification of permanent changes in water reservoirs and landscape as well as the ma-

nipulation of water-related activities such as adequate water drainage, biological

control of the Anopheles mosquito, and the widespread use of larvicidal strategies.

An integrated vector control program including anopheline source suppression,

environmental management with modified agricultural practice reducing potential

larval breeding sites, and simple housing modifications resulting in effective human

barrier protection could reduce transmission intensity from more than 300 to less

than 1 infectious bite per person per year. Thus, decisive reductions of EIR could

possibly result from proper environmental management in Africa [189].

Mosquito burden is directly related to rainfall intensity during the rainy sea-

son, as well as to the resulting increase in vegetation, facilitating the potential

occurrence of new Anopheles larval breeding sites [74, 100, 207].

Environment and climate are among the most important factors in malaria

transmission, particularly the factors of temperature, rain precipitation, humidity,

vegetation, stationary water pools and human-vector interaction, as they affect

the habitat and vector breeding sites. [394]

Although ivermectin may increase mosquito mortality, this effect is of a small

magnitude and will not be able to significantly influence global mosquito density.

However, the fact that ivermectin is more toxic to Anopheles in the first few days

after mosquito feeding, amplifies its effectiveness as it kills mosquitoes in the early

incubation stage, when the mosquito has not yet become infectious. It is also

possible to define a significant linear correlation between mosquito density and

ivermectin effectiveness [61, 196]. After being exposed to ivermectin, mosquitoes

tend to die well before sporozoites can be detected in the salivary glands, and

therefore becoming incapable of transmitting the disease to other human individ-

uals. Such a fact explains the importance of ivermectin in malaria transmission.

This action, in combination with the gametocidal effect induced by gametocidal

agents such as primaquine could possibly improve disease prevention alongside

other effective preventive measures. In the setting of a higher value of mosquito

density, this protection will eventually become more significant.

6.2 Methods

With the purpose of determining the relevance of the size of mosquito burden in

malaria transmission within a stable human population while assessing the merits

of partial ivermectin use prevention, a small modification of the present model was
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Figure 6.1: Average malaria incidence (number of diagnosed cases per 100 inhab-
itants, during a full year) at different levels of mosquito density (ranging from
∆m = 2 to ∆m = 20), and ivermectin prevention (from piv = 0.00 to piv = 0.20),
in a full heterogeneity scenario. This scenario was defined in the form of 1

θ = 4.0,
within a high human-to-mosquito transmission efficiency scenario (wh = 0.800).
Model simulations were repeated 10 times in all settings.

put in place, introducing specific initial parameters.

Multiple simulations were implemented by using different levels of mosquito

density while evaluating the influence of ivermectin in malaria incidence. A con-

stant value of nH = 200 was defined for human inhabitants – a value roughly

equivalent to the population of a small African village –, and different stages

of mosquito density (∆m) were used in the range between two (equivalent to

nM = 400 mosquitoes) and twenty (nM = 4000 mosquitoes). Ivermectin pre-

vention was simulated assuming that a constant and randomly chosen fraction of

the human population would be under that treatment.

6.3 Results and discussion

As expected from Ross-Macdonald theory, mosquito density was directly cor-

related with malaria incidence. However, the use of ivermectin in the human
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population was quite effective in the reduction of malaria transmission at all levels

of mosquito density, as can be seen in figure 6.1. Higher population coverage with

ivermectin preventive treatment implied lower levels of malaria incidence in all

mosquito density settings. These simulations were obtained in a full heterogeneity

scenario with higher disease transmission and point out the use of ivermectin as a

potential complement to other effective forms of malaria prevention.

In figure 6.1, as expected, we have found a linear dependence of malaria inci-

dence on mosquito density, in the best Ross-Macdonald tradition. We have used a

high heterogeneity (1
θ = 4.0) and high human-to-mosquito transmission efficiency

scenario (wh = 0.800) in these model simulations in order to amplify baseline

malaria incidence. Ivermectin prevention was shown to be quite effective in all

different scenarios of mosquito density, in a proportional relation with the fraction

of human population covered.
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Chapter 7

Gametocytemia and ivermectin

in disease dynamics

In the following sections, we will address separately the effect of gametocidal

drugs and of ivermectin, choosing adequate values in the creation of three possible

disease transmission scenarios:

• Scenario A: Stable endemic (Hi > 0 and Mi > 0).

• Scenario B: Disease eradication (Hi = 0 and Mi = 0).

• Scenario C: Critical phase transition between the endemic stage and disease

eradication, where some of the simulations evolve to disease eradication,

while others to endemic stability.

7.1 Assessing the effect of gametocytemia in phase

transition

We have defined the effect of ivermectin as null when piv = 0, with illustrative

examples for each scenario. In Scenario A we consider τg = 68 days of gameto-

cytemia, yielding a value of wh = 68/150 = 0.453, while in Scenario B we consider

τg = 60 days of gametocytemia, i.e. wh = 0.400. Finally, in Scenario C, we will

have τg = 64 days of gametocytemia, corresponding to wh = 0.427. Results are

shown in figure 7.1.

Figure 7.1 a) illustrates Scenario A, where both human and mosquito com-

munities evolve in periodic cycles, reflecting the seasonal character of malaria

incidence, with a significant variation between low and high transmission seasons.

Here, none of the infected communities will evolve towards eradication. In fig-

ure 7.1 b) one observes the opposite: both communities will eventually be cured

with no further cases of infection. In the plotted example disease eradication

occurs at the tenth seasonal cycle (10 years to extinction).

In Scenario A, the result was 10%± 5% of infected humans and 1.3%± 0.6%
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Figure 7.1: Illustration of the three scenarios tuned by gametocytemia parameter
wh: (a) Scenario A, disease epidemic prevalence (wh = 0.453), (b) Scenario B,
disease eradication (wh = 0.400), and (c) Scenario C, transition between human
infection (HiH ) endemic prevalence and eradication (wh = 0.427). In all cases
piv = 0.

of infected mosquitoes, while in Scenario B, a smaller value was obtained with

1.4%± 3% of infected humans and 0.2%± 0.4% of infected mosquitoes.

In figure 7.1 c) we observe the intermediate situation, between endemic preva-

lence and eradication. Two different outcomes occur at identical gametocytemia

levels: in red dashed lines we plot the evolution of human community in a sim-

ulation where the disease persists for more than 30 years and in blue solid lines,

one observes the resulting community evolution towards a state of eradication,

after around 11 years. This intermediate scenario occurs for wh ∼ 0.42. In the

eradication case of Scenario C we obtained 1.4% ± 2.5% of infected humans and

0.2%±0.3% of infected mosquitoes, while in the endemic case, we witness a higher

value of 4.2%± 3.1% of infected humans and 0.5%± 0.4% of infected mosquitoes.

Three important features must be addressed at this point. First, the time

span needed for eradication at the transition value (wh ∼ 0.427) is considerably

larger than for values below the transition. This is a common feature in critical

phase transitions [350]. Second, the different outcomes from Scenarios A, B and

C result from small changes in the total time duration of gametocytemia: the

differences between scenarios A, B and C are not greater than 4 days, which

represents gametocytemia differences of ±2.7%. Consequently, small changes in

gametocytemia status may result in significant changes on the level of epidemic

outcome, a feature that shows the importance of gametocytemia in controlling

malaria transmission. Third, disease persistence depends on very small values of

mosquito infection prevalence (in Scenario C with epidemic outcome the average

mosquito infection prevalence is 0.5% ± 0.4%, a value not much higher than the

one in Scenario C with disease elimination, 0.2%± 0.3% ).

To better uncover the transition from endemic prevalence to eradication due to

gametocytemia control, we generate 20 different realizations for a set of different wh

values within a range covering all three scenarios. Results are shown in figure 7.2

a). As one sees, while for Scenarios A and B, all realizations converged to the same

state, prevalence or eradication respectively, for Scenario C one fraction of the
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Figure 7.2: (a) Probability of epidemic outcome with changing gametocytemia
duration at phase transition. The three scenarios illustrated in figure 7.1 are indi-
cated with arrows. The function in equation 7.1 is plotted with dashed line. The
fraction of infected humans is averaged over 20 realizations for each value of wh.
(b) Annual malaria incidence per 100 habitants and its correlation with the posi-
tive gametocytemia wh. Correlations were computed by averaging 20 realizations
for each value of wh.

realizations ended in endemic prevalence while the rest converged to eradication.

Therefore, we argue that there is a critical value of gametocytemia days that

guarantees full recovery of the community.

A quantitative approach for estimating this transition gametocytemia value is

to approximate the transition curve in figure 7.2 a) by a step function of the form

Fg(wh) =
1

1 +

(
w

(t)
h
wh

)αg , (7.1)

yielding an estimate for the transition gametocytemia value (w
(t)
h ) in the range

0.420 ≤ w
(t)
h ≤ 0.427, and for the exponent αg = 60. The functional form in equa-

tion (7.1), is a kind of Fermi-function, which, in this case, enables to parameterize

the transition from eradication to prevalence with two single parameters, a critical

value w
(t)
h for which Fg(w

(t)
h ) = 1/2, and a transition “length” αg which controls

how sensitive the transition is with respect to variations of gametocytemia around

the critical value.

In real situations of malaria epidemics, there are several difficulties in properly

determining the annual malaria incidence1, which is an adequate measure for eval-

uating the gravity and extension of the epidemic. Through simulations, the annual

malaria incidence can be easily calculated while it will also be possible to inves-

tigate how it relates with other variables. As shown in figure 7.2 b), we observe

a clear linear relation between the average malaria incidence I and the gameto-

1Annual malaria incidence represents the instant expected average of malaria incidence per
100 inhabitants during one full year, if transmission conditions remain unchanged.
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cytemia parameter wh. In the plot, for each value of positive gametocytemia wh we

obtained the average of the annual malaria incidence over 20 different simulations.

A linear regression of the simulation results yields

I = −199 + 502 wh , (7.2)

with a coefficient of determination of r2 = 0.989 and a p-value of P < 0.001.

Notice that for wh < 199/502 . w
(t)
h , close to the obtained transition value of ga-

metocytemia, the annual incidence is negative, meaning that the system converges

to a scenario of disease eradication. Only for values above the transition value one

may find a positive malaria incidence.

7.2 The role of ivermectin in transmission prevention

To investigate the role of ivermectin we fix the value for the time of posi-

tive gametocytemia, since it appears to be independent from human-to-mosquito

transmission efficiency. We choose a stable epidemic background with 90 days of

gametocytemia, corresponding to a higher value of human-to-mosquito transmis-

sion efficiency – wh = 0.6. To investigate the mosquito mortality due to ivermectin,

we first focus on three different values of the fraction of human population under

ivermectin treatment, namely piv = 0, 0.05, 0.1. In this case, we have used 10

simulations in every setting, with a reasonably small variance in malaria incidence

results. Each of these three values illustrates one of three different regimes, re-

spectively (i) absence of ivermectin treatment, (ii) weak ivermectin administration

and (iii) moderate ivermectin administration.

Our results show that, while in the absence of ivermectin administration the

mosquito mortality during the parasite development phase (mosquito latency) is

79.6%, that mortality increases to 84.4% for piv = 0.05, and to 88.1% in the

case of piv = 0.1. Furthermore, mosquito mortality directly related to ivermectin

was 15.2% in the case of piv = 0.05 (ivermectin prevention in 5% of the human

population) and 26.3% for piv = 0.1 (ivermectin prevention in 10% of the human

population). In the case of bite failure due to barrier protection, the mosquito

mortality was considered relevant, and set at qirs = 0.52.

We have also observed that, in the case of ivermectin random usage in 5% of

the population (piv = 0.05), disease eradication may occur roughly 20 years later.

But if ivermectin is administered to 10% of the human population (piv = 0.1),

a disease eradication outcome may be possible much earlier (less than 4 years).

Moreover, the administration of ivermectin induces a reduction in the frequency

2There is no precise knowledge concerning the probability for the mosquito to die due to
ITN,IRS or LLIN barriers. We assumed a value of 0.5, which together with a coverage of ITN
of 25%, results in a global mortality due to ITN barriers of 0.25 × 0.5 = 0.125. This value is
probably below the real value, since in some African countries the LLIN/ITN/IRS coverage may
be as high as 80%.
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Figure 7.3: (a) Probability of epidemic outcome with probability of ivermectin
treatment at phase transition, and approximate fit function. The function in
equation (7.3) is plotted with dashed line. Here we run 10 trials for each value of
piv in the range 0.02 ≤ piv ≤ 0.08. (b) Annual malaria incidence per 100 habi-
tants and correlation with ivermectin treatment probability (piv). The function
in equation (7.4) is plotted with dashed line. Positive gametocytemia is fixed at
wh = 0.6.

of healthy mosquito bites in an infected human (not shown).

Varying the fraction piv also uncovers a continuous phase transition from

prevalence to eradication. See figure 7.3 a). Differently from the transition by

gametocytemia variation, here the phase transition is only visible for high gameto-

cytemia levels, typically wh = 0.6 or larger. A possible explanation for this is the

strong inhibitory effect of ivermectin on human-to-mosquito disease transmission.

In figure 7.3 a), a phase transition from epidemic prevalence to disease eradica-

tion can be observed. Here, the critical value of the human fraction with ivermectin

is approximately piv = 0.058. Higher piv values induce faster disease eradication

scenarios. Similarly to equation 7.1, the step function can be modelled through

the function

Fiv(piv) = 1− 1

1 +

(
p
(t)
iv
piv

)αiv . (7.3)

The fitting parameters here are p
(t)
iv = 0.058 and αiv = 25.

Comparison of figures 7.2 a) and 7.3 a), indicates that a more intensive use of

ivermectin in the human population is qualitatively equivalent to a shorter game-

tocytemia time needed to maintain disease prevalence. The outcome of massive

administration of ivermectin in a fraction of the human population reveals strong

correlation with an effective reduction on the duration of positive gametocytemia.

Consequently, both the probability of ivermectin treatment piv and annual malaria

incidence are anticorrelated, as shown in figures 7.3 b). Here, we run 10 simula-

tions for each value of piv ranging from 0.020 to the value 0.058, which corresponds

to the obtained critical value at the phase transition in figure 7.3 a). The linear
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regression in figure 7.3 b) yields

Iv = 87− 1260 piv (7.4)

with a Pearson correlation of r2 = 0.930 and a p-value of P < 0.001. Similarly to

what we have discussed above for equation 7.2, here, we observe a positive malaria

incidence only for values of ivermectin prevention in the range of piv . 87/1260 .

p
(t)
iv .

7.3 Combined use of gametocidal agents and ivermectin:

a copula approach for predicting optimal adminis-

tration intensities

As shown in the previous section 7.2, in a stable epidemic status, with 90

days of positive gametocytemia (wh = 0.60), after the use of ivermectin in 5%

of the human population (piv = 0.05), there is a reduction in the fraction of

infected human hosts – compare figure 7.4 a) with figure 7.4 b). However, this

reduction is not robust enough to achieve complete disease eradication. Similarly,

after a reduction in the days of positive gametocytemia, namely from 90 to 70

days (from wh = 0.6 to wh = 0.467), with no ivermectin treatment, there is a

weakening in disease transmission, although also not robust enough to achieve

disease eradication (see figure 7.4 c). But, by combining both effects, namely

with a gametocytemia reduction from 90 to 70 days and ivermectin preventive

treatment in 5% of the population, disease eradication is rapidly attained – see

figure 7.4 d).

Apparently, the combination of these separate strategies may lead to a stronger

action in suppressing malaria infection in the human population. Our quantitative

analysis however provides a framework for deriving an estimation of how strong

these strategies should be, when used in combination, in order to achieve full

disease elimination. Assuming both factors to be independent from each other,

a first order approximation to estimate the number of infected humans would be

Ĥ = Fg(wh)Fiv(piv)H, and disease elimination would be the region in parameter

space (wh, piv) satisfying

Fg(wh)Fiv(piv) <
1

H
. (7.5)

The fact that the time period of the parasite development in the mosquito is

generally longer than 10 days (see table 5.1), may explain the reason for the effec-

tiveness of ivermectin in preventive campaigns directed to other endemic parasites

in Africa. However, this effect may not be only related to an overall reduction

in the number of mosquitoes, but also to a selective interference in the process

of parasite development towards sporozoite inside the mosquito, and a preferen-

tial killing of infected mosquitoes. Therefore, both factors are correlated, and the
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Figure 7.4: (a) The evolution of the number of infected humans in an epidemic
status with wh = 0.6 with piv = 0. (b) Application of ivermectin treatment with
piv = 0.05 to the situation shown in (a), keeping positive gametocytemia at wh =
0.6. (c) Application of gametocytemia reduction with primaquine from wh = 0.6 to
wh = 0.467, without ivermectin (piv = 0). (d) Combined gametocytemia reduction
with primaquine and ivermectin treatment in epidemic status, with wh = 0.467
with piv = 0.05.

prediction presented above is biased towards a worst-case scenario.

7.4 Model validation and consistency tests: compari-

son with malaria transmission results in Chimoio

In this section, we intend to validate the agent model simulations against

empirical data, namely time series at weekly intervals collected at Chimoio region

in Mozambique [122]. In this African region, malaria is endemic revealing a trend,

which increases during the four to five months of the wet season (high transmission

season) and decreases during the rest of the year (low transmission season). The

empirical time series includes a total of 490 561 malaria cases in a population of

H = 324816 human individuals, recorded from January 1st, 2006, to December

31st, 2014. During these 9 years, weekly malaria incidence Iw was analyzed in

91



Contributions

0

0,005

0,01

0,015

I
w

0 0,005 0,01 0,015 0,02

I
w

0

0,2

0,4

0,6

0,8

1

C
D

F

0 100 200 300 400
τ

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

A
C

F

Chimoio data
Agent model

1000 1100 1200 1300 1400
Weeks

0

0,005

0,01

Chimoio data

Agent model

(a) (b) (c)

Figure 7.5: (a) Time series of weekly malaria incidence Iw, comparing empirical
data from Ref. [122] (top) against data from one realization of the agent model
(bottom), where 64 days of gametocytemia was used (wh = 0.427). (b) Auto-
correlation function of the weekly malaria incidence from the empirical data (solid
line), compared with the auto-correlation from the agent model simulation. (c)
Cumulative density functions (CDF) of the malaria incidence for both empirical
and simulation sets of data. In all cases piv = 0.

both the empirical set of data and in simulated data generated by the agent model.

Figure 7.5 a) shows both time series during 9 years (468 weeks).

From the total time of 30 years covered by the simulation, we discarded the

first 14 weeks to weaken the influence of the initial conditions and to synchronize

seasonality with Mozambique empirical data. Considering total simulation time,

we have used three partial 468 weeks’ time series (from weeks 15 to 482, 483

to 950 and 951 to 1418) which were very similar in global behavior (data not

shown). For presentation purposes we have used the last one of these 3 time-

series (from week 951 to 1418), revealing good correlation between our model and

Mozambique empirical data, as in the horizontal axis label of figure 7.5 a). The

reason for excluding so many years of data was related to the necessity of using a

time gap identical to the one of Mozambique empirical series (468 weeks). Since

we scaled both populations to a maximum number of individuals, we neglect here

demographic effects, which stand as a good approximation, as long as the human

population density does not exceed the radius of activity of individual mosquitoes3.

The simulation uses 64 days of positive gametocytemia (wh = 0.427), which

relates to a value of human-to-mosquito disease transmission efficiency close to that

found at phase transition – see figure 7.2 a). The present validation procedure only

relates to the transmission model, not including therapeutic interventions with

ivermectin. The model validation for ivermectin treatment will be discussed later

in section 12.5. A more detailed model validation procedure will be presented in

chapter 12.

3In realistic conditions, the mosquito population size is usually an unknown parameter, with
spatial heterogeneous distribution according to topography, vegetation and water conditions for
larval breeding. Consequently, it can only be guessed as an approximation, resulting from data
obtained with the help of mosquito traps and larval water count in water reservoirs, or indirectly
from counting mosquito bites.
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In figure 7.5 b) we plot the auto-correlation functions of the empirical data

from Chimoio, Mozambique, and of the model simulation results. The autocorre-

lation is defined as

γ(τ) =
〈(Iw(t+ τ)− Īw)(Iw(t)− Īw)〉

σ2
Iw

, (7.6)

where Īw and σ2
Iw

are respectively the mean and variance of the incidence series

and 〈·〉 represents the average over time t. Apart from a deviation of the local

extremes, the periodicity of the simulated scenario matches rather well with the

real seasonal oscillation period (∼ 1 year). To quantify the similarity between real

data and agent model simulation results, we have computed the usual performance

metrics, namely the mean absolute error (MAE)

MAE =
1

n

n∑
t=1

∣∣∣Îw(t)− Iw(t)
∣∣∣ (7.7)

with Îw(t) and Iw(t) representing the simulated and real incidence values in n =

468 (weeks), the mean absolute percentage error (MAPE)

MAPE =
1

n

n∑
t=1

∣∣∣∣∣ Îw(t)− Iw(t)

Iw(t)

∣∣∣∣∣ (7.8)

and the root mean square error

RMSE =

[
1

n

n∑
t=1

(Îw(t)− Iw(t))2

]1/2

. (7.9)

The computation yields MAE= 0.00152, MAPE= 0.558 and RMSE= 9.54× 10−5.

The simulation is within fluctuations of 50% of real incidence values.

We also compare the distribution of simulated and real incidence values, as

plotted in figure 7.5 c): the cumulative distributions match rather well, with a

small Kolmogorov-Smirnov score (0.22) having a p-value smaller than 0.001.

Importantly, in all simulations, mosquito and human infections are

strongly related, showing a similar oscillatory pattern. Moreover, only a small

fraction of the mosquito population survived beyond the parasite development in-

side the mosquito (10 days), which supports the presence of strong correlation

between endemic prevalence status in humans and mosquitoes in all endemic sce-

narios [249].

Our model assumes rules based on classical and neoclassical assumptions, in-

cluding several parameters from the classical Ross-MacDonald model [231, 317,

343].

The two main quantities in this classical model are the annual entomological

inoculation rate EIR, which is defined as the number of bites per year on a human
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Description Theory Model

Basic reproductive number (R0) 1.619 0.973
Annual entom. inoculation rate (EIR) 0.961 0.965

Fraction of infected mosquitoes (∆m) 2 2
Human feeding rate (a) 0.238 0.239
Sporozoite rate (Z) — 0.006
Force of infection (λ) 0.47 0.284
Mosquito-to-Human transmission (b) 0.18 0.108
Human-to-Mosquito transmission (c) 0.091 0.090
Human recovery rate (qh) 0.011 0.011
Mosquito daily mortality (qm) 0.1 0.1

Table 7.1: Classical Ross parameters from theory and model simulation for en-
demic scenario A close to phase transition, i.e. with 68 days of gametocytemia
(wh = 0.453). The two main quantities, reproductive number R0 and the annual
entomological inoculation rate EIR are within the classical theoretical values.

host from an infectious mosquito, and the reproductive number R0, which repre-

sents the number of infected humans generated from one single infectious mosquito

in a population of susceptible and non-immune individuals.

For evaluation of our model, we have compared the values obtained in model

simulations with the expected theoretical ones, which are given in references [317,

343]. Results are given in table 7.1. For estimating the annual entomological

inoculation rate, we have used the definition

EIR = 365 ∆m aZ, (7.10)

where ∆m represents the mosquito density (number of mosquitoes per human

individual, ∆m = Nm
Nh

), a is the human feeding rate given by (see table 5.1 and

section 5.2), a = (PQnb(1 − u)σ)/τs, and Z is the sporozoite rate (fraction of

infectious mosquitoes). In estimating the reproductive number, we have used the

Ross definition [317]

R0 =
∆m a2bc

qhqm
, (7.11)

where b is the mosquito-to-human transmission efficiency, b = kh(1− ν̄), c is the

human-to-mosquito transmission efficiency, c = kmwh, and qh and qm are given

by equations 5.1 and 5.4, respectively. As indicated in table 7.1, the expected

theoretical values of both these quantities are well reproduced by the model sim-

ulations. When compared with Ross theory, the lower value of R0 found in the

model simulations, is related to the fact that the b value in the simulation only

takes into account bites from infectious mosquitoes.
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7.5 Towards improved medical strategies

Here, we have introduced an agent model for assessing the effect of game-

tocytemia and drug administration in epidemiological scenarios of malaria. Our

model was calibrated by considering various aspects of the disease dynamics and

supported by field data. We uncover the existence of a phase transition between

an absorption state with disease elimination, and an endemic/epidemic regime.

Because several parameters from our model were based on the Mozambique

epidemic environment, validation of the model implementation took place by the

comparison of model simulation results with field collected data series for malaria

incidence in the typical seasonal endemic malaria region of Chimoio, Mozambique.

Importantly, this field data time-series covered a long time period of malaria in-

cidence, namely 9 years [122]. Although the parameter values in table 5.1 are

case-dependent, they are within the range of typical values described in the liter-

ature.

In complex models, phase transition stands as a critical concept in stochas-

tic simulation. Its precise definition is useful to identify the occurrence of a state

transition between disease elimination and endemic stability, which can be used for

better preventive planning. At critical equilibrium points, malaria transmission dy-

namics was defined taking into account the predicted rational use of anti-malarial

strategies in the near future.

Special attention was given to the role of gametocytemia in human-to-mosquito

transmission. All our model simulations assumed the duration of positive game-

tocytemia to be in the range of 0.4 to 0.8 of total infection time. With a small

variation in gametocytemia prevalence it was possible to define all tested transi-

tion phases. These small changes in gametocytemia were considered as a model

for effective gametocidal treatment, such as the administration of primaquine or

methylene blue [117, 148, 176, 181, 201, 221, 355]. Transition phases were clearly

defined, promoting a better understanding of the disease dynamics, as well as

of the points of sudden stochastic transition from epidemic prevalence to disease

elimination.

In the present model, we also analyzed preventive intervention with ivermectin,

a well-known agent with capability of interfering with human-to-mosquito trans-

mission. An intervention with ivermectin may be highly selective in targeting

recently infected mosquitoes, by killing them before the complete development of

the parasite could take place. This aspect bears no relation to gametocytemia

prevalence [61, 196, 291, 357]. Apparently, the role of mosquito mortality from

ivermectin in disease transmission does not significantly interfere with the effect

of gametocidal drug intervention.

However, notice that, in this model, the action of primaquine is based on
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its general properties as a gametocidal agent. For simplicity, we have assumed

gametocytemia duration reduction in P.falciparum as the main drug effect, ne-

glecting its action on other forms of Plasmodium. Methylene blue can be used as

an alternative potential gametocidal agent, but our model intends to catch general

spreading regimes and therefore, we have not focused on any other major drug

characteristics.

Moreover, while the results may be encouraging, showing that ivermectin cov-

erage as low as 5-10% can have a significant impact, the next step in research

should be in the direction of considering drug pharmacokinetic properties, which

could afterwards provide insight on how this prolonged coverage could take place

with the current drug formulations.

The detailed biochemical mechanisms that trigger gametocytogenesis in Plas-

modium are not well known.

However, this process may be influenced by host immunity and anti-malaria

therapy [181, 201]. For human-to-mosquito transmission to be effective, male and

female stage V gametocytes must be present in the blood during mosquito feeding.

Once inside the mosquito midgut, gametocytes will mature to gametes promoting

fertilization and maturation to zygote stage, ookinete, oocyst, and finally to the

sporozoite stage, the infectious form of the parasite present in mosquito salivary

glands. Common gametocidal drug agents (primaquine, artemisinin and methylene

blue [41, 117, 148, 176, 221, 300, 355]) usually fail to act in the early stages of

gametocyte maturation. But their inhibitory action on gametocytes in stage V

may be very effective in reducing the time of gametocytemia duration [201].

Vector control, by itself, is not enough to eradicate disease transmission. Long

standing cyclic positive gametocytemia in a few human individuals may perpetuate

transmission for a long time, and more attention should be directed towards human

disease reservoirs as possible hot-spots for chronic mosquito infection. Preventing

mosquito infection from these hot-spot human reservoirs by reducing the time

of positive gametocytemia with the help of a selective mosquito-killing-after-bite

prevention strategy with ivermectin, may turn out to be more effective in the fight

against malaria.

It is known that drug resistance may not only be the result of mass drug ad-

ministration, but also a consequence of new mutations. The combined intervention

of gametocidal agents and ivermectin can also be useful in reducing pressure in

areas where drug resistance is becoming a major problem as a result of new muta-

tions in the background of mass drug administration [93, 105]. Our results seem

to indicate that such a theoretical possibility may deserve serious consideration in

future malaria prevention campaigns.

Dynamical aspects of human therapy with drug agents such as artemisinin

or quinine (with specific intervention in disease status and gametocytemia prob-

ability), population heterogeneity and human migration were not included in the

96



Gametocytemia and ivermectin in disease dynamics

present analysis, but will be dealt separately in chapters 8 and 9. Model simula-

tions assumed the existence of a typical and isolated African village with limited

drug availability.

Our computational model allowed us to test the combined use of different pre-

ventive interventions with antimalarial agents like ivermectin (killing mosquitoes

during parasite’s development) or primaquine (gametocytemia reduction) that

could significantly influence disease outcome, and therefore contribute to a better

knowledge of disease transmission dynamics in different endemic scenarios. With

the present model, it was possible to recreate simulations for regions with different

disease status and with specific seasonality conditions, and to anticipate future

events as a result of selective interventions in certain human subgroups, in all

simulations.

From the main findings of this agent-based model, a set of valuable insights are

possible. First, in endemic locations, small differences in gametocytemia preva-

lence in human populations, obtained from preventive intervention in a small frac-

tion of the population with gametocidal drugs [117, 148, 176, 221, 300, 355], may

result in very different outcomes, despite the relative stability of classical human-

to-mosquito infectiousness parameter c.

Second, the demonstrated mosquito-killing properties of ivermectin in the first

days after a mosquito feed, may potentiate the effect of gametocidal agents with

drastic interference in human-to-mosquito transmission efficiency. This preventive

action may also benefit from its combined use with LLIN/ITN/IRS.

Third, our model indicates that with a combined ivermectin and primaquine

scissor-like intervention, malaria elimination may be possible in small African vil-

lages after a short period of time.
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Chapter 8

Heterogeneity in malaria

transmission

8.1 Heterogeneity background

The presence of heterogeneity in malaria may influence disease transmission

in multiple ways [5]. It may concern to different human and vector densities, to

several forms of diversity in human age distribution, cultural, social, and genetic

population backgrounds, as well as to a variable host-acquired immunity from

previous infections. It may also relate to differences in climate conditions, land to-

pography, local altitude, housing structure, human migration and the unequal use

of preventive and treatment measures [235, 261]. Indeed, heterogeneous mosquito

biting has been reported as a possible factor for enhancing malaria transmission:

human hosts who are bitten most will later on infect a larger number of mos-

quitoes [344], and will be more likely to behave simultaneously as super-receivers

as well as super-spreaders [83, 367]. Moreover, not all human beings are equally

attractive to mosquitoes. Multiple factors seem to influence mosquito feeding

routine. During day-time, the mosquito vision apparatus seems to be the most

effective mosquito guidance system. However, at night-time, olfactory cues may

play a more important role in mosquito host-seeking behavior. The affinity of

the disease vector Anopheles is related to the presence of specific odors in the

human host, namely different chemical stimulus called kairormones such as the

CO2 percentual fraction in human exhaled air, or the presence of some aliphatic

carboxylic acids in the human skin. Human respiratory CO2 exhaling may be

the single most important factor conditioning mosquito feeding preferences [261].

Also, different Anopheles subspecies may display different levels of anthropophilic

mosquito feeding habits [9, 98, 233, 276]. Furthermore, infectious hosts may dis-

play higher mosquito bite attractiveness as a result of the presence of high levels

of gametocytemia [84, 97, 206].

However, till the 90’s, most of the models of malaria dynamics assumed ho-
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mogeneous transmission, while a precise and objective quantitative approach to

realistic scenarios was still lacking. In 1997, Woolhouse defined a specific model

for the presence of heterogeneity in malaria transmission, naming it the rule 20/80

[386]. This rule assumes that 80% of all mosquito bites will occur in 20% of the

human population, being inspired in Wilfredo Pareto’s original work on the dis-

tribution of world wealth [295, 296]. This smaller super-spreader subgroup [83]

concentrates the effect of repeated biting leading to a proportional increase in

the risk of disease transmission to human hosts. Also, it stands as a privileged

reservoir with higher probability of mosquito reinfection because of higher game-

tocytemia levels. In identical endemic conditions, this factor alone may increase

several-fold the probability of disease transmission [386]. We will refer to this

Pareto-Woolhouse (PW) rule as the PW-rule. For a review comparing the major

malaria transmission models, see reference [346].

Spatial variation in malaria incidence and exposure to infected mosquitoes

in Tanzania has been related to the presence of clusters of higher malaria inci-

dence among infants [43]. These were defined as hot-spots of malaria transmission,

with higher mosquito bite exposure. In this case, while a small group of children

(around 10%) experienced several malaria episodes, there was no clinical evidence

of malaria symptoms in two thirds of all the children. A stronger human expo-

sure to Anopheles mosquito may also result from spatial factors such as a closer

distance to vector breeding sites, prolonged outdoor human activities, and human

genetics responsible for odor production more attractive to mosquitoes [45]. In

some African villages, the existence of hot-spots supports continuing transmission

during the dry season, while acting as a source of infection for the rest of the village

during the wet season [45]. Within a few districts of Bangladesh with stable hot-

spots, malaria incidence distribution was remarkably similar to the heterogeneity

20/80 rule described by Woolhouse [274, 386].

In the present chapter we provide quantitative evidence that malaria spreading

effectiveness is strongly sensitive to heterogeneous affinity. Section 8.2 describes

the agent-based malaria model used in simulating different scenarios of malaria

spreading, introducing a parameter for measuring heterogeneous affinity. In sec-

tions 8.3, 8.4 and 8.5, we investigate the possible transitions from elimination

to disease persistence, focusing on the role of three parameters: heterogeneous

affinity, level of drug administration, i.e. the fraction of human population at

risk undertaking ivermectin treatment, and human-to-mosquito (H-to-M) trans-

mission efficiency. In particular, in section 8.5.3 we address the issue of mosquito

survival. Later on, in chapter 12, section 12.5, we will use a model validation pro-

cedure evaluating the impact of ivermectin human treatment in mosquito survival,

when compared to similar results obtained from previous research [61, 342]. In

section 8.6, we discuss further which measurable quantities can in real situations

better predict malaria incidence. We look at how heterogeneity interacts with ga-

metocytemia in boosting H-to-M disease transmission in section 8.7. Section 8.8
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concludes the chapter.

8.2 Modeling heterogeneity in malaria transmission

Figure 8.1: Human and mosquito infection prevalence (a) in a scenario of homo-
geneous affinity, namely 20% of the human individuals receive 20% of mosquitos
bites, and (b) in a heterogeneous scenario when 20% of the human individuals
receive 80% of mosquitos bites. In both cases intermediate human-to-mosquito
transmission efficiency is considered, wh = 0.500.

Comparing two typical scenarios, one in which the number of bites are dis-

tributed uniformly among the human population - see figure 8.1 a) -, and another

where PW-rule 20/80 is applied – see figure 8.1 b) -, the model predicts that

heterogeneity clearly promotes malaria persistence in both mosquito and human

populations.

There are many factors influencing heterogeneous affinity in mosquito and

human populations. Some of the most important are the existence of hot-spots,

genetic propensity, migratory human behavior and specific geophysical conditions.

Instead of considering these different factors separately, we will look at their col-

lective effect in a small fraction of human individuals receiving most of mosquito

bites. In other words, we will parameterize a sort of Pareto rule in its more modern

formulation, according to Woolhouse [386].

Our model extends the agent-based malaria model introduced in chapter 5 and

in reference [326], now incorporating heterogeneous affinity. We consider a system

of Nm = 4000 mosquitoes and Nh = 2000 human individuals, both including

healthy and infected individuals, henceforth represented as M0 and H0 and as Mi

and Hi respectively (Nm = M0 + Mi and Nh = H0 + Hi). Although the density

of mosquitoes in the field may be higher than the one here considered, we model

the number of mosquitoes as a smaller effective fraction of the overall mosquito

mass that randomly feeds on a human individual, on average, twice a day, with
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uniform distribution, and ranging from no bites to four daily bites. The algorithm

keeps track of all attributes for each agent, human or mosquito, in a particular

age, time since infection, and immunity status. All simulations take place during

a time period of 30 years. More details and a flowchart describing the computer

implementation of the agent-based model is given in chapter 5 and reference [326].

