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Abstract: In this paper, we analyze the properties of a complex network of predator-prey systems,
modeling the ecological dynamics of interacting species living in a fragmented environment. We
consider non-identical instances of a Lotka-Volterra model with Holling type II functional response,
which undergoes a Hopf bifurcation, and focus on the possible synchronization of distinct local
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theoretical statements are illustrated by appropriate numerical simulations.
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1. Introduction

It is now widely admitted by the scientific community that the increase of the human activity over
the last century exerts a high pressure on the equilibrium of ecological systems, which can account for
a major defaunation and a fast loss of biodiversity, often qualified as the “sixth extinction” [7, 12]. One
of the main causes of this biological crisis is the degradation of the ecological environments of wildlife,
which takes various forms, in the forefront of which are deforestation and habitat fragmentation [8, 10,
13]. Facing the challenge of restoring biodiversity, while maintaining human activity at a reasonable
level, a carefully considered solution consists in the implementation of ecological corridors between
each component of the fragmented environment, so as to increase the connectivity of natural habitats and
to avoid local extinction of several wildlife species. For example, the restoration of aquatic ecosystems
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by maintaining hydrological connectivity with riparian corridors is studied in [15]; different complexity
and connectivity patterns are investigated at multiple scales in [21].

In this paper, our aim is precisely to propose an original mathematical model, in order to study
these ecological concerns. Therefore, we consider a network of ecological systems, which is intended
to model the complex dynamics of trophic chains in a degraded area. The complex network structure
reproduces the heterogeneous natural environment, which is perturbed by fragmentation, by coupling
several patches on which interacting wild species are living. On each patch, the ecological inter-species
dynamics are modeled by a Lotka-Volterra predator-prey model with Holling type II functional response,
which is able to describe several biological dynamics, such as extinction, coexistence or ecological
cycles [9, 17, 19] (see also e.g. [3, 18, 23, 24] for other Lotka-Volterra type models). Next, the
complex network is constructed so that each patch can admit its own dynamic. In this way, the local
components of the network can for instance exhibit an extinction equilibrium on some places, whereas
other places can present cycles. Furthermore, migrations of biological individuals in space, between
each component of the fragmented environment, are taken into account by coupling the patches of the
network, as schematized in Figure 1, where the disks model the patches of the fragmented habitat, and
the arrows model the ecological corridors between these patches.

With this mathematical model in hand, we analyze the effect of the couplings on the local dynamics
of each patch. In particular, we investigate the possibility to modify a local dynamic of extinction of the
species, by increasing the couplings with patches on which persistence, with or without oscillations, is
ensured. More generally, we search for sufficient conditions of synchronization of the local dynamics,
under a variation of the couplings, which roughly means that a unique local dynamic is imposed on each
patch. On this point, we establish a novel theorem of near-synchronization, which guarantees that the
complex network remains in a neighborhood of a synchronization state, provided the coupling strength
is strong enough, even if the local behaviors are non-identical.

S1

S2 S3

S4

S5

S6

Figure 1. Example of a complex network of predator-prey systems. The disks model the
patches of a fragmented environment, where the inter-species dynamics of Lotka-Volterra
type occur. The arrows model the ecological corridors which can be implemented between
these patches, so as to increase the migrations in space of the species between each patch.

Our choice to model the dynamics of interacting species living in a fragmented environment by
a complex network structure follows a line of recent works. Indeed, synchronization in complex
networks has been studied in a great number of papers, for various real-world applications, among
them coupled oscillators, networks of chemical reactions, neural networks or meta-populations models
(see for instance [1, 2, 5, 14] and the references therein). Recently, complex networks of Lotka-Volterra
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models have been studied in [6]; however, the sufficient conditions of synchronization which have been
established in this paper, correspond only to the particular case of identical dynamics. This state of the
art highlights the main contributions of the present paper: it is the first time, at our knowledge, that a
near-synchronization result for complex networks of non-identical systems is established at a theoretical
level.