Heterogeneous affinity is here defined by the PW-rule parameter

θ =
Ph
Pb
, (8.1)

giving the quotient between the percentage Ph of the group with the most bitten

humans and the percentage Pb of the bites that the group will receive. The algo-

rithm defines a human subgroup consisting of 20% of the human population. This

subgroup will be bitten with a probability between 20% (full homogeneity θ = 1)

and 80% (full Pareto heterogeneity 20/80, corresponding to 1
θ = 4). Next, we de-

scribe the relation between the basic reproduction number of the Ross-Macdonald

model [230, 317], and the heterogeneity affinity rule introduced above. The basic

reproductive number R0 represents the number of secondarily infected humans

that result from a single infectious human, and it has been defined as

R0 =
∆m a2bc

qhqm
(1 + α) = R̄0(1 + α), (8.2)

where ∆m represents the mosquito density 1, a is the human feeding rate, b and

c represent respectively the mosquito-to-human (M-to-H) and human-to-mosquito

(H-to-M) transmission efficiencies, and qh and qm are, respectively, the human daily

recovery rate and the mosquito daily mortality rate. Parameter α ≥ 0 has been

used in previous studies accounting for the effects of heterogeneous affinity [5, 11,

38, 45, 83, 108, 261, 386] and corresponds to the so-called index of biting disparity,

which has been included by assuming that the previous basic reproductive number

corresponds to the homogeneous basic reproductive number R̄0.

From empirical studies [43, 45, 83, 386], parameter α is known to assume

values in the range 0 < α < αmax . 4. Next, we introduce an explicit definition

for α, to map it from parameter θ:

α = αmax

(
1− exp

(
−(log θ)2

2σ2

))
, (8.3)

where σ = |log (20/80)| to settle PW-rule 20/80 as the heterogeneous affinity

deviated from homogeneous state by one standard deviation, and αmax = 4. A

sketch of α as defined in equation 8.3 as a function of θ, while equation 8.1, is

shown in the inset of Figure 8.2.

In the present chapter, there is the intention to define a specific metrics for het-

erogeneity quantification in the form of its possible impact on local disease trans-

1Here, we use ∆m = M
H

as the mosquito density, instead of m from D.L.Smith,2004 [343]
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Figure 8.2: Malaria incidence as a function of heterogeneous affinity α as defined
in equation 8.3. The inset shows the change in heterogeneous affinity with θ, as
defined in equation 8.1.

mission, equivalent to the effect of a small migrating gametocyte-carrier population

in the increase of disease resurgence risk. The utility of preventive treatment with

ivermectin in the context of high heterogeneity in disease transmission while in

the presence of different levels of background gametocytemia in the human popu-

lation is also analyzed in terms of effective disease prevention. This intervention

may be used as an adjuvant therapy to other anti-human-to-mosquito transmis-

sion measures resulting in gametocytemia reduction, by the use of effective drugs

such as artemisinin, primaquine or methylene blue [41, 55, 212, 333]. Therefore,

following the study presented in chapter 7, one may also consider two important

aspects of malaria spreading in the presence of heterogeneity which enable us to

use our previous results in the discussion of a possible new insight into improving

the control of malaria transmission. The two aspects are:

(i) gametocytemia reduction by the use of specific treatment with primaquine,

methylene blue or artemisinin derivatives.

(ii) ivermectin prevention.

8.3 Human-to-mosquito transmission and drug admin-

istration in a heterogeneity setting

At least two mosquito bites are required to complete the human-mosquito-

human malaria transmission cycle. However, it is the presence of gametocytes in

the blood at the human-to-mosquito transmission stage that stands as the most

critical step in the persistence of malaria transmission.

Because human hosts can present a wide range of gametocytemia levels at

different occasions, and during a finite time period, the effectiveness of human-

to-mosquito transmission assumes a stochastic nature, conditioning some form of

heterogeneity in the process. In the present model, human-to-mosquito transmis-

sion efficiency wh was defined as the fraction between the number τg of days with
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positive gametocytemia and the expected total duration τd of the disease, as [326]

wh =
τg
τd
. (8.4)

Here, we consider the typical value τd = 150 days. The period with potential ga-

metocyte production is usually longer than the disease symptomatic phase, which

is of shorter duration. The assumed value of 150 days represents a reasonable ap-

proximation to the upper range of the expected average disease duration. Gameto-

cytemia duration was defined as an essential model parameter, tunable through a

dynamically equivalent action by the potential use of a gametocidal drug agent. In

the present model, heterogeneity was analyzed at different levels of disease H-to-M

transmission (from wh = 0.400 to wh = 0.800).

In the case of heterogeneous transmission, the combination of several anti-

malarial strategies is crucial to achieve epidemic control [5]. The possibility of

quarantine may be ineffective in malaria asymptomatic patients. Even gametocyte-

carriers may briefly show only asexual forms of the most dangerous parasite

P.falciparum (Pf ) in their peripheral blood. With new laboratory assays for early

disease diagnosis, diagnostic accuracy on migrant population may improve. But

to decide which migrants should be treated with effective anti-malaria treatment

at admittance is debatable.

Ivermectin has proven effective against P.falciparum infection, by selective

killing of Anopheles mosquitoes shortly after a successful bite, before the parasite

is able to complete its sporogony development [61, 62, 196, 250, 291], and ap-

parently without any form of direct toxicity to the parasite [28]. This ivermectin

selective killing action on biting mosquitoes may be extremely effective in disease

prevention, by reducing the need for treatment with artemisinin derivatives, and

thus lowering the risk of artemisinin drug-resistance expansion.

Ivermectin prevention was introduced in the present model as an adjustable

parameter δiv, according to a previously published definition [326]. The δiv pa-

rameter results from the product of ivermectin administration probability piv (in

the range between 0.0, with no ivermectin prevention, and 0.50, with ivermectin

prevention in 50% of the human population) and the ivermectin-induced mosquito

mortality constant parameter (qiv=0.50):

δiv = piv × qiv . (8.5)

This mathematical implementation of the ivermectin effect is based on the

knowledge that approximately half of all mosquitoes will die during the first four

days after feeding on a human-host under ivermectin treatment [61]. As described

below, we will validate such implementations in our model, looking into mosquito

survival distribution curves, and comparing them with Chaccour original results –

see section 12.5 [61]. We also evaluate if there is any correlation between mosquito
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mortality as a result of ivermectin human treatment when compared to mosquito

mortality occurring during the parasite incubation period inside the mosquito,

according to what would be expected from theoretical predictions.
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8.4 Predictive rates for assessing the strength of malaria

transmission and the annual entomological inocu-

lation

Field malaria transmission is difficult to monitor, requiring various methods

to measure different aspects of disease transmission [352]. Here, we consider three

metrics to monitor the intensity of malaria transmission: a) malaria incidence

(MI ), b) parasite rate (X) for human individuals, and c) sporozoite rate (Z) for

mosquitoes.

Malaria incidence is defined as the confirmed malaria cases per person per unit

of time, and more particularly, as the annual number of malaria-confirmed cases

per 100 inhabitants at risk. The parasite rate X is given by the fraction of infected

humans, and is also known as the prevalence of infection in humans [343, 344]. This

rate is obtainable from the slide positivity rate (SPR), which is defined as the num-

ber of microscopy-confirmed malaria tests per 100 suspected cases examined [172].

SPR is useful in establishing temporal trends in malaria, and simple to imple-

ment at peripheral health facilities. It only considers laboratory confirmed cases

of malaria, and may also be derived from rapid diagnostic testing (RDT-PR) [47].

SPR has been associated with malaria incidence and identified as a strong predic-

tor of malaria transmission in Yunnan province, China [37]. The sporozoite rate

Z represents the fraction of infected mosquitoes [308, 343].

Although these two indices, Z and X, are commonly used separately in malaria

research [343], we have combined their behavior with respect to heterogeneity,

introducing a “global infection rate” G = ZX parameter, which is given by the

product of both rates:

G ∼ ZX , (8.6)

where G represents an improved rate in the form of a squared percentage.

Related with these predictive rates is the annual entomological inoculation

rate (EIR) defined as

EIR = 365 ∆m a Z (8.7)

where, as stated above, ∆m represents the mosquito density, and a is the human

feeding rate [343].
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8.5 From disease persistence to elimination in a sce-

nario of increasing heterogeneity

8.5.1 Heterogeneity and ivermectin

The present model was implemented for sets of ten simulations in three hetero-

geneity scenarios, defined by the following values of heterogeneity affinity: low

(θ = 1, 0.66), intermediate (θ = 0.5, 0.4) and strong (θ = 0.33, 0.29, 0.25). See

equation 8.1. These values are equivalent to the set of PW-rules 20/20, 20/30,

20/40, 20/50, 20/60, 20/70 and 20/80, respectively. Our results show a consis-

tent linear correlation between 30-years average malaria incidence and increasing

levels of heterogeneity, suggesting that heterogeneity strongly promotes malaria

transmission (Figure 8.2).

Next, we analyze how heterogeneity in disease transmission is influenced by

ivermectin treatment. In the absence of ivermectin administration, malaria inci-

dence is three times higher in high heterogeneity simulations related to the PW-rule

20/80 (θ = 0.25), for which around 150 cases phy are observed, when compared

to simulations in full homogeneity (θ = 1.0) where one observes ∼ 50 cases phy.

The curve in figure 8.3 a) for piv = 0 clearly shows this pattern. Moreover, this

pattern is significantly reduced if ivermectin is used by even a small fraction of 5%

of the general population, and a major decline in malaria incidence – very close to

disease elimination – can be achieved by using ivermectin treatment in 20% of the

general population, in the high heterogeneity scenario (PW-rule 20/80, θ = 0.25).

An important feature is revealed in figure 8.3 b): isolines of constant malaria

incidence fit approximately a linear relation α + spiv with s ' −18. If malaria

incidence is plotted as a function of this linear relation, we uncover a transition

from disease persistence to elimination at α−18piv ∼ −1. Our results suggests that

an increase in malaria transmission due to heterogeneity can be overcome when

the population fraction under ivermectin treatment is such that piv & (α+ 1)/18.

8.5.2 The role of transmission efficiency combined with ivermectin

treatment in heterogeneous scenario

In the present model, human-to-mosquito transmission efficiency wh is related to

the time of gametocytemia duration and reveals strong correlation with malaria

incidence in highly-heterogeneity scenarios. However, this correlation is consis-

tently suppressed with higher rates of ivermectin prevention, as shown in Figure

8.4 a).

In this case, as shown in figure 8.4 b), isolines of constant malaria incidence

fit approximately a linear relation wh + spiv with s ' −4.2, and malaria incidence

is approximately proportional to this linear combination.
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Figure 8.3: (a) Malaria incidence as a function of the heterogeneous affinity α
and the ivermectin probability piv, showing that isolines of malaria spreading are
approximately a linear combination of both variables.
(b) Malaria incidence as a function of the linear combination α+sPiv with s = −18,
showing a transition from disease persistence to elimination. In all cases, the
human-to-mosquito transmission efficiency is held constant at wh = 0.5.

p
iv

0.00

0.05

0.10

0.15

0.20

wh0.5

0.6

0.7

0.8

MI

(a)

50

100

150

200

-0.4 -0.2 0 0.2 0.4 0.6 0.8

w
h
+sp

iv

0

50

100

150

200

250

M
a
la

ri
a
 i

n
c
id

e
n

c
e

(b)

Figure 8.4: (a) Malaria incidence as a function of the human-to-mosquito trans-
mission efficiency wh and the ivermectin probability piv, showing that isolines of
malaria spreading are approximately linear combination of both variables. There-
fore, we plot in (b) the malaria incidence as a function of the linear combination
wh + sPiv with s = −4.2, clearly showing a gradual transition from elimination to
endemic prevalence. In all cases the PW-rule 20/80 was used, corresponding to
θ = 0.25.

8.5.3 Mosquito survival patterns

In the present model, ivermectin is responsible for a consistent reduction in mosquito

life expectancy resulting in lower chances for Plasmodium parasites to mature to

the stage of sporozoite inside the mosquito, after feeding on a gametocyte-carrier

human host. With a higher fraction of human hosts on ivermectin treatment,

mosquito mortality is higher during the initial period of mosquito lifetime before

the necessary ten days for parasite maturation inside the mosquito gut – see figure
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8.5.

Average mosquito mortality, during the 10 days parasite incubation time pe-

riod as a direct result of ivermectin treatment, is influenced by the fraction of

human hosts on ivermectin treatment. Mosquito mortality was consistently stable

and independent of different heterogeneity levels in all simulations with identical

model parameters. In figure 8.5 a) we show the mosquito survival distribution

curve for 30-years’ time for different values of ivermectin probability and fit it

with an exponential function

N = A exp (γt) (8.8)

with γ and A, which vary linearly with piv, as shown in figures 8.5 b) and 8.5 c).

The intersection point in figure 8.5 a) around 10 days coincides approxi-

mately with the parasite incubation time period inside the mosquito, as ivermectin-

induced mosquito mortality is typically higher during the first ten days of treat-

ment, and becomes residual thereafter.
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Figure 8.5: (a) Mosquito survival distribution curve for 30-years’ time series (5
samples), uncovering an intersecting point around 10 days. The exponential fit
N = A exp (γt) has parameters, γ and A, which vary linearly with Piv as shown
in (b) and (c). In all cases, high heterogeneity (θ = 0.25) and low human-to-
mosquito transmission efficiency (wh = 0.5) is fixed.

8.6 Towards parameters for assessing malaria incidence

8.6.1 Utility of Plasmodium infection metrics

An important issue addressed in our model concerns the presentation of malaria

burden results. For that purpose, we have used a point-analysis of annual malaria

incidence per 100 inhabitants as a reliable metrics of malaria transmission intensity.

However, we have also tested an alternate rate resulting from the combination of

two other well-known and reliable infection rates: sporozoite rate (Z) and parasite

rate (X).

We defined the G-rate as the result from the product of both sporozoite and
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parasite rates – see equation 8.6. With the background of different heterogeneity

scenarios, we have found a consistent correlation of the G-rate with malaria annual

incidence, when compared to the established role of the parasite rate in defining the

intensity of malaria transmission. Comparing the different plots in figure 8.6, one

sees that in the presence of transmission heterogeneity, malaria incidence correlates

better with the G-rate, rather than with any of the other rates, Z or X, separately.

8.6.2 Performance of classical Ross-Macdonald parameters in het-

erogeneity scenarios

We have determined the combined influence of ivermectin treatment on two impor-

tant Ross-Macdonald model classical metrics, at different levels of heterogeneity

affinity: the annual entomological inoculation rate (EIR), defined in equation 8.7,

and the basic reproductive number (R0), at different levels of heterogeneity – see

figures 8.7 a) and 8.7 b).

As expected, mosquito mortality progressively increases with higher percentual

use of ivermectin in the general population. When ivermectin treatment rate

reaches the value of 0.20, i.e. nearly 93% of all mosquito deaths occur during the

10-days after the initial blood meal, when the parasite is still developing into the

next transmissible form, explaining the effectiveness of this drug in blocking disease

transmission.

Nonetheless, our simulations indicate that EIR is a better indicator than R0

in the prediction of malaria transmission, as shown in figures 8.7 c) and 8.7 d). A

possible explanation for this observation is that EIR values are consistently higher

with increasing levels of heterogeneity.
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Figure 8.6: Scatter-plot between annual malaria incidence per 100 inhabitants and
(a) the Z-rate, (b) the X-rate and (c) the ZX-rate. In each case we merge dif-
ferent levels of heterogeneity and at three different levels of ivermectin treatment,
namely piv=0.00, 0.10 and 0.20. Independently of the heterogeneous affinity and
ivermectin probability, there is a very accurate relationship given by MI ∼

√
ZX.

Additional simulations were performed for other classical Ross-Macdonald

model parameters, such as the human feeding rate a , mosquito-to-human trans-
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mission parameter b and human-to-mosquito transmission parameter c, with dif-

ferent results according to the heterogeneity level. While a is not significantly

affected by heterogeneity, we find a consistent reduction in b with increasing levels

of heterogeneity; on the contrary, c is positively and linearly correlated with higher

heterogeneity levels.

The level of heterogeneity at which c became higher in magnitude than b

was above the level corresponding to the PW-rule 20/60, where we had previously

found an inversion of human infection prevalence. From this relation between b

and c, one may assume the possible existence of some form of proportionality of

the fraction c
b with the biting disparity index α.
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Figure 8.7: (a) The basic reproduction number, equation (8.2), and (b) the annual
entomological inoculation rate, equation (8.7), both as function of the ivermectin
probability piv and heterogeneous affinity α. In (c) and (d) we show the scatter-
plots of the basic reproduction number and annual entomological inoculation rate,
respectively, with the corresponding values of malaria incidence. Clearly, there is
a significantly stronger correlation of malaria incidence with EIR than with R0.
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8.7 Gametocytemia and heterogeneity in disease trans-

mission

In our model, the intensity of human-to-mosquito transmission efficiency is

represented by the variable wh, which is roughly equivalent to the fraction of time

with the presence of positive gametocytemia in human infected individuals. This

variable is strongly correlated to the H-to-M transmission efficiency parameter

c in R0 original equation [317, 343], while being essential to the dynamics of

human infectiousness to mosquitoes. This aspect of malaria transmission becomes

particularly relevant in the presence of transmission hot-spots in the setting of

human and mosquito population heterogeneity [274, 367, 386].

In the present model, we have investigated how the presence of heterogeneity

could affect the 2D probability density function of human and mosquito infection

prevalence (see figures 8.8 and 8.9).

We have also looked into the possibility of interaction between human-to-

mosquito infectiousness and the presence of transmission heterogeneity hot-spots,

and how this interaction was modified by the intensity of ivermectin intervention

(see figures 8.10 and 8.11).

From figures 8.8 and 8.9 it is possible to show that the 2D human-mosquito

infection prevalence probability density function is strongly affected by the pres-

ence of increasing heterogeneity. In the present simulation with full homogeneity

(1
θ = 1.0) there is evidence of the presence of a form of power-law in the human-

mosquito infection prevalence 2D distribution function. With the presence of in-

creasing heterogeneity (1
θ ∈ [2.0 − 4.0]) it becomes evident that the dynamical

human-mosquito infection trajectories evolve towards more stable 2D attractors –

see figures 8.8 and 8.9, from a) to d).

8.8 Discussion and conclusion

We addressed heterogeneity as an important aspect in disease transmission,

with severe impact in disease prevention strategy. To that end, we have used a

previously described agent-based malaria model to simulate malaria transmission

in scenarios of varying heterogeneous affinity, aiming to identify parameters that

potentiate transition from disease persistence to elimination. Emphasis was drawn

upon the role of preventive interventions, such as mass administration of ivermectin

treatment (possibly in combination with gametocidal therapy), as well as on the

adaptability of field malaria transmission indicators to accurately predict malaria

incidence.

Human-to-mosquito transmission, which is directly related to the time length
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Figure 8.8: 3-D probability density function (PDF) of human and mosquito Pf
infection prevalence at constant H-to-M transmission efficiency (wh = 0.500), in
the setting of lower levels of heterogeneity:
(a) Homogeneneity (1

θ = 1.0) (b) Mild heterogeneity (1
θ = 2.0)
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Figure 8.9: (Cont. figure 8.8) 3-D probability density function (PDF) of human
and mosquito Pf infection prevalence at constant H-to-M transmission efficiency
(wh = 0.500), in the setting of higher levels of heterogeneity:
(c) Intermediate heterogeneity (1

θ = 3.0) (d) Full heterogeneity (1
θ = 4.0).
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of positive gametocytemia (wh) is fundamental in disease transmission. Mass ad-

ministration of ivermectin can potentially inhibit transmission due to its lethal

effect on mosquito populations, immediately after feeding, and therefore, not al-

lowing for complete gametocyte maturation to take place inside the mosquito,

long before completing the 10 days incubation period. Such effect is potentiated

in the settings of high mosquito density and high human-to-mosquito transmis-

sion [61, 196, 326].

We found that in the presence of strong heterogeneity, the product between the

sporozoite and the parasite infection rates becomes a reliable indicator in predict-

ing malaria transmission, performing better than the parasite rate and sporozoite

rate, separately, in identical heterogeneity settings, particularly when taking into

consideration the possibility of mass administration of ivermectin. Also, we have

found that among classical Ross-Macdonald model metrics, EIR is much more

sensitive than R0 in predicting malaria incidence in high heterogeneity scenarios.

In the present model simulation, with different levels of heterogeneity (1
θ )

and human-to-mosquito transmission efficiency (wh), we have found an additive

influence of the two variables in increasing malaria incidence – see figure 8.10

a). However, this effect could be effectively reversed with the help of ivermectin

prevention in increasing fractions of the human population – see figures 8.10 a)

and b), and 8.11 c) and d).

The assumptions of our model intend to assess the impact of heterogeneity in

malaria transmission. In an agent-model, the assessment takes place at a more

qualitative level. In other words, while keeping its simplicity to facilitate the

exploration of different scenarios, our results provide evidence for an impressive

efficiency of ivermectin administration, at least at a qualitative level. We describe

the quantitative output of our simulations, parameterized according to the knowl-

edge about both populations and drug features, and well supported by reliable

qualitative assumptions. However, we point out that the adopted validation pro-

cedure did not include quantitative conclusions, only possible with clinical trials,

which are of course beyond the scope of a computational agent-based simulation.

Moreover, our model is based upon a stochastic agent-based model, previously

published [326]. The model is implemented based in a detailed multi-parameter

calibration, including information from empirical knowledge about mosquitoes,

human-mosquito interaction and pharmacological features of ivermectin. Here,

the additional assumption is derived from a well-established concept in economy

and ecology, which is strongly connected to the presence of transmission hot-spots

and disease super-spreading events, as we now report in the manuscript: 20% of

the causes are responsible for 80% of the consequences. Our model of heterogeneity

was implemented as a mathematical tool replicating that concept, in accordance

with the first use of the 20/80 rule in infectious disease research by Woolhouse, in

1997 [386].

To better explore the robustness of our results against variations of heteroge-
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Figure 8.10: Malaria incidence (number of diagnosed cases per 100 inhabitants,
during a full year) as a result of the interaction between human-to-mosquito trans-
mission efficiency (wh) and heterogeneity, ranging from homogeneity (1

θ = 1.0) to
full heterogeneity (1

θ = 4.0), with different levels of ivermectin prevention: (a)
piv = 0.00 (b) piv = 0.05
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Figure 8.11: (Cont. figure 8.10) Malaria incidence (number of diagnosed cases
per 100 inhabitants, during a full year) as a result of the interaction between
human-to-mosquito transmission efficiency (wh) and heterogeneity, ranging from
homogeneity (2

θ = 1.0) to full heterogeneity (1
θ = 4.0), with different levels of

ivermectin prevention: (c) piv = 0.10 (d) piv = 0.20
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neous affinity, we introduce a parameter that measures that affinity. Our results

show a linear relationship between the level of heterogeneous affinity and the min-

imal level of ivermectin administration. Again, the specific linear coefficients are

not taken as a trustworthy result, but the linear relationship between the minimum

level of drug administration and the level of heterogeneity can be presented as one

conclusion in this study. One particular aspect uncovered in our simulations is the

evidence that the annual entomological inoculation rate seems to be a better pre-

dictor than other widely used quantifiers, such as the basic reproduction number,

R0.

We have previously shown the critical influence of heterogeneity in amplifying

malaria transmission three-fold in our model simulations with full heterogeneity

(1
θ = 4.0). We have also proved that ivermectin was effective in suppressing disease

transmission. In the present section we have looked at how heterogeneity (1
θ )

interacts with human-to-mosquito transmission efficiency (wh), in different settings

of θ and wh.

In figures 8.8 and 8.9 we may witness different 2D probability density functions

relating percentual infection prevalence between mosquitoes and human individu-

als in different heterogeneity settings. Mosquito infection prevalence was consis-

tently higher in the presence of high heterogeneity scenarios (1
θ = 4.0). leading as

a result to higher human infection prevalence.

By looking at figures 8.10 and 8.11 it is also clear that ivermectin was efective

in the presence of both high heterogeneity and high H-to-M transmission efficiency.

In figure 8.11 d) malaria transmission was successfully suppressed with the imple-

mentation of partial ivermectin prevention in the human population.

Overall, our model emphasizes the importance of considering heterogeneity,

when predicting malaria transmission, showing that the effect of mass drug admin-

istration of ivermectin, is not only dependent of ivermectin intensity and human-

to-mosquito transmission efficiency, but that it is also clearly influenced by the

presence of heterogeneity in disease transmission.

Heterogeneity is clearly illustrated by the presence of transmission hot-spots,

which have been shown to be geographically distinct, and able to present sub-

stantial diversity in temporal transmission dynamics [34]. The role of these hot-

spots in malaria transmission may assume special importance in small villages

in close proximity to high Anopheles mosquito density and larval active breeding

sites. Children, as well as recent immigrants coming from malaria high-risk regions

should also be considered as transmission hot-spots heterogeneity sources.

In our view, a combined treatment strategy with gametocidal drugs (such

as artemisinin, primaquine, or methylene blue) and mass administration of iver-

mectin, specifically targeting transmission hot-spots, may stand as a promising

alternative in dealing with the risk of malaria resurgence in high heterogeneity

settings, deserving further consideration in future field trials.
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Chapter 9

Migration and malaria

transmission

9.1 Introduction

Malaria eradication persists as troublesome in some world regions where it is

endemic [288, 289]. Although several countries have claimed significant reductions

in malaria incidence and mortality, sporadic outbreaks may occur. In some parts

of Africa and Asia, the possibility of malaria resurgence is still a danger to the

indigenous population. In later disease resurgence, global population immunity

is usually reduced after years of low parasite exposure. In such a case, a strong

malaria comeback with higher mortality may be anticipated [217].

Changing weather conditions may also precipitate malaria resurgence in coun-

tries with poor malaria surveillance, widespread human migration, and lack of

anti-malaria institutional measures aiming to the general population as well as to

medical professionals [253].

Caminade et al. (2014), used an adequate climate and hydrological model

predicting an overall global net increase in climate suitability for malaria trans-

mission as well as a net increase in the population at risk. These climate and

human changes are set to occur at a faster pace during the 2050s decade [56].

In different world regions, human migratory movement has been formally im-

plicated in the risk of malaria endemic resurgence [99, 121, 218, 294, 306]. Human

migration may be responsible for widespread infectious disease outbreaks, mak-

ing it impossible to predict local disease resurgence events. All over the world,

population flow is continuous. For cultural, economic, social, or touristic reasons,

or in mass emigration movements, human individuals travel to or from locations

with significant potential risk of malaria transmission. Different factors may be

implicated in such migratory movements. War, demographical expansion, low eco-

nomic development and poorer living conditions in Africa have been at the source
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of most of the human migration movements. Touristic travel stands as a potential

threat to countries that have achieved successful disease eradication.

Human migration originating from places with higher malaria prevalence may

result in perpetual endemic renewal in regions where the disease had previously

been eliminated. In countries with good conditions to Anopheles breeding and no

firm policy of prompt RDT/ACT administration to potential gametocyte-carriers,

the risk of disease resurgence may become significant.

It is well-known that after human infection, submicroscopic gametocytes may

persist in blood circulation for a very long time, usually up to two months, some-

times even more than that. The migration of these silent gametocyte carriers may

be responsible for new epidemic episodes in regions where malaria was assumed

to have been eradicated. A long time after disease elimination, human population

will have lost a significant part of its previous protecting immunity, thus becoming

more vulnerable to a fatal disease outcome. The possibility of renewed malaria

seeding within a healthy population, originating from a few asymptomatic malaria

gametocyte-carrier patients, represents a consistent risk for malaria resurgence

in places with stable Anopheles persistence. These malaria migration hot-spots

have been dismissed in preventive campaigns, and scientific consensus about the

correct policy to enforce malaria prevention in migrant asymptomatic patients is

still unclear [5, 43, 45]. Thus, some malaria outbreaks may in fact be the con-

sequence of population movements from endemic areas to non- or low-endemic

areas [227]. Migratory movement persists as a perpetual menace to malaria-free

regions presenting with adequate geophysical conditions favoring Anopheles sur-

vival [11, 58, 227, 235, 241]. These favorable Anopheles breeding conditions consist

of a stable tropical temperature (from 16◦ to 32◦C), during a long rainy season

with above average humidity and good local breeding sites for the Anopheles lar-

vae, usually with a Normalized Difference Vegetation Index (NDVI) above 0.350

[173, 184, 306, 337].

While the importance of migration in malaria resurgence has been ignored

until recently, persistent malaria within a healthy population, originating from

a few asymptomatic malaria gametocyte-carrier patients, may fuel up malaria

resurgence in regions with good conditions to Anopheles breeding.

In the past, population movement has contributed to several episodes of malaria

resurgence. The arrival of infective human individuals to a non-infected population

may easily trigger the spread of an infectious disease in that population. This fact

may explain the failure of several malaria eradication campaigns in the 1950s and

1960s. Also, human population movement patterns have promoted the dispersal

of drug resistant parasite strains [305].

Martens et al. (2000) had already stressed the fact that, not considering

adequately the role of population movement in malaria transmission, could have

been responsible for the failure of several malaria eradication campaigns. The

movement of infected individuals from areas where malaria was still endemic to
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other areas where malaria had been considered eradicated was considered to be an

important trigger of local disease resurgence [241].

Mukandavire (2010) used a deterministic mathematical model to evaluate the

implications of infective immigrants´ arrival to a malaria high risk region [262].

Also, Yukich considered human movement, even in a small scale, an important risk

factor for the resurgence of malaria. Evidence of human movement interaction with

vector habitat and features of the environment were found to be determinant in

the epidemiology of malaria [393].

While Pf infection in humans may last up to 12 months, some patients may de-

velop malaria symptoms more than 2 months after returning from traveling abroad

from malaria-endemic countries [107]. Although rare, Pf transfusion-related trans-

mission has been sporadically reported. In 2001, Mungai et al. described the oc-

currence of 32 cases of malaria after blood transfusion in the USA from 1963 to

1999 [107, 263].

9.2 Impact of human migration

9.2.1 Europe

At the present rate of climatic change, Southern Europe may entail a reasonable

risk of malaria resurgence in the foreseeable future. Warmer temperatures al-

lowing for better mosquito survival conditions along with the constant inflow of

immigrants from countries where malaria is still endemic may facilitate the occur-

rence of endogenous malaria outbreaks, in southern Europe. The wide presence

of An.atroparvus in countries like Spain and Portugal assumes a potential risk for

malaria resurgence [319].

Anopheles species are potential vectors of malaria in Finland, and presumably

have existed there since prehistoric times [168]. During the XIX century, the move-

ment of large numbers of human individuals to several working sites in Finland

such as the Saimaa canal (1845–54), the lowering of some lakes (during the XIX

century), or the building of the railway (1862–71) have brought temporary popu-

lations to uninfected areas. Some of those workers could have been Plasmodium

carriers, a consistent explanation for malaria resurgence in Finland during the XIX

century [168].

Most of all severe malaria cases in Europe were related to tourists return-

ing home after acquiring the infection in African countries [205] or to migration

movements from non-European origin. Several Anopheles species are known to be

specific of Europe – where mosquito survival conditions are harsher than in Africa

– with particular relevance to An.atroparvus, An.labranchiae and An.sacharovi.

In recent years, first-time arrival immigrants in Paris, France, especially preg-

nant women on mefloquine prophylaxis, were apparently more likely to develop

prolonged P.falciparum infection (up to 3 years) with higher parasitemia rates,
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while remaining asymptomatic [107].

Despite a consistent migratory flow of refugees from Africa to southern Europe,

malaria resurgence risk in Europe remains low. Possibly as a consequence of the low

anthropophilic potential in the local Anophelline population. Also, P.falciparum

persistence in immigrants may be of shorter duration when compared to the long

time spent while traveling from the country of origin [58]. Imported cases from

Africa to the United Kingdom rose from 803 in 1987 to 1,165 in 1993 [241]. From

2006 to 2014, 190 patients with severe falciparum malaria were reported in 12

European countries.

Temperatures above 30◦C suppress both parasite and mosquito survival [253].

However, Plasmodium sporogony duration is clearly dependent on local tempera-

tures, with full suppression at low temperature values, well below 16oC [168].

In the face of persistent gametocytemia in human individuals, stable condi-

tions to disease transmission stand as an important factor in disease transmission.

Malaria elimination is possible at a low annual malaria incidence level – less than

2 cases/1000 inhabitants, per year [259]. In such a situation, a small migration

flux may not be able to trigger disease resurgence. However, a persistent immi-

gration flux could promote a mildly stabilizing effect on disease dynamics while

being responsible for a small increase in the number of infected individuals [224].

People that travel away to areas with strong malaria endemicity, may return later

as gametocyte-carriers, promoting new malaria cases at home [11].

At low transmission levels the cycle of human-mosquito reinfection could occur

with reduced intensity, so that disease elimination would become possible. Yet,

the risk of disease resurgence may persist for a very long time during the low

transmission dry season in the presence of a few asymptomatic gametocyte human-

carriers in the general population. In regions with a long-wet season potentiating

vector breeding and malaria transmission, disease elimination could still become

possible during the low transmission dry season. In those conditions, the possibility

of disease resurgence may clearly depend on disease importation as a consequence

of human migration.

9.2.2 Central and Far East Asia

Feng et al. reported that in China during 2012, a total of 2428 malaria cases

were imported (89.0% of all diagnosed cases). P.falciparum (58.6%) and P.vivax

(37.5%) were responsible for the vast majority of these cases. It became clear that

imported malaria persisted as a severe threat to the malaria elimination program

in China [120].

During 2012, in the Chinese province of Yunnan, cross-border migration per-

sisted as the main source of P.falciparum importation [388]. Clinical P.falciparum

malaria was related to human travel across the border, especially from China to

Myanmar. Individuals living in the proximity of the border between China and
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Myanmar were at a higher risk of infection, with the presence of high-incidence

clusters along the border extension [388]. Internally migrating populations could

also play a role in spreading malaria across district boundaries.[274]. Malaria prop-

agation has been attributed to short and medium distance population movement.

Migration movement across the border between Bangladesh and Myanmar has also

been implicated in malaria resurgence inside Bangladesh [274].

During a five-year epidemiological survey in Faridabad, India, the occurrence

of malaria was clearly related to labor migration, with an infection rate close to

39%, because of the new arrival of malaria-infected migrant workers, fueling local

disease transmission. In these places, the distance from the potential breeding

sources of anophelines to the villages and nearby migrant settlements was well

within the average anopheline flight range of 500 meters [329].

In the former Soviet Union, massive importation of malaria from

Afghanistan became a harsh reality during the 1980s. After the disappearance

of the Soviet Union there was an unprecedented return to Russia of infected indi-

viduals from former soviet republics such as Tajikistan and Azerbaijan. Intensive

labor migration triggered several malaria outbreaks in Russia at the time, probably

aggravated by climate change, facilitating Anopheles breeding [253].

9.2.3 Central and South America

More recently, in Venezuela, malaria resurgence has become a major health issue.

Also, several malaria cases have been reported in neighboring regions from Brazil

and Colombia. By 1931, Venezuela had the highest malaria incidence rate in Latin

America. Several years later (1961) after the implementation of several effective

malaria preventive measures, Venezuela was considered by the WHO as the first

country in the world to eliminate malaria [113]. However, due to progressive

recent economic degradation and social unrest in the country, malaria became once

again the focus of malaria spreading to other South American countries (Colombia,

Peru and Brazil) as a consequence of intensive human migration outflow. Also in

Nicaragua, malaria risk has increased since 2017, probably because of infective

individuals migration from Venezuela. These events underline the potential of

malaria resurgence risk as a result of combined human migration and climate

change [113].

9.2.4 Africa

In Africa, several examples remind us of the importance of human migration in

disease flares and endemic persistence (Réunion island, Cape Verde, S. Tomé e

Pŕıncipe, and borders between Zanzibar and Tanzania, and South Africa, Mozam-

bique and Zimbabwe) [140, 217, 241, 294]. In Mozambique, malaria resurgence has

been related to the arrival of migrant workers, possibly parasite carriers, to the

sugar estates back in the 1960s and early 1970s [241]. During the 1980s, malaria
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prevalence decreased from 35% to 0.6% after effective implementation of chloro-

quine prophylaxis combined with an IRS-based eradication program in the island

of Pŕıncipe. However, due to financial difficulties, this preventive campaign was

suspended, leading later (1984) to a severe malaria outbreak with significant mor-

tality in small children. With the development of multiple DDT-resistant Anophe-

les strains, the situation rapidly deteriorated [217]. Also, Pf was detected in

29% of immigrant asymptomatic children from Liberia upon arrival in the United

States (Minnesota) [107]. In June 2009, malaria resurgence occurred in the is-

land of Pŕıncipe. This malaria rebound was apparently related to imported cases

from the main island of São Tomé [217]. And a recent malaria outbreak in Cape

Verde islands has been related to human travel from nearby continental Africa

[99]. Meanwhile, in northwest Ethiopia, Malede et al. reported that imported

malaria were 19.5 % of all malaria cases [235]. Finally, in the island of Réunion,

malaria resurgence occurred after disease transmission had been suppressed. Im-

ported malaria cases were detected mainly in Réunion residents returning from

holidays or from visiting family and friends in the surrounding regions (Comoros,

Madagascar and Mayotte) [294].

9.3 Methods to implement the impact of migration

9.3.1 Human migration

A dedicated algorithm was included in the main model for simulation of a persis-

tent migration flow of human individuals, introducing the possibility that human

healthy individuals could be replaced by infected humans according to a hypo-

thetical prevalence of Pf infection, with random disease duration and malaria

immunity.

This way, two probabilities were defined: A daily human migration probability

πmig parameterized at a constant value of small πmig = 0.0005 (corresponding to

the daily arrival chance of a single immigrant in 2000 human individuals), and a

variable disease probability of malaria infection in individual human immigrants

(πdis, ranging from 0.00 to 0.50).

The global disease immigration rate was defined as δmig, resulting from the

product of both previous probabilities, according to equation 9.1:

δmig = πmig × πdis (9.1)

δmig was defined in a range between 0.00 (no immigration) and 0.00025 =

0.5×0.0005 (equivalent to the daily arrival chance of a single infectious immigrant

in a total of 4000 human individuals). This flow was kept at a constant rate for

the whole duration of the simulation.

Two different heterogeneity settings were used in the model simulations –
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figure 9.1:

a) Homogeneity (1
θ = 1.0).

b) Full heterogeneity (1
θ = 4.0).

A low immigration scenario was considered, departing from the standard ini-

tial conditions used in the model (Hi0 = 0.05 and Mi0 = 0.01). This scenario

evaluated immigration impact in a small village with an initially low disease bur-

den. Phase transition from stable epidemic to disease eradication was defined

through repeated model simulations. The follow-up time period was defined as

30 years. The mosquito model characteristics suffered no modifications from the

previous model.

Figure 9.1: The impact of disease migration in malaria incidence (disease preva-
lence in a single immigrant – πdis – in the range between 0.00 and 0.50, correspond-
ing to a global migration disease rate δmig between 0.00 and 0.00025) obtained as
the number of malaria diagnosed cases per 100 inhabitants, during a full year,
with mild human-to-mosquito transmission efficiency (wh = 0.500), no ivermectin
prevention (piv = 0.00), and different heterogeneity settings:
(a) Homogeneity (1

θ = 1.0)
(b) Full heterogeneity (1

θ = 4.0)

From figure 9.1, one may witness that even a small immigration rate of malaria

patients can have a significant impact in potentiating malaria transmission. With

full heterogeneity this impact is higher than in the homogeneity setting – figures

9.1 a) and b).

9.3.2 Ivermectin prevention

The preventive action of ivermectin was determined in different transmission sce-

narios. Assuming a constant 50% probability of mosquito death after a bite in

an ivermectin-treated human host (qiv = 0.50), the probability of treatment with

ivermectin (piv) varied in the range between 0.00 (no ivermectin treatment) and

0.20 (20% of the human population under ivermectin treatment).

In the present model, the use of ivermectin is included, as a treatment prob-

ability randomly assigned to every human individual piv = 0.00 to 0.010, with
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Figure 9.2: The impact of disease migration in malaria incidence (disease preva-
lence in a single immigrant πdis in the range between 0.00 and 0.50, corresponding
to a global migration disease rate δmig between 0.00 and 0.00025) as the number of
malaria diagnosed cases per 100 inhabitants, during a full year, with mild human-
to-mosquito transmission efficiency (wh = 0.500), in different heterogeneity set-
tings and different levels of ivermectin prevention (from piv = 0.00 to piv = 0.10):
(a) Homogeneity (1

θ = 1.0).
(b) Full heterogeneity (1

θ = 4.0).

constant mosquito mortality qiv = 0.50 defined during a short period of time

(usually less than 4 days) after the bite, in a randomly selected human individ-

ual among the whole human population. This way, 50% of all mosquitoes biting

ivermectin-treated human individuals will be removed from the simulation and

replaced by healthy ones.

The impact of partial ivermectin prevention in the immigration model in hu-

man population was assessed in terms of yearly malaria incidence per 100 inhabi-

tants – figures 9.2 and 9.3.

9.4 Results and discussion

In malaria transmission, several factors come into play. Following a single

malaria episode, the long and unpredictable persistence of gametocytes in human

blood will play a decisive role in perpetuating chronic mosquito reinfection. Sub-

microscopic gametocytes may persist in blood circulation for a very long time,

possibly lasting more than two months. The migration of these silent gametocyte

carriers may be responsible for new epidemic episodes in regions where malaria had

been considered extinct. A long time after disease extinction, human population

will have lost a significant part of its protecting immunity, thus becoming more

vulnerable, and leading to a higher malaria fatality rate, especially among chil-

dren. This gametocyte reservoir will become critical in disease resurgence, making

it harder to attain long lasting disease elimination. In our simulations, we have
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Figure 9.3: Malaria incidence, human migration of malaria patients (disease preva-
lence in a single immigrant πdis in the range between 0.00 and 0.50, correspond-
ing to a global migration disease rate δmig between 0.00 and 0.00025), and iver-
mectin prevention, in the setting of mild human-to-mosquito transmission effi-
ciency (wh = 0.500):
(a) Homogeneity (1

θ = 1.0).
(b) Full heterogeneity (1

θ = 4.0).128



Migration and malaria transmission

shown that a small but constant inflow of asymptomatic gametocyte-carriers into

a disease-free community may perpetuate malaria transmission in that setting –

see figure 9.1. That effect revealed significant synergism with the presence of pop-

ulation heterogeneity. This migration effect could be significantly inhibited with

the help of massive ivermectin treatment in the population – see figures 9.2 and

9.3.

Thus, the presence of these silent gametocyte carriers in a region with a sig-

nificant burden of the vector Anopheles mosquito stands as a potential threat and

may reignite a reinfection human-to-mosquito cycle, leading to sustained disease

transmission.

From figure 9.3, it is possible to compare the migration impact on malaria in-

cidence between different heterogeneity settings with different levels of ivermectin

prevention. Malaria incidence was much higher in the presence of full heterogene-

ity, as expected from what we had learned in chapter 8.

With the implementation of partial ivermectin prevention, it was possible to

strongly inhibit malaria transmission in the setting of a constant immigration

rate of infectious patients or asymptomatic gametocyte carriers – see figures 9.2

and 9.3. Malaria transmission suppression induced by ivermectin was effective and

consistent in both heterogeneity settings and at different levels of human migration.

As global warming may ultimately change present conditions for malaria trans-

mission in the foreseeable future, malaria eradication will persist as a global health

problem in some regions of the world where it is endemic. Although several coun-

tries have claimed significant reductions in malaria incidence and mortality, the

epidemic is still not contained, with sporadic outbreaks worldwide [253, 393]. In

some parts of Africa and Asia, the possibility of malaria resurgence persists as a

potential danger for the indigenous population. After a long period of time with

low malaria incidence, global population immunity is significantly reduced, as a

consequence of years of low parasite exposure. In the event of disease resurgence,

a strong malaria comeback with higher mortality rates can be anticipated. [217]
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Chapter 10

Seasonal malaria transmission

10.1 Historical background

Worldwide, malaria assumes a periodic seasonal behavior as vector density

is strongly dependent on climatic conditions, especially local temperature range,

water precipitation and humidity.

Macdonald [231] reformulated the original model of Ross [317] and defined

mosquito vector longevity as the single most important variable with influence in

the force of transmission [167]. Anthropogenic climate change may directly affect

the behavior and geographical distribution of the Anopheles mosquito as well as

the biological cycle of the Plasmodium parasite, while influencing environmental

factors such as the presence of vegetation and the availability of adequate mosquito

breeding sites, with potential impact in disease incidence [242].

The prevalence of infection is strongly related to vector density – see chapter

6. Areas of high malaria transmission are less sensitive to changes in mosquito

density than low transmission areas, and areas of low transmission appear to be

highly sensitive to sudden reductions in mosquito density [17]. Mosquito popula-

tion abundance is also well correlated with the duration of the rainy season. In

most of Africa malaria endemic regions, disease resurgence is usually expected in

the weeks following a long period of time with high precipitation leading to in-

creased vegetation density, persistent water accumulation, and the creation of mul-

tiple potential Anopheles breeding sites. Therefore, seasonal variation in malaria

incidence as a result of climatic change was included here as an independent critical

component in our computational model.

Climate is a decisive factor in malaria transmission. In certain world regions

where malaria is hyperendemic, specific geophysical conditions such as an ideal

temperature range (between 19 and 32o C), the occurrence of significant rain pre-

cipitation or of special terrain features adequate for mosquito larval breeding, are

responsible for a seasonal pattern conditioning improved vector survival conditions.

Higher Anopheles life expectancy and stronger mosquito emergence typically oc-
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curs during a period of time lasting between 2 and 7 months every year. This

climate pattern is usually periodic, occurring once or twice every year, with a sta-

ble time duration. During the rainy season, mosquito emergence will overcome

mosquito mortality, leading to increased malaria transmission with a seasonal pat-

tern.

Malaria weather modeling has evolved in recent years. Seasonal climate fore-

casting is currently based upon up to six months of time window. However, chaotic

behavior is still responsible for significant probabilistic uncertainty in rain precip-

itation affecting climate models. Some of those models produced a far more accu-

rate prediction of the potentially devastating impact of El Nino event in Africa,

during the years of 1997/1998 [167]. Therefore, the seasonal variation in mosquito

numbers is critical to mosquito and parasite weather dependent dynamics [167].

Hyperendemic malaria occurs in regions where disease transmission is higher dur-

ing the rainy season. The time length of this season will necessarily affect the

intensity of global disease spreading throughout the year. The temperature range,

as well as seasonal rainfall along with some land topographic features such as higher

vegetation density, will facilitate mosquito breeding, leading to higher mosquito

density and higher disease transmission. The duration of the wet season is proba-

bly one of the most important factors conditioning malaria incidence.

10.2 Methods

In the present model, seasonality was simulated assuming a 3- to 6-month

duration wet season with higher malaria transmission, followed by nine to six

months with a lower transmission potential, equivalent to half of the rainy season

transmission efficiency. This model of seasonal dynamics was consistent with dif-

ferent seasonal patterns in different African regions [122]. Malaria incidence was

measured depending on a variable percentage duration of high transmission season

∆s = δs
365 , where ∆s was in the range between 0.25 (corresponding to δs = 90 days)

and 0.49 (corresponding to δs = 180 days). All model simulations were repeated

10 times, in a full homogeneity scenario (1
θ = 1.0), with a high constant value

of human-to-mosquito transmission efficiency scenario (wh = 0.800), and different

levels of ivermectin prevention (piv from 0.0 to 0.15).

10.3 Results and discussion

In the present model simulations malaria incidence was consistently higher

in the setting of a longer rainy season. There was a clear linear correlation be-

tween malaria incidence and the duration of the rainy season in a wide range of its

percentual duration (from 0.25 to 0.49). Also, a significant reduction in malaria

incidence was the result of ivermectin prevention in a fraction of the human pop-

ulation (between piv = 0.0 and piv = 0.15).
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Figure 10.1: Malaria incidence and percentual duration of high transmission season
(∆s) where ∆s lies in the range between 0.25 and 0.49, in a full homogeneity
scenario (1

θ = 1.0), with a constant high value of human-to-mosquito transmission
efficiency scenario (wh = 0.800), and different levels of ivermectin prevention (piv
from 0.0 to 0.15).

From our model simulations, the use of ivermectin was especially effective

when piv was above 0.15 – see figure 10.1. By comparing time series simulations

at high transmission seasons (wh = 0.800) with different time lengths (90 vs. 180

days of significant rainfall during a whole year), we have witnessed different levels

of malaria incidence depending on the rainy season duration. And by looking at

disease transmission suppression induced by ivermectin prevention it was clear that

the partial use of ivermectin in the human population could assume an effective role

in achieving disease elimination, when complemented with vector density reduction

in the presence of a heavy and prolonged rainy season – see figure 10.2.

Longer rainy seasons facilitate mosquito breeding sites by promoting

widespread vegetation growth (NDVI > 0.350) leading to multiples sites with bet-

ter conditions for adequate larval development followed by higher mosquito density

a few weeks later. The consequence of seasonality in improved mosquito breeding

was clear in our simulations with a longer wet season – see figures 10.1 and 10.2.

However, with a low fraction of the population under ivermectin treatment it was
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Figure 10.2: (a) High seasonality with 180 days of high malaria transmission
season, and no ivermectin treatment, (b) Low seasonality with 90 days of high
malaria transmission season, and no ivermectin treatment, (c) High seasonality
with 180 days of high malaria transmission season, and ivermectin treatment in
10 % of the population, and (d) Low seasonality with 90 days of high malaria
transmission season, and ivermectin treatment in 10 % of the population. All
scenarios relating to a human population with full homogeneity (θ = 1.0) and high
H-to-M disease transmission (wh = 0.800).

possible to suppress disease transmission in the setting of longer rainy seasons –

see figures 10.1, and 10.2 c) and d). Our data suggests that ivermectin alone could

adequately reduce malaria incidence in tropical regions devastated by prolonged

rain precipitation.
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Chapter 11

Hurst exponent and malaria

transmission

11.1 Introduction

In this chapter we propose a different approach to estimate effective Plasmod-

ium transmissibility levels, which reflect submicroscopic gametocytemia in indi-

viduals within a specific community, based on collected time series of local malaria

incidence.

Time series models have been used as important tools and metrics, not only in

epidemiology, but also in economics, geophysics, biology and ecology [46]. One of

them, the so-called Hurst exponent, was introduced by Hurst in 1951 [169] in the

context of hydrology planning, namely during the study of flooding levels in the

river Nile. The Hurst exponent is a measure of memory in a time series of values.

Applying it to the series of Nile flooding levels, based upon Egyptian ancient

hydrology data collected during earlier 847 years, Hurst was able to estimate the

rate at which the autocorrelation of that series decreased as the time interval

between measurements increased. In this way, Hurst used the collected data to

model the flooding levels of the Nile, and with that assess optimum dam sizes

to contain extreme rain events. Soon the applicability of the Hurst exponent

extended to many other fields, particularly in the study of financial theory [57]

and complex phenomena with evidence of fractal features [238–240]. However,

while different time series models have been implemented in epidemic infections in

general [13, 23, 122, 144, 204, 266, 302, 324], and in malaria incidence forecasting

in particular [64, 334] – mostly auto-regressive and linear models – the application

of the Hurst exponent in malaria spreading is still lacking.

Of particular importance in malaria transmission is the level of gametocytes

in the blood circulation. Gametocytes are the parasite forms which mediate trans-

mission from humans to mosquitoes and, therefore, are also obvious targets in im-

plementing preventive actions such as vaccine immunization or anti-malarial drugs.
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Submicroscopic gametocytemia detection is difficult and often not as precise as sta-

tistical data collection from e.g. malaria incidence varying heterogeneously from

one community to another [326, 327].

To relate gametocytemia levels with malaria incidence time series we introduce

a methodology based upon the use of the Hurst exponent. To the best of our

knowledge, this is the first analysis of empirical data of malaria incidence series

using Hurst exponent to derive an estimate of a hidden variable, namely the level

of transmissibility or easiness of spreading within the community from which the

series of malaria incidence is collected.

We show that the Hurst exponent can grasp long-range dependencies close to

the phase transition between disease elimination and stable prevalence scenarios

of malaria. In a more general scope, complexity in time series may also be related

to the level of information entropy, which is commonly used to address emergence

phenomena and self-organization. Here, we analyze the effects of memory in time

series of malaria incidence. Two types of memory have been defined in random

stochastic processes, long and short memory, where the transition between these

regimes may be represented as a phase transition in the context of a stochastic

random process. We focus on Hurst exponent estimation and Shannon entropy at

different levels of disease transmission intensity, applied to malaria time series de-

rived from simulations with a previously introduced agent-based model [326] with

different (parameterized) levels of gametocytemia, as well as to different empirical

malaria time series.

Our objective is to properly identify malaria transmission patterns, as well as

to link long-range dependence processes in malaria incidence time series to the oc-

currence of phase transition near disease elimination. We also test the importance

of Hurst exponent estimation and Shannon entropy as sound predictors of the pres-

ence of long-range dependence and long memory processes in malaria transmission.

In particular, we show that from simple models connecting gametocytemia levels

and measures easily extractable from empirical series of malaria incidence, such

as incidence levels, Hurst exponent, and entropy, we are able to predict an indica-

tor of “effective” gametocytemia for regions where malaria incidence is regularly

monitored. Our study uses eight different empirical series, shown in figure 11.1.

We start in section 11.2 by describing the different empirical data sets ana-

lyzed in this study and the agent-model used to produce simulated scenarios of

different transmissibility levels, parameterized by the gametocytemia level. More-

over, we briefly describe the basic tools, namely the Hurst exponent and Shannon

entropy, explaining how they are computed from series of malaria incidence. In

sections 11.3 and 11.4 we describe qualitatively the behavior of Hurst exponent

and entropy, and the form of autocorrelation function decay, in eight different

malaria empirical time series examples, respectively. In section 11.5 we derive

models to fit the values of the three observables, namely the malaria incidence,

the Hurst exponent and the entropy for different simulated scenarios, as a function
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Figure 11.1: Eight different series of malaria incidence from different studies in
the literature: Alhassan et al (Kasena Nankana municipality in Ghana, 2017)
[12], Appiah et al (Ejisu-Juaben municipality in Ghana, 2015) [23], Aregawi et al
(Ethiopia, 2014) [24], Bedane et al (Kucha district in Ethiopia, 2016) [33], Gomez-
Elipe et al (Karuzi in Burundi, 2007) [147], Landoh et al (Est Mono district in
Togo, 2012) [209], Muwanika et al (Uganda, 2017) [267], Okech et al (Kenya, 2008)
[278].

of the gametocytemia level. Using these fitted expressions we then measure the

average malaria incidence, Hurst exponent and entropy of the empirical data sets.

Introducing these values in the fitted expressions we retrieve an estimate of the

associated ”effective” gametocytemia level, i.e. the effective transmissibility level

in each empirical case. In section 11.6 we adopt a qualitative approach to Hurst

exponent and entropy with a case-by-case description. The robustness of 36-month

averages of the Hurst exponent and entropy is analyzed in section 11.7. Finally, in

section 11.8 we discuss limitations of our approach, as well as possible extensions.

11.2 Data, modeling methods and analysis tools

11.2.1 Empirical series of malaria incidence

The empirical part of our investigation comprehends eight series of malaria inci-

dence as presented in figure 11.1. These series are available from previous studies

namely Alhassan et al (Kasena Nankana municipality in Ghana, 2017) [12], Ap-

piah et al (Ejisu-Juaben municipality in Ghana, 2017) [23], Aregawi et al (Ethiopia,

2014) [24], Bedane et al (Kucha district in Ethiopia, 2016) [33], Gomez-Elipe et al

(Karuzi in Burundi, 2007) [147], Landoh et al (Est Mono district in Togo, 2012)

[209], Muwanika et al (Uganda, 2017) [267], Okech et al (Kenya, 2008) [278]. The
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data sets were chosen as representative of regions with malaria incidence diversity

in Africa. They have a time duration ranging from 60 [23] to 132 months [24],

while showing different trends and periodicity – see figure 11.1 and table 11.1.

Malaria incidence was measured at each month as the expected number of new

malaria cases per 100 inhabitants in a full year, if malaria incidence were to be

kept constant. In this way, to obtain the precise incidence at each month, the

yearly presented graphical value must be divided by 12 months.

As can be seen from figure 11.1, the eight cases differ in their level of malaria

transmission and epidemic behavior. All empirical series show some form of irregu-

lar periodicity as a consequence of climate seasonality. Declining malaria incidence

is clear in series from Aregawi and Okech, as well as in Alhassan and Bedane, al-

though with a final disease outbreak in these last two cases. High levels of malaria

transmission occur in Gomez-Elipe (identified solely as Elipe time series in some

of the figures for clarity) during a brief period of time. Malaria incidence remains

quite stable in Muwanika, Appiah and Landoh empirical series, with a consistent

upward trend in the last case.

11.2.2 Agent model for malaria spreading

To combine results from empirical data with simulations from the agent model

introduced and developed in previous works [326, 327], we conduct a series of sim-

ulations at different levels of disease transmission efficiency. Human-to-mosquito

(H-to-M) transmission was defined in terms of the fraction of human disease days

with the presence of gametocytemia in blood circulation, henceforth represented

as wh.

Six different scenarios were considered, corresponding to a wide range of differ-

ent levels of positive gametocytemia duration and disease transmission efficiency,

namely 110 days of positive gametocytemia during 150 days of expected disease

duration (i.e. wh = 110/150 = 0.733), 90 days (wh = 0.600), 75 days (wh = 0.500),

70 days (wh = 0.467), 68 days (wh = 0.453), and 63 days (wh = 0.420). For the

simulations, we consider a system of Nm = 4000 mosquitoes and Nh = 2000 human

individuals, both including healthy and infected individuals. We have modeled the

number of mosquitoes as a small but effective fraction of the overall mosquito mass

that randomly feeds on a human individual, twice daily on average. The simula-

tion time lasts 30 years while evaluating each human individual in terms of disease

duration and human-to-mosquito transmission.

The algorithm keeps track of several attributes for each agent, whether hu-

man or mosquito, at a particular age, such as the time spent since the first day

of infection, and the individual immunity status. Beyond 5 years of persistent

human reinfections, the human host will develop partial protective immunity at

the maximum possible level, while losing it after 2 years without infection. The

computational cycle includes a realistic mosquito daily mortality routine. Dead

mosquitoes are to be replaced by uninfected mosquitoes. Human disease duration
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Figure 11.2: Six different simulations of malaria incidence using different scenarios
of gametocytemia, namely a) 63 days (wh = 0.420), b) 68 days (wh = 0.453), c)
70 days (wh = 0.467), d) 75 days (wh = 0.500), e) 90 days (wh = 0.600), and f)
110 days of positive gametocytemia during 150 days of expected disease duration
(i.e. wh = 110/150 = 0.733).

reflects realistic human recovery from malaria.

Human-to-mosquito transmission efficiency (wh) is also stochastically defined

and directly dependent on the number of days with positive gametocytemia. Upon

updating the number of healthy human individuals and mosquitoes, the algorithm

generates one episode of mosquito feeding in a human individual, with the possibil-

ity of protection from long lasting insecticide-impregnated nets (ITN), insecticide-

impregnated nets (ITN) or indoor residual spraying (IRS). Our model is inspired

in Mozambique seasonality [122, 123], considering 150 days for the duration of the

high transmission season – see figure 11.2.

Relevant details as well as the flowchart describing the computer implementa-

tion of the agent-based model are given in chapter 5, and in reference [326].

Using the present model we analyzed the behavior of the human-mosquito cou-

pled system, resulting from a complex interaction between the two compartments.

Human-to-mosquito transmission efficiency (wh) was used to define the probabil-

ity of a sustained presence of gametocytemia in human blood circulation, as well

as the survival probability of infected mosquitoes beyond latency. These aspects

are considered critical in disease transmission. Our model simulations use game-

tocytemia as an independent variable affecting human-to-mosquito transmission.

Different levels of gametocytemia define different stages of disease transmission

efficiency. Theoretical gametocytemia reduction is considered equivalent to an ef-
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fective treatment with gametocidal agents such as primaquine or methylene blue

in a fraction of the human population.

11.2.3 Hurst exponent and entropy to assess memory effects in

stochastic series

We use two different metrics to assess memory in series of malaria incidence, em-

pirical and simulated, investigating whether long-range dependencies could occur

close to phase transition near disease elimination when compared to more stable

epidemic scenarios. The Hurst exponent is defined as

R

D
= kTH (11.1)

where the first member represents the rescaled range as a dimensionless ratio

between R (represents the maximal range of all observations) and D (represents

the standard deviation of all observations). An explicit mathematical definition

is given below in equations 11.4 and 11.5. T stands for the time index (number

of observations in the time series), k is some constant to be determined and H

represents the Hurst exponent.

With Hurst exponent estimation it became possible to distinguish among three

different regimes characterizing the time series: (i) the anti-persistent regime,

characterized by 0.0 < H < 0.5, when if the series increases (resp. decreases)

in one period it is very likely that it will decrease (resp. increase) in the next

period, (ii) the persistent regime, characterized by 0.5 < H < 1, when if the

series decreases (resp. increases) in one period it is very likely that it will decrease

(resp. increase) in the next period, and (iii) the memory-less regime characterized

by H = 0.5, when the process is uncorrelated in time.

A Hurst exponent estimation close to 0.5 (random walk process) is found in

empirical time series with heavier disease transmission. In malaria time series

from our model simulations, transitions from prevalence to disease elimination are

characterized by values of the Hurst exponent larger than 0.5 and close to 1, a

footprint of a persistence time series.

As for entropy, it is related with the complexity of the time series [322, 330].

The complexity of stochastic processes may be calculated with the use of entropy-

based measures. For that purpose, several functions may be employed. The sig-

nificance of complexity, emergence phenomena and self-organization may provide

us with useful information concerning continuous as well as discrete systems, in

the form of time series results.

Information entropy is supported by the equation:

S = −
Nb∑
i=1

P (xi) logP (xi) , (11.2)
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Figure 11.3: (a) Illustration of how 36-month moving average malaria incidence,
symbolized as I36 is obtained from an original series of monthly malaria incidence
values either empirical or simulated. Similar procedures are used to compute
(b) H36 and (c) S36. See text for details. In this case, we used a simulation
with an agent-based with low human-to-mosquito transmission efficiency, namely
wh = 0.420.

where the Boltzman P (x) is the probability density function of the observable x,

which in its discretized form is estimated by an histogram, finite set of values

P (xi) for the set of bin-points xi. The log function is base 2. Information theory

defines entropy in terms of information uncertainty in the evolution of time series

results. Other entropy related terms such as mutual information may be used as

alternative methods for time series analysis in malaria.

11.2.4 Estimating Hurst exponent and entropy in series of malaria

incidence

Both Hurst exponent and Shannon entropy are influenced by the length of the

time-series sample. Therefore, we introduce a standardization procedure, which is

independent of the length of the time series.

The procedure is illustrated in figure 11.3 and is as follows. We define a 36-

month moving average malaria incidence, symbolized as I36(m), at month m, as

the average malaria incidence in the previous 36 months:

I36(m) =
1

36

m∑
n=m−35

I(n) , (11.3)

where I(n) is the monthly malaria incidence measured or simulated, composing

the series of values.

In the Alhassan malaria time series (Kasena Nankana municipality in Ghana,

2017) [12] one can see a declining trend in malaria incidence in the form of a

decreasing moving average of 36 months (I36), from ∼ 11 to ∼ 4 cases per 100

inhabitants, per year [phy], despite the small final outbreak in the last 6 months.

Consistent with this declining trend in I36 we may also witness a decreasing trend

in S36 as well as a rising trend in H36 after month 55. In this case, the behavior

of both Hurst exponent and entropy in the preceding 36 months is well correlated
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with the malaria incidence trend.

The Gomez-Elipe time series (Karuzi in Burundi, 2007) [147] is quite different

from the remaining empirical examples. It shows a consistent stable pattern of

malaria incidence below 110 cases phy, until month 45, peaking at ∼ 500 cases

phy, around month 48, with a fast downward trend to ∼ 60 cases phy at month

56, and a slower decline thereafter to a final value of ∼ 20 cases phy – see figure

11.1. The 36-months malaria incidence (I36) reveals a consistent upward trend

peaking at month 64, with a downward pattern thereafter. In this case, we find

a persistent oscillatory behavior in the value of H36 during the entire time series,

usually ranging above 0.9. But, in parallel with the outbreak in malaria incidence

we see a sudden fall in H36 to values close to 0.6 (closer to random noise) at

around month 48. Entropy in the form of a 36-months moving average (S36)

reveals a similar behavior in relation to I36 from month 48 onwards.

The Landoh malaria time series (Est Mono district in Togo, 2012) [209] reveals

a consistent upward trend in malaria incidence in the form of a mild increase in

the 36 months moving average (I36) during the whole time series, ranging from

the initial ∼ 18 cases phy, to a peak at ∼ 30 cases phy in month 72.

Consistent with the steady upward trend in I36 during the entire time series,

we find a declining trend in the 36-months moving average of Hurst exponent (H36)

from a peak of ∼ 0.85 at month 47, to an all-low value of ∼ 0.55. Along with this

downward trend in H36, there is a consistent wave-like increase in entropy in the

form of a 36-months moving average (S36), during the entire time series. In the

Landoh time series, the behavior of H36 and S36 is reasonably well correlated with

the behavior of I36 in time.

In a similar form, but with an opposite trend to the Landoh time series, the

Okech time series (Kenya, 2008) [278] also reveals a steady decreasing trend. In the

Okech time series, malaria incidence consistently decreases from an initial peak of

∼ 400 cases phy, to a final value close to 50 cases phy. Consistent with the steady

downward trend in I36 during the entire time series, we find an upward trend in

the 36-months moving average of Hurst exponent (H36) from an all-low of ∼ 0.6 at

month 42, to a peak of ∼ 1.2 at month 82. Along with this upward trend in H36,

there is also a consistent decrease in entropy in the form of a 36-months moving

average (S36), during the whole time series. In the Okech time series, the behavior

of H36 and S36 is also quite correlated with the behavior of I36 in time.

Because, Hurst exponent (H ) and Shannon entropy (S ) are influenced by the

length of the time-series sample, we also consider a 36-month moving window

estimate. In the case of the Hurst exponent, we assume the following identity:

∆I36 =

(
t∑

k=1

(I(k)− I36(T ))

)
(11.4)

and compute the quantities R and D as
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Series I36 H36 S36 Duration
36 Months 36 Months 36 Months Months

Aregawi,2014 [24] 0.208 ± 0.05 0.7766 ± 0.14 5.138 ± 0.01 132

Alhassan,2017 [12] 7.091 ± 2.81 1.014 ± 0.14 4.792 ± 0.18 72

Bedane,2016 [33] 11.63 ± 1.36 1.077 ± 0.09 5.161 ± 0.01 120

Appiah,2015 [23] 12.44 ± 0.13 0.9229 ± 0.06 5.121 ± 0.01 60

Landoh,2012 [209] 24.54 ± 4.31 0.7326 ± 0.08 5.065 ± 0.02 72

Muwanika,2017 [267] 58.76 ± 1.11 0.8254 ± 0.12 5.160 ± 0.01 71

Elipe,2007 [147] 101.0 ± 28.2 0.9367 ± 0.10 4.710 ± 0.17 84

Okech,2008 [278] 203.4 ± 120 1.018 ± 0.16 4.881 ± 0.28 96

Table 11.1: Table with the empirical values of average malaria incidence I
(malaria cases per 100 inhabitants, per year), Hurst exponent H and Shan-
non entropy S, concerning a 36-month time frame. Error indicate standard
deviations from the series by using moving windows of 36 months.

R(T ) = max
t=1,...,T

(∆I36)− min
t=1,...,T

(∆I36) (11.5a)

D(T ) =

(
1

36

n∑
k=T−35

(I(k)− I36(T ))2

)1/2

(11.5b)

Having the series of 36 values R(T )/D(T ) for each window, we then apply

equation (11.1) to find fitting values for k and for the Hurst exponent H.

As for Shannon entropy, an estimate of the probability density is first com-

puted given by the set of values P (Ii) for an assumed set of bin values Ii, with

i = 1, . . . , Nb, of malaria incidence (I) and then equation (11.2) applied, running

the sum only over the 36 incidence values observed within each time-window.

In this way, we have computed the average of malaria incidence I, H and S

for 36-month windows, independently of the size of the empirical series. In order

to quantify I, H and S for each empirical case, we then obtain the average of the

corresponding time series and compute its standard deviations. Table 11.1 shows

the empirical values of the three observables. Notice that, in these cases, higher

moments seem to be not very relevant, which can be seen comparing the average

in table 11.1 with the median and quartiles in table 11.2.

11.3 Qualitative analysis and robustness assessment of

Hurst exponent and entropy in empirical time se-

ries behavior

While the eight empirical cases show a broad range of values for malaria in-

cidence and Hurst exponent, the entropy seems much more resistant to changes.

144



Hurst exponent and malaria transmission

Series I36 I36 I36 H36 H36 H36 S36 S36 S36

Q50 Q25 Q75 Q50 Q25 Q75 Q50 Q25 Q75

Aregawi,2014 0.22 0.16 0.26 0.80 0.66 0.90 5.14 5.13 5.14

Alhassan,2017 7.43 4.36 9.68 0.94 0.90 1.15 4.77 4.68 4.96

Bedane,2016 11.2 10.4 12.4 1.10 1.00 1.15 5.16 5.16 5.16

Appiah,2015 12.5 12.4 12.5 0.93 0.87 0.96 5.12 5.12 5.12

Landoh,2012 24.0 21.0 28.4 0.76 0.70 0.80 5.06 5.05 5.08

Muwanika,2017 59.0 58.2 59.7 0.81 0.77 0.90 5.16 5.16 5.16

Elipe,2007 115 83.5 122 0.95 0.89 1.00 4.67 4.59 4.72

Okech,2008 211 89.1 310 1.06 0.98 1.13 4.96 4.85 5.08

Table 11.2: Table with the empirical values of median, quartile 25 and 75 from the
series of malaria incidence, entropy, and Hurst exponent, using moving windows
of 36 months.

The cases of Alhassan, Elipe and Okech form a group separated from the other

time series which form a second group. We will address these cases in more detail

when building the model for effective human-to-mosquito transmissibility (game-

tocytemia).

We have also looked at the way those indices behaved in a typical

low-transmission empirical time series such as obtained from Okech,2008 [278].

In this empirical time series, when Hurst exponent was evaluated in 36-months

partial intervals (H36), it revealed a clear inverse correlation with malaria annual

incidence. Furthermore, Shannon entropy consistently decreased with progressive

lower values of malaria incidence. This correlation pattern was like the one found

in model simulations when comparing high and low transmission scenarios.

By consistently searching for evidence of the presence of long-range dependence

in malaria time series we looked into the time evolution of information (Shannon)

entropy in scenarios with stronger disease transmission, and compared results with

those from other time series of lower disease transmission. Our model simulations,

at low levels of disease burden near a eradication-prevalence transition from con-

sistently found malaria time series with lower information entropy. In section 11.6

we describe in more detail the eight particular cases.

Table 11.3 shows the correlation between the three properties, I, H and S,

for the eight empirical data sets. One finds evidence of linear correlation between

malaria incidence and Hurst exponent or Shannon entropy in seven of the eight

presented empirical malaria time series. The case of Bedane is the exception.

The estimation of the Hurst exponent by R/S-analysis may be biased due to

the short length of 36 months [19, 32, 149]. To ascertain how robust the results with

36-month windows are, we repeated our estimates for 24- and 48-month averages.

The correlation is also reasonably evident in the 48-months’ time frame. Entropy

is clearly more linearly correlated to malaria incidence than Hurst exponent. In

summary, the data shown in table 11.3 suggests the presence of significant linear

correlation between malaria incidence, and Hurst exponent or Shannon entropy.

145



Contributions

24 months 36 months 48 months

Pearson r2 (I,H) (I, S) (I,H) (I, S) (I,H) (I, S)

Aregawi,2014 0.048 0.216 0.323 0.223 0.727 0.012

Alhassan,2017 0.528 0.657 0.638 0.879 0.530 0.746

Bedane,2016 0.006 0.107 0.094 0.027 0.000 0.181

Appiah,2015 0.336 0.620 0.222 0.353 0.299 0.534

Landoh,2012 0.310 0.339 0.436 0.633 0.722 0.743

Muwanika,2017 0.043 0.547 0.175 0.748 0.449 0.903

Elipe,2007 0.074 0.886 0.012 0.655 0.590 0.683

Okech,2008 0.068 0.603 0.414 0.069 0.013 0.949

Table 11.3: Table with Pearson correlation coefficient r2, between pairs among
the three metrics, namely malaria incidence I, Hurst exponent H and Shannon
entropy S. The three metrics were computed for three different time-windows,
namely 24, 36 and 48 months. See also section 11.7. Results with r2 > 0.600 are
highlighted in bold.

In section 11.7 we present a more detailed comparison between 36-month averages

with 24- and 48-month averages.

11.4 Autocorrelation function and stochastic memory

in malaria empirical series

The autocorrelation function (ρk) behavior has been used with reasonable

success in different research fields, from financial to hydrology, and climate data

time series. It measures the linear relationship between two sequential values of a

time series with a specific time lag k. The autocorrelation function (ρk) expresses

the magnitude of that correlation between k lagged values:

ρk =

∑N−k
t=1 (xt − x)(xt+k − x)∑N

t=1(xt − x)2
(11.6)

Figure 11.4 shows the autocorrelation function for each empirical case.