Our paper is organized as follows. In the next Section, we show how to construct a complex network
of predator-prey systems, stemming from a Lotka-Volterra model embedded with a Holling type II
functional response. In Section 3, we establish our main theoretical result, with Theorem 2, which
establishes sufficient conditions of near-synchronization in a network of non-identical systems. Finally,
in Section 4, we illustrate our theoretical statements by relevant numerical simulations.

2. Setting of the complex network of predator-prey models

In this section, we present the construction of a complex network of Lotka-Volterra systems, which
describes the dynamics of interacting species living in a fragmented environment.

2.1. Lotka-Volterra predator-prey model with Holling type II functional response

Let us consider a biological environment in which two species interact. We assume that the densities
of the species are determined by a predator-prey model of Lotka-Volterra type, which can be written by:

ẋ = rx(1 − x) −
cxy
α + x

,

ẏ = −dy +
cxy
α + x

.

(2.1)

Here, x and y denote the prey and predator density, respectively; ẋ and ẏ denote their derivatives with
respect to the time variable t. The parameters r, c, d and α are positive coefficients; r is the birth rate
of the preys, d is the mortality rate of predators, and c, α determine the non-linear interaction between
preys and predators. As mentioned in our introduction, the dynamics of the predator-prey system (2.1)
have been widely studied (see for instance [11]). Depending on the values of the parameters r, c, d, α,
the solutions of system (2.1) can be attracted to a coexistence equilibrium, to an extinction equilibrium
or to a limit cycle. The extinction equilibrium is denoted E0 = (0, 0). Under the parameter conditions
c > d and α < c−d

d , system (2.1) admits a coexistence equilibrium E1, which implies persistence of each
species, given by

E1 =

(
αd

c − d
,

rα
c − d

(
1 −

αd
c − d

))
. (2.2)

System (2.1) also admits the equilibrium E2 = (1, 0). Let us introduce the critical value α0 given by

α0 =
c − d
c + d

. (2.3)

It is well-known (see for instance [11], Chapter 3 or [4], Section 3.4.1) that system (2.1) undergoes a
Hopf bifurcation at α = α0. For α < α0, a stable limit cycle bifurcates from the persistence equilibrium
E1. This Hopf bifurcation is illustrated in Figure 2. Therefore, for α small enough, system (2.1) presents
oscillations, which are interpreted as healthy ecological cycles.
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Figure 2. Hopf bifurcation occurring in the predator-prey model (2.1) when α crosses the
critical value α0 = c−d

c+d . For α > α0, the orbits converge to a stable focus. For α < α0, the
system admits a stable limit cycle.

2.2. Complex network of predator-prey models for a fragmented environment

Next, we assume that the geographical habitat of the species is perturbed by the anthropic extension,
so that it is fragmented in several patches. This fragmentation is likely to alter the equilibrium of the
ecological system. In order to model such a fragmented environment, we construct a complex network
of predator-prey models as follows.

First, let n > 0 denote the number of patches on the fragmented environment. On each patch i ∈
{1, . . . , n}, we denote by (xi, yi) the densities of preys and predators respectively. We assume that each
patch i ∈ {1, . . . , n} can be connected to other patches and we denote by Ni ⊂ {1, . . . , n} the set of
patches which are connected to patch i. We assume that migrations of biological individuals can occur
between two connected patches, at rates σ1 for preys and σ2 for predators. In this way, the dynamics of
the fragmented environment are determined by the following complex network:

ẋi = rixi(1 − xi) −
cixiyi

αi + xi
− σ1

∑
j∈Ni

(xi − x j),

ẏi = −diyi +
cixiyi

αi + xi
− σ2

∑
j∈Ni

(yi − y j),
(2.4)

for 1 ≤ i ≤ n, with σ1 ≥ 0 and σ2 ≥ 0. Note that the index i ranges over the set {1, . . . , n}, whereas the
subscript j, in the two sums which determine the couplings of the network, ranges of the set Ni of the
neighbors of i.

We emphasize that the parameters ri, ci, di, αi can differ from one patch to another, which means
that the ecological dynamics are non-identical within the fragmented environment. For instance, some
patches could present limit cycles, whereas other patches could exhibit an extinction of both species.
Note also that the couplings are symmetric, which means that if the species xi, yi of patch i can move
towards some patch j, then the species x j, y j of patch j can conversely move towards patch i.