The algebraic decay of the empirical autocorrelation function ρk is strongly

connected to the memory of stochastic processes such as long memory in the form

of Long Range Dependence (LRD). The existence of LRD assumes the presence of

stationarity in the time series. A memory parameter d is defined in relation to the

slope of the autocorrelation function (ρ) decay. When d > 0 the term persistent

defines the time series, with progressively larger values in time. In the opposite

case we have d < 0 with the presence of anti-persistence, where positive values

will tend to alternate with negative values and vice versa. Here, we borrow the

concept as defined in reference [128]: For d < 0 we have anti-persistence; i.e.

positive values tend to be followed by negative values and vice versa. In the special

case of d = 0, the process will correspond to the presence of white noise, without

evidence of autocorrelation, and corresponding to a pure Markovian process [128].
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Figure 11.4: Malaria empirical series: Autocorrelation function from (a) Alhassan
et al (Kasena Nankana municipality in Ghana, 2017) [12]. (b) Appiah et al (Ejisu-
Juaben municipality in Ghana, 2015) [23], (c) Bedane et al (Kucha district in
Ethiopia, 2016) [33], (d) Aregawi et al (Ethiopia, 2014) [24], (e) Gomez-Elipe et
al (Karuzi in Burundi, 2007) [147], (f) Muwanika et al (Uganda, 2017) [267], (g)
Landoh et al (Est Mono district in Togo, 2012) [209], (h) Okech et al (Kenya,
2008) [278].

The decay in time of the autocorrelation function ρk in a stochastic process

correlates with the presence of memory persistence of past events in the present

state of the system. In the case of fast ρk exponential decay the system memory will

be short. With slower ρk decays (corresponding to a power law process) memory

will be longer in relation to the presence of LRD.

For the present eight empirical time series the autocorrelation function ρk did

reveal similar decay patterns. The ρk decay seems to deviate from exponential de-

cay in most of the cases, what would have been expected in the case of a pure white

noise Markovian process, thus suggesting the presence of memory persistence in all

empirical series shown. The slow ρk decay is usually related to the presence of time

series non-stationarity. In more than half of the presented examples, a persistent

and undulatory expression of ρk values because of seasonality and periodicity in

disease transmission overlaps with the background decaying trend.

11.5 A more quantitative malaria model for predicting

effective gametocytemia

Figure 11.5 shows the result obtained for the I, H and S in the six different

scenarios of gametocytemia levels. From figure 11.5 a) we observe that the six

simulations cover all different incidence regimes, ranging from low incidence (I ∼ 0)

to high incidence (I ∼ 1). For the same simulations, the Hurst exponent shown in

figure 11.5 b), shows a clear decrease in the memory pattern with the increase of

the gametocytemia level wh.
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Figure 11.5: (a) Evaluation of the normalized continuous step function of malaria
incidence in time series from model simulations at different settings of human-
to-mosquito transmission efficiency (0.420 < wh < 0.733). Hurst exponent is
consistently close to 1.0 at phase transition (when wh ∼ 0.420) and decreasing
to values ∼ 0.5 (close to a random walk stochastic state) with higher values of
wh ∼ 0.700 in higher disease transmission epidemic stage. For the same series (b)
evaluation of Hurst exponent and (c) evaluation of Shannon entropy. In each case
we simulated the agent model 10 times.

As for the dependence of the entropy S, shown in figure 11.5 c), we also observe

a transition to large entropy values as wh increases, but the transition seems much

more abrupt. At phase transition near disease extinction, we have consistently

found lower values of information entropy, clearly defining a stochastic process with

long memory. At higher disease transmission rates (higher wh) entropy became

higher and more stable, evolving towards a short memory stochastic process. This

dichotomy defines the nature of transmission stability and may be useful in defining

how distant a malaria time series is from a situation of disease extinction.

11.5.1 Models for the three observables as function of parameter

gametocytemia

Having described the values of the incidence, Hurst exponent and entropy obtained

in six simulations with an agent model for malaria spreading, we now derive models

for each one of these observables as a function of the central parameter in our

approach, the gametocytemia level wh.

Notice that, being a parameter which cannot be measured directly from empir-

ical series of malaria incidence, a model from simulations relating the observables

with this parameter, will enable us to predict the ”effective” gametocytemia level

(i.e., the transmissibility) in empirical cases.

To model the malaria incidence I we consider a continuous step function vary-
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ing from I = 0 for wh to I = 1 for wh = 1:

I =
1

1 +
(
A
wh

)α . (11.7)

The dashed line in figure 11.5 a) shows a function given by equation 11.7 for

A = 0.562 and α = 8.3. Here, parameter A gives the gametocytemia level which

brings the malaria incidence to the level of 50%, while the value of parameter α

indicates how abrupt the transition from eradication to prevalence occurs when

increasing the gametocytemia level.

Through inspection of figure 11.5 b), we choose to model the Hurst exponent

H by a power law

H = Bwβh , (11.8)

for which the best fit yields B = 0.56 and β = 0.58. Here, parameters have no

direct interpretation.

Finally, to address the abrupt transition observed for the entropy when the

gametocytemia level varies, we choose a step function tunned by an exponential

of wh:

S =
1

1 + Ce−γwh
, (11.9)

with the best fit yielding C = 10136 and γ = 32. The parameter C tunes how low

the entropy is for the extreme case of wh = 0, while, similarly to parameter α, the

γ controls how abrupt the transition from that minimum level to S = 1 occurs.

11.5.2 Prediction of effective gametocytemia in empirical cases

In relation to the prediction of ”effective” gametocytemia in the empirical cases we

first invert the functions defined in equations 11.7, 11.8 and 11.9 with respect to the

gametocytemia level. We call to the values obtained estimates of gametocytemia,

which in general do not coincide:

w
(I)
h = A

(
1

I
− 1

)−1/α

, (11.10a)

w
(H)
h =

(
H

B

)−1/β

, (11.10b)

w
(S)
h = −1

γ
log

(
1

C

(
1

S
− 1

))
. (11.10c)

In the case that all three models to predict wh retrieve the same value we can

assume almost zero error (maximum consistency of the models). In general, there

will be deviations between the three predictions for gametocytemia level. There-

fore, we take as estimate ŵh for the gametocytemia level the average of the three

independent predictions, and the corresponding error σŵh the largest deviation of
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the independent predictions from that estimate:

ŵh = 1
3

(
w

(I)
h + w

(H)
h + w

(S)
h

)
, (11.11a)

σŵh = max
(
|ŵh − w

(I)
h |, |ŵh − w

(H)
h |, |ŵh − w

(S)
h |
)
. (11.11b)
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Figure 11.6: Repeating figure 11.5 with the effective gametocytemia for each em-
pirical series (see text).

Figure 11.6 repeats the models drew for the simulations of the agent-based

model, together with the estimate for the eight empirical series. While malaria

incidence and the Hurst exponent retrieve reasonably acceptable predictions, the

entropy seems to be very sensitive. The reason for this may be related with the fact

that values of entropy are all very similar, making difficult to derive a numerical

model which distinguishes between the different values. Moreover, the errors are

typically large, showing a broad range of different predictions depending on which

models are used – see equations 11.10.

In figure 11.6 we plot the curves in figure 11.5 together with estimates for

the eight empirical cases. To predict the gametocytemia in empirical data sets,

we assume that the range of values of I, H and S observed for the collection of

empirical series, covers the range of admissible values between a minimum and a

maximum. The same occurs for the collection of simulations we have done, but

since there is no guarantee of proper calibration, minimum and maximum values

may be different. Still, if assuming that simulations should cover the same range

of possibilities in the empirical cases, we normalize the range of observed values in

the empirical cases to the range observed for the simulations. This is a necessary

step to predict effective gametocytemia, as explained below.
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Figure 11.7: Illustration of how 36-month moving average malaria incidence in the
x-axis, symbolized as I36 relates to 36-months Hurst exponent H36 in th y-axis in
malaria empirical time series: (a) Alhassan et al (Kasena Nankana municipality in
Ghana, 2017) [12]. (b) Appiah et al (Ejisu-Juaben municipality in Ghana, 2015)
[23], (c) Bedane et al (Kucha district in Ethiopia, 2016) [33], (d) Aregawi et al
(Ethiopia, 2014) [24], (e) Gomez-Elipe et al (Karuzi in Burundi, 2007) [147], (f)
Muwanika et al (Uganda, 2017) [267], (g)Landoh et al (Est Mono district in Togo,
2012) [209], (h) Okech et al (Kenya, 2008) [278].

11.6 Qualitative analysis of Hurst exponent and en-

tropy: case-by-case description

Figure 11.8: Illustration of how 36-month moving average malaria incidence in the
x-axis, symbolized as I36 relates to 36-months entropy S36 in th y-axis in malaria
empirical time series: (a) Alhassan et al (Kasena Nankana municipality in Ghana,
2017) [12]. (b) Appiah et al (Ejisu-Juaben municipality in Ghana, 2015) [23], (c)
Bedane et al (Kucha district in Ethiopia, 2016) [33], (d) Aregawi et al (Ethiopia,
2014) [24], (e) Gomez-Elipe et al (Karuzi in Burundi, 2007) [147], (f) Muwanika
et al (Uganda, 2017) [267], (g) Landoh et al (Est Mono district in Togo, 2012)
[209], (h) Okech et al (Kenya, 2008) [278].
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Alhassan (2017)

In the Alhassan malaria time series (Kasena Nankana municipality in Ghana, 2017)

[12] one can see a declining trend in malaria incidence in the form of a decreasing

moving average of 36 months (I36), from ∼ 11 to ∼ 4 cases per 100 inhabitants,

per year [phy], despite the small final outbreak in the last 6 months. Consistent

with the declining trend in I36 we may also witness a decreasing trend in S36 as

well as a rising trend in H36 after month 55. In this case, the behavior of both

Hurst exponent and entropy in the preceding 36 months is well correlated with the

malaria incidence trend – see figures 11.7, 11.8 and 11.9.

Figure 11.9: Comparative depiction of I36 (top), H36 (middle) and S36 (bottom)
for (from left to right) Alhassan et al (Kasena Nankana municipality in Ghana,
2017) [12], Appiah et al (Ejisu-Juaben municipality in Ghana, 2015) [23], Bedane
et al (Kucha district in Ethiopia, 2016) [33], and Aregawi et al (Ethiopia, 2014)
[24].

Appiah (2015)

By looking at the Appiah malaria time series (Ejisu-Juaben municipality in Ghana,

2015) [23] it is detectable an irregular oscillation of malaria incidence superimposed

on a stable trend in malaria incidence ∼ 12.4 cases phy, with a range between a

peak incidence of ∼ 20 cases phy at 32 months, and an all-low of ∼ 5 cases phy at

18 months – see figure 11.1. Consistent with the initial declining trend in I36 until

month 53 we may also witness a declining trend in S36 as well as a rising trend in

H36. In the present case, the behavior of both Hurst exponent and entropy in the

initial 53 months is well correlated with the malaria incidence trend – see figures
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11.7, 11.8 and 11.9.

Bedane (2016)

In relation to the Bedane malaria time series (Kucha district in Ethiopia, 2016)

[33] we can witness an initial declining trend in malaria incidence in the form of a

decreasing moving average of 36 months (I36) lasting until month 98, from ∼ 15

cases phy, to ∼ 10 cases phy, followed by a small final upsurge in I36 to ∼ 11.5

cases phy. Consistent with the initial declining trend in I36 until month 98 we

may also witness a delayed declining trend in S36 from months ∼ 70 to ∼ 115 as

well as a rising trend in H36 from months ∼ 60 to ∼ 80, despite the presence of

a superimposed irregular oscillatory noise pattern. In this case, the behavior of

both Hurst exponent and entropy in the initial ∼ 98 months partially shows some

degree of correlation with the global malaria incidence trend – see figures 11.7,

11.8 and 11.9.

Aregawi (2014)

In the Aregawi malaria time series (Ethiopia, 2014) [24] we can witness an initial

small upper trend in malaria incidence in the form of an increasing moving average

of 36 months (I36) in the initial∼ 62 months, with∼ 0.26 cases per 100 inhabitants,

per year, declining thereafter to less than ∼ 0.12 cases per 100 inhabitants, per

year.

Consistent with the initial small upper trend in I36 we also witness a declining

trend in H36 after month 62. In this case, entropy revealed an atypical behavior,

peaking a littler later at month ∼ 72. Along with a declining trend in I36 after

month 62, one can witness a consistent rise in H36 lasting to the end of the time

series despite a transitory fall at month ∼ 105, with a rapid recovery at month

∼ 114. In Aregawi time series the behavior of S36 was more unpredictable, with

a more delayed response. This fact may be somehow related to the low malaria

incidence in the time series.

However, in the present case, the behavior of the Hurst exponent in the form

of a 36-months moving average (H36), in the initial 65 months, still reveals some

degree of correlation with the global malaria incidence trend – see figure 11.9. At

such low levels of malaria incidence (∼ 0.2 phy) this behavior could be interpreted

as a possible outlier result – see figures 11.7, 11.8 and 11.9.

Gomez-Elipe (2007)

The Gomez-Elipe time series (Karuzi in Burundi, 2007) [147] is quite different

from the remaining empirical examples. It shows a consistent stable pattern of

malaria incidence below 110 cases phy, until month 45, peaking to ∼ 500 cases

phy, around month 48, with a rapid fall to ∼ 60 cases phy at month 56, and with

a slower decline thereafter to a final value of ∼ 20 cases phy – see figure 11.1. The
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36-months malaria incidence (I36) reveals a consistent upward trend peaking at

month 64, with a downward pattern thereafter.

In this case, we find a persistent oscillatory behavior in the value of H36 during

the entire time series, usually ranging above 0.9. But, coinciding with the outbreak

in malaria incidence at month 48 it is possible to see a sudden fall in H36 to values

close to 0.6 (closer to random noise). Entropy in the form of a 36-months moving

average (S36) reveals a parallel correlated behavior to I36 from month 48 onwards.

Despite the presence of a superimposed oscillatory noise pattern, the behavior of

the Hurst exponent and entropy also shows some degree of correlation, with the

malaria incidence trend, globally – see figures 11.7, 11.8 and 11.10.

Muwanika (2017)

In the Muwanika malaria time series (Uganda, 2017) [267] we may witness an

initial small upper trend in malaria incidence in the form of a mild increase in the

36 months moving average (I36) during the initial ∼ 47 months, with a peak at ∼
60 cases phy, declining thereafter to ∼ 56 cases phy.

Consistent with the initial small upper trend in I36 until month 47 we may

also witness a declining trend in H36 from an initial value ∼ 0.9 to ∼ 0.5 close to

month 45. From month 47 onwards, H36 consistently increases to values close to

1.0 (long memory process) in parallel with the steady decline in I36. In the present

case, entropy, in the form of a 36-month moving average (S36), reveals a consistent

decreasing trend, shadowing the decline in I36 beginning at ∼ month 47. In the

Muwanika time series, the behavior of H36 and S36 is globally correlated with the

behavior of I36 in time – see figures 11.7, 11.8 and 11.10.

Landoh (2012)

The Landoh malaria time series (Est Mono district in Togo, 2012) [209] reveals a

consistent upper trend in malaria incidence in the form of a mild increase in the

36 months moving average (I36) during the whole time series, ranging from the

initial ∼ 18 cases phy, to a peak at ∼ 30 cases phy in month 72.

Consistent with the steady upper trend in I36 during the entire time series, we

find a declining trend in the 36-months moving average of Hurst exponent (H36)

from a peak of ∼ 0.85 at month 47, to an all-low value of ∼ 0.55. Along with

this downward trend in H36, there is a consistent increase in entropy in the form

of a 36-months moving average (S36), during the entire time series, despite its

undulatory behavior. In the Landoh time series, the behavior of H36 and S36 is

reasonably well correlated with the behavior of I36 in time – see figures 11.7, 11.8

and 11.10.
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Figure 11.10: (Cont. figure 11.9): Gomez-Elipe et al (Karuzi in Burundi, 2007)
[147], Muwanika et al (Uganda, 2017) [267], Landoh et al (Est Mono district in
Togo, 2012) [209], Okech et al (Kenya, 2008) [278].

Okech (2008)

In a similar form, but with an opposite trend to the Landoh time series, the Okech

time series (Kenya, 2008) [278] also reveals a steady decreasing trend. In the Okech

time series, malaria incidence consistently decreases from an initial peak of ∼ 400

cases phy, to a final value close to 50 cases phy.

Consistent with the steady downward trend in I36 during the entire time series,

we find an upper trend in the 36-months moving average of Hurst exponent (H36)

from an all-low of ∼ 0.6 at month 42, to a peak of ∼ 1.2 at month 82. Along with

this upper trend in H36, there is a consistent decrease in entropy in the form of a

36-months moving average (S36), during the whole time series. In the Okech time

series, the behavior of H36 and S36 is also quite correlated with the behavior of

I36 in time – see figures 11.7, 11.8 and 11.10.

11.7 Inspecting the robustness of 36-month averages

The results in the previous section were derived using average values in win-

dows of 36 months, i.e. three years. While the number of points is small, it covers

three annual cycles. As it is known – and as shown in chapter 10 and Appendix

D – malaria spreading shows periodic behavior following annual seasonality.
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Figure 11.11: Comparative depiction of I24 (top), H24 (middle), S24 (bottom) for
(from left to right): Alhassan et al (Kasena Nankana municipality in Ghana, 2017)
[12], Appiah et al (Ejisu-Juaben municipality in Ghana, 2015) [23], Bedane et al
(Kucha district in Ethiopia, 2016) [33], and Aregawi et al (Ethiopia, 2014) [24].

To evaluate the robustness of the estimated values for malaria incidence, Hurst

exponent and entropy, shown in the previous section, we present next the results

for estimates obtained from two and four annual cycles, i.e. 24 and 48 months

respectively. Results are shown in figures 11.11 to 11.14.

11.8 Discussion and conclusions

The utility of time series models is still a long way from becoming standard

practice in malaria prevention. Differences in climate and geographic factors be-

tween world regions act as confounding factors in the strictly mathematical time se-

ries approach, lowering malaria forecast precision. In recent years the Box-Jenkins

theory has become a consistent development in malaria forecasting [2, 46, 122, 220].

However, little attention has been devoted to Hurst theory, information entropy,

short and long memory stochastic processes and long-range dependence. It is re-

markable that Hurst theory was initially implemented in the field of hydrology,

as malaria surges are clearly correlated with rainfall, temperature and climate

seasonality [169].

Malaria epidemic time series consistently present different memory patterns

depending on disease transmission intensity. By comparing time series from our

model simulations to real data malaria time series from different parts of the
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Figure 11.12: (Cont. figure 11.11): Gomez-Elipe et al (Karuzi in Burundi, 2007)
[147], Muwanika et al (Uganda, 2017) [267], Landoh et al (Est Mono district in
Togo, 2012) [209], and Okech et al (Kenya, 2008) [278].

Figure 11.13: Comparative depiction of I48 (top), H48 (middle), S48 (bottom) for
(from left to right): Alhassan et al (Kasena Nankana municipality in Ghana, 2017)
[12], Appiah et al (Ejisu-Juaben municipality in Ghana, 2015) [23], Bedane et al
(Kucha district in Ethiopia, 2016) [33], and Aregawi et al (Ethiopia, 2014) [24].
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Figure 11.14: (Cont. figure 11.13): Gomez-Elipe et al (Karuzi in Burundi, 2007)
[147], Muwanika et al (Uganda, 2017) [267], Landoh et al (Est Mono district in
Togo, 2012) [209], and Okech et al (Kenya, 2008) [278].

world, it was possible to obtain a better definition of epidemic stability according

to disease transmission efficiency, from field data time series results. In stationary

time series, long memory processes have been related to the presence of long-range

dependence (LRD) between present and past results [150].

At low H-to-M disease transmission intensity, time series patterns were con-

sistent with the presence of LRD. However, at high disease transmission intensity,

this pattern reverted to a low-memory process. By looking at the present model

time series with changing wh, one could witness significant differences in stochas-

tic memory patterns. Also, in the presented empirical time series, Hurst exponent

and entropy correlated reasonably well with different epidemic growth rates. A

similar pattern was evident when looking at malaria incidence correlation with

Hurst exponent and Shannon entropy. As these parameters may be affected by

the time series length, their use in a normalized setting should be considered as a

reliable option.

By using the standardized forms of Hurst exponent (H36) and entropy mea-

surement (S36) it was possible to define the type of memory of stochastic malaria

incidence time series with greater precision. This fact may be of significant rel-

evance as both parameters may become additional and useful tools in malaria

forecasting.

In this chapter we used a 36-month standard time length for a specific analysis.

We considered it a compromise between a shorter time length (24 months) with
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less information available to Hurst exponent estimation, and a longer time length

(48 months) with less data available for analysis in shorter empirical time series,

such as the series of Appiah et al [23] (60 months). The standard method to

estimate Hurst exponent, based in the quotient R/S [85, 127, 128, 131, 150, 192],

could be substituted by other alternative methods, namely the generalized Hurst

exponent (GHE).

GHE is a modern approach to Hurst analysis with some specific advantages,

applied in the analysis of complex and inhomogeneous time series in electrocardio-

graphy (ECG) signals, and it has been shown to be a promising tool for the study

of atrial fibrillation (AF) organization from the surface ECG [178]. It is usually

recommended in the presence of short time series where it has been shown to be

slightly more efficient. It has been used mainly in the assessment of stability of

financial firms applied to the stock market. However, GHE does not assign equal

importance to different events in the timeline. It usually tends to overestimate

more recent events reducing the significance of older past events. For this reason,

we chose the standard estimation method.

Figure 11.15: Model simulation (black) and SARIMA model forecasting (blue) of
model simulation at phase transition: (a) Low human-to-mosquito transmission
efficiency (wh = 0.420); (b) High human-to-mosquito transmission efficiency (wh =
0.733).

Being a standard approach in time series analysis, we also performed SARIMA

models for the simulation and empirical cases. Figures 11.15 and 11.16 show two

illustrative cases of each. In the case of the seasonal component, the regressive

component of the SARIMA term vanishes in Okech model and we have (P,D,Q) =

(0, 1, 1). On the contrary, the seasonal SARIMA model of Landoh is purely a

regressive model with one time differencing, and we have (P,D,Q) = (1, 1, 0).

SARIMA forecast of both empirical series is presented in figure 11.16, while its

equations and coefficients are available in tables D.5 and D.6 in Appendix D.

These results will be presented with further detail in the appendix concerning

Box-Jenkins theory, ARIMA and SARIMA models – see Appendix D.
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Figure 11.16: (a) Empirical time series (black) and SARIMA model forecasting
(blue) from Okech,2008 [278] empirical time series along with declining malaria
incidence. SARIMA forecast predicts rapid disease elimination evolving towards
negative values. (b) Empirical time series (black) and SARIMA model forecasting
(blue) from Landoh,2012 [209] empirical time series along with a steady increase
in malaria incidence. SARIMA forecast predicts a trend of progressive disease
spreading.

Overall, our results seem to indicate that in malaria incidence time series, long-

range dependence may occur close to phase transition between epidemic stability

and disease elimination. The presence of these long-memory stochastic processes

in malaria incidence time series could become an additional and useful tool in

the early detection of epidemic resurgence, as well as a potential improvement in

malaria prevention strategy.
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Chapter 12

Model validation

12.1 Introduction

Validation of theoretical or computational models stands as one of the most

demanding tasks in model building. The global soundness of the model algorithm

should be considered a critical goal in the validation process, as models may fail

because of deep concept faults that are not apparent from the start. Defining ade-

quately the model parameters stand as a crucial step in building realistic models.

The choice of adequate parameters should be tested in different model scenarios,

while modulating its values in accordance with the expected outcome from model

simulations. And when the model output consists in simulated time series malaria

data, validation procedures may require comparison with the outcome of similar

empirical real-world time series. For quality strategy planning, an accurate analy-

sis of model procedures will be essential. Computational models pretend to create

a valid representation of the real world. Assuming the Occam´s razor perspective,

a simpler model will usually be more effective than a high complexity model, for

that purpose. However, real world behavior may occur as a non-linear, stochastic,

multi-dimensional and sometimes chaotic process.

Several inconsistencies in designing a model may result from poor insight into

the model dynamics. Model parameters are to be estimated beforehand, frequently

in the absence of consistent empirical data. The interaction between different

model parameters must be defined in advance during the conception phase, and

later on verified, calibrated and corrected, in order to define a satisfactory and

realistic model design.

12.2 Model validation methodology

In the present dissertation, model validation required multiple validating pro-

cedures. The model algorithm was implemented with a C++ code that was thor-

oughly debugged, paying close attention to details, while being checked for incon-
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sistencies in the expected output. As the model procedure included dedicated sub-

routines based on specific model assumptions, a detailed framework was adopted

for verification of intermediate results during the simulation procedure. This way,

model inconsistencies were detected and corrected. A graphical methodology was

adopted for comparison of simulated and empirical time series. Six different empir-

ical malaria time series were used as standards, in relation to six model simulations

with similar disease transmission coefficients. Model simulations were defined in a

30-years’ time frame; a smaller fraction of the whole simulation was considered for

compared analysis. The graphical method also included an evaluation of autocor-

relation function, as well as of the cumulative probability distribution function of

malaria incidence in the form of box plot data presentation. Deterministic quanti-

tative measures were also used in the form of conventional statistical tests such as

the Kolmogorov-Smirnov test, and other alternative but no less powerful methods

such as the Anderson-Darling and the Kuiper test. Other deterministic quanti-

tative measures were also used for error estimation procedure, such as the mean

absolute error (MAE), the mean absolute percentage error (MAPE), the root mean

squared error (RMSE), and Theil´s inequality coefficient (U) – see equation 12.1.

U =

√
1
n

∑n
i=1 (yi − ŷi)2√

1
n

∑n
i=1 y

2
i +

√
1
n

∑n
i=1 ŷi

2
(12.1)

An extensive model validation procedure was defined with the aim of compar-

ing time series from model simulations with real world malaria incidence empirical

time series.

The following comparative metrics were used:

a) Comparative graphical presentation of malaria incidence between model

simulation and real-world empirical time series with seasonal periodicity synchro-

nization;

b) Cumulative probability distribution function (CDF) comparison between model

simulation and empirical time series;

c) Study of auto-correlation and cross-correlation functions of model simulation

and empirical time series;

d) Error estimation between model and empirical time series with MAE, MAPE

and RMSE;

e) Statistical measures with Kolmogorov-Smirnov, Anderson-Darling, and Kuiper

testing;

f) Theil´s inequality coefficient (U) comparing malaria incidence in model simula-

tion and empirical time series;

Model consistency was evaluated with several parameters from classical Ross-

Macdonald theory (EIR, R0, a, b and c). Several questions were asked: Were the

results consistent with model expectations?

Were the results stable and consistent in all simulations with the same parameter
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specifications?

Model calibration – how was it done?

Model simulations were analyzed with small changes in the model initial pa-

rameters correlating changes in gametocytemia and ivermectin treatment with

malaria incidence. Validation of the influence of ivermectin in model stability was

defined by looking at mosquito survival probability distribution and its relation to

the time of parasite latency inside the mosquito, as well as to the direct mortality

from ivermectin. Simulation of mosquito survival distribution was compared to

empirical mosquito survival results from previous research [61].

Outcome was also evaluated with different initial conditions for consistency of

results – see Appendix C.

12.3 Model verification and calibration

It is the aim of model verification to check the consistency of a computer

simulation model, as well as of all its related mathematical and logical internal

processes. In the present model, verification was implemented by using multiple

settings of model parameters in different biological scenarios, while checking the

likelihood of the expected simulation outcome. Unexpected data output as well as

illogical results were cross-checked for incongruencies in the model algorithm. This

procedure was applied to different disease transmission scenarios, at different levels

of model parameters, dedicating special attention to the consistency of simulation

outcomes, and assuring that those results were adequate to model predictions.

Intermediate results were also checked and compared to expected values from the

original conceptual model.

12.4 Empirical time series validation

A significant group of 5 empirical malaria time series was used in model vali-

dation – see table 12.1. Each empirical time series was matched to a single model

simulation presenting a similar average value of malaria incidence, thus assuming

that human-to-mosquito transmission efficiency (wh) was equivalent in both se-

ries. From the 30-years-long time sequence of all model simulations, an identical

duration time sequence was selected for testing purposes, and compared to the

matching empirical series, while synchronizing for seasonal periodicity. This way

it was possible to test both time series in terms of matching graphical differences,

inequality scores, and cumulative probability distribution curves. The empirical

malaria time series from Ferrão,2017, previously presented in section 7.4, was the

only one of the five with original results presented in the form of weekly malaria

incidence, and was also included here for comparison purposes. The four remaining

empirical time series had original results presented in the form of monthly malaria
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time incidence. Malaria incidence results were recalculated in order to present

final results in the form of annual malaria incidence per 100 inhabitants (phy) –

see table 12.1.

Empirical series Duration Empirical malaria incidence
Months phy (±SE)

Landoh,2012 72 21.7 (±1.2)
Ganguly,2016 72 40.3 (±2.7)
Alhassan,2017 72 7.6 (±0.7)
Chirombo,2020 156 7.3 (±0.4)
Ferrão,2017 108 3.9 (±0.1)

Table 12.1: Empirical time series and average malaria incidence.

Empirical series Equivalent model Model malaria incidence
wh phy (±SE)

Landoh,2012 0.433 19.2 (±1.2)
Ganguly,2016 0.480 41.9 (±2.5)
Alhassan,2017 0.413 7.9 (±0.6)
Chirombo,2020 0.420 7.5 (±0.4)
Ferrão,2017 0.427 3.7 (±0.1)

Table 12.2: Average malaria incidence in empirical time series and model
simulations with similar human-to-mosquito transmission efficiencies: 0.413 <
wh < 0.480.

Empirical series Equivalent model MAE MAPE RMSE
wh * % *

Landoh,2012 0.433 7.567 0.384 10.042
Ganguly,2016 0.480 15.2 0.503 20.2
Alhassan,2017 0.413 4.240 6.586 5.523
Chirombo,2020 0.420 3.974 1.253 5.260
Ferrão,2017 0.427 1.852 0.547 2.483

Table 12.3: Quantitative error estimation (mean absolute error, mean absolute
percentage error, and root mean square error) concerning the difference between
empirical time series and model simulations with similar human-to-mosquito
transmission efficiencies: 0.413 < wh < 0.480.

* Metrics – Annual malaria incidence per 100 inhabitants

12.4.1 Landoh,2012

In 2012, Landoh presented P.falciparum malaria results from the Est Mono dis-

trict, Togo, during a time interval between 2005 and 2010 [209]. The covered

region spreads over an area of 2,474 square kilometers with a population that was

estimated at 89,060 inhabitants during the year 2010. The climate is generally

tropical and presents two rainy seasons, the first lasting from April to July, and

the second one lasting from September to November, with an average monthly
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Empirical series Equivalent model Kolmogorov-Smirnov Theil
wh U

Landoh,2012 0.433 0.194 0.220
Ganguly,2016 0.480 0.111 0.217
Alhassan,2017 0.413 0.222 0.289
Chirombo,2020 0.420 0.141 0.301
Ferrão,2017 0.427 0.220 0.278

Table 12.4: Quantitative statistical measures (Kolmogorov-Smirnov test, and
Theil’s inequality coefficient – U) in relation to the difference between probability
distribution curves of empirical time series and model simulations with similar
human-to-mosquito transmission efficiencies: 0.413 < wh < 0.480.

Empirical series Equivalent model Anderson-Darling Kuiper
wh

Landoh,2012 0.433 0.030 0.236
Ganguly,2016 0.480 0.018 0.181
Alhassan,2017 0.413 0.037 0.361
Chirombo,2020 0.420 0.008 0.276
Ferrão,2017 0.427 0.017 0.329

Table 12.5: Quantitative statistical measures (Anderson-Darling and Kuiper
tests) in relation to the difference between probability distribution curves of em-
pirical time series and model simulations with similar human-to-mosquito trans-
mission efficiencies: 0.413 < wh < 0.480.

precipitation of 79 mm (±3.1 mm) and an average annual precipitation of 949 mm

(±37.4 mm). Malaria transmission is seasonal, with peaks related to the rainfall

periods. The average malaria incidence (MI) – 21.7 annual malaria cases per 100

inhabitants – was obtained from the 6-years long empirical time series [209].

In figure 12.1 we can find evidence of a strong similarity between the empirical

time series from Landoh (2012) and a model simulation with human-to-mosquito

transmission efficiency (wh = 0.433). This similarity is further supported by the

presence of periodic seasonal synchronization in both time series, by using a boot-

strap model simulation partial time series lasting 72 months – from month 247 to

318 – from a total of 360 months of available simulation.

Also, by looking at the cumulative probability distribution function (CDF) of

both time series, it is noticeable that both functions reveal very close cumulative

probability distributions – see figure 12.2 a).

This notion is also supported by close probability distribution violin plots of

both time series. In figure 12.3 one may also notice the presence of close similarity

in autocorrelation functions in both time series.

Quantitative error estimation

When using quantitative error estimation to compare the empirical time series

from Landoh (2012) and a synchronized partial time series from a similar model
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Figure 12.1: Monthly malaria incidence empirical time series from
Landoh,2012 (black) [209] and model simulation with human-to-
mosquito transmission efficiency wh = 0.433 (red).

Figure 12.2: (a) Cumulative probability distribution curves from
malaria empirical time series in Landoh,2012 (black) [209], and from
model simulation with human-to-mosquito transmission efficiency
wh = 0.433 (red). (b) Monthly malaria incidence violin plot from
empirical time series in Landoh,2012, and model simulation malaria
incidence in empirical series from with human-to-mosquito transmis-
sion efficiency wh = 0.433.
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simulation with wh = 0.433, one finds small differences between both time series

of the mean absolute error (MAE), the mean absolute percentage error (MAPE)

and the root mean squared error (RMSE) – see table 12.3.

Figure 12.3: (a) Autocorrelation function from malaria empirical
time series in Landoh,2012 [209]. (b) Autocorrelation function from
model simulation with human-to-mosquito transmission efficiency
wh = 0.433.

Quantitative statistical measures

It is also possible to compare time series by using quantitative statistical measures

of statistical proximity between the probability distribution function of two time

series. In our model validation we found evidence of similarity between both time

series in terms of the statistical measures variants that were used: a) Kolmogorov-

Smirnov testing; b) Anderson-Darling testing; c) Kuiper testing.

Finally, we found a small estimated difference between the empirical time

series from Landoh,2012 and the time series from a model with similar H-to-M

transmission efficiency – wh = 0.433 – in terms of Theil’s inequality coefficient,

with a acceptably small value of U = 0.220 – see tables 12.4 and 12.5.

12.4.2 Ganguly,2016

In 2016, Ganguly presented a malaria P.vivax and P.falciparum forecasting

SARIMA model calibrated with data from Kolkata, India, during a 6 years’ time

interval between 2008 and 2013 [130]. The covered region spreads over an urban

region in the county of Kolkata.

Malaria incidence empirical results were presented in the metrics of malaria

monthly incidence per 100 inhabitants (phm), averaging 40.3 annual cases per

100 inhabitants – see table 12.2. Average malaria incidence (MI) in the model

simulation was estimated at 41.9 annual cases per 100 inhabitants (phy), by using

a bootstrap model simulation partial time series lasting 72 months – from month

213 to 284 – from a total of 360 months of available simulation – see table 12.2.

168



Model validation

This was a very close result to Ganguly,2016 empirical time series – see tables 12.1

and 12.2.

This similarity is further supported by the presence of periodic seasonal syn-

chronization in both time series, by using a bootstrap model simulation partial

time series lasting 72 months – from month 247 to 318 – from a total of 360

months of available simulation.

In figure 12.4 we can find evidence of a strong similarity between the empirical

time series from Ganguly (2016) and a model simulation with human-to-mosquito

transmission efficiency (wh = 0.480). This similarity is further supported by the

presence of periodic synchronization of seasonality in both time series.

By looking at the cumulative probability distribution function (CDF) of both

time series, it is noticeable that both functions reveal close cumulative probability

distributions – see figure 12.5 a). This similarity is also documented in the com-

parative probability distribution violin plot of both time series as well as in figure

12.6 where it is possible to find a similar autocorrelation function in both time

series.

Quantitative error estimation

By using quantitative error estimation to compare the empirical time series from

Ganguly (2016) and a synchronized partial time series from a model simulation

with wh = 0.480, one finds small differences between both time series of the mean

absolute error (MAE), the mean absolute percentage error (MAPE) and the root

mean squared error (RMSE) – see table 12.3.