One remarkable case of fragmented environment is that of a complete graph topology, for which we
have Ni = {1, . . . , n} \ {i}; this situation means that each patch is connected to all other patches. At the
opposite, if the coupling parameters σ1, σ2 are equal to 0, then no migration of individuals occur in the
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network.
Let us now introduce some notations. Let X =

(
(x1, y1), . . . , (xn, yn)

)>
∈ R2n. For each i ∈ {1, . . . , n},

we denote

λi = (ri, ci, di, αi)> ∈ R4,

f1(xi, yi, λi) = rixi(1 − xi) −
cixiyi

αi + xi
,

f2(xi, yi, λi) = −diyi +
cixiyi

αi + xi
,

g1(xi, X, σ1) = −σ1

∑
j∈Ni

(xi − x j),

g2(yi, X, σ2) = −σ2

∑
j∈Ni

(yi − y j).

(2.5)

We also denote σ = (σ1, σ2)> ∈ R2 and

Λ = (λ1, . . . , λn)> ∈ R4n,

F(X,Λ) =
(

f1(x1, y1, λ1), f2(x1, y1, λ1), . . . , f1(xn, yn, λn), f2(xn, yn, λn)
)>
∈ R2n,

G(X, σ) =
(
g1(x1, X, σ1), g2(y1, X, σ2), . . . , g1(xn, X, σ1), g2(yn, X, σ2)

)>
∈ R2n.

(2.6)

With these notations, the complex network (2.4) can be written under the following short form

Ẋ = F(X,Λ) + G(X, σ). (2.7)

Our first result guarantees that the complex network (2.7) admits global solutions, whose components
are non-negative and bounded.

Theorem 1. Let X0 ∈ (R+)2n. Then the complex network problem determined by equation (2.7) and
X(0) = X0 admits a unique global solution X(t, X0) defined on [0,+∞), whose components are non-
negative.

Furthermore, the flow induced by equation (2.7) admits a positively invariant region Θ which is
compact in (R+)2n.

Before giving the proof of Theorem 1, we recall a Gronwall type inequality, whose proof can be
found in [22] for instance.

Lemma 1. Let v denote a continuously differentiable function defined on [0,T ], with T > 0. Assume
that v satisfies

v̇(t) + δv(t) ≤ γ,

for all t ∈ [0,T ], with δ > 0 and γ > 0. Then we have

v(t) ≤
[
v(0) −

γ

δ

]
e−δt +

γ

δ
, t ∈ [0,T ].

We continue with the proof of Theorem 1.
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Proof of Theorem 1. Let X0 ∈ (R+)2n. Standard results of the theory of differential equations (see for
instance [16]) guaranty that the Cauchy problem determined by equation (2.7) and the initial condition
X(0) = X0 admits a unique local solution, which we denote X(t, X0), defined on [0,T ], with T > 0.

Let us now prove that the components of the local solution X(t, X0) are non-negative on [0,T ]. First,
we recall that the initial condition X0 belongs to (R+)2n. Next, we observe that the equations of system
(2.4) can be rewritten 

ẋi = xiφ1(xi, yi) + σ1

∑
j∈Ni

x j,

ẏi = yiφ2(x, i, yi) + σ2

∑
j∈Ni

y j,

with 1 ≤ i ≤ n and

φ1(xi, yi) = xi(1 − xi) −
ciyi

αi + xi
− σ1 |Ni| , φ2(xi, yi) = −diyi +

ciyi

αi + xi
− σ2 |Ni| ,

where |Ni| denotes the cardinal of the finite set Ni. Hence, by virtue of Proposition A.17 in [20], the
components (xi, yi)1≤i≤n satisfy xi(t) ≥ 0, yi(t) ≥ 0, for t ∈ [0,T ].

Finally, let us prove that the flow induced by equation (2.7) admits a positively invariant region Θ,
which is compact in (R+)2n; as a consequence, every local solution X(t, X0) will be global in time. We
first remark that for each i ∈ {1, . . . , n}, positive coefficients ai, bi can be found such that

ris(1 − s) ≤ ai − bis,

for all s ∈ R. Afterwards, we introduce

d0 = min
1≤i≤n

di, a0 =

n∑
i=1

ai, b0 = min
1≤i≤n

bi, c0 = min(b0, d0), (2.8)

and we denote by P the total population of preys and predators in the complex network:

P(t) =

n∑
i=1

[
xi(t) + yi(t)

]
, t ∈ [0,T ]. (2.9)

Since the couplings are symmetric, the sum over i ∈ {1, . . . , n} of all equations of system (2.4) leads to

Ṗ(t) =

n∑
i=1

rixi(t)
[
1 − xi(t)

]
−

n∑
i=1

diyi(t).

Next, we write

−

n∑
i=1

diyi(t) ≤ −d0

n∑
i=1

yi(t),

and analogously
n∑

i=1

rixi(t)
[
1 − xi(t)

]
≤

n∑
i=1

[
ai − bixi(t)

]
≤ a0 − b0

n∑
i=1

xi(t).

We obtain
Ṗ(t) + c0P(t) ≤ a0.

AIMS Mathematics Volume 7, Issue 11, 19975–19997.



19981

Applying Lemma 1 leads to

P(t) ≤
[
P(0) −

a0

c0

]
e−c0t +

a0

c0
,

which implies that the region Θ defined by

Θ =

X = (xi, yi)1≤i≤n ∈ (R+)2n ;
n∑

i=1

(xi + yi) ≤
a0

c0

 (2.10)

is a positively invariant and compact region. The proof is complete. �

Remark 1. It is worth emphasizing that the bound a0
c0

of the positively invariant region Θ defined by
(2.10) does not depend on the coupling parameters σ1, σ2. This uniform bound will be of great interest
in Section 3 for studying the global dynamics of the complex network (2.7).

Now that the solutions of the complex network (2.7) are proved to be well defined and global in time,
we give the definition of synchronization.

Definition 1. Let i, j ∈ {1, . . . , n} such that i , j. We say that the patches i and j of the complex network
(2.7) synchronize in Θ if, for any initial condition X0 ∈ Θ, the solution of (2.7) starting from X0 satisfies

lim
t→+∞

( ∣∣∣xi(t) − x j(t)
∣∣∣2 +

∣∣∣yi(t) − y j(t)
∣∣∣2 )

= 0.

We say that the complex network (2.7) synchronizes in Θ if every pair (i, j) of patches synchronizes
in Θ.

Remark 2. Note that synchronization can occur in the complex network (2.7) without imposing any
particular asymptotic dynamics; for example, the complex network could synchronize towards a global
dynamic of extinction, towards a global dynamic of coexistence, or towards a global dynamic of limit
cycles (it could even happen that a new dynamic emerges from the complex network structure). We will
establish in Section 3 sufficient conditions of synchronization and discover that a complex network of
non-identical instances of the predator-prey model (2.1) is likely not to fully synchronize.

3. Main result: near-synchronization of the complex network predator-prey model

In this section, we search for sufficient conditions of synchronization in the complex network (2.7).
In a great number of papers, sufficient conditions of synchronization are established in the case of
complex networks of identical systems. Here, we investigate the case of non-identical systems. We
prove a novel theorem which shows that a complex network of non-identical systems can reach a near-
synchronization state. For the sake of simplicity, we assume that the graph underlying the complex
network (2.7) is complete, that is, each patch is connected to all other patches; equivalently, we have
Ni = {1, . . . , n} \ {i} for 1 ≤ i ≤ n, where Ni denotes the finite set of patches which are connected to
patch i. For all i, j ∈ {1, . . . , n}, we introduce the energy functions ui, j defined along the trajectories of
the complex network by

ui, j(t) =
1
2

[ ∣∣∣xi(t) − x j(t)
∣∣∣2 +

∣∣∣yi(t) − y j(t)
∣∣∣2 ]
, (3.1)

and for λi = (ri, di, ci, αi), λ j = (r j, d j, c j, α j) ∈ R4, we denote∥∥∥λi − λ j

∥∥∥
∞

= max
{ ∣∣∣ri − r j

∣∣∣ , ∣∣∣di − d j

∣∣∣ , ∣∣∣ci − c j

∣∣∣ , ∣∣∣αi − α j

∣∣∣ }.
AIMS Mathematics Volume 7, Issue 11, 19975–19997.
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The next theorem establishes an estimate of the energy functions ui, j defined by (3.1).