Quantitative statistical measures

It was also possible to compare both time series by using quantitative statistical

measures that compare statistical proximity between two probability distribution

functions. In the model validation procedure, we found small values concerning 3

statistical measures commonly used variants of this methodology: a) Kolmogorov-

Smirnov testing; b) Anderson-Darling testing; c) Kuiper testing. The small differ-

ences found are consistent with a strong degree of similarity between the empirical

time series from Ganguly (2016) and the time series obtained from the model

simulation with wh = 0.480.

Finally, we also evaluated the estimated difference between empirical (Gan-

guly,2016) and model simulation (wh = 0.480) time series, in terms of Theil’s

inequality coefficient, finding a small value of U = 0.217 – see tables 12.4 and 12.5.

12.4.3 Alhassan,2017

In 2017, Alhassan presented a malaria ARIMA forecasting model based upon time

series analysis of malaria results from Kasena Nankana municipality in Ghana,

during a 6 years’ time interval, between 2010 and 2015 [12]. The covered region has
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Figure 12.4: Monthly malaria incidence empirical time series from
Ganguly,2016 (black) [130] and model simulation with human-to-
mosquito transmission efficiency wh = 0.480 (red).

Figure 12.5: (a) Cumulative probability distribution curves from
malaria empirical time series in Ganguly,2016 (black) [130], and
from model simulation with human-to-mosquito transmission effi-
ciency wh = 0.480 (red). (b) Monthly malaria incidence violin plot
from empirical time series in Ganguly,2016, and model simulation
malaria incidence in empirical series from with human-to-mosquito
transmission efficiency wh = 0.480.
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Figure 12.6: (a) Autocorrelation function from malaria empirical
time series in Ganguly,2016 [130]. (b) Autocorrelation function
from model simulation with human-to-mosquito transmission effi-
ciency wh = 0.480.

an estimated population of 109,944 inhabitants, according to the 2010 Municipality

Population and Housing Census [264]. Malaria incidence empirical results in the

original time series were presented in the form of malaria monthly incidence of

cases (phm). Malaria incidence (MI) was estimated by dividing the empirical

result by the region population total (109, 944), while multiplying this result by

1, 200, thus obtaining the final result in the form of annual malaria cases per 100

inhabitants (phy), as in equation 12.2. Empirical average malaria incidence was

7.6 annual cases per 100 inhabitants during the 6-years’ time period, ranging from

the lowest value of 464 monthly cases, equivalent to 464×1200
109,944 = 5.1 annual cases

per 100 inhabitants, to the highest value of 2141 monthly cases, corresponding to
2141×1200

109,944 = 23.3 annual cases per 100 inhabitants – see table 12.1 and equation

12.2.

phy =
phm× 1, 200

109, 944
(12.2)

In figure 12.7 we can confirm the presence of a significant similarity between the

empirical time series from Alhassan (2017) and a model simulation with human-

to-mosquito transmission efficiency (wh = 0.413). This similarity is reinforced by

the presence of periodic seasonal synchronization in both time series, by using a

bootstrap model simulation partial time series lasting 72 months – from month

260 to 331 – from a total of 360 months of available simulation.

Also, by looking at the cumulative probability distribution function (CDF)

of both time series, on can see that both functions present similar cumulative

probability distributions – see figure 12.8 a).

This notion is further supported by the probability distribution violin plot of

both time series. In figure 12.9 one may also notice the presence of some similarity
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of the autocorrelation function in both time series.

Quantitative error estimation

When using quantitative error estimation to compare the empirical time series from

Alhassan (2017) and a synchronized partial time series from a model simulation

with wh = 0.413, one finds small differences in the mean absolute error (MAE),

the mean absolute percentage error (MAPE) and the root mean squared error

(RMSE) between both time series – see table 12.3.

Quantitative statistical measures

It is also possible to compare time series by using quantitative statistical measures

that compare statistical proximity between the probability distribution function

of two time series. In our model validation we have used 3 well accepted statis-

tical measures variants of this methodology: a) Kolmogorov-Smirnov testing; b)

Anderson-Darling testing; c) Kuiper testing.

Finally, we also found a striking similarity between the empirical time se-

ries from Alhassan (2017) and the model simulation time series with human-to-

mosquito transmission efficiency corresponding to wh = 0.413 in terms of an ac-

ceptable small value of Theil’s inequality coefficient (U = 0.289) – see tables 12.4

and 12.5.

12.4.4 Chirombo,2020

In 2020, Chirombo presented a spatial-temporal model reporting results from a

time series of childhood malaria incidence in Malawi. Rainfall is heterogeneous

across Malawi, ranging from an average annual precipitation of 700 mm in low

altitude areas to 2500 mm in high altitude areas. The country includes 5 different

climatic regions involving 28 districts. Results were presented at the district level,

in the form of monthly malaria confirmed and suspected cases during a time period

lasting 162 months (from 2004 to 2017) [68]. Several climate and non-climate

variables were included in the model. Malaria data from the Dedza region was

compared to a model simulation with similar average malaria monthly incidence,

and a human-to-mosquito transmission efficiency of wh = 0.433. Empirical average

malaria incidence was estimated at 7.3 annual cases per 100 inhabitants during

the 162-month time period – see table 12.1. To synchronize seasonal periodicity, a

model simulation with a human-to-mosquito transmission efficiency of wh = 0.420,

an average malaria incidence of 7.5 annual cases per 100 inhabitants, and a time

duration lasting from month 173 to month 328 was compared to the empirical time

series from Chirombo,2020 – see figure 12.10.

In figure 12.10 we can confirm the presence of a significant similarity be-

tween the empirical time series from Chirombo (2020) and a model simulation

with human-to-mosquito transmission efficiency of wh = 0.420. This similarity is
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Figure 12.7: Monthly malaria incidence empirical time series from
Alhassan,2017 (black) [12] and model simulation with human-to-
mosquito transmission efficiency wh = 0.413 (red).

Figure 12.8: (a) Cumulative probability distribution curves from
malaria empirical time series in Alhassan,2017 (black) [12], and from
model simulation with human-to-mosquito transmission efficiency
wh = 0.413 (red). (b) Monthly malaria incidence violin plot from
empirical time series in Alhassan,2017, and model simulation malaria
incidence in empirical series from with human-to-mosquito transmis-
sion efficiency wh = 0.413.
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Figure 12.9: (a) Autocorrelation function from malaria empir-
ical time series in Alhassan,2017 [12]. (b) Autocorrelation func-
tion from model simulation with human-to-mosquito transmission ef-
ficiency wh = 0.413.

Figure 12.10: Monthly malaria incidence empirical time series from
Dedza region in Chirombo,2020 (black) [68] and model simulation with
human-to-mosquito transmission efficiency wh = 0.420 (red).
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reinforced by the presence of periodic seasonal synchronization in both time series,

by using a bootstrap model simulation partial time series lasting 72 months – from

month 173 to 328 – from a total of 360 months of available simulation.

Also, by looking at the cumulative probability distribution function (CDF)

of both time series, on can see that both functions present similar cumulative

probability distributions – see figure 12.11 a).

This notion is further supported by the probability distribution violin plot of

both time series. In figure 12.12 one may also notice the presence of some similarity

of the autocorrelation function in both time series.

Quantitative error estimation

When using quantitative error estimation to compare the empirical time series from

Chirombo (2020) and a synchronized partial time series from a model simulation

with wh = 0.420, one finds small differences in the mean absolute error (MAE),

the mean absolute percentage error (MAPE) and the root mean squared error

(RMSE) between both time series – see table 12.3.

Quantitative statistical measures

It is also possible to compare time series by using quantitative statistical measures

that compare statistical proximity between the probability distribution function of

two time series. In our model validation we have found small values of three widely

used statistical measures: a) Kolmogorov-Smirnov testing; b) Anderson-Darling

testing; c) Kuiper testing. This fact supports the notion of strong similarity be-

tween the empirical time series from Chirombo (2020) and a model simulation with

wh = 0.420.

Finally, we found a striking similarity between the empirical time series from

Chirombo (2020) and the model simulation time series with human-to-mosquito

transmission efficiency corresponding to wh = 0.420 in terms of an acceptable

small value of Theil’s inequality coefficient (U = 0.301) – see tables 12.4 and 12.5.

12.4.5 Ferrão,2017

The specific details of Ferrão (2017 empirical time series were previously described

in section 7.4. As it happens, Ferrão (2017) is also the only empirical time series

originally presented in the form of weekly malaria incidence. Its results were

included in this chapter in the form of a more simplified version.

Quantitative error estimation

When using quantitative error estimation to compare the empirical time series

from Ferrão (2017) and a synchronized partial time series from a model simulation

with wh = 0.427, it is possible to find small differences in the mean absolute error
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Figure 12.11: (a) Cumulative probability distribution curves from
malaria empirical time series (Dedza region) in Chirombo,2020 (black)
[68], and from model simulation with human-to-mosquito transmis-
sion efficiency wh = 0.420 (red). (b) Monthly malaria incidence vio-
lin plot from empirical time series (Dedza region) in Chirombo,2020,
and model simulation malaria incidence in empirical series from with
human-to-mosquito transmission efficiency wh = 0.420.

Figure 12.12: (a) Autocorrelation function from malaria empirical
time series (Dedza region) in Chirombo,2020 [68]. (b) Autocorrelation
function from model simulation with human-to-mosquito transmission
efficiency wh = 0.420.
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(MAE), the mean absolute percentage error (MAPE) and the root mean squared

error (RMSE) between both time series – see table 12.3.

Figure 12.13: Weekly malaria incidence empirical time series
from Ferrão,2017 (black) [122] and model simulation with human-to-
mosquito transmission efficiency wh = 0.427 (red).

Quantitative statistical measures

It was also possible to compare time series by using quantitative statistical mea-

sures that compare statistical proximity between the probability distribution func-

tion of two time series. In our model validation we have found small values of three

widely used statistical measures: a) Kolmogorov-Smirnov testing; b) Anderson-

Darling testing; c) Kuiper testing. This fact supports the notion of strong similar-

ity between the empirical time series from Ferrão (2017) and a model simulation

with wh = 0.427.

Finally, we find a striking similarity between the empirical time series from

Ferrão (2017) and the model simulation time series with human-to-mosquito trans-

mission efficiency corresponding to wh = 0.427 in terms of an acceptable small

value of Theil’s inequality coefficient (U = 0.278) – see tables 12.4 and 12.5.
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Figure 12.14: (a) Cumulative probability distribution curves from
malaria empirical time series in Ferrão,2017 (black) [122], and from
model simulation with human-to-mosquito transmission efficiency
wh = 0.427 (red). (b) Weekly malaria incidence violin plot from
empirical time series in Ferrão,2017 and model simulation malaria in-
cidence in empirical series from with human-to-mosquito transmission
efficiency wh = 0.427.

Figure 12.15: (a) Autocorrelation function from malaria empiri-
cal time series in Ferrão,2017 [122]. (b) Autocorrelation function
from model simulation with human-to-mosquito transmission effi-
ciency wh = 0.427.
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12.5 Ivermectin model validation

A theoretical approach to model validation is usually difficult to implement

when evaluating a computational algorithm equivalent to the use of ivermectin in a

human population. Still, in this section we describe a model validation procedure

by graphically comparing results from our model, incorporating the ivermectin as

a quantitative parameter in terms of mosquito survival, with data from previous

research [61].

As shown in figure 12.16, the differences found in mosquito survival between

the ivermectin human treatment group and the human control group are small.

However, notice that mosquito survival at 12 days is slightly higher in the model

simulation – close to 20% – when compared to the residual survival in the em-

pirical data [61]. This difference can be explained by the implementation of a

more conservative computational algorithm in our model, in terms of mosquito

survival. Globally, our model survival curves were quite similar in shape to those

of Chaccour’s original paper, suggesting that this ivermectin model may reproduce

acceptable model simulations, with mosquito survival results within the expected

range.

Figure 12.16: Validation of ivermectin model: (a) Mosquito survival
curve in empirical series as result of ivermectin treatment in 100% of
all human individuals when compared to the untreated human con-
trol group [61], and (b) mosquito survival curve because of model
simulation of ivermectin treatment in 100% of all human individuals
when compared to a model simulation with no treatment in the control
group.
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12.6 Ross-Macdonald theoretical validation

A critical aspect of model verification consists in checking the similarity of

its predictions against the results from well-established previous models. Ross-

Macdonald theory is mathematically sound and well supported on a few concepts

related to malaria transmission such as the human feeding rate – a –, the mosquito-

to-human and human-to-mosquito transmission efficiencies – b and c, respectively

-, the entomological inoculation rate – EIR -, and the basic reproduction number

– R0. Outcomes from a reliable malaria model should be in line with expected

results from these parameters.

Figure 12.17: Correlation of Ross-Macdonald parameters b, c, EIR and R0

with human-to-mosquito gametocytemia transmission efficiency (wh), in 10 model
simulations at all levels:
(a) b (Ross-Macdonald M-to-H transmission efficiency),
(b) c (Ross-Macdonald H-to-M transmission efficiency),
(c) EIR (Entomological inoculation rate), and
(d) R0 (Basic reproductive number).
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In the present model simulations, three different scenarios were tested in order

to check model validity:

a) Variable human-to-mosquito transmission efficiency (c) from Ross-Macdonald

theory and wh in the present model simulation;

b) Variable use of ivermectin prevention corresponding to the percentage of

human individuals under ivermectin treatment – piv;

c) Identical system settings in different initial conditions of human and mosquito

infection prevalence.

These five Ross-Macdonald parameters were derived in all model simulations

and verified in terms of model dynamics and output in different model settings –

see tables 12.6 to 12.10.

12.6.1 Ross-Macdonald parameters and H-to-M gametocytemia

transmission efficiency

In model simulations with different values of human-to-mosquito gametocytemia

transmission efficiency (0.400 < wh < 0.800) there is clear evidence of correlation

of the model parameter wh with Ross-Macdonald c parameter – see tables 12.6

and 12.7, and figure 12.17. The use of gametocidal agents such as primaquine or

methylene blue was considered dynamically equivalent to a reduction in wh values

in model simulations. In all different levels of wh, Ross-Macdonald parameters

were in line with theoretical expectations.

wh a b c EIR R0

(G) (± SE) (± SE) (± SE) (± SE) (± SE)

0.400 0.2381 0.1068 0.0788 0.1086 1.4305
(60) (± 0.0005) (± 0.0011) (± 0.0003) (± 0.0150) (± 0.0170)
0.467 0.2384 0.1075 0.0926 1.0378 1.6974
(70) (± 0.0003) (± 0.0002) (± 0.0006) (± 0.0370) (± 0.0130)
0.533 0.2381 0.1060 0.1055 2.2114 1.9032
(80) (± 0.0004) (± 0.0002) (± 0.0001) (± 0.0290) (± 0.0060)
0.600 0.2380 0.1047 0.1191 3.3403 2.1201
(90) (± 0.0005) (± 0.0001) (± 0.0001) (± 0.0510) (± 0.0090)
0.667 0.2380 0.1037 0.1325 4.4056 2.3353
(100) (± 0.0003) (± 0.0002) (± 0.0000) (± 0.0044) (± 0.0080)
0.733 0.2382 0.1024 0.1463 5.4586 2.5484
(110) (± 0.0004) (± 0.0001) (± 0.0000) (± 0.0400) (± 0.0070)
0.800 0.2378 0.1014 0.1598 6.4218 2.7508
(120) (± 0.0003) (± 0.0001) (± 0.0000) (± 0.0380) (± 0.0080)

Table 12.6: Correlation of Ross-Macdonald parameters with different levels of ga-
metocytemia duration in days of positivity (G) and respective human-to-mosquito
transmission efficiency (wh), in groups of 10 model simulations at all levels.

From table 12.6 and figure 12.17 it is possible to assume that a drug inter-

vention with gametocidal agents would have a major impact in Ross-Macdonald
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c parameter, EIR and R0, along with a much smaller impact in Ross-Macdonald

b parameter, and with virtually no influence in a parameter. The respective wh

ANOVA correlation table 12.8 points out to the same conclusion.

piv a b c EIR R0

(± SE) (± SE) (± SE) (± SE) (± SE)

0.00 0.2380 0.1047 0.1191 3.340 2.120
(± 0.0005) (± 0.0001) (± 0.0001) (± 0.0513) (± 0.0092)

0.02 0.2384 0.0997 0.1186 2.280 2.017
(± 0.0004) (± 0.0001) (± 0.0000) (± 0.0297) (± 0.0056)

0.04 0.2384 0.0943 0.1184 1.200 1.903
(± 0.0004) (± 0.0003) (± 0.0001) (± 0.0602) (± 0.0100)

0.06 0.2385 0.0883 0.1182 0.280 1.780
(± 0.0004) (± 0.0001) (± 0.0002) (± 0.0586) (± 0.0180)

0.08 0.2385 0.0794 0.1176 0.046 1.592
(± 0.0004) (± 0.0002) (± 0.0003) (± 0.0045) (± 0.0319)

Table 12.7: Correlation of Ross-Macdonald parameters with different levels of
ivermectin prevention (piv) in groups of 10 model simulations at all levels.

piv a b c EIR R0

F 4.998 206.4 117.1 76.6 189.2
P 0.111 7.31 ×10−4 1.69 ×10−3 3.14 ×10−3 8.32 ×10−4

Table 12.8: ANOVA table with F and P values of correlation of Ross-
Macdonald parameters with different levels of ivermectin prevention (piv),
in groups of 10 model simulations at all levels.

12.6.2 Ross-Macdonald parameters and ivermectin prevention

Ivermectin prevention affected the outcome of Ross-Macdonald parameters in

model simulations at different levels of piv. From tables 12.7 and 12.8 and fig-

ure 12.18 it is possible to conclude that ivermectin had a major impact in Ross-

Macdonald b parameter, EIR and R0, along with a much smaller impact in Ross-

Macdonald c parameter, and with virtually no influence in a parameter. The

respective piv ANOVA correlation table – table 12.8 points out the same conclu-

sion.

It is possible to conclude that gametocidal drug intervention will play a com-

plementary role with ivermectin prevention in reducing disease transmission, as

was shown in previous chapters concerning the role of gametocytemia suppression

reducing c and ivermectin prevention reducing b in phase transition.

12.6.3 Ross-Macdonald parameters and initial conditions

With different initial conditions there was no significant change in Ross-Macdonald

parameters in all model simulations – see also Appendix C. The stability of the

human-mosquito dynamical system was in line with the expected stability in all

Ross-Macdonald parameters – see tables 12.9 and 12.10.
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Figure 12.18: Correlation of Ross-Macdonald parameters b, c, EIR and
R0 with ivermectin prevention (piv), in 10 model simulations at all levels:
(a) b (Ross-Macdonald M-to-H transmission efficiency),
(b) c (Ross-Macdonald H-to-M transmission efficiency),
(c) EIR (Entomological inoculation rate), and
(d) R0 (Basic reproductive number).

Hi0 Mi0 a b c EIR R0

(± SE) (± SE) (± SE) (± SE) (± SE)

0.05 0.01 0.2377 0.0943 0.1026 5.884 1.639
(± 0.0005) (± 0.0002) (± 0.0000) (± 0.0351) (± 0.0088)

1.00 0.00 0.2374 0.0935 0.1025 5.918 1.621
(± 0.0003) (± 0.0002) (± 0.0001) (± 0.0250) (± 0.0047)

0.00 1.00 0.2386 0.0944 0.1025 6.002 1.654
(± 0.0004) (± 0.0002) (± 0.0001) (± 0.0327) (± 0.0062)

1.00 1.00 0.2382 0.0938 0.1025 6.006 1.638
(± 0.0006) (± 0.0002) (± 0.0001) (± 0.0404) (± 0.0089)

0.50 0.50 0.2378 0.0939 0.1025 5.941 1.633
(± 0.0002) (± 0.0002) (± 0.0001) (± 0.0191) (± 0.0049)

Table 12.9: Stability of Ross-Macdonald parameters with independence in 5 dif-
ferent initial conditions of human and mosquito infection prevalence in groups of
10 model simulations.
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Initial conditons (Hi0/Mi0) a b c EIR R0

F 0.361 0.129 3.418 1.713 0.006
P 0.590 0.744 0.162 0.282 0.945

Table 12.10: ANOVA table of correlation of Ross-Macdonald parameters
and respective F and P values, with different initial conditions of human
(Hi0) and mosquito (Mi0) infection prevalence, in groups of 10 model
simulations at all levels.
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Chapter 13

Discussion

13.1 Phase transition and gametocytemia

It was our original objective to explore all the possibilities of stochastic mod-

eling in malaria research. Our model was presented in detail in chapter 5. The

relevance of human-to-mosquito malaria transmission is anchored in the poten-

tial duration of gametocytemia in human hosts and captured in the parameter

defined in our model as wh expressing the percentage of time spent with positive

gametocytemia during full disease duration. Special attention was devoted to the

detection of a phase transition between epidemic stability and disease elimina-

tion. The potential use of the drug ivermectin as a selective Anopheles suppressor

of mosquitoes during the mosquito latency stage (parasite maturation inside the

mosquito before reaching the sporozoite stage) was further investigated. We as-

sumed a copula approach (gametocidal agent primaquine + ivermectin) as a po-

tentially effective intervention in reducing malaria transmission – see figure 13.1.

We have also investigated the role of heterogeneity in disease dynamics. Het-

erogeneity was defined in terms of a Pareto distribution model. Other factors

affecting heterogeneity in disease transmission were also considered such as the

importance of vector control, seasonality and human migration. We have tested

the combined use of the sporozoite rate (Z) and the parasite rate (X) as an in-

dex correlating well with the intensity of disease transmission in the presence of

heterogeneity. Finally, we looked into the presence of long memory in the stochas-

tic process of malaria transmission by measuring Hurst exponent and Shannon

entropy in model simulation and empirical time series.
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Figure 13.1: Copula approach with the gametocidal agent primaquine and the
selective mosquito killer ivermectin in a more effective strategy suppressing
malaria transmission.
(Images from Adobe Stock, https://openeducationalberta.ca,
https://www.myjoyonline.com and https://www.wwarn.org [154])

Several points of this dissertation are open to discussion. The presence of

gametocytes in the human blood during mosquito feeding is a critical factor in

disease persistence. While the stochastic nature of this event may affect disease

transmission with unpredictable consequences in a single time instant, ultimately

it will not change the outcome resulting from a single mosquito bite in an infected

human host. The presence of a phase transition in relation to the time spent with

the presence of positive gametocytemia in the human blood is therefore a critical

issue in defining more effective strategies in disease prevention. According to our

model, the use of gametocidal agents (such as primaquine or methylene blue)

could achieve a significant reduction in human-to-mosquito disease transmission,

to a point where disease elimination could become feasible.

In terms of the theoretical implications of this strategy in the Ross-Macdonald

model, our data also supports the concept that a combined use of this gametoci-

dal approach, lowering the value of human-to-mosquito transmission efficiency c,

along with drug prevention with ivermectin in human hosts (lowering the value of

mosquito-to-human transmission efficiency b) could become a more effective way

of reducing disease transmission.

Combining this strategy with adequate vector control (lowering the value of
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mosquito density ∆m
1), while increasing the value of daily mosquito mortal-

ity qm, adopting the widespread use of LLIN/ITN/IRS barrier measures (lower-

ing the value of the human feeding rate a), and implementing an effective anti-

heterogeneity approach more hot-spot-oriented while increasing the value of θ and

lowering the value of α(θ) – see equations 8.2 and 8.3 – it may be feasible a

consistent reduction of the basic reproduction number R0, well below the disease

elimination threshold.

13.2 Heterogeneity in malaria transmission

We have addressed heterogeneity as a critical aspect in disease transmission,

and a potentially useful target in disease prevention strategy. Our agent-based

malaria model simulating malaria transmission scenarios was used as a benchmark

in testing for the presence of heterogeneous affinity. Several parameters were iden-

tified with influence in the interaction of infectious mosquitoes and healthy human

individuals more vulnerable to mosquito biting, and assuming the role of active

and attracting hot-spots in disease spreading. Our main focus was in predict-

ing malaria incidence in the presence of a systematic administration of ivermectin

treatment alone or in combination with gametocidal therapy such as primaquine

or methylene blue.

Human-to-mosquito transmission, which is directly related to the time length

of positive gametocytemia (wh), is fundamental in disease transmission. In this

setting, the mass administration of ivermectin has the potential for inhibiting

disease transmission by killing mosquitoes with a lethal effect on mosquito popu-

lations immediately after feeding, while suppressing gametocyte maturation inside

the mosquito before completing the 10 days incubation period. Such effect was

magnified by the presence of a high mosquito density [61, 196, 326].

An important aspect of malaria prevention strategies is based upon the im-

plementation of early disease diagnosis with RDT with the use of reliable metrics

for the accurate measurement of disease incidence. From the results obtained in

our model simulations it was possible to assume that the isolated single use of

one of the usual disease prevalence metrics (sporozoite rate Z or parasite rate X)

could reveal less accuracy in the presence of heterogeneity in disease transmission,

favoring their combined use in malaria metrics.

We have shown that in the presence of increased heterogeneity, by multiplying

the sporozoite rate Z by the parasite infection rate X it was possible to create a

reliable indicator G = ZX for prediction of malaria incidence, performing better

than any of the two rates, separately, in identical heterogeneity settings, particu-

larly in the setting of mass administration of ivermectin.

1Here, we use the definition ∆m = M
H

for mosquito density, instead of the parameter m adopted
by D.L.Smith,2004 [343]
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Considering classical Ross-Macdonald model metrics, we have also shown that

EIR was quite more sensitive than R0 in predicting malaria incidence in the pres-

ence of high heterogeneity scenarios.

Our model shows that it is essential to consider heterogeneity as an important

factor, when predicting malaria transmission, while emphasizing that the effect of

mass drug administration of ivermectin, is not only dependent on ivermectin in-

tensity and human-to-mosquito transmission efficiency, but also clearly influenced

by the presence of heterogeneity in human and mosquito populations.

The existence of transmission hot-spots plays a decisive role in disease trans-

mission dynamics [34]. These hot-spots in malaria transmission may become

decisive in small villages in close proximity to high Anopheles mosquito density

and larval active breeding sites. Children and recent immigrants coming from

malaria high-risk regions should also be considered as transmission hot-spots.

We have also shown that the dynamical behavior of the 2D probability density

function of the dynamical human-mosquito infection system in phase space may

somehow be affected by the presence of heterogeneity in disease transmission. This

concept could be used in the implementation of more effective hot-spot-oriented

strategies.

From our perspective the combined treatment strategy with gametocidal drugs

(such as artemisinin, primaquine, or methylene blue) and mass administration of

ivermectin, specifically targeting transmission hot-spots, may become an effective

alternative in preventing disease resurgence in high heterogeneity settings.

The importance of establishing a malaria prevention strategy hot-spot-oriented

was highlighted in previous chapters. Furthermore, our data shows that reducing

the duration of gametocytemia in human hosts along with lowering the impact of

heterogeneity in disease transmission in combination with the use of ivermectin

in transmission hot-spots could result in significant benefits in reducing malaria

transmission.
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13.3 Vector control, migration and seasonality

Our data supports the traditional view by Ross and Macdonald that vector

control remains one of the most important weapons in malaria prevention. In the

present model, mosquito density was strongly correlated with the level of malaria

incidence. Our data supports the notion that ivermectin is also effective in reducing

disease transmission in higher mosquito density regions. This aspect should not

be neglected in future malaria preventive strategies.

Also, the possibility of disease resurgence from the importation of silent malaria

carriers as a result of human migration has become a reason of concern for Pub-

lic Health officials. The occurrence of malaria outbreaks in world regions where

malaria incidence had been marginally low for decades may be apparently related

with several cases of human migration from malaria affected regions. Our model

also revealed that migration could be a significant risk factor of disease resurgence,

and that specific measures allowing for early malaria diagnosis in migrant popu-

lations could result in better control of disease transmission, especially in regions

with low infection prevalence.

In the world regions where malaria transmission is seasonal and periodic, there

is a relation between the length of the rainy season and mosquito breeding. A

longer wet season implies a stronger disease transmission. In the present model, it

was possible to test the impact of different time lengths of seasonal rain precipita-

tion in epidemic resilience. As expected, longer periods of high transmission during

the wet season led to higher malaria incidence. However, by using ivermectin, it

was possible to inhibit disease transmission, partially neutralizing that seasonality

effect. Our data supports the notion that ivermectin could be useful in malaria

prevention during the rainy season, in world regions with high malaria incidence.

13.4 Time series analysis of malaria epidemics

Malaria epidemic time series consistently revealed a specific memory pattern

depending on the intensity of disease transmission. This behavior was considered

useful in predicting the evolution of the epidemic. Malaria time series could also be

analyzed with an effective application of different ARIMA models. ARIMA models

in respect to the Box-Jenkins theory, are quite useful in malaria model simulations

as well as in empirical time series – see Appendix D. At low disease transmission

intensity, the time series behavior was shown to be consistent with a long-memory

process, defined as long-range dependence. At high disease transmission intensity,

this pattern apparently evolved towards a low-memory process. Significant results

were obtained with other alternative metrics of long-range dependence such as the

Hurst exponent and the Shannon information entropy. Hurst exponent was quite

useful in predicting malaria epidemic behavior and phase transition proximity.
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Shannon entropy was also quite helpful in predicting higher disease transmission.

13.5 Model validation

In the present dissertation, an extensive model validation strategy was adopted,

that involved graphical as well as analytical validation and verification procedures.

The graphical comparison of malaria empirical time series with model simulations

in terms of average malaria incidence was defined as the standard benchmark pro-

cedure. A wide set of malaria empirical time series were used for the purpose of

validating our model. The similarity of cumulative probability distribution func-

tions and of autocorrelation functions added further information in support of our

model validation. Along with the graphical procedures described above, several

analytical procedures were also implemented with the aim of consolidating the

graphical information. Commonly used statistical measures and error estimation

procedures were used as reliable analytical tools in support of model validation.

For validation of the ivermectin model a special procedure was implemented com-

paring mosquito survival distribution curves with empirical results from field data.

A specific procedure comparing the present model simulation of ivermectin inter-

vention and empirical data was particularly helpful. As a supplementary proce-

dure, the results from model simulations were tested in terms of compliance with

the Ross-Macdonald theory. Standard Ross-Macdonald parameters were obtained

from model simulations and verified in relation to the expected malaria dynamics.
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13.6 An integrated strategy towards malaria elimina-

tion

Malaria prevention strategy should involve two types of intervention: Vector

control and human protection (see figures 13.2 and 13.3).

Figure 13.2: Global malaria strategy related to vector control. Highlighted in
yellow is the strategic arm related to the use of ivermectin as a selective vector
control agent.

Since Ross and Macdonald original work, vector control has assumed the most

relevant aspect of malaria prevention. The discovery of the insecticide DDT and

the usefulness of vector source suppression of water masses as potential larval

breeding sites led to drastic reductions of malaria incidence worldwide. Despite

later drawbacks such as growing insecticide resistance as well as major difficulties

in handling the climate impact in geographical water management, vector control

still assumes today a prominent role in malaria control. Also, source management

by the introduction of larval-eating fish species could potentially contribute to a

more adequate vector control strategy – see figure 13.2. An additional strategy

has been recently found that promotes Anopheles conditioning with the use of

mosquito male sterilization and increased vector mortality as a consequence of

Wolbachia vector infection [146, 385, 392].

But malaria strategy is also strongly based upon human protection. Whether

in the form of barrier protection with ITN/LLIN and IRS, or in the form of in-

creasing human immunity against malaria. In regions with a stable number of new

infections or reinfections, human individuals will acquire a reasonable form of pro-

tective immunity, that although it might not stop them from getting infected, still

it will strongly reduce disease mortality and morbidity – see figure 13.3. The early

use of rapid diagnostic tests in the presence of malaria clinical suspicion (RDT)

is a sound approach to reducing disease mortality and morbidity, allowing for a

more specific and effective use of artemisinin-combined therapy (ACT). However,

asymptomatic gametocyte carriers will be able to retransmit the disease to healthy

mosquitoes, thus increasing the burden of infectious vector, while increasing the

chance of new infections in healthy human individuals.
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Figure 13.3: Global malaria strategy related to human protection. Highlighted in
yellow is the strategic arm related to the combined use of gametocidal agents and
ivermectin in a transmission hot-spot. In a heterogeneity setting, the definition of
transmission hot-spot is given in the lower left box.

The importance of heterogeneity in malaria transmission gives support to the

idea of a specific strategy dealing with transmission hot-spots and disease super-

spreading. For that purpose, more specific effective measures could be used in

targeting asymptomatic recent immigrants from high-risk areas, young children

with frequent outdoor activities, and human individuals with no ITN/LLIN or

IRS protection and living in the proximity of significant larval breeding sites or in

regions with high malaria incidence – see figure 13.3.

The usefulness of ivermectin + gametocidal agents in prevention could im-

prove the strength of malaria control strategy by selective reduction of potentially

new infected mosquitoes before they ever become infectious. This highly selective

action of ivermectin will not significantly modify mosquito density, but it will se-

lectively reduce human infection risk. This intervention, if complemented with the

use of an effective gametocyte reduction strategy (such as primaquine or methylene

blue) could be very effective in improving malaria prevention strategy while po-

tentially reducing the risk of parasite drug resistance to more effective medication

such as artemisinin or quinine – see table 13.2 and figure 13.3.
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13.7 Conclusions

The results described in the current dissertation confirm the validity of the

present stochastic model of malaria transmission – see table 13.1. Gametocytemia

levels are crucial to disease human-to-mosquito transmission efficiency and present

a phase transition between epidemic stability and disease elimination. Our results

highlight the possible benefit of using gametocidal agents in malaria prevention.

They may also be very effective in reducing disease transmission in the presence

of strong heterogeneity.

The use of ivermectin in facilitating disease elimination at gametocytemia

phase transition may have a significant potential benefit in disease prevention by

increasing early mosquito mortality during the disease incubation period, thus

reducing human-to-mosquito transmission efficiency. Its effect may be combined

with the use of gametocidal agents in a copula approach, with improved results in

disease transmission suppression – see figure 13.1.

The presence of heterogeneity in disease transmission may be responsible for a

∼ 300% increase in disease transmission as a result of hot-spot disease transmission

and super-spreading events.

The use of an improved disease burden metrics like the G = ZX score may be

used as a more precise instrument of infection prevalence evaluation in the setting

of heterogeneity and disease transmission hot-spots. Our results may be used in

identifying these disease hot-spots in the presence of significant heterogeneity in

disease transmission.

Ivermectin was also effective in reducing disease transmission in the presence

of transmission heterogeneity. The combined effect of gametocidal agents and

ivermectin may further reduce disease transmission in that specific setting.

Other aspects of heterogeneity were taken into consideration, such as the im-

pact of vector control, silent-carriers migration, and seasonality in disease resur-

gence. It was shown here that ivermectin was also quite effective in reducing

disease transmission in all these settings.

The human-mosquito stochastic dynamical system revealed non-chaotic and

non-linear behavior, with stable stochastic closed trajectories circling around well-

defined stability points – centers. The dynamical system revealed periodic behav-

ior, insensitive to different status of human and mosquito infection initial condi-

tions.

Time series Box-Jenkins methodology was useful in building better malaria

forecasting models. We have shown that Hurst exponent and Shannon entropy

evaluated in empirical time series of fixed time length (36 months) may also be

useful in forecasting disease transmission. The use of Hurst exponent and Shannon
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entropy in malaria incidence time series was extremely helpful in malaria forecast-

ing.

PhD conclusions

Gametocytemia defines Plasmodium Human-to-Mosquito transmission (wh)
Gametocytemia transition phase: epidemic stability vs. disease elimination
Primaquine + ivermectin effective in reducing disease transmission
Heterogeneity increases disease transmission ∼ 3x
Ivermectin reduces disease transmission in hot-spots (heterogeneity)
Utility of G = ZX score in disease metrics in the presence of heterogeneity
Vector density, seasonality and human migration promote disease transmission
Ivermectin reduces disease transmission in the presence of:

increased vector density
seasonality
human migration

Heterogeneity interacts with gametocytemia, amplifying disease transmission
Human-Mosquito stochastic system with non-chaotic and non-linear behavior
Stable stochastic closed trajectories around stability points (centres)
Utility of Box-Jenkins time series theory in malaria forecasting models
Utility of Hurst exponent in malaria forecasting models
Utility of Shannon entropy in malaria forecasting models

Table 13.1: PhD conclusions

Summing up:

Computational stochastic models adopting Monte Carlo algorithms are well

accepted as a reliable tool in malaria research. Our stochastic model provided

adequate simulation data of malaria transmission in different epidemiological sit-

uations. Results from model simulations in different epidemiological settings were

consistent with was expected from Ross-Macdonald models. Gametocytemia lev-

els in infected human hosts stand as decisive aspect of malaria transmission to be

adequately addressed in malaria research.

We have shown the existence of a phase transition in gametocytemia levels

between an epidemic stable infection status and potential malaria elimination.