Theorem 2. There exist positive constants η, δ such that, for any initial condition X0 ∈ Θ, the solution
of the complex network (2.7), starting from X0, satisfies

u̇i, j(t) ≤ η
∥∥∥λi − λ j

∥∥∥
∞

u1/2
i, j (t) +

[
δ − 2(n − 1)σ̃

]
ui, j(t), t > 0, (3.2)

where σ̃ = min{σ1, σ2}.
Furthermore, the constants η and δ do not depend on the coupling parameters σ1, σ2.

We begin with a technical lemma.

Lemma 2. There exist positive constants kr, 1 ≤ r ≤ 6, such that the functions f1 and f2 defined in (2.5)
satisfy ∣∣∣ f1(xi, yi, λi) − f1(x j, y j, λ j)

∣∣∣ ≤ k1

∥∥∥λi − λ j

∥∥∥
∞

+ k2

∣∣∣xi − x j

∣∣∣ + k3

∣∣∣yi − y j

∣∣∣ ,∣∣∣ f2(xi, yi, λi) − f2(x j, y j, λ j)
∣∣∣ ≤ k4

∥∥∥λi − λ j

∥∥∥
∞

+ k5

∣∣∣xi − x j

∣∣∣ + k6

∣∣∣yi − y j

∣∣∣ , (3.3)

for all (xi, yi)1≤i≤n, in the invariant region Θ defined by (2.10) and for all i, j ∈ {1, . . . , n}.
Furthermore, the constants kr, 1 ≤ r ≤ 6, do not depend on the coupling parameters σ1, σ2.

Proof of Lemma 2. Since (xi, yi)1≤i≤n belongs to the invariant region Θ defined by (2.10), there exists a
positive constant K such that

|xi| ≤ K, |yi| ≤ K,

for all i ∈ {1, . . . , n}.
In order to establish the estimates (3.3), we first write∣∣∣diyi − d jy j

∣∣∣ ≤ ∣∣∣diyi − diy j

∣∣∣ +
∣∣∣diy j − d jy j

∣∣∣ ,
which leads to ∣∣∣diyi − d jy j

∣∣∣ ≤ d+
∣∣∣yi − y j

∣∣∣ + K
∣∣∣di − d j

∣∣∣ , (3.4)

where d+ = max
1≤i≤n

di. Similarly, we have

∣∣∣rixi(1 − xi) − r jx j(1 − x j)
∣∣∣ ≤ ∣∣∣rixi(1 − xi) − rix j(1 − x j)

∣∣∣ +
∣∣∣rix j(1 − x j) − r jx j(1 − x j)

∣∣∣
≤ ri

∣∣∣xi(1 − xi) − x j(1 − x j)
∣∣∣ + K(1 + K)

∣∣∣ri − r j

∣∣∣ .
Now we write ∣∣∣xi(1 − xi) − x j(1 − x j)

∣∣∣ ≤ ∣∣∣xi − x j

∣∣∣ +
∣∣∣x2

i − x2
j

∣∣∣
≤

∣∣∣xi − x j

∣∣∣ +
∣∣∣xi + x j

∣∣∣ × ∣∣∣xi − x j

∣∣∣
≤ (1 + 2K)

∣∣∣xi − x j

∣∣∣ ,
from which it follows that∣∣∣rixi(1 − xi) − r jx j(1 − x j)

∣∣∣ ≤ r+(1 + 2K)
∣∣∣xi − x j

∣∣∣ + K(1 + K)
∣∣∣ri − r j

∣∣∣ , (3.5)

AIMS Mathematics Volume 7, Issue 11, 19975–19997.
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where r+ = max
1≤i≤n

ri. Finally, we compute∣∣∣∣∣∣ cixiyi

αi + xi
−

c jx jy j

α j + x j

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ (α j + x j)cixiyi − (αi + xi)c jx jy j)