This phase transition could be influenced with the help of a preventive strategy

of ivermectin administration to a fraction of the human population at risk. This

effect suggests that the combined use of a gametocidal agent (such as primaquine or

methylene blue) and ivermectin could offer a reliable malaria preventive strategy,

thus reducing the need for the use of artemisinin compound therapy as well as the

risk of drug resistance induction.

Our data supports the notion that a global malaria preventive strategy should

include the following combined steps – see table 13.2, and figures 13.2 and 13.3:

1. Vector control – reduction of mosquito density and active suppression of

mosquito anthropophilic behavior.

2. Barrier protective measures – ITN/LLIN/IRS and vaccination.

3. Use of combined gametocidal agents (primaquine or methylene blue) and
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Integrated drug strategy in malaria prevention

Gametocidal agent (primaquine) + ivermectin
Human barrier protection (LLIN/ITN/IRS)
Vector control

Targeting malaria hot-spots (strong heterogeneity)

RDT – early malaria diagnosis
Population with high malaria incidence
Children (lower immunity)
During rainfall season
Presence of high mosquito density
Proximity of larval active breeding sites
Human migration from high malaria risk regions

Malaria prediction metrics

G = ZX index (setting of high heterogeneity)
SARIMA model
Hurst exponent
Shannon entropy

Table 13.2: Proposing a global approach to malaria

ivermectin after RDT diagnosis and specific treatment with artemisinin, or in

preventive drug campaigns.

4. Suppression of transmission heterogeneity with the use of selective measures

oriented to silent carriers, super-spreaders, and transmission hot-spots.

5. Use of Box-Jenkins methodology combined with Hurst exponent and Shan-

non entropy monthly evaluation of 36-months long strips of malaria incidence time

series in malaria incidence forecasting.

The mixed use of all these interventions may support a more effective malaria

preventive strategy, improving drug resistance to artemisinin-combined therapy.
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and M. Basáñez. Population biology of malaria within the mosquito:

density-dependent processes and potential implications for

transmission-blocking interventions. Malar. J., 9:311, 2010.

[74] T.S. Churcher, R.E. Sinden, N.J. Edwards, and et al. Probability of

transmission of malaria from mosquito to human is regulated by mosquito

parasite density in näıve and vaccinated hosts. PLoS Pathog., 13(1):

e1006108, 2017.

[75] E. Cleary, M.W. Hetzel, P.M. Siba, C.L. Lau, and A.C.A. Clements.

Spatial prediction of malaria prevalence in Papua New Guinea: a

comparison of Bayesian decision network and multivariate regression

modelling approaches for improved accuracy in prevalence prediction.

Malar. J., 20:269, 2021.

205



Bibliography

[76] J.E. Coalson, L.M. Cohee, A.G. Buchwald, and et al. Simulation models

predict that school-age children are responsible for most

human-to-mosquito P. falciparum transmission in southern Malawi. Malar.

J., 17:147, 2018.

[77] L.E. Coffeng, C.C. Hermsen, R.W. Sauerwein, and S.J. de Vlas. The Power

of Malaria Vaccine Trials Using Controlled Human Malaria Infection.

PLOS Comp Biol, 13(1):e1005255, 2017. ISSN 1553-7358.

[78] J.M. Cohen, D.L. Smith, C. Cotter, A. Ward, G. Yamey, O.J. Sabot, and

B. Moonen. Malaria resurgence: A systematic review and assessment of its

causes. Malar. J., 11:122, 2012.

[79] J.M. Cohen, S. Dlamin, J.M. Novotny, D. Kandula, S. Kunene, and Tatem.

A.J. Rapid case-based mapping of seasonal malaria transmission risk for

strategic elimination planning in Swaziland. Malar. J., 12:61, 2013.

[80] K.A. Collins, A. Ouedraogo, W.M. Guelbeogo, and et al. Investigating the

impact of enhanced community case management and monthly screening

and treatment on the transmissibility of malaria infections in Burkina Faso:

study protocol for a cluster-randomised trial. BMJ Open, 9:e030598, 2019.
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[88] V. Crowell, O.J.T. Briët, D. Hardy, N. Chitnis, N. Maire, A. Di Pasquale,

and T.A. Smith. Modelling the cost-effectiveness of mass screening and

treatment for reducing Plasmodium falciparum malaria burden. Malar. J.,

12:4, 2013.

[89] X. Cui, D. Xue, and T. Li. Fractional-order delayed Ross–Macdonald

model for malaria transmission. Nonlinear Dyn, 107:3155–3173, 2022.

[90] C.B. Cunha and B.A. Cunha. Brief history of the clinical diagnosis of

malaria: from Hippocrates to Osler. J Vector Borne Dis, 45(September):

194–199, 2008.

[91] J. Cunningham, S. Jones, Gatton M.L., and et al. A review of the WHO

malaria rapid diagnostic test product testing programme (2008–2018):

performance, procurement and policy. Malar. J., 18:387, 2019.

[92] D.J. Daley and J. Gani. Epidemic Modelling: An introduction. Cambridge

University Press, 1999.

[93] S. Dama, H. Niangaly, A. Ouattara, and et al. Reduced ex vivo

susceptibility of Plasmodium falciparum after oral artemether-lumefantrine

treatment in Mali. Malar. J., 16(1):59, 2017.

[94] E.D. Dan, O. Jude, and O. Idochi. Modelling and Forecasting Malaria

Mortality Rate using SARIMA Models (A Case Study of Aboh Mbaise

General Hospital, Imo State Nigeria). Science Journal of Applied

Mathematics and Statistics, 2(1):31–41, 2014.

[95] C.E. Dangerfield, J.V. Ross, and M.J. Keeling. Integrating stochasticity

and network structure into an epidemic model. J. R. Soc. Interface, 6:

761–774, 2009.

[96] E.L. Darkoh, J.A. Larbi, and E.A. Lawer. A Weather-Based Prediction

Model of Malaria Prevalence in Amenfi West District, Ghana. Malar. Res.

Treat., page 7820454, 2017.

[97] C.M. De Moraes, N.M. Stanczyk, H.S. Betz, H. Pulido, D.G. Sim, A.F.

Read, and M.C. Mescher. Malaria-induced changes in host odors enhance

mosquito attraction. Proc. Natl. Acad. Sci., 111(30):11079–11084, 2014.

[98] T. Dekker, W. Takken, G.J. Knols, E. Bouman, S. van de Laak, A. de

Bever, and P.W.T. Huisman. Selection of biting sites on a human host by

Anopheles gambiae s.s., An. arabiensis and An. quadriannulatus.

Entomologia Experimentalis et Applicata, 87:295–300, 1998.

[99] A.J. DePina, E.H.A. Niang, A.J.B. Andrade, and et al. Achievement of

malaria pre-elimination in Cape Verde according to the data collected from

2010 to 2016. Malar. J., 17:236, 2018.

[100] J.O. Depinay, C.M. Mbogo, G. Killeen, and et al. A simulation model of

African Anopheles ecology and population dynamics for the analysis of

malaria transmission. Malar. J., 3(1):29, 2004.

207



Bibliography

[101] W. Deressa, A. Ali, and Y. Berhane. Review of the interplay between

population dynamics and malaria transmission in Ethiopia. Ethiop.J.Health

Dev., 20(3):137–144, 2006.

[102] N.P. Devi and R.K. Jauhari. Climatic variables and malaria incidence in

Dehradun, Uttaranchal, India. J. Vector Borne Dis., 43(1):21–28, 2006.

[103] K. Dietz, L. Molineaux, and A. Thomas. A malaria model tested in the

African Savannah. Bull. World Health Organ., 50(3-4):347–357, 1974.

[104] D. Dingli, A. Traulsen, and J.M. Pacheco. Stochastic Dynamics of

Hematopoietic Tumor Stem Cells. Cell Cycle, 6(4):e1–e6, 2007.

[105] A.M. Dondorp, S. Yeung, L. White, C. Nguon, N.P.J. Day, D. Socheat, and

L. Seidlein. Artemisinin resistance: current status and scenarios for

containment. Nature reviews. Microbiology, 8(4):272–280, 2010.

[106] D.L. Doolan, C. Dobano, and J.K. Baird. Acquired Immunity to Malaria.

Clin. Microbiol. Rev., 22(1):13–36, 2009.

[107] E. D’Ortenzio, N. Godineau, A. Fontanet, S. Houze, O. Bouchaud,

S. Matheron, and J.L. Le Bras. Prolonged Plasmodium falciparum

infection in immigrants, Paris. Emerg. Infect. Dis., 14(2):323–326, 2008.

[108] C. Dye and G. Hasibeder. Population dynamics of mosquito-borne disease:

Effects of flies which bite some people more frequently than others. Trans.

R. Soc. Trop. Med. Hyg., 80(1):69–77, 1986.

[109] O. Ebhuoma, M. Gebreslasie, and L. Magubane. Modeling malaria control

intervention effect in KwaZulu-Natal, South Africa using intervention time

series analysis. Journal of Infection and Public Health, 10(3):334–338, 2017.

[110] P.A. Eckhoff. A malaria transmission-directed model of mosquito life cycle

and ecology. Malar. J., 10:e303, 2011.

[111] N. Endo and E.A.B. Eltahir. Prevention of malaria transmission around

reservoirs: an observational and modelling study on the effect of wind

direction and village location. Lancet Planet. Heal., 2(9):e406–e413, 2018.

[112] V. Ermert, A.H. Fink, A.E. Jones, and A.P. Morse. Development of a new

version of the Liverpool Malaria Model. II. Refining the parameter settings

and mathematical formulation of basic processes based on a literature

review. Malar. J., 10(1):35, 2011.

[113] J. Espinoza. Malaria Resurgence in the Americas: An Underestimated

Threat. Pathogens, 8(1):11, 2019.

[114] L. Esteva, A.B. Gumelb, and C.V. León. Qualitative study of transmission

dynamics of drug-resistant malaria. Mathematical and Computer

Modelling, 50:611–630, 2009.

[115] D.A. Ewing, C.A. Cobbold, B.V. Purse, M.A. Nunn, and S.M. White.

Modelling the effect of temperature on the seasonal population dynamics of

temperate mosquitoes. J. Theor. Biol., 400:65–79, 2016.

208



Bibliography

[116] C.M. Eze, O.C. Asogwa, C.U. Onwuamaeze, N.M. Eze, and C.I. Okonkwo.

On the Fourier Residual Modification of Arima Models in Modeling

Malaria Incidence Rates among Pregnant Women. American Journal of

Theoretical and Applied Statistics, 9(1):1–7, 2020.

[117] A.C. Eziefula, R. Gosling, J. Hwang, and et al. Rationale for short course

primaquine in Africa to interrupt malaria transmission. Malar. J., 11(1):

360, 2012.

[118] R.M. Fairhurst and T.E. Wellems. Plasmodium species (Malaria). Number

6th Ed. Elsevier. Churchill Livingstone, 2005.

[119] I. Felger, M. Maire, M.T. Bretscher, and et al. The dynamics of natural

Plasmodium falciparum infections. PLoS One, 7(9):e45542, 2012.

[120] J. Feng, H. Yan, X.Y. Feng, L. Zhang, M. Li, Z.G. Xia, and N. Xiao.

Imported malaria in China, 2012. Emerg. Infect. Dis., 20(10):1778–1780,

2014.

[121] J. Feng, L. Zhang, F. Huang, J.H. Yin, H. Tu, and Z.G. Xia. Ready for

malaria elimination: zero indigenous case reported in the People’s Republic

of China. Malar. J., 17:315, 2018.

[122] J.L. Ferrão, J.M. Mendes, and M. Painho. Modelling the influence of

climate on malaria occurrence in Chimoio Municipality, Mozambique.

Parasites and Vectors, 10(1):1–12, 2017.

[123] J.L. Ferrão, J.M. Mendes, M. Painho, and S. Zacarias. Malaria mortality

characterization and the relationship between malaria mortality and

climate in Chimoio, Mozambique. Malar. J., 16:212, 2017.

[124] C.P. Ferreira, S.P. Lyra, F. Azevedo, D. Greenhalgh, and E. Massad.

Modelling the impact of the long-term use of insecticide-treated bed nets

on Anopheles mosquito biting time. Malar. J., 16(1):1–11, 2017.

[125] J.L. Ferrão, D. Earland, A. Novela, R. Mendes, and K.M. Searle. Malaria

Temporal Variation and Modelling Using Time-Series in Sussundenga

District, Mozambique. Int. J. Environ. Res. Public Health, 18:5692, 2021.

[126] A.N. Filipe, E.M. Riley, C.J. Drakeley, C.J. Sutherland, and A.C. Ghani.

Determination of the Processes Driving the Acquisition of Immunity to

Malaria Using a Mathematical Transmission Model. PLoS Comput Biol, 3

(12):e255, 2007.

[127] M.N. Flynn and W.R.L.S. Pereira. Ecological diagnosis from biotic data by

Hurst exponent and the R/S analysis adaptation to short time series.
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[269] J.A. Nájera. A critical review of the field application of a mathematical

model of malaria eradication. Bull. World Health Organ., 50(5):449–457,

1974.

[270] C.N. Ngonghala, S.Y. Del Valle, R. Zhao, and J. Mohammed-Awel.

Quantifying the impact of decay in bed-net efficacy on malaria

transmission. J. Theor. Biol., 363:247–261, 2014.

[271] C.N. Ngonghala, J. Mohammed-Awel, R. Zhao, and O. Prosper. Interplay

between insecticide-treated bed-nets and mosquito demography:

Implications for malaria control. J. Theor. Biol., 397:179–192, 2016.

[272] G.A. Ngwa. Modelling the Dynamics of Endemic Malaria in Growing

Populations. Discret. Contin. Dyn. Syst. - Ser. B, 4(4):1173–1202, 2004.

[273] G.A. Ngwa and W.S. Shu. A mathematical model for endemic malaria

with variable human and mosquito populations. Math. Comput. Model., 32

(7-8):747–763, 2000.
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[326] J. Sequeira, J. Louçã, A.M. Mendes, and P.G. Lind. Transition from

endemic behavior to eradication of malaria due to combined drug

therapies: an agent-model approach. J. Theor. Biol., 484:110030, 2020.
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Appendix A

Markov transition matrix

A.1 Markov chain model

Here, we will present the mathematical formalism underlying the continuous

Markov process used in our stochastic model.

The Markov process is of critical importance in defining a stochastic model

that evolves in time, such as the one used by the computational algorithm of our

model.

It consists in a probabilistic process regarding the transition between stochastic

states as a result of a stochastic model evolution in time. The essence of a Markov

process lies in the specific characteristic that the current model state only depends

on the previous state from which the system evolved, without memory of any of

the previous states. It relates to the property defined by equation A.1.

Prob.{Xn = in | X0 = i0, ..., Xn−1 = in−1} = Prob.{Xn = in | Xn−1 = in−1}
(A.1)
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A.2 The Markov transition matrix P and generator

matrix Q

In the present model, a discrete time Markov chain was applied in terms of a

Markov transition matrix, and later on we will deduce the Taylor approximation

to the process assuming the presence of a continuous-time Markov chain.

Based upon a irreducible continuous-time Markov transition matrix we obtain

the generator matrix Q = (qij) with a stationary probability distribution π such

as Qπ = 0.

lim
n→∞

pij(t) = πi = − 1

qiiµii
, i, j = 1, 2, ..., N (A.2)

The matrix of transition ratesQ = {qij} is known as the infinitesimal generator

matrix. This matrix is important to define the forward and backward Kolmogorov

equations, which supports the transition matrix P (t) in terms of a differential

equation.

The transition probabilities pij – equation A.2 – are used here to derive the

transitions rates qij in which the generator matrix Q is based upon. These transi-

tion rates qij define the rate of change of the transition probabilities according to

equation A.3,

qij = lim
∆t→0+

pij(∆t)− pij(0)

∆t
= lim

∆t→0+

pij(∆t)

∆t
, i 6= j (A.3)

where we also define the transition rates qii according to equation A.4.

qii = lim
∆t→0+

pii(∆t)− pii(0)

∆t
= lim

∆t→0+

pii(∆t)− 1

∆t
, i 6= j (A.4)

From the definition of the Transition Probability Matrix P (t) and the Gener-

ator transition rates Q(t) we may deduce the forward and backward Kolmogorov

equations A.5 and A.6:
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Forward Kolmogorov equation

dP (t)

dt
= Q(t)P (t) (A.5)

and

Backward Kolmogorov equation

dP (t)

dt
= P (t)Q(t) (A.6)

Where P (0) = I and the unique solution is given by equations A.7 and A.8

P (t) = eQtP (0) = eQt (A.7)

where eQt is the matrix exponential

eQt = I +Qt+Q2 t
2

2!
+Q3 t

3

3!
+ ... =

∞∑
k=0

Qk
tk

k!
(A.8)

A.3 The embedded Markov chain matrix T

In addition, the generator matrix Q is used to define a transition matrix for

the embedded Markov chain T .

The matrix T = (tij) is the transition matrix of the embedded Markov chain of

random states Yn of a continuous-time Markov chain process of n jumps between

states. The matrix components are given by equations A.9 and A.10.

tii =

0, if qii 6= 0

1, if qii = 0
(A.9)

tij =


qij∑∞

k=0,k 6=i qik
= − qij

qii
, if qii 6= 0

0, if qii = 0
(A.10)
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A.4 Mosquito bite algorithm

We will use a stochastic model with Nm mosquito and Nh fixed human pop-

ulations.

The main algorithm results from a forced mosquito bite in a random human

host that will take place daily and once in all mosquitoes. The time step was

defined as a single day. This cycle will be repeated for the whole duration of the

simulation. Depending on predicted probabilities from each bite several type of

transitions may occur.

The number of infected mosquitoes will be defined as Im. The number of

infected human hosts is represented by Ih. Therefore, we will obtain susceptible

populations groups with healthy mosquitoes (Sm) and healthy human hosts (Sh).

The baseline probability of a mosquito bite occurrence – R results from pre-

vious equations defining 5.5 and 5.6, and depends on several model parameters

included in those equations.

P(+) = R.

Thus, the failed mosquito bite probability is obtained from:

P(−) = 1−R.

After a successful bite P(+) with baseline conditions, the following 6 transitions

may occur:

Mosquito transitions:

a) Mi,i+1: Mi −→Mi + 1

b) Mi,i: Mi −→Mi

c) Mi,i−1: Mi −→Mi − 1

Human individual transitions:

d) Hi,i+1: Hi −→ Hi + 1

e) Hi,i: Hi −→ Hi

f) Hi,i−1: Hi −→ Hi − 1
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A.4.1 Healthy mosquito bites healthy human individual

1. Event M0H0

The probability of the event M0H0 will be obtained from:

Prob.(M0H0) =
(1−Mi)

Nm

(1−Hi)

Nh
(A.11)

A healthy mosquito M0 bites a healthy human host H0. In this case there will

be no infection status change (M0H0) – with two neutral transition events: Mi,i

and Hi,i.

This event will depend on the proportion of mosquito and human infected

populations (m and h):

A.4.2 Healthy mosquito bites infected human individual

2. Event M0Hi

The probability of event M0Hi will be obtained from:

Prob.(M0Hi) =
(1−Mi)

Nm

(Hi)

Nh
R (A.12)

A healthy mosquito M0 bites an infected human host Hi – with two possible

transition events:

- Mi,i+1: Mosquito acquires infection (MiHi).

- Mi,i: Mosquito infection fails (M0Hi).

The mosquito infection probability will depend on several random variables

(probability of human host gametocytemia, human latency probability, or other

random causes of mosquito infection failure) – Φm.

Prob.(MiHi |M0Hi) =
(1−Mi)

Nm

(Hi)

Nh
R Φm (A.13)

Thus, the mosquito infection failure probability after an effective mosquito

bite will be obtained from:

Prob.(M0Hi |M0Hi) =
(1−Mi)

Nm

(Hi)

Nh
R (1− Φm) (A.14)

Φm and Φh are the result of equations 5.12 and 5.11.

A.4.3 Infected mosquito bites healthy human individual

3. Event MiH0

The probability of the event MiH0 will be obtained from:
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Prob.(MiH0) =
(Mi)

Nm

(1−Hi)

Nh
R (A.15)

An infected mosquito Mi bites a healthy human host H0 – with two possible

events:

- Hi,i+1: Human host acquires infection (MiHi).

- Hi,i: Human host infection fails (MiH0).

The human host infection probability resulting from MiH0 will depend on sev-

eral random variables (probability of human pre-erythrocytic immunity protection,

mosquito latency probability, or other random causes of failed human infection) –

Φh.

Prob.(MiHi |MiH0) =
(Mi)

Nm

(1−Hi)

Nh
R Φh (A.16)

and human host failed infection probability after a successful bite will be

obtained from:

Prob.(MiH0 |MiH0) =
(Mi)

Nm

(1−Hi)

Nh
R (1− Φh) (A.17)

A.4.4 Infected mosquito bites infected human individual – Super-

infection

4. Event MiHi

The probability of the event MiHi will be obtained from:

Prob(MiHi) =
(Mi)

Nm

(Hi)

Nh
R (A.18)

An infected mosquito Mi bites an infected human host Hi – with no change

in mosquito or human infection status MiHi. This event will correspond to a

super-infection process. For every super-infection there will be a time reset in the

disease duration counter, decreasing it by a proportion of the expected remaining

time of the previous infection. This way, for every repeated super-infection, hu-

man infection healing time will be delayed in a proportional amount of remaining

expected infection time.

Human host super-infection with disease time counter reset will result from

MiHi and depends on several random variables (probability of human immunity

protection, human host disease duration, mosquito latency probability, or other

random causes of failed human infection) – Φh.
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p(MiHi |MiHi) =
(Mi)

Nm

(Hi)

Nh
R Φh (A.19)

Thus, human host super-infection failed probability after successful bite (with-

out disease time counter reset) will be obtained from:

p(MiHi |MiHi) =
(Mi)

Nm

(Hi)

Nh
R (1− Φh) (A.20)

A.5 Markov transition probabilities matrix

In this section we will present the Markov transition probabilities of mosquito

and human transmission, PM and PH respectively.

A.5.1 Mosquito transition probabilities matrix PM

For clearer notation purposes, the following transition probabilities will be consid-

ered (see also equation 5.14):

pm+ = pm = hΦm (A.21)

pm= = 1− pm = 1− hΦm (A.22)

qm = daily probability of mosquito death

(1− qm) = daily probability of mosquito survival.

a) Mi,i+1

p[(Mi+1, t+ ∆t) | (Mi, t)] = p(Mi, t)(1− qm) pm+ (A.23)

b) Mi,i

p[(Mi, t+ ∆t) | (Mi, t)] = p(Mi, t)[qmpm+ + (1− qm) pm=] (A.24)

c) Mi,i−1

p[(Mi−1, t+ ∆t) | (Mi, t)] = p(Mi, t) qm pm= (A.25)

where pm+ is the probability of a healthy mosquito acquiring infection after

biting an infectious human host, pm= is the probability of a healthy mosquito not
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acquiring infection after biting an infectious human host, µm represents the daily

probability of mosquito death, and (1 − qm) represents the daily probability of

mosquito survival.

And we obtain the mosquito transition matrix PM , where n represents the

total number of mosquitoes:

PM =



M0,0 M0,1 0 0 0 0 0 0

M1,0 M1,1 M1,2 0 0 0 0 0

0 M2,1 M2,2 M2,3 0 0 0 0

0 ... ... ... ... ... ... 0

0 ... ... Mj,j−1 Mj,j Mj,j+1 ... 0

0 ... ... ... ... ... ... 0

0 0 0 0 0 Mn−1,n−2 Mn−1,n−1 Mn−1,n

0 0 0 0 0 0 Mn,n−1 Mn,n


(A.26)

A.5.2 Human transition probabilities matrix PH

In obtaining the human transition matrix PH the following transition probabilities

will be considered (see also equation 5.13):

ph+ = ph = mΦh (A.27)

ph= = 1−mΦh (A.28)

qh = daily probability of human disease cure.

(1− qh) = daily probability of human disease persistence.

d) Hj,j+1

p[(Hj+1, t+ ∆t) | (Hj , t)] = p(Hj , t) (1− qh) ph+ (A.29)

e) Hj,j

p[(Hj , t+ ∆t) | (Hj , t)] = p(Hj , t)[qhph+ + (1− qh) ph=] (A.30)

f) Hj,j−1

p[(Hj−1, t+ ∆t) | (Hj , t)] = p(Hj , t)qh ph= (A.31)
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where ph+ is the probability of a healthy human host acquiring infection af-

ter an infectious mosquito bite, ph= is the probability of a healthy human host

not acquiring infection after an infectious mosquito bite, qh represents the daily

probability of human disease cure, and (1− qh) represents the daily probability of

human disease persistence.

And we obtain the human transition matrix PH , where k represents the total

number of human individuals:

PH =



H0,0 H0,1 0 ... ... ... ... 0

H1,0 H1,1 H1,2 0 ... ... ... 0

0 H2,1 H2,2 H2,3 0 0 0 0

0 ... ... ... ... ... ... 0

0 ... ... Hj,j−1 Hj,j Hj,j+1 ... 0

0 ... ... ... ... ... ... 0

0 ... ... ... ... Hk−1,k−2 Hk−1,k−1 Hk−1,k

0 ... ... ... ... ... Hk,k−1 Hk,k


(A.32)

Thus, we obtain a pair of matrices, PM and PH :

PH =

... ... ...

... pHi,j ...

... ... ...

 (A.33)

and

PM =

... ... ...

... pMi,j ...

... ... ...

 (A.34)

Transition rates generator matrix QM and QH

From these results we may obtain the transition rates qMi,j and qHi,j , corresponding

to the infinitesimal generator matrix: QM and QH respectively, according to the

following equations:

Mosquito

QM = lim
∆t→0+

PM − I
∆t

(A.35)

Human individual

QH = lim
∆t→0+

PH − I
∆t

(A.36)
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g)qMi,j

where

i = j

qMi,i = lim
∆t→0+

pMi,i(∆t)− 1

∆t
(A.37)

i 6= j

qMi,j = lim
∆t→0+

pMi,j (∆t)

∆t
(A.38)

And we obtain the mosquito transition rates generator matrix QM , where n

represents the total number of mosquitoes:

QM =



qM0,0 qM0,1 ... ... ... ... ... 0

qM1,0 qM1,1 qM1,2 ... ... ... ... 0

0 qM2,1 qM2,2 qM2,3 ... ... ... 0

0 ... ... ... ... ... ... 0

0 ... ... qMi,i−1 qMi,i qMi,i+1 ... 0

0 ... ... ... ... ... ... 0

0 ... ... ... .. qMn−1,n−2 qMn−1,n−1 qMn−1,n

0 ... ... ... ... ... qMn,n−1 qMn,n


(A.39)

Finally we will obtain:

−
qMi,j

qMi,i

= lim
∆t→0+

pMi,j (∆t)

1− pMi,i(∆t)
(A.40)

h) qHi,j

where

i = j

qHi,i = lim
∆t→0+

pHi,i(∆t)− 1

∆t
(A.41)

and

i 6= j

qHi,j = lim
∆t→0+

pHi,j (∆t)

∆t
(A.42)
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And we obtain the human transition rates generator matrix QH , where k

represents the total number of human individuals:

QH =



qH0,0 qH0,1 ... ... ... ... ... 0

qH1,0 qH1,1 qH1,2 ... ... ... ... 0

0 qH2,1 qH2,2 qH2,3 ... ... ... 0

0 ... ... ... ... ... ... 0

0 ... ... qHj,j−1 qHj,j qHj,j+1 ... 0

0 ... ... ... ... ... ... 0

0 ... ... ... ... qHk−1,k−2
qHk−1,k−1

qHk−1,k

0 ... ... ... ... ... qHk,k−1
qHk,k


(A.43)

Finally we will obtain:

−
qHi,j
qHi,i

= lim
∆t→0+

pHi,j (∆t)

1− pHi,i(∆t)
(A.44)

Markov relations between probability transition matrix P and transition

matrix Q

In order to compute the stationary distribution of the Markov chain we will use

the stationary probability row vectors πM and πH in the following equations:

Mosquito

πMPM (dt) = πM (A.45)

πM (I +QMdt) = πM (A.46)

πMQM = 0 (A.47)

Human individual

πHPH(dt) = πH (A.48)

πH(I +QHdt) = πH (A.49)

πHQH = 0 (A.50)

Assuming PM (0) = I and PH(0) = I, the solution of these matrix differential
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equations is obtained from the backward and forward Kolmogorov equations:

Kolmogorov matrix backward equation

dPM (t)

dt
= QM (t)P (t) (A.51)

dPH(t)

dt
= QH(t)P (t) (A.52)

and

Kolmogorov matrix forward equation

dPM (t)

dt
= PM (t)QM (t) (A.53)

dPH(t)

dt
= PH(t)QH(t) (A.54)

with the following solutions:

PM (t) = eQM t (A.55)

PH(t) = eQH t (A.56)

and in component form:

Mosquito

d

dt
pM (i, j, t) =

m∑
δ=1

qMiδ
pM (δ, j, t) (A.57)

where i, j = 1, 2, ..., n

and n = total of mosquitoes

Human individual

d

dt
pH(i, j, t) =

h∑
δ=1

qHiδpH(δ, j, t) (A.58)

where i, j = 1, 2, ..., k

and k = total of human individuals

Embedded Markov chain matrix T

We may then obtain the embedded Markov chain mosquito and human matrix,

TM and TH respectively:
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The embedded Markov chain is a discrete-time Markov process useful for clas-

sifying states in corresponding continuous-time Markov processes.

Mosquito

TM =



tM0,0 tM0,1 ... ... ... ... ... 0

tM1,0 tM1,1 tM1,2 ... ... ... ... 0

0 tM2,1 tM2,2 tM2,3 ... ... ... 0

0 ... ... ... ... ... ... 0

0 ... ... tMi,i−1 tMi,i tMi,i+1 ... 0

0 ... ... ... ... ... ... 0

0 ... ... ... ... tMn−1,n−2 tMn−1,n−1 tMn−1,n

0 ... ... ... ... ... tMn,n−1 tMn,n


(A.59)

and n = total of mosquitoes

when qMi,i 6= 0:

tMi,j = −
qMi,j

qMi,i

(A.60)

and when qMi,i = 0:

tMi,j = 0 (A.61)

where

−
qMi,j

qMi,i

= lim
∆t→0+

pMi,j (∆t)

1− pMi,i(∆t)
(A.62)

the embedded Markov chain human matrix TH :

Human individual

TH =



tH0,0 tH0,1 0 ... ... ... ... 0

tH1,0 tH1,1 tH1,2 ... ... ... ... 0

0 tH2,1 tH2,2 tH2,3 ... ... ... 0

0 ... ... ... ... ... ... 0

0 ... tHi,i−1 tHi,i tHi,i+1 ... ... 0

0 ... ... ... ... ... ... 0

0 ... ... ... ... tHk−1,k−2
tHk−1,k−1

tHk−1,k

0 ... ... ... ... ... tHk,k−1
tHk,k


(A.63)

and k = total of human individuals

247



Appendix A

when qHj,j 6= 0:

tHi,j = −
qHi,j
qHj,j

(A.64)

and when qHj,j = 0:

tHi,j = 0 (A.65)

where

−
qHi,j
qHj,j

= lim
∆t→0+

pHi,j (∆t)

1− pHj,j (∆t)
(A.66)
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Stochastic master equation

B.1 Taylor approximation – one dimension

a) Probability of human transition (from susceptible to infected) – u(h, t) –

and mosquito transition (from susceptible to infected) – v(m, t)

We begin with

u(h, t+4t) = Ph(1− qh)u(h−4h, t) + (1− [Ph(1− qh) (B.1)

+qh(1− Ph)])u(h, t) + qh(1− Ph)u(h+4h, t)

Likewise, in a similar line of reasoning, we may also obtain the same equation

for the mosquito case.

v(m, t+4t) = Pm(1− qm)v(m−4m, t) + (1− [Pm(1− qm) (B.2)

+qm(1− Pm)])v(m, t) + qm(1− Pm)v(m+4m, t)

where, as was determined before:

h = Hi
H stands for human infection prevalence (from 0.0 – disease extinction –

to 1.0 – full invasion),

m = Mi
M

1 stands for mosquito infection prevalence (from 0.0 – disease extinc-

tion – to 1.0 – full invasion),

Ph results from equations 5.15 and 5.16,

Pm is obtained from equations 5.17 and 5.18,

1We assume m = Mi
M

, and not the original mosquito density m described in D.L. Smith,2004
[343], replaced here by ∆m = Nm

Nh
.
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qh has been defined in equation 5.1,

and qm was previously described in equation 5.4.

Knowing that in the discrete case

4h = 1 (B.3)

4m = 1 (B.4)

and we will have

Human case:

u(h, t+4t) = Ph(1− qh)u(h− 1, t) + (1− [Ph(1− qh) (B.5)

+qh(1− Ph)])u(h, t) + qh(1− Ph)u(h+ 1, t)

Mosquito case:

v(m, t+4t) = Pm(1− qm)v(m− 1, t) + (1− [Pm(1− qm) (B.6)

+qm(1− Pm)])v(m, t) + qm(1− Pm)v(m+ 1, t)

We will then apply Taylor expansion to u(h, t), and v(m, t), obtaining:

Human case:

u(h, t+4t) = Ph(1− qh)[u(h, t) +
∂u

∂h
(−4h) +

∂2u

∂h2

(4h)2

2
(B.7)

+o([4h]3)] + qh(1− Ph)[u(h, t) +
∂u

∂h
(4h) +

∂2u

∂h2
+

(4h)2

2

+o([4h]3)] + (1− [Ph(1− qh) + qh(1− Ph)])u(h, t)

and joining terms

u(h, t+4t) = (Ph[1− qh] + qh[1− Ph] + 1− [Ph(1− qh) (B.8)

+qh(1− Ph)])u(h, t) + (qh[1− Ph]− Ph[1− qh])
∂u

∂h
(4h)

+(Ph[1− qh] + qh[1− Ph])
∂2u

∂h2

(4h)2

2

+(Ph[1− qh] + qh[1− Ph])o(4h)3)
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where we have

Ph[1− qh] + qh[1− Ph] + 1− [Ph(1− qh) + qh(1− Ph)] = 1 (B.9)
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and after simplification of the term of u(h, t) we get:

u(h, t+4t) = u(h, t) + (qh[1− Ph]− Ph[1− qh])
∂u

∂h
(4h) (B.10)

+(Ph[1− qh] + qh[1− Ph])
∂2u

∂h2

(4h)2

2

+(Ph[1− qh] + qh[1− Ph])o(4h)3)

Mosquito case:

v(m, t+4t) = Pm(1− qm)[v(m, t) +
∂v

∂m
(−4m) +

∂2v

∂m2

(4m)2

2
(B.11)

+o([4m]3)] + qm(1− Pm)[v(m, t) +
∂v

∂m
(4m) +

∂2v

∂m2

(4m)2

2

+o([4m]3)] + (1− [Pm(1− qm) + qm(1− Pm)])v(m, t)

and joining terms

v(m, t+4t) = (Pm[1− qm] + qm[1− Pm] + 1− [Pm(1− qm) (B.12)

+qm(1− Pm)])v(m, t) + (qm[1− Pm]− Pm[1− qm])
∂v

∂m
(4m)

+(Pm[1− qm] + qm[1− Pm])
∂2v

∂m2

(4m)2

2

+(Pm[1− qm] + qm[1− Pm])o(4m)3)

where we have

Pm[1− qm] + qm[1− Pm] + 1− [Pm(1− qm) + qm(1− Pm)] = 1 (B.13)

and after simplification of the term of v(m, t) we get

v(m, t+4t) = v(m, t) + (qm[1− Pm]− Pm[1− qm])
∂v

∂m
(4m) (B.14)

+(Pm[1− qm] + qm[1− Pm])
∂2v

∂m2

(4m)2

2

+(Pm[1− qm] + qm[1− Pm])o(4m)3)
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We will then assume the following 3 conditions, for humans and mosquitoes:

i)

for humans:

lim
4t,4h→0

[qh(1− Ph)− Ph(1− qh)]
4h
4t

= −ch (B.15)

for mosquitoes:

lim
4t,4m→0

[qm(1− Pm)− Pm(1− qm)]
4m
4t

= −cm (B.16)

ii)

for humans:

lim
4t,4h→0

[Ph(1− qh) + qh(1− Ph)]
(4h)2

4t
= Dh (B.17)

for mosquitoes:

lim
4t,4m→0

[Pm(1− qm) + qm(1− Pm)]
(4m)2

4t
= Dm (B.18)

iii)

for humans:

lim
4t,4h→0

[Pm(1− qm) + qm(1− Pm)]
o(4h)3

4t
= 0 (B.19)

for mosquitoes:

lim
4t,4m→0

[Pm(1− qm) + qm(1− Pm)]
o(4m)3

4t
= 0 (B.20)
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Human infection:

subtracting u(h, t) from both sides of the human equation, and dividing by 4t
we will obtain a Fokker-Planck equation for humans, where u(h, t) represents the

probability density function of the stochastic variable human infection prevalence

h.

lim
4t→0

u(h, t+4t)− u(h, t)

4t
= −ch

∂u

∂h
+
Dh

2

∂2u

∂h2
(B.21)

Mosquito infection:

subtracting v(m, t) from both sides of the human equation, and dividing by4t
we will also obtain a Fokker-Planck equation FPE for mosquitoes, where v(m, t)

represents the probability density function of the stochastic variable mosquito

infection prevalence m.

lim
4t→0

v(m, t+4t)− v(m, t)

4t
= −cm

∂v

∂m
+
Dm

2

∂2v

∂m2
(B.22)

and

∂u(h, t)

∂t
= −ch

∂u

∂h
+
Dh

2

∂2u

∂h2
(B.23)

∂v(m, t)

∂t
= −cm

∂v

∂m
+
Dm

2

∂2v

∂m2
(B.24)

Where ch, cm stand for the human and mosquito drift coefficients, and Dh, Dm

stand for the human and mosquito diffusion coefficients, respectively, in the final

diffusion human and mosquito differential equations (Fokker-Planck equation, also

known as forward Kolmogorov equation).

The non-linear term is included in the drift coefficient ch,m , as ch(h,m) and

cm(h,m) both depend on h and m.
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From equations 5.13 and 5.14 we then have:

Humans:

lim
4t,4h→0

[qh(1− Ph)− Ph(1− qh)]
4h
4t

= lim
4t,4h→0

(qh − Ph)
4h
4t

(B.25)

lim
4t,4h→0

(qh − Ph)
4h
4t

= −ch(h,m) (B.26)

lim
4t,4m→0

(qh −mΦh)
4h
4t

= −ch(h,m) (B.27)

Mosquitoes:

lim
4t,4h→0

[qm(1− Pm)− Pm(1− qm)]
4m
4t

= lim
4t,4m→0

(qm − Pm)
4m
4t

(B.28)

lim
4t,4m→0

(qm − Pm)
4m
4t

= −cm(h,m) (B.29)

lim
4t,4m→0

(qm − hΦm)
4m
4t

= −cm(h,m) (B.30)
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B.2 Taylor approximation – two dimensions

In order to derive the 2D Fokker-Planck equation we must consider using a two-

dimensional Taylor approximation (for the one-dimensional Taylor approximation

to the Fokker Planck equation, please consider checking the previous section in

the current Appendix.)

Based upon the previous equations defining human and mosquito events prob-

abilities (from equations 5.11 to 5.20), we begin by defining the combined h and

m probabilities.

Knowing the simpler expressions for Φh and Φm we then may use:

Φh = khwm(1− ν) (B.31)

and

Φm = kmwh (B.32)

resulting in:

ph = mΦh (B.33)

and

pm = hΦm (B.34)

From these equations, we use the simplified equations B.31 and B.32 (previ-

ously mentioned in the form of equations 5.11 and 5.12). We will then obtain the

probabilities of effective global human-mosquito disease transmission, Ph and Pm

in equations B.39 and B.40 (previously presented in the form of equations 5.19

and 5.20) :

For human individuals:

Ph = R ph (B.35)

and

Ph = R mΦh (B.36)

and for mosquitoes:

Pm = R pm (B.37)
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and

Pm = R hΦm (B.38)

From this, functions Pm and Ph will also both depend on m and h, finally

having:

Ph = Ph(h,m) (B.39)

and

Pm = Pm(h,m) (B.40)

As was shown before, we have evidence of non-linearity in the coupled system

H − M , as the human probability ph depends both on human (kh and ν) and

mosquito (m and wm) parameters. Likewise, the mosquito probability pm will

depend both on mosquito (km) and human (h and wh) parameters.

In this case, non-linearity will only depend on variables h and m, as the the re-

maining parameters will be constant parameters, nested inside Φh and Φm.

We may then obtain the probabilities of different events following a mosquito

bite in a human individual:

Human probability:

Ph+ = Ph(1− qh) (B.41)

Ph= = (1− [Ph(1− qh) + qh(1− Ph)]) (B.42)

Ph− = qh(1− Ph) (B.43)
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Mosquito probability:

Pm+ = Pm(1− qm) (B.44)

Pm= = (1− [Pm(1− qm) + qm(1− Pm)]) (B.45)

Pm− = qm(1− Pm) (B.46)

and we have for the combined human-mosquito probabilities:

Ph+,m+ = Ph+ · Pm+ (B.47)

Ph+,m= = Ph+ · Pm= (B.48)

Ph+,m− = Ph+ · Pm− (B.49)

Ph=,m+ = Ph= · Pm+ (B.50)

Ph=,m= = Ph= · Pm= (B.51)

Ph=,m− = Ph= · Pm− (B.52)

Ph−,m+ = Ph− · Pm+ (B.53)

Ph−,m= = Ph− · Pm= (B.54)

Ph−,m− = Ph− · Pm− (B.55)
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and we have

u(h,m, t+4t) = Ph+,m+ · u(h−4h,m−4m, t) (B.56)

+Ph+,m= · u(h−4h,m, t) + Ph+,m− · u(h−4h,m+4m, t)

+Ph=,m+ · u(h,m−4m, t) + Ph=,m= · u(h,m, t)

+Ph=,m− · u(h,m+4m, t) + Ph−,m+ · u(h

+4h,m−4m, t) + Ph−,m= · u(h+4h,m, t)

+Ph−,m− · u(h+4h,m+4m, t)

From these equations defining the possible events probabilities it is possible

to deduce the final 2D Fokker-Planck equation.

We start by assuming the following 9 equations:

u++ = u(h,m, t) +
∂u

∂h
(−4h) +

∂u

∂m
(−4m) +

1

2
[
∂2u

∂h2
(−4h)2 (B.57)

+
∂2u

∂m2
(−4m)2 + 2

∂2u

∂h∂m
([−4h][−4m]) + o([4h4m]3)]

u+= = u(h,m, t) +
∂u

∂h
(−4h) +

1

2

∂2u

∂h2
(−4h)2 + o([4h]3) (B.58)

u+− = u(h,m, t) +
∂u

∂h
(−4h) +

∂u

∂m
(4m) +

1

2
[
∂2u

∂h2
(−4h)2 (B.59)

+
∂2u

∂m2
(−4m)2 + 2

∂2u

∂h∂m
(4h[−4m])] + o([4h4m]3)

u=+ = u(h,m, t) +
∂u

∂m
(−4m) +

1

2

∂2u

∂m2
(−4m)2 + o([4m]3)] (B.60)
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u== = u(h,m, t) (B.61)

u=− = u(h,m, t) +
∂u

∂m
(4m) +

1

2

∂2u

∂m2
(4m)2 + o([4m]3) (B.62)

u−+ = u(h,m, t) +
∂u

∂h
(4h) +

∂u

∂m
(−4m) +

1

2
[
∂2u

∂h2
(4h)2 (B.63)

+
∂2u

∂m2
(−4m)2 + 2

∂2u

∂h∂m
(4h[−4m])] + o([4h4m]3)

u−= = u(h,m, t) +
∂u

∂h
(4h) +

1

2

∂2u

∂h2
(4h)2 + o([4h]3) (B.64)

u−− = u(h,m, t) +
∂u

∂h
(4h) +

∂u

∂m
(4m) +

1

2
[
∂2u

∂h2
(4h)2 (B.65)

+
∂2u

∂m2
(4m)2 + 2

∂2u

∂h∂m
(4h4m)] + o([4h4m]3)

And we will then have the final 2D Fokker-Planck equation:

u(h,m, t+4t) = Ph+,m+ · u++ + Ph+,m= · u+= + Ph+,m− · u+− (B.66)

+Ph=,m+ · u=+ + Ph=,m= · u== + Ph=,m− · u=−

+Ph−,m+ · u−+ + Ph−,m= · u−= + Ph−,m− · u−−
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We now apply the 2D Taylor expansion to u(h,m, t) in the previous equation

u(h−4h,m−4m, t) = u(h,m, t) +
∂u

∂h
(−4h) (B.67)

+
∂u

∂m
(−4m) +

1

2
[
∂2u

∂h2
(−4h)2 +

∂2u

∂m2
(−4m)2

+2
∂2u

∂h∂m
([−4h][−4m)])] + o([4h4m]3)

and using +4m instead of −4m we will then have:

u(h−4h,m+4m, t) = u(h,m, t) +
∂u

∂h
(−4h) (B.68)

+
∂u

∂m
(4m) +

1

2
[
∂2u

∂h2
(−4h)2 +

∂2u

∂m2
(4m)2

+2
∂2u

∂h∂m
([−4h]4m)] + o([4h4m]3)

while using +4h instead of −4h, and −4m instead of +4m, we will have:

u(h+4h,m−4m, t) = u(h,m, t) +
∂u

∂h
(4h) (B.69)

+
∂u

∂m
(−4m) +

1

2
[
∂2u

∂h2
(4h)2 +

∂2u

∂m2
(−4m)2

+2
∂2u

∂h∂m
(4h[−4m])] + o([4h4m]3)

and using +4h instead of −4h, and +4m instead of −4m, we will have:

u(h+4h,m+4m, t) = u(h,m, t) +
∂u

∂h
(4h) (B.70)

+
∂u

∂m
(4m) +

1

2
[
∂2u

∂h2
(4h)2 +

∂2u

∂m2
(4m)2

+2
∂2u

∂h∂m
(4h4m)] + o([4h4m]3)

where concerning u as a function of h±4h, m, and t

u(h+4h,m, t) = u(h,m, t) +
∂u

∂h
(4h) (B.71)

+
1

2

∂2u

∂h2
(4h)2 + o([4h]3)
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and

u(h−4h,m, t) = u(h,m, t) +
∂u

∂h
(−4h) (B.72)

+
1

2
[
∂2u

∂h2
(−4h)2 + o([4h]3)

while concerning u as a function of h, m±4m, and t

u(h,m+4m, t) = u(h,m, t) +
∂u

∂m
(4m) (B.73)

+
1

2

∂2u

∂m2
(4m)2 + o([4m]3)

and

u(h,m−4m, t) = u(h,m, t) +
∂u

∂m
(−4m) (B.74)

+
1

2

∂2u

∂m2
(−4m)2 + o([4m]3)

We now substitute the several versions of u(h,m, t) in equation (B.67).

We begin by defining the following parameters:

For α:

α =
∑

i=(−;=;+)

∑
j=(−;=;+)

Phi,mj (B.75)

and explicitly

α = Ph+,m+ + Ph+,m= + Ph+,m− + Ph=,m+ + Ph=,m= + Ph=,m− (B.76)

+Ph−,m+ + Ph−,m= + Ph−,m−
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For βh

βh = [
∑

i=(−;=;+)

Ph−,mi ]− [
∑

i=(−;=;+)

Ph+,mi ] (B.77)

and explicitly

βh = [Ph−,m+ + Ph−,m= + Ph−,m− ]− [Ph+,m+ + Ph+,m= + Ph+,m− ] (B.78)

For βm

βm = [
∑

i=(−;=;+)

Phi,m− ]− [
∑

i=(−;=;+)

Phi,m+ ] (B.79)

and explicitly

βm = [Ph+,m− + Ph=,m− + Ph−,m− ]− [Ph+,m+ + Ph=,m+ + Ph−,m+ ] (B.80)

while obtaining γhm

γhm = [Ph+,m+ + Ph−,m− − Ph−,m+ + Ph+,m− ] (B.81)

We then assume that α = 1, and we get modified versions for βh, βm and γhm

in order to obtain a simplified version of equation B.67:

α = 1 (B.82)

β∗h = α− [Ph=,m+ + Ph=,m= + Ph=,m− ] (B.83)

−2[Ph+,m+ + Ph+,m= + Ph+,m= ]

β∗m = α− [Ph+,m= + Ph=,m= + Ph−,m= ] (B.84)

−2[Ph+,m+ + Ph=,m+ + Ph−,m+ ]
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γ∗hm = α− [Ph+,m= + Ph=,m+ + Ph=,m= + Ph=,m− + Ph−,m= ] (B.85)

−2[Ph+,m− + Ph−,m+ ]

and finally we have

u(h−4h,m−4m, t) = u(h,m, t) + β∗h[
∂u

∂h
(4h) (B.86)

+
1

2

∂2u

∂h2
(4h)2] + β∗m[

∂u

∂m
(4m) +

1

2

∂2u

∂m2
(4m)2]

+γ∗hm[
∂2u

∂h∂m
(4h4m)] + o([4h,4m]3)

while dividing both terms by 4t we obtain:

lim
4t→0

u(h−4h,m−4m, t)− u(h,m, t)

4t
= β∗h[

∂u

∂h

(4h)

4t
(B.87)

+
1

2

∂2u

∂h2

(4h)2

4t
] + β∗m[

∂u

∂m

(4m)

4t
+

1

2

∂2u

∂m2

(4m)2

4t
]

+γ∗hm[
∂2u

∂h∂m

(4h4m)

4t
] + o([4h,4m]3)

and, like in the 1-D case, we assume:

lim
4t→0

β∗h
(4h)

4t
= c∗h (B.88)

lim
4t→0

β∗m
(4m)

4t
= c∗m (B.89)

lim
4t→0

β∗h
(4h)2

4t
= D∗hh (B.90)

lim
4t→0

β∗m
(4m)2

4t
= D∗mm (B.91)

lim
4t→0

γ∗hm
(4h4m)

4t
= D∗hm (B.92)
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finally obtaining the 2D Fokker-Planck equation:

∂p(h,m, t)

∂t
= −c∗h

∂p(h,m, t)

∂h
− c∗m

∂p(h,m, t)

∂m
(B.93)

+
1

2
D∗hh

∂2p(h,m, t)

∂h2
+

1

2
D∗mm

∂2p(h,m, t)

∂m2
+D∗hm

∂2p(h,m, t)

∂h∂m

B.3 Diffusion equation, master equation and Itô for-

mulation

We are now in conditions to obtain the transition probabilities for the diffu-

sion equation in differential form. Based upon the following previous equations

(equations 5.11 to 5.14, 5.16 and 5.18), defining human and mosquito events prob-

abilitiies, we define the combined h and m probabilities.

Knowing the simpler expressions for ph and pm we may then use:

Φh = khwm(1− ν) (B.94)

and

Φm = kmwh (B.95)

resulting in:

ph = mΦh (B.96)

and

pm = hΦm (B.97)

From these equations, we use the simplified equations 5.13 and 5.14. We will

then obtain the probabilities of effective global human-mosquito disease transmis-

sion, Ph and Pm:

For the human case:

Ph = R ph (B.98)

and for the mosquito case:

Pm = R hΦm (B.99)

From this, it is clear that functions Pm and Ph will also both depend on m
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and h, finally having:

Ph = Ph(h,m) (B.100)

and

Pm = Pm(h,m) (B.101)

Finally, it is possible to define the final probabilities for all possible events:

3 equations:

-Human case:

P (ht+4t = h− 1

H
) = h(1− Ph)qh4t (B.102)

P (ht+4t = h) = [1− ([1− Ph]qh + Ph[1− qh])]h4t (B.103)

P (ht+4t = h+
1

H
) = h(1− qh)Ph4t (B.104)

Mosquito case:

P (mt+4t = m− 1

M
) = m(1− Pm)qm4t (B.105)

P (mt+4t = m) = [1− ([1− Pm]qm + Pm[1− qm])]m4t (B.106)

P (mt+4t = m+
1

M
) = m(1− qm)Pm4t (B.107)

The discrete increment of the process has a probability mass function in the

following form:

-Human case:

P (4ht = − 1

H
) = h(1− Ph)qh4t (B.108)

P (4ht = 0) = (1− [(1− Ph)qh + Ph(1− qh)])h4t (B.109)

P (4ht =
1

H
) = hPh(1− qh)4t (B.110)
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-Mosquito case:

P (4mt = − 1

M
) = m(1− Pm)qm4t (B.111)

P (4mt = 0) = (1− [(1− Pm)qm + Pm(1− qm)])m4t (B.112)

P (4mt =
1

M
) = mPm(1− qm)4t (B.113)

and we have

-Human case:

ch = 〈4ht〉 = [Ph(1− qh)− qh(1− Ph)]h4t (B.114)

ch = 〈4ht〉 = (Ph − qh)h4t (B.115)

Dh = σ2(4ht) = [Ph(1− qh) + qh(1− Ph)]h4t (B.116)

Dh = σ2(4ht) = (Ph + qh − 2Phqh)h4t (B.117)

-Mosquito case:

cm = 〈4mt〉 = [Pm(1− qm)− qm(1− Pm)]m4t (B.118)

cm = 〈4mt〉 = (Pm − qm)m4t (B.119)

Dm = σ2(4mt) = [Pm(1− qm) + qm(1− Pm)]m4t (B.120)

Dm = σ2(4mt) = (Pm + qm − 2Pmqm)m4t (B.121)
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Here, we will assume the more usual notation of Itô differential equation:

dX = A(X, t) dt+B(X, t) dW (B.122)

with the corresponding human and mosquito equations:

- Human case:

dh = Ah dt+Bh dW (B.123)

and

-Mosquito case:

dm = Am dt+Bm dW (B.124)

where:

Ah = ch (B.125)

Am = cm (B.126)

and

Bh =
√
Dh (B.127)

Bm =
√
Dm (B.128)

According to the the one dimension diffusion differential equation (4t→ dt),

we will then have:

- Human case:

dht = Ahdt+BhdW (B.129)

Ah = [Ph(1− qh)− qh(1− Ph)] h (B.130)

Ah = (Ph − qh) h (B.131)

Ah(h,m) = (mΦh − qh) h (B.132)
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Bh =
√

[Ph(1− qh) + qh(1− Ph)] h (B.133)

Bh =
√

(Ph + qh − 2Phqh) h (B.134)

Bh(h,m) =
√

(mΦh + qh − 2mΦhqh) h (B.135)

and we will have:

dht = [Ph(1− qh)− qh(1− Ph)]h dt+
√

[Ph(1− qh) + qh(1− Ph)] h dW (B.136)

dht = (Ph − qh)h dt+
√

(Ph + qh − 2Phqh) h dW (B.137)

dht = [mΦh(1− qh)− qh(1−mΦh)]h dt+
√

[mΦh(1− qh) + qh(1−mΦh)] h dW

(B.138)

dht = (mΦh − qh)h dt+
√

(mΦh + qh − 2mΦhqh) h dW (B.139)

-Mosquito case:

dmt = Amdt+BmdW (B.140)

Am = [Pm(1− qm)− qm(1− Pm)] m (B.141)

Am = (Pm − qm) m (B.142)

Am(h,m) = (hΦm − qm) m (B.143)

Bm =
√

[Pm(1− qm) + qm(1− Pm)] m (B.144)

Bm =
√

(Pm + qm − 2Pmqm) m (B.145)

Bm(h,m) =
√

(hΦm + qm − 2hΦmqm) m (B.146)
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and we will have:

dmt = [Pm(1− qm)− qm(1− Pm)]mdt+
√

[Pm(1− qm) + qm(1− Pm)] mdW

(B.147)

dmt = (Pm − qm)mdt+
√

(Pm + qm − 2Pmqm) mdW (B.148)

dmt = [hΦm(1−qm)−qm(1−hΦm)]mdt+
√

[hΦm(1− qm) + qm(1− hΦm)] mdW

(B.149)

dmt = (hΦm − qm)mdt+
√

(hΦm + qm − 2hΦmqm) mdW (B.150)

and relating this result to original Fokker-Planck equations B.23 , B.24, and

equations 5.13, 5.14, we will then obtain:

- Human case:

for the drift coefficient

ch = [Ph(1− qh)− qh(1− Ph)] h (B.151)

ch = (Ph − qh) h (B.152)

ch(h,m) = [mΦh(1− qh)− qh(1−mΦh)] h (B.153)

ch(h,m) = (mΦh − qh) h (B.154)

and for the diffusion coefficient

Dh = [Ph(1− qh) + qh(1− Ph)] h (B.155)

Dh = (Ph + qh − 2Phqh) h (B.156)

Dh(h,m) = (mΦh + qh − 2mΦhqh) h (B.157)
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∂u(h, t)

∂t
= − [Ph(1− qh)− qh(1− Ph)]h

∂u

∂h
+

[Ph(1− qh) + qh(1− Ph)] h

2

∂2u

∂h2

(B.158)

∂u(h, t)

∂t
= − (Ph − qh)h

∂u

∂h
+

(Ph + qh − 2Phqh) h

2

∂2u

∂h2
(B.159)

∂u(h,m, t)

∂t
= − (mΦh − qh)h

∂u

∂h
+

(mΦh + qh − 2mΦhqh) h

2

∂2u

∂h2
(B.160)

-Mosquito case:

for the drift coefficient

cm = [Pm(1− qm)− qm(1− Pm)] m (B.161)

cm = (Pm − qm) m (B.162)

cm(h,m) = [hΦm(1− qm)− qm(1− hΦm)] m (B.163)

cm(h,m) = (hΦm − qm) m (B.164)

and for the diffusion coefficient

Dm = [Pm(1− qm) + qm(1− Pm)] m (B.165)

Dm = (Pm + qm − 2Pmqm) m (B.166)

Dm(h,m) = (hΦm + qm − 2hΦmqm) m (B.167)
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where we then have

∂v(m, t)

∂t
= −[Pm(1− qm)− qm(1− Pm)]m

∂v

∂m
+

[Pm(1− qm) + qm(1− Pm)] m

2

∂2v

∂m2

(B.168)

∂v(m, t)

∂t
= −(Pm − qm)m

∂v

∂m
+

(Pm + qm − 2Pmqm) m

2

∂2v

∂m2
(B.169)

∂v(h,m, t)

∂t
= −(hΦm − qm)m

∂v

∂m
+

(hΦm + qm − 2hΦmqm) m

2

∂2v

∂m2
(B.170)
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Initial conditions and outcome

C.1 Background

Chaotic dynamics is aperiodic, which means that the system will never return

to the same state. In chaotic dynamics, different initial conditions will be expo-

nentially amplified. Limited dynamics is also characteristic of chaotic behavior,

where the variables defining the system states will vary in finite intervals. Thus,

chaotic dynamics is aperiodic, limited and also deterministic. There are no random

variables, no stochastic components in chaotic dynamics. Chaotic systems are un-

predictable because of a sensitive dependence on initial conditions. It is possible to

quantify sensitive dependence on initial conditions with Lyapunov exponents (see

equation C.1). The Lyapunov exponent represents the average rate of separation

along two different trajectories on an attractor with very close initial conditions,

defined here as δx0 = |x0 − x‘
0|.

As an example, for a continuous system in a r-dimensional physical state space,

there are as many Lyapunov exponents as there are space axes. If the dimension

of phase space is 3, three Lyapunov exponents exist. To define a chaotic system,

it is sufficient to determine if the maximum Lyapunov exponent is positive.

λ = lim
n→∞

lim
δx0→0

1

n

n−1∑
t=0

log|f ‘(xt)| (C.1)

, where f ‘(xt) may represent the approximation to the derivative of f(xt) as

in:

f ‘(xt) ≈
f(xt)− f(xt−1)

xt − xt−1
(C.2)

Malaria transmission could be described as a two-agents human-mosquito cou-

pled dynamical system. However, several of its characteristics are responsible

for random non-linear multi-dimensional behavior. Random factors influencing
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mosquito survival, the presence of variation in time spent during the sporogony

cycle, and human-to-mosquito efficiency transmission dependent upon random ga-

metocytemia in the human host are several examples of additional stochastic com-

plexity. Chaotic behavior in dynamical systems results from multi-dimensional

non-linear deterministic models revealing positive Lyapunov exponents. Although

chaotic behavior in dynamical systems may result from deterministic models, it

could present many similarities with stochastic non-deterministic models. The

sensitivity to initial conditions is a distinct feature of chaotic dynamical systems.

However, dynamical models with stochastic behavior may reveal the presence of a

periodic attractor with stable orbiting in the phase space.

C.2 Methods

The sensitivity to the initial conditions of a deterministic system is a consistent

hallmark of chaotic behavior. As the present model is defined as a stochastic

two-dimensional (human-mosquito) coupled oscillator system, it is expected that

its behavior will reveal the presence of a well-behaved stable attractor with no

evidence whatsoever of any unstable or chaotic trajectories.

Dynamical three-dimensional deterministic non-linear systems may assume

chaotic behavior, with trajectory dependence on small different initial conditions.

Although our dynamical non-linear stochastic system may have a dimension equal

to 2 in the phase space (human and mosquito infection), its dynamics can be

reduced to a single dimension by analyzing malaria incidence in the human group.

Furthermore, with the inclusion of several independent parameters independently

influencing human and mosquito behavior inside the computational model, it was

considered adequate to define the degree of sensitivity to different initial conditions

in the malaria incidence time evolution as representative of what could happen in

the coupled human-mosquito system.

To determine the sensitivity of the present model, several simulations were

obtained from different initial conditions of human and mosquito infection, based

upon models with identical parameters. The time series obtained from these simu-

lations were compared in relation to the average infection prevalence and distribu-

tion probability curves. Infection incidence was determined during a whole period

of 30 years, according to the chosen metrics of predicted instant malaria annual

incidence per 100 inhabitants.

Therefore, the system evolution in time was analyzed in a single model with

identical global parameters: with full heterogeneity (1
θ = 4.0), and moderate

human-to-mosquito transmission efficiency (wh = 0.500). With identical model pa-

rameters, two very different infection prevalence initial conditions were simulated:

A full human and mosquito infection initial state (Hi0 = 1.0 and Mi0 = 1.0),

compared to an initial state with a low human infection rate (Hi0 = 0.05) and

a residual mosquito infection rate (Mi0 = 0.01). The evolution in time of these
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Figure C.1: Two-dimensional human-mosquito probability density function with
full heterogeneity (1

θ = 4.0), and moderate human-to-mosquito transmission effi-
ciency (wh = 0.500), in different initial infection prevalence conditions: (a) Full
human infection Hi0 = 1.0 with full mosquito infection Mi0 = 1.00, (b) Low
human infection Hi0 = 0.05 with residual mosquito infection Mi0 = 0.01
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Figure C.2: Human and mosquito infection prevalence time series simulations,
with full heterogeneity (1

θ = 4.0), and moderate human-to-mosquito transmission
efficiency (wh = 0.500), in different infection prevalence initial conditions (Full
human infection – Hi0 = 1.0 and full mosquito infection – Mi0 = 1.0 vs. Low
human infection – Hi0 = 0.05 and residual mosquito infection – Mi0 = 0.01) : (a)
Human infection, (b) Mosquito infection

different initial conditions was determined in terms of the similarity of human

and mosquito infection prevalence time series (see figure C.1), malaria incidence

cumulative distribution function (see figure C.2) and two-dimensional probability

density function of human and mosquito infection prevalence (see figure C.3). The

similarity between two different initial conditions was also compared by obtaining

the Theil’s inequality coefficient between time series with the same model param-

eters, but with different sets of initial conditions of human and mosquito infection

prevalence – see table C.1.

Infection initial conditions Theil inequality
Initial condition A Initial condition B U

Hi0 = 0.05/Mi0 = 0.01 Hi0 = 1.0/Mi0 = 1.0 0.178
Hi0 = 0.05/Mi0 = 0.01 Hi0 = 1.0/Mi0 = 0.0 0.129
Hi0 = 0.05/Mi0 = 0.01 Hi0 = 0.0/Mi0 = 1.0 0.165
Hi0 = 0.05/Mi0 = 0.01 Hi0 = 0.5/Mi0 = 0.5 0.142

Table C.1: Differences between malaria incidence time series at initial minimal hu-
man and mosquito infection prevalence (Hi0 = 0.05/Mi0 = 0.01 – condition A)
against different initial levels of disease invasion (condition B), in a full heterogene-
ity scenario (1

θ = 4.0) with moderate human-to-mosquito transmission efficiency
(wh = 0.500). Condition A was generally used as the standard initial condition in
all other model simulations.
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Infection initial conditions Lyapunov
Initial condition A Initial condition B λLyapunov
Hi0 = 0.05/Mi0 = 0.01 Hi0 = 1.0/Mi0 = 1.0 -3.964
Hi0 = 0.05/Mi0 = 0.01 Hi0 = 1.0/Mi0 = 0.0 -4.016
Hi0 = 0.05/Mi0 = 0.01 Hi0 = 0.0/Mi0 = 1.0 -3.978
Hi0 = 0.05/Mi0 = 0.01 Hi0 = 0.5/Mi0 = 0.5 -3.964

Table C.2: Negative values of Lyapunov exponent (λLyapunov) at minimal
human and mosquito infection prevalence (Hi0 = 0.05/Mi0 = 0.01 – condi-
tion A) against other different initial levels of disease invasion (condition B),
in a full heterogeneity scenario (1

θ = 4.0) with moderate human-to-mosquito
transmission efficiency (wh = 0.500).

Figure C.3: Malaria incidence cumulative distribution function, with full het-
erogeneity (1

θ = 4.0), and moderate human-to-mosquito transmission efficiency
(wh = 0.500), in different infection prevalence initial conditions: Disease invasion,
with full human and mosquito infection (Hi0 = 1.0 and Mi0 = 1.0 – black) vs.
mild human infection along with residual mosquito infection (Hi0 = 0.05 and
Mi0 = 0.01 – red).
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C.3 Results and discussion

In the presented figures (C.1, C.2, and C.3), no difference was found when

comparing extreme cases of simulations with much different initial conditions (mild

infection with Hi = 0.05 and Mi = 0.01 vs. full human-mosquito invasion with

Hi = 1.0 and Mi = 1.0), suggesting that the present model is a two-dimensional

stochastic process with a periodic, non-chaotic, non-derministic behavior, in the

presence of two negative Lyapunov exponents. Different types of initial conditions

were also tested, with a very similar evolution of human and mosquito infection

in time in all tested scenarios (see tables C.1 and C.2 for differences in Lyapunov

exponent and Theil’s inequality coefficient between different initial conditions).

When comparing simulations with identical global model parameters and dif-

ferent initial conditions, it was possible to determine the presence of a stable two-

dimensional attractor in a coupled human-mosquito system, with nearly identical

malaria human and mosquito infection prevalence time series (see figure C.1) , as

well as very similar malaria incidence cumulative distribution function (see figure

C.3), and very similar two-dimensional probability density function of human and

mosquito infection prevalence (see figure C.1).

Also, by looking at differences in time series resulting from these different

initial conditions, we may see very similar 2D probability density functions con-

cerning the phase space of human and mosquito infection prevalence – see figure

C.1.

Theil’s inequality coefficient (here defined as U) has been useful in comparing

the degree of dissimilarity between two time series. It should be close to 0 in the

presence of two identical time series, and close to 1, in the case of two very different

time series. In the case of significant similarity between two time series, Theil’s U

may range between 0.20 and 0.30 [265]. In the present case, Theil’s U comparing

time series with quite different initial conditions (Hi0 = 1.0 and Mi0 = 1.0 vs.

Hi0 = 0.05 and Mi0 = 0.01) was significantly low (0.178), supporting the notion

that both trajectories evolve identically as a stable stochastic attractor, with no

evidence of chaotic dynamics. When comparing the initial condition generally

used in most model simulations (Hi0 = 0.05 and Mi0 = 0.01) to other initial

conditions, Theil’s inequality coefficient was consistently low, with values in the

range between 0.129 and 0.178, well below 0.30 – see table C.1.

Lyapunov exponent (here identified as λLyapunov) has been widely used in tra-

jectory analysis in chaotic systems. The estimation of trajectory divergence is

based upon distance between different time series with small differences in initial

conditions. When comparing the time series of two similar trajectories having

small differences in initial conditions, we usually find positive Lyapunov expo-

nents (λLyapunov > 0) in deterministic non-linear chaotic systems. On the other
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hand, in the presence of nonchaotic dynamics we may obtain negative values of

λLyapunov. In our case, when comparing different simulations with identical system

parameters along with different initial conditions (initial conditions of human and

mosquito infection prevalence), we find in all cases a significant negative value for

the Lyapunov exponent – see table C.2.

We have analyzed the malaria human-mosquito dynamical system in terms

of the impact of different initial conditions in epidemic outcome. In the present

model, trajectories in phase space were shown to be stable, periodic, stochastic,

and clearly insensitive to highly different initial conditions. This fact highlights the

epidemic stability of the human-mosquito dynamical system, clearly independent

of the initial conditions of infection prevalence in either compartment.

We have shown the process to be stochastic, periodic, non-chaotic, with trajec-

tories independent of initial conditions of human and mosquito infection prevalence

and evolving to epidemic stability at trajectories well distanced from phase tran-

sition. The implementation of effective strategies in lowering malaria transmission

may achieve effective disease elimination in dynamical trajectories close to phase

transition.
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Malaria Box-Jenkins model

D.1 Time series background

Time series models have been widely used in economics, geophysics, biology

and ecology. In particular, stock market analysis and hydrology planning have led

to critical research in the field [6, 18, 31, 132, 166, 202, 213, 246]

The application of Fourier methods to random events have been useful in time

series wave decomposition and spectrum analysis. From the study of stationarity,

new theoretical concepts have emerged such as fractional regression (ARFIMA)

and long-range dependence while the use of information entropy is somehow con-

nected to other ideas such as the presence of long and short memory time series,

self-organization, emergence and complexity [57, 129, 322]. The application of

modern GARCH theory to the analysis of financial markets volatility is a promis-

ing research field [334].

Mathematical models based upon empirical time-series data have been used

in forecasting, within reasonable confidence intervals, depending on the histori-

cal background of the random variable in question. A stochastic random variable

may occur in the form of a random walk event presenting as gaussian white noise.

Time series analysis may take place in two separate but connected domains: of

time and frequency. Which form of analysis should be more suited will depend on

the nature of the physical problem. Time series forecasting can be used in several

forms of time domain analysis (ARIMA, Holt-Winters exponential smoothing and

SARIMA). The frequency domain is sometimes used as an alternative in the pres-

ence of periodic behavior and spectral density, such as discrete Fourier transforms,

non-parametric spectral estimation, signal extraction and filtering methods, single

spectrum analysis, dynamical Fourier analysis and wavelets, among others. The

more usual time domain approach will be in focus in the present Appendix [334].
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D.2 Box-Jenkins theory in malaria modeling

Time series theory has been used extensively in malaria forecasting. A reliable

time series model may antecipate predictions of future malaria epidemic behavior.

In recent years, time series models have been developed with reasonable success

to epidemiology and infectious disease research [2, 13, 21, 23, 40, 52, 96, 109, 122,

130, 141, 143, 144, 161, 163, 170, 204, 266, 290, 302, 324, 376].

A time series model may be stationary (time-independent) or non-stationary

(time-dependent). Time evolution of the random variable may reveal a trend term

(increasing or decreasing tendency of change in the average time-series value) with

possible periodic cyclic behavior, a seasonality term (seasonal repetitive behavior

with a more or less stable time frequency), and a random gaussian white noise

term (with σ2 = 1) defined here as Zt – see equation D.1.

Xt =

p∑
i=1

φt−iXt−i + Zt (D.1)

Empirical time series of malaria incidence have been useful in monitoring dis-

ease transmission strength, and time series modeling has become more popular,

based upon the concepts of autocorrelation, auto-regression, moving-average de-

composition, and series differencing. Defining the presence of time series station-

arity is usually an essential step in building a robust model [334]. The augmented

Dickey-Fuller test may be useful for that purpose.

The Box-Jenkins time-series method was first described by Box and Jenkins in

1970 [46]. Since then, several different time series models have been implemented in

malaria forecasting based upon this theory. To the best of our knowledge, the first

consistent use of Box-Jenkins theory in malaria research was reported in Ethiopia

(2002) by Abeku [2]. In 2007, Gomez-Elipe (hereafter referred to as Elipe,2007)

used a time-series method in malaria modeling [147]. More recently, other authors

have have looked more deeply into the possibility of forecasting malaria incidence

with the help of different types of time-series models [21, 23, 40, 52, 96, 109, 122,

130, 141, 143, 144, 170, 204, 220, 266, 290, 302, 312, 321, 324, 376]

These different linear models have been useful in malaria forecasting. However,

several random factors are a common source of data irregularity, and other impor-

tant aspects of time series theory still need to be addressed in malaria prevention

and forecasting.

In the present Appendix, malaria time series will be analyzed from a differ-

ent perspective, involving simulations in different human-to-mosquito transmission

efficiency wh settings, based upon our malaria transmission agent-based stochas-

tic model [326], while comparing results with empirical time series with different

transmission patterns from world regions where malaria is still endemic [209, 278].

ARMA (autoregressive and moving average) and ARIMA (autoregressive, in-

tegrated, moving average) models have been consistently used in time series fore-
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casting. Different linear models are usually well adapted to the study of stationary

and non-stationary time series. ARMA models have proven reliable for forecasting

in stationary time series. In the presence of non-stationary time series, the possi-

bility of adding series differencing to a ARMA model, may be useful in building a

robust ARIMA model.

Residual time-series analysis with the popular Box-Ljung method is acceptable in

testing for model accuracy while obtaining more consistent forecast results. In

the presence of seasonality, SARIMA (seasonal autorregressive integrated moving

average) models are highly recommended. Other methods such as the exponential

smoothing model (ETS) or the Holt-Winters forecasting (HW), may also be used

in time-series forecasting [64, 334]. The importance of the autocorrelation function

(ACF) in the presence of time series stationarity will be further discussed, in rela-

tion to ARIMA and SARIMA models. The autocorrelation function is related to

the time series auto-covariance. The type of autocorrelation function decay and the

partial autocorrelation function are both useful in anticipating the recommended

ARIMA model to be used in forecasting [243].

The correlation of a time series stochastic variable with its previous values in

the recent past is used in defining the type of model to be adopted. Time series

stationarity evaluation is a necessary pre-requisite for the proper choice of auto-

regressive and moving average models. The type of ACF decay may also indicate

the presence of a long or short memory stochastic process. ARIMA models are

usually referred as short memory processes. In these cases, we may find a fast

decay of the autocorrelation function (typically exponential) with growing time

lags h. When ACF decay is slow (e.g. as in a power law) the process may be

defined as a long memory one.

In the present chapter we use our stochastic agent-based model [326] in malaria

epidemic simulations while analyzing the results in the context of the Box-Jenkins

theory, with the help of dedicated ARIMA and SARIMA models, in different set-

tings of malaria transmission. The impact of seasonality is not to be dismissed in

malaria. As the present agent-based model includes a seasonal effect algorithm,

differences between ARIMA and SARIMA models will be analyzed. Our objective

will be to identify malaria transmission patterns at different human-to-mosquito

transmission efficiency levels (wh), as well as to link long-range dependence pro-

cesses in malaria incidence time series to the occurrence of phase transition in

close proximity to disease elimination. In chapter 11 we have already focused on

the utility of time series in defining the memory nature of a stochastic process

in phase transition by using Hurst exponent and Shannon entropy. A few exam-

ples of malaria empirical times series with different trends will be presented for

comparative purposes.
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D.3 Methods

Time series comparative analysis between model simulations were conducted

at different levels of human-to-mosquito disease transmission efficiency, while com-

paring its results with real data empirical time series from African regions with

different epidemic behavior. Our procedures consisted in the detection of diversity

in patterns of disease transmission efficiency in Box-Jenkins time series compara-

tive analysis while determining the proper type of auto-correlation function decay.

D.3.1 Malaria model simulation time series

Malaria transmission model simulations were conducted according to different in-

tensities of human-to-mosquito transmission efficiency. Human-to-mosquito trans-

mission was defined in terms of the percentual time of human disease duration

having the presence of gametocytemia in the blood circulation – wh. Six different

scenarios were used for disease transmission model simulation – see table D.1.

Level wh Malaria transmission intensity Malaria incidence*
(± SE)

1 0.420 Phase transition 7.7 (± 0.89)
2 0.453 Low 25.1 (± 0.96)
3 0.467 Intermediate/low 34.2 (± 0.82)
4 0.500 Intermediate 51.6 (± 0.94)
5 0.600 Intermediate/high 106.4 (± 0.94)
6 0.733 High 169.7 (± 0.64)

Table D.1: Human-to-mosquito disease transmission efficiency (wh), disease
transmission intensity levels and average malaria incidence (± SE) of ten sim-
ulations in all settings (* cases per 100 inhabitants-year)

Malaria incidence, per 100 inhabitants, per year, was defined as the metric

of disease burden in the human population – see table D.8. This measure was

defined as equivalent to what would be the expected average annual malaria inci-

dence in 100 inhabitants along the whole year, if there were no changes in disease

transmission. In empirical time series it represented an acceptable metrics for the

assessment of malaria impact in human population during a period of one year.

In model simulations we used different levels of positive gametocytemia du-

ration, corresponding to different disease transmission efficiencies. The highest

transmission scenario (1 – High disease transmission) was defined by the pres-

ence of 110 days of positive gametocytemia during 150 days of expected disease

duration (wh = 0.733). Five other gametocytemia levels ranging from major trans-

mission to phase transition close to disease extinction were analyzed. From our

previously published model, intermediate phase transition was defined according

to progressively lower gametocytemia levels of 90 days (2 – Intermediate/high

transmission; wh = 0.600), 75 days (3 – Intermediate transmission; wh = 0.500,

70 days (4 – Intermediate/low transmission; wh = 0.467, 68 days (5 – Low trans-
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mission; wh = 0.453), and 63 days (6 – Close to phase transition, where ∼ 50%

of all model simulations resulted in disease extinction during a time period of 30

years; wh = 0.420) – see Table D.1. At all transmission levels, ten simulations

were performed in identical initial conditions.

The results of these model simulations were compared with real data obtained

from two empirical time series of malaria incidence in different world regions – see

Table D.1.

D.3.2 Malaria empirical time series

From published literature, two empirical time series were considered adequate

as an example for deeper comparative analysis – see table D.2. In these series,

malaria monthly incidence is reported along different time periods. Two levels of

disease transmission intensity according to human-to-mosquito transmission effi-

ciency (wh) are considered. These time series are presented in figures D.6 a) and

b). These series were compared with those from our agent-based model simulation

at different levels of disease transmission efficiency. Decreasing disease incidence

vs. epidemic outcome are evaluated concerning a possible correlation between real

data and model simulation time series.

Series Follow-up Region Trend Malaria incidence*
(months) (± SD)

Okech,2008 96 Kenya Decreasing 205.1 (± 169.8)
Landoh,2012 72 Togo Increasing 24.4 (± 11.5)

Table D.2: Empirical time series with average malaria incidence (± SD) in
diferent settings of malaria transmission (* cases per 100 inhabitants-year)

D.3.3 The auto-correlation function

Autocorrelation function (ACF) analysis was applied to our agent-based simulation

model as well as to malaria empirical time series data, during long time intervals.

The dimensional nature of a long memory process presenting with a slow decay

of its auto-correlation function, is commonly defined in terms of an increasing time

lag.

The covariance γ(h) of a time series Xt at time lag h may be obtained from:

γ(h) =
∑

(Xt+h −Xt)(Xt −Xt) (D.2)

The ACF is represented here by ρ(h) and expresses the degree of correlation

of the co-variance of Xt+h, after a time lag h, with its co-variance at no time lag

necessarily equivalent to the time series variance σ2
X .

ρ(h) =
γ(h)

γ(0)
(D.3)
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The ACF results from dividing the time series covariance γ(h) with a time lag

h by its covariance with no time lag γ(0) – as in equation D.3.

Several tests are effective in defining the presence of stationarity. Time series

with a constant mean value in time (no trend) and a stabilized variance (constant

volatility) are usually considered stationary. If necessary, special measures may

be taken to assure stability in trend (time series differencing), seasonality (sea-

sonal differencing), variance (logarithmic or square root transformation), and data

normal distribution (Box-Cox transformation).

D.3.4 ARIMA and SARIMA modeling

Autoregressive and moving average models were defined according to the Box-

Jenkins method (1970) [46].

In our case, a Box-Jenkins procedure was adopted in order to build an equiva-

lent auto-regressive integrated moving average (ARIMA) model, as well as includ-

ing seasonal modeling (SARIMA).

ARIMA model

In all simulations with variable gametocytemia duration an alternative ARIMA

model was implemented according to the following equation:

φp(B)∇dXt = φp(B)(1−B)dXt = θq(B)Zt (D.4)

where φp(B) is the autoregressive operator

φp(B) = 1− φ1B − φ2B
2 − φ3B

3 − ...− φpBp (D.5)

,

θq(B) is the moving average operator

θq(B) = 1 + θ1B + θ2B
2 + θ3B

3 + ...+ θqB
q (D.6)

, the ∇ operator represents the first difference

∇Xt = Xt −Xt−1 (D.7)

, the B operator represents the backshift operator

B(Xt) = Xt−1 (D.8)

, d is the differencing level of ∇d

∇dXt = (1−B)dXt (D.9)
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and Zt represents a gaussian white noise time series

Zt = N(0, σ2) (D.10)

SARIMA model

As our model included seasonality, a SARIMA model was tested with a period of

12 months – see tables D.3 and D.4.

The general SARIMA model was implemented according to:

ΦP (Bs)φp(B)∇Ds ∇dXt = ΘQ(Bs)θq(B)Zt (D.11)

where φp(B) is the ordinary autoregressive operator

φp(B) = 1− φ1B − φ2B
2 − φ3B

3 − ...− φpBp (D.12)

,

θq(B) is the ordinary moving average operator

θq(B) = 1 + θ1B + θ2B
2 + θ3B

3 + ...+ θqB
q (D.13)

,ΦP (Bs) is the seasonal autoregressive operator

ΦP (Bs) = 1− Φ1B
s − Φ2B

2s − Φ3B
3s − ...− ΦPB

Ps (D.14)

,

ΘQ(Bs) is the seasonal moving average operator

ΘQ(Bs) = 1 + Θ1B
s + Θ2B

2s + Θ3B
3 + ...+ ΘQB

Qs (D.15)

, the ordinary ∇ operator represents the once-difference operator

∇Xt = Xt −Xt−1 (D.16)

, d is the ordinary differencing level of ∇d

∇dXt = (1−B)dXt (D.17)

, D is the differencing level of the seasonal ∇D operator which represents the

seasonal differencing operator

∇Ds Xt = (1−Bs)DXt (D.18)

, the B operator represents the ordinary backshift operator
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B(Xt) = Xt−1 (D.19)

,the seasonal backshift operator is given by

Bs(Xt) = Xt−s (D.20)

and Zt represents a gaussian white noise time series

Zt = N(0, σ2) (D.21)

ARIMA and SARIMA linear models were also defined for empirical malaria

time series. Initially, two time series with clear-cut opposite epidemic trends were

selected for comparative analysis: Okech (2008) and Landoh (2012) [209, 278].

The Okech (2008) time series revealed a pattern consistent with an unstable epi-

demic state with decreasing trend from high levels of malaria incidence evolving to

imminent disease elimination [278]. The other empirical time series (Landoh,2012)

also revealed an unstable epidemic behavior, but this time with a non-stationary

increasing trend and an average level of malaria incidence for african standards

(between 10 and 50 malaria cases per 100 inhabitants-year) [209].

Special attention was devoted to the presence of a long memory time series

process (long-range dependence), in which case the autocorrelation function was

expected to decay with a longer time lag (h).

D.3.5 R packages

Auto-correlation function was estimated in all time series with the function acf

from stats R package. Box-Jenkins ARIMA and SARIMA methodology, Hurst

exponent estimation and non-linear time series analysis were implemented with

different functions from the following time series dedicated R packages: tseries,

forecast, entropy, and pracma. For time series stationarity analysis, we used the

augmented Dickey-Fuller test, and the KPSS test according to the R implemented

routine adf.test, and kpss.test both included in the package tseries. Aikake AICc

optimization was implemented in defining the best ARIMA and SARIMA models.

D.4 Results

D.4.1 Disease transmission model

With the present model we analyzed the behavior of the human-mosquito cou-

pled system, resulting from a complex interaction between the two compartments.

Human-to-mosquito transmission efficiency (wh) will depend on the sustained pres-

ence of gametocytemia in human blood circulation, as well as on the probability
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of survival of infected mosquitoes beyond latency time. These aspects are critical

in disease transmission. Our model simulations use gametocytemia as an inde-

pendent variable influencing human-to-mosquito transmission. Different levels of

gametocytemia intensity define different stages of disease transmission efficiency.

Theoretical gametocytemia reduction is considered equivalent to effective treat-

ment with gametocidal agents such as primaquine our methylene blue in a fraction

of the human population .

Human-to-mosquito transmission efficiency was defined from our computa-

tional model [326]. Disease duration was assumed to be 150 days. Simulations

used different levels of positive gametocytemia duration ranging from a phase

transition before disease extinction (corresponding to 63 days of positive gameto-

cytemia wh = 0.420) to a high disease transmission efficiency (110 days of positive

gametocytemia – wh = 0.733) – see Table D.1.

Phase transition in the proximity of disease elimination correlated well with a

malaria incidence in the proximity of 4 to 6 cases per 100 habitants during a one

year interval [394].

D.4.2 Malaria model simulations

At first, we analyzed our time series data with the help of an ARIMA procedure

(autoregressive integrated moving average) inspired upon the Box-Jenkins method.

This simpler model does not include the seasonal variation expected from the rainy

season in African regions. The absence of a seasonal effect significantly reduced

the potential benefit of model predictions.

Seasonality was thus included within the setting of a more robust SARIMA

model, while considering the need for stationarity in all time series as a pre-

requisite for proper model implementation.

Stochastic simulations were conducted with this human/mosquito infection

model, at different levels of gametocytemia and human-to-mosquito transmission

intensity, corresponding to a time period lasting for 30 years. Ten model simu-

lations were conducted at every different level of transmission intensity (total of

60 simulations). In every disease level, one simulation was randomly selected for

graphical display out of ten (see figures D.1 to D.4).

wh ARIMA Model
φp(B)(1−B)dXt = θq(B)Zt

0.420 (4,1,5) (1−
∑4

i=1 φiB
i)(1−B)Xt = (1 +

∑5
i=1 θiB

i)Zt
0.733 (5,0,1) (1−

∑5
i=1 φiB

i)Xt = (1 + θ1B)Zt

Table D.3: Human-to-mosquito transmission efficiency (wh) levels and ARIMA
modeling
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wh 0.420 0.733
ARIMA (4,1,5) (5,0,1)

φ1 0.0883 0.0157
φ2 -0.4975 0.4182
φ3 -0.2578 -0.0344
φ4 0.1497 -0.1074
φ5 – -0.4306
θ1 -0.6124 0.7244
θ2 0.5240 –
θ3 -0.1385 –
θ4 -0.26653 –
θ5 -0.3089 –
σ2 18.87 2923
AICc 2083.09 3905.91

Table D.4: Gametocytemia transmission levels and coefficients of ARIMA models

ARIMA model

From simulations, the ARIMA more simple linear models were defined at every

level of gametocytemia and disease transmission efficiency.

There were significant differences in the type of best ARIMA model between

stochastic simulations at the same level of disease transmission intensity. As a

rule, we analyzed the first tested simulation at every transmission level.

From a wide spectrum of disease transmission levels (0.420 < wh < 0.733),

two different levels of human-to-mosquito transmission (wh) were selected at both

extremes: A low transmission level (wh = 0.420) close to phase transition, and a

high transmission level (wh = 0.733) – see Table D.3.

Close to phase transition at the lower transmission level (63 days gameto-

cytemia duration; wh = 0.420) the best ARIMA models was defined as a combina-

tion of auto-regressive (p = 4) and moving average (q = 5), with the need of time

series differencing (once – d = 1).

At the higher transmission level (110 days gametocytemia duration; wh =

0.733) we found the best model to be predominantly auto-regressive (p = 5) with

a low order moving average (q = 1), and no need for time series differencing

(d = 0).

The absence of seasonality was an important limitation of the ARIMA model.

At high human-to-mosquito transmission levels (wh = 0.733) the model was purely

auto-regressive as there was no need for time series differencing due to the presence

of stationarity. Likewise, the moving average component was also residual with

only one component in the ARIMA model (5,0,1) – see tables D.3 and D.4.
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SARIMA model

As our agent-based model included seasonality, a SARIMA model was additionally

tested, with a 12 months period – see tables D.5 and D.6.

Figure D.1: Model simulation (black) and SARIMA model forecasting (blue) of
model simulation at phase transition, with low human-to-mosquito transmission
efficiency (wh = 0.420)

wh SARIMA Model
(p, d, q)× (P,D,Q)s ΦP (Bs)φp(B)∇Ds ∇dXt = α+ ΘQ(Bs)θq(B)Zt

0.420 (2, 1, 2)× (2, 1, 2)12 Φ2(B12)φ2(B)∇1
12∇1Xt = α+ Θ2(B12)θ2(B)Zt

0.733 (2, 1, 1)× (2, 1, 1)12 Φ2(B12)φ2(B)∇1
12∇1Xt = α+ Θ1(B12)θ1(B)Zt

Table D.5: H-to-M transmission efficiency (wh) levels from model simulations and
relation to SARIMA models (α = drift)

From present model simulations, SARIMA linear models were defined at ev-

ery level of gametocytemia and disease transmission efficiency. There were small

differences in the type of best SARIMA model between stochastic simulations at

the same level of disease transmission intensity. Presented results were obtained

from the first tested simulation at every transmission level.

Close to phase transition at the lower transmission level (63 days gameto-

cytemia duration; wh = 0.420) the most reliable SARIMA model was defined as

292



Malaria Box-Jenkins model

Figure D.2: Autocorrelation function and residuals of SARIMA forecasting of
model simulation model at phase transition (2,1,2))×(2,1,2)12, with low human-to-
mosquito transmission efficiency (wh = 0.420), with the implementation of check-
residuals in the R package forecast

SARIMA
wh 0.420 0.733

(p, d, q)× (P,D,Q)s (2, 1, 2)× (2, 1, 2)12 (2, 1, 1)× (2, 1, 1)12

φ1 -0.3635 -0.3495
φ2 0.3415 -0.2344
θ1 -0.3455 -0.2997
θ2 -0.5422 –
Φ1 0.6564 -0.2221
Φ2 -0.1574 -0.2273
Θ1 -1.4685 -0.7408
Θ2 0.7626 –
α (drift) – –
σ2 10.89 1037
AICc 1849.32 3426.29

Table D.6: Different H-to-M transmission efficiency levels (wh = 0.420
and wh = 0.733), and coefficients of SARIMA models

(2, 1, 2)× (2, 1, 2)12, corresponding to a combination of auto-regressive (p = 2 and

293



Appendix D

Figure D.3: Model simulation (black) and SARIMA model forecasting (blue) of
model simulation at epidemics stability, with high human-to-mosquito transmis-
sion efficiency (wh = 0.733)

P = 2) and moving average (q = 2 and Q = 2 ) procedures, with the need of

time series differencing (once, d = 1 and D = 1) both in the non-seasonal and the

12-months seasonal model fraction.

At the higher transmission level (110 days gametocytemia duration; wh =

0.733) the best SARIMA models was defined as (2, 1, 1) × (2, 1, 1)12, with a pre-

dominantly auto-regressive component (p = 2 and P = 2), and a lower order

moving average (q = 1 and Q = 1), with the need for time series differencing

(once, d = 1 and D = 1), both in the non-seasonal and the 12-months seasonal

model fraction. In both cases, the best model was defined according to Akaike

information criterion optimization.
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Figure D.4: Autocorrelation function and residuals of SARIMA forecasting of
model simulation at epidemics stability (2,1,1))×(2,1,1)12, with high human-to-
mosquito transmission efficiency (wh = 0.733), with the implementation of check-
residuals in the R package forecast

D.4.3 Typical malaria empirical time series with trend

The two presented model scenario simulations at extreme human-to-mosquito

transmission conditions (wh = 0.420 and wh = 0.733) were compared to two

typical empirical time series of malaria incidence in different geographical regions

from West and East Africa (see Table D.2), with opposite disease transmission

trends. They represent western and eastern Africa regions according to their ap-

parent epidemic stability, seasonality and trend: West Africa (Togo) and East

Africa (Kenya) – see Table D.2.

The ARIMA and SARIMA models of the two chosen typical empirical time

series, Okech (2008) [278] and Landoh (2012) [209]), were obtained. Data is pre-

sented in tables D.7, D.8, D.9 and D.10.

Empirical time series from Okech (2008) reveal an initial high incidence in

malaria incidence (close to 600 cases per 100 inhabitants per year) with a progres-

sive decline along a time interval of a decade, towards disease elimination. On the

contrary, in the case of Landoh (2012) we witness an initial low malaria incidence
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Figure D.5: Malaria incidence with different H-to-M transmission efficiencies: low
transmission at phase transition (wh = 0.420 – bold line) and high transmission
epidemic stage (wh = 0.733 – dotted line).

Figure D.6: (a) Major decline in malaria incidence in empirical time series from
Okech (2008) [278]. (b) Moderate uprising malaria incidence in empirical series
from Landoh (2012) [209].

(close to 10 cases per 100 inhabitants per year) with a five times steady increase

along a period of 6 years. Both ARIMA series reveal a regression and moving
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Empirical series ARIMA Model
(p,d,q) φp(B)(1−B)dXt = α+ θq(B)Zt

Okech (2008) (0,1,2) (1−B)Xt = α+ (1 +
∑2

i=1 θiB
i)Zt

Landoh (2012) (0,1,1) (1−B)Xt = α+ (1 + θ1B)Zt

Table D.7: ARIMA model in empirical data time series

average model with one time differencing (p,d,q) = (1,1,1).

Empirical series Okech (2008) Landoh (2012)

ARIMA model (0,1,2) (0,1,1)
θ1 -0.2704 0.2102
θ2 -0.3344 –
α (drift) -4.5151 0.3940

Table D.8: ARIMA model in empirical data time series (*
cases per 100 inhabitants-year)

Figure D.7: (a) Empirical time series (black) and SARIMA model forecasting
(blue) from Okech (2008) [278] empirical time series along with declining malaria
incidence. SARIMA forecast predicts rapid disease elimination evolving towards
negative values. (b) Empirical time series (black) and SARIMA model forecasting
(blue) from Landoh (2012) [209] empirical time series along with a steady increase
in malaria incidence. SARIMA forecast predicts a trend of progressive disease
spreading.

In the case of the seasonal component, the regressive component of the SARIMA

term vanishes in Okech (2008) model and we have (P,D,Q) = (0,1,1). On the con-

trary, the seasonal SARIMA model of Landoh (2012) is purely a regressive model

with one time differencing, and we have (P,D,Q)=(1,1,0). SARIMA forecast of

both empirical series is presented in figure D.7, while its equations and coefficients

are available in tables D.9 and D.10.
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T.Series SARIMA
(p, d, q)× (P,D,Q)s ΦP (Bs)φp(B)∇Ds ∇dXt = ΘQ(Bs)θq(B)Zt

Okech (1, 1, 1)× (0, 1, 1)12 Φ0(B12)φ1(B)∇1
12∇1Xt = Θ1(B12)θ1(B)Zt

Landoh (1, 1, 1)× (1, 1, 0)12 Φ1(B12)φ1(B)∇1
12∇1Xt = Θ0(B12)θ1(B)Zt

Table D.9: SARIMA models of empirical time series from Okech (2008) [278]
and Landoh (2012) [209]

SARIMA
Okech (2008) Landoh (2012)

(p, d, q)× (P,D,Q)s (1, 1, 1)× (0, 1, 1)12 (1, 1, 1)× (1, 1, 0)12

φ1 0.6357 0.5306
θ1 -0.8778 -1.000
Φ1 – -0.4894
Θ1 -0.6522 –
σ2 2518 17.49
AICc 900.8 351.15

Table D.10: Coefficients of SARIMA models of empirical time
series from Okech (2008) [278] and Landoh (2012) [209]

D.4.4 Atypical malaria empirical time series

In this section four other empirical time series are also presented with atypi-

cal epidemic trends, as well as their respective SARIMA models after Akaike

optimization. In all the cases, the model best fit was defined in the form of

ΦP (Bs)φp(B)∇Ds ∇dXt = ΘQ(Bs)θq(B)Zt, with p = 1, d = 1, q = 1, P = 1, D = 1

and Q = 1, resulting in Φ1(B12)φ1(B)∇1
12∇1Xt = Θ1(B12)θ1(B)Zt – see table

D.11 and figure D.8.

Elipe (2007)

In 2007, Gomez-Elipe defined a malaria prediction model based upon the re-

sults from a malaria empirical time series in Burundi [147]. The Karuzi province

has a tropical climate with a 7-months rainy season starting in October followed

by a dry season from May to September. The model pretended to predict malaria

incidence from current rainfall, higher and lower atmospheric temperature, vege-

tation density and the preceding month malaria incidence. During the study time

period there was a major epidemic outbreak during the first month of the rainy sea-

son (November,2000) probably related to increasing Plasmodium drug-resistance.

Although the model revealed a satisfactory predictive power, it failed to predict

the initial outbreak event – the prediction of 7.7 monthly malaria cases was much

lower than the observed 41.6 cases per 100 inhabitants. This outbreak was tackled

firmly by local health authorities with the help of IRS and ITN effective implemen-

tation, resulting in a massive decrease of new malaria cases in the following rainy

season (5.9 observed malaria cases per 100 inhabitants in November, 2001, this

time in line with the model prediction). This empirical series is a sound example

of the power of adequate preventive measures in suppressing malaria transmission
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Figure D.8: Forecast from SARIMA models, optimized with the help of Akaike
information criterion, and defined as (1, 1, 1)× (1, 1, 1)12

(a) Elipe (2007) [147] with malaria incidence revealing basal disease suppression
broken down by a dramatic disease outbreak, rapidly put under control.
(b) Bedane (2016) [33] with different trends in malaria incidence revealing unstable
epidemic behavior at average african malaria incidence levels.
(c) Alhassan (2017) [12] with an unstable trend at average african levels of malaria
incidence levels.
(d) Lima (2021) [220] with a stable trend and a steady oscillation at lower levels
of malaria incidence.

in the long term [310]. The SARIMA model based upon this empirical malaria

time series forecasts imminent disease elimination in the short term, suggesting

that the adopted measures of disease control were very effective – see figure D.8

a) and table D.11.

Bedane (2016)

The Kucha district in Ethiopia was used by Bedane (2016) as support data for

the development of a predictive model based upon the Box-Jenkins approach [33].

In this case, an ARIMA model (3,1,1) was considered the best fit for forecasting

of new malaria cases. However, no seasonality effect was considered in that model,
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thus significantly reducing its predictive power. By using a more sophisticated

Akaike optimized SARIMA model (1,1,1) we have included the proper seasonality

effect, improving the predictive power of the initial model, and forecasting a future

mild decreasing trend in malaria incidence – see figure D.8 b) and table D.11.

Alhassan (2017)

Alhassan presented a malaria forecasting model (2017) supported by malaria

incidence data from Ghana, Kasena Nankana region [12]. The empirical time

series covered the period from 2010 to 2015. A Box-Jenkins ARIMA model was

used as the forecasting statistical tool. However, the proposed ARIMA model

(1,0,1) revealed a low predictive power, as it did not include a seasonality effect.

Therefore, we used a SARIMA Akaike optimized model based upon that malaria

time series, suggesting a future increasing trend in malaria incidence in the months

to follow – see figure D.8 c) and table D.11.

Lima (2021)

In 2021, Lima presented an extensive analysis comparing the predictive power

of several statistical models concerning data obtained from malaria empirical time

series in the state of Amapá, Brazil, from 1997 to 2016 [220]. Amapá is an im-

portant endemic malaria region in Brazil, with a predominant hot and very humid

tropical, with average rainfall 3,300 mm annually. A large proportion of the state

(73%) is covered by native vegetation. This time series included both P.vivax and

P.falciparum malaria cases. Its results supported the notion that ARIMA could

be used in the future for adequate malaria forecasting. However, the presence of

an important climate seasonality strongly suggest the need for a SARIMA model.

In this case after Akaike optimization we defined the proper SARIMA model as

(1,1,1) x (1,1,1), predicting a stable low incidence malaria endemic seasonal pat-

tern with stationary trend around 2 malaria cases per 100 inhabitants per year –

see figure D.8 d) and table D.11. .

Empirical series φ1 θ1 Φ1 Θ1 σ2 AICc

Elipe (2007) -0.0676 0.2099 0.0506 -0.9999 2590 791.68
Bedane (2016) 0.7597 -0.7769 -0.0683 -0.9666 0.3524 227.66
Alhassan (2017) -0.9038 1.0000 -0.2602 -0.3752 9.968 320.11
Lima (2021) -0.1613 -0.0037 0.1595 0.0629 0.3497 431.15

Table D.11: Coefficients related to SARIMA models of empirical time series
with atypical trends from Elipe (2007) [147] , Bedane (2016) [33], Alhassan
(2017) [12] and Lima (2021) [220]. In all cases we have a common SARIMA
model (1, 1, 1) × (1, 1, 1)12, with different coefficients. Results were obtained
from Akaike criterion optimization
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D.5 Discussion

Overall, ARIMA and SARIMA models fared well as a consistent approach to

malaria forecasting. In our model simulations, SARIMA models were more effec-

tive than ARIMA, as they included a seasonality coefficient in the standard model

(p, d, q) × (P,D,Q)s. In all cases it was necessary to apply differentiation (one-

time) to all the original simulation time series. In empirical time series with trend,

the SARIMA model was simpler – see table D.10 –, resulting in a form without a

regressive component in the seasonal term (1, 1, 1)× (0, 1, 1)12 from Okech (2008)

empirical time series with decreasing trend, with only a minor difference from Lan-

doh (2012) where the model was in the form with no moving average component

in the seasonal term (1, 1, 1) × (1, 1, 0)12. In the four atypical empirical time se-

ries, Elipe (2007), Bedane (2016), Alhassan (2017) and Lima (2021), the SARIMA

model forecasting was similar among all of them ((1, 1, 1)× (1, 1, 1)12), with only

minor variations in the different coefficients. Still, the graphical forecasting was

globally quite satisfactory in all empirical time series – see figures D.7 and D.8.

301



Index

EIR, 180, 183

R0, 24, 32, 36, 42, 47, 51, 80, 94, 110–

112, 115, 118, 163, 180, 182, 183,

190, 191

Anopheles arabiensis, 38, 40, 70

Anopheles atroparvus, 14, 19, 122

Anopheles darlingi, 20

Anopheles funestus, 38, 40, 70

Anopheles gambiae, 14, 21, 38, 40, 70

Anopheles labranchiae, 14, 19, 122

Anopheles sacharovi, 14, 122

Basic reproductive number (R0), 24, 44,

79, 80, 102, 110

Basic reproductive number (R0), 27

Diptera, 13

Force-of-infection (λ), 26

Human feeding rate (a), 180, 190

P.cynomolgi (Pc), 12

P.falciparum (Pf), 5–7, 11, 12, 15–17,

19–21, 25, 38, 40, 47, 64, 96,

122, 123, 165, 168, 300

P.knowlesi (Pk), 6, 12

P.malariae (Pm), 12, 13

P.ovale (Po), 12, 13

P.simium (Ps), 12

P.vivax (Pv), 6, 13, 19, 20, 47, 300

PfKelch13, 17

Transmission coefficient (β), 26

ACT-primaquine, 17

agent-based model, 23–26, 40, 42, 44,

47, 65–67, 69, 102, 137, 284, 286,

292

altitude, 18, 20, 34, 47, 99, 172

Anderson-Darling, 163, 166, 168, 172,

175, 177

anthropophilic, 29, 65, 70

antimalarial drug resistance, 16

antimalarial drugs, 16, 17

ARIMA, 36, 39, 41, 46, 47

artemether-lumefantrine (AL), 16, 17, 40

artemisinin, 7, 16, 17, 40, 96, 104, 118,

191, 195, 197, 198

artemisinin-combined therapy (ACT), 6,

7, 17, 38, 121, 194

artesunate-amodiaquine (AS-AQ), 17

Asia, 6, 14, 38, 120, 129

boost, 16

Burkina Faso, 6, 7, 16, 46

C++, 162

China, 18, 38, 106, 123

climate, 7, 14, 18, 19, 25, 34, 39–41, 44,

46, 81, 99, 120, 124, 132, 172,

194, 298, 300

computational, 11, 23–25, 44, 66, 67, 74,

80, 97, 131, 139, 162, 179, 235,

275, 290

DDT, 80, 194

desired level of detection (LOD), 15

dihydroartemisinin-piperaquine (DHA-PPQ),

16, 17

emergence, 31, 32, 34, 131, 132, 137,

141, 282

Entomological inoculation rate (EIR), 31,

34, 36, 40, 41, 53, 93, 94, 110,

118, 180, 191

focal screening and treatment, 16

302



Index

Fokker-Planck equation, 76, 77, 255, 257,

260, 271

gametocidal agent, 21, 44, 67, 81, 96,

181, 188, 189, 195, 197, 290

gametocytemia, 16, 17, 19, 24, 25, 33,

39, 52, 67, 72–76, 85–90, 95–97,

190, 290–292, 294

heterogeneity, 25, 26, 28, 34, 190

Human biting rate (HBR), 30

human migration, 7, 19, 24, 34, 39, 96,

99, 120, 121, 123–125, 128, 188,

192, 197

humidity, 7, 18, 40, 81, 121, 131

Hurst exponent, 47, 136, 137, 141–145,

148, 150, 152, 154, 156, 158, 159

immunity, 6, 16, 17, 20, 26, 34, 42, 46,

64, 99, 121, 127, 139, 194, 240

indoor residual spraying (IRS), 39, 42,

47, 70

indoor residual spraying (IRS), 80, 140

insecticide-impregnated nets (ITN), 70,

140

ivermectin, 20, 44, 46, 65–68, 70, 74, 76,

81, 85, 88–90, 92, 95, 96, 100,

103, 104, 109, 110, 115, 126, 129,

164, 179, 189, 190, 196

Kenya, 20, 34, 36, 44, 143, 155, 295

Kermack and McKendrick model, 23, 53,

55, 66

Kolmogorov, 246, 255

Kolmogorov-Smirnov, 93, 163, 166, 168,

169, 172, 175, 177

Kuiper, 163, 168, 169, 175, 177

LLIN/ITN/IRS, 15, 56, 57, 97, 190

long lasting insecticide-impregnated nets

(ITN), 140

Lotka-Volterra, 23

malaria immunity, 55, 125

malaria incidence, 5, 6, 17, 18, 20, 33,

36, 38, 41, 42, 47, 66, 67, 85, 87,

88, 90, 137, 143, 146, 148, 153,

158, 165–167, 172, 173, 283–285,

296–298, 300

malaria modeling, 23–25, 27, 28, 283

Markov process, 26, 36, 44, 47, 66, 67,

76, 146, 235, 236, 247

mass screening and treatment approach

(MSAT), 16, 40

mathematical model, 11, 23–25, 33–35,

37, 38, 41, 42, 46, 47, 55, 66,

122, 282

merozoite, 12, 13

methylene blue, 21, 44, 64, 67, 74, 95,

96, 103, 118, 141, 181, 189–191,

195, 197, 290

Metropolis algorithm, 24

model validation, 67, 92, 100, 162, 168,

169, 172, 179, 193

Monte Carlo procedure, 24, 36, 67, 197

mortality, 120

mortality rate, 7, 29, 41, 69, 75, 102, 129

mosquito density, 9, 32, 73, 79–83, 102,

106, 115, 118, 131–133, 190, 192,

195, 197, 250

normalized difference vegetation index

(NDVI), 18, 38, 121

Northern Africa, 19

northern Africa, 14

oviposition, 14, 51, 56, 57

parasitemia, 17, 122

PfSERCA gene, 17

Portugal, 19, 122

primaquine, 17, 21, 44, 64, 67, 74, 95,

97, 118, 141, 181, 189–191, 195,

197, 290

rainfall, 7, 19, 36, 40, 42, 44, 81, 156,

166, 298, 300

rapid diagnostic testing (RDT), 6, 7, 121

303



Index

Ross-Macdonald, 23, 24, 27, 32–34, 39,

46, 51, 191, 193, 197

Rwanda, 20, 34

S769N mutation, 17

SARIMA, 36, 41, 42, 159, 168, 282, 284

seasonality, 7, 39–41, 70, 92, 97, 132,

139, 147, 155, 156, 169, 188, 192,

196, 197, 284, 290, 291, 295, 299,

300

Senegal, 20

Shannon entropy, 143–145, 148, 156, 188,

193, 197, 198, 282, 284

Southeast Asia, 5

Spain, 19, 122

sporogony, 21, 74, 123

sporozoite, 12, 14, 52, 56, 90

Sri Lanka, 20, 36

stochastic modeling, 11, 25–28, 40, 42,

44, 47, 55, 66, 67, 188, 196, 197,

235, 238, 283

sub-Saharan Africa, 5, 17, 42, 44

sulfadoxine–pyrimethamine, 17

Theil’s inequality coefficient, 163, 166,

168, 169, 175, 177, 277, 279

topography, 18

vaccine, 16, 39, 42, 44, 136

vector control, 6, 16, 20, 39, 41, 42, 51,

80, 81, 96, 188, 189, 192, 194,

197

water reservoir, 18, 81, 92

World Health Organization, 7

Zambia, 20

304