(αi + xi)(α j + x j)

∣∣∣∣∣∣
≤

1
αiα j

[ ∣∣∣α jcixiyi − αic jx jy j

∣∣∣ +
∣∣∣cixix jyi − c jxix jy j

∣∣∣ ].
For the first term in the brackets, we write∣∣∣α jcixiyi − αic jx jy j

∣∣∣ ≤ ∣∣∣α jcixiyi − α jcix jy j

∣∣∣ +
∣∣∣α jcix jy j − αic jx jy j

∣∣∣
≤ α jci

∣∣∣xiyi − x jy j

∣∣∣ + K2
∣∣∣α jci − αic j

∣∣∣
≤ α jci

∣∣∣xiyi − xiy j

∣∣∣ + α jci

∣∣∣xiy j − x jy j

∣∣∣ + K2
∣∣∣α jci − αic j

∣∣∣
≤ α jciK

( ∣∣∣yi − y j

∣∣∣ +
∣∣∣xi − x j

∣∣∣ ) + K2α j

∣∣∣ci − c j

∣∣∣ + K2c j

∣∣∣αi − α j

∣∣∣ .
For the second term in the brackets, we have∣∣∣cixix jyi − c jxix jy j

∣∣∣ ≤ ∣∣∣cixix jyi − cixix jy j

∣∣∣ +
∣∣∣cixix jy j − c jxix jy j

∣∣∣
≤ ciK2

∣∣∣yi − y j

∣∣∣ + K3
∣∣∣ci − c j

∣∣∣ ,
which leads to ∣∣∣∣∣∣ cixiyi

αi + xi
−

c jx jy j

α j + x j

∣∣∣∣∣∣ ≤ α+c+K
(α−)2

∣∣∣xi − x j

∣∣∣ +
a+c+K + c+K2

(α−)2

∣∣∣yi − y j

∣∣∣
+

K2α+ + K3

(α−)2

∣∣∣ci − c j

∣∣∣ +
c+K2

(α−)2

∣∣∣αi − α j

∣∣∣ , (3.6)

where α+ = max
1≤i≤n

αi, c+ = max
1≤i≤n

ci and α− = min
1≤i≤n

αi.

Gathering inequalities (3.5) and (3.6) leads to∣∣∣ f1(xi, yi, λi) − f1(x j, y j, λ j)
∣∣∣ ≤ k1

∥∥∥λi − λ j

∥∥∥
∞

+ k2

∣∣∣xi − x j

∣∣∣ + k3

∣∣∣yi − y j

∣∣∣ ,
whereas gathering inequalities (3.4) and (3.6) leads to∣∣∣ f2(xi, yi, λi) − f2(x j, y j, λ j)

∣∣∣ ≤ k4

∥∥∥λi − λ j

∥∥∥
∞

+ k5

∣∣∣xi − x j

∣∣∣ + k6

∣∣∣yi − y j

∣∣∣ ,
with positive constants kr, 1 ≤ r ≤ 6, which do not depend on σ neither on the number n of patches in
the network. The proof of Lemma 2 is complete. �

We continue with the proof of Theorem 2.

Proof of Theorem 2. We compute the derivative of ui, j(t) along a trajectory
(
xi(t), yi(t)

)
1≤i≤n of the

complex network (2.7), starting from an initial condition
(
xi,0, yi,0

)
1≤i≤n ∈ Θ. In order to lighten our

notations, we omit the time dependence:

u̇i, j = (xi − x j)(ẋi − ẋ j) + (yi − y j)(ẏi − ẏ j)

= (xi − x j)
[
f1(xi, yi, λi) − σ1

∑
k,i

(xi − xk) − f1(x j, y j, λ j) + σ1

∑
k, j

(x j − xk)
]

+ (yi − y j)
[
f2(xi, yi, λi) − σ2

∑
k,i

(yi − yk) − f2(x j, y j, λ j) + σ2

∑
k, j

(y j − yk)
]
.
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Now, we observe that

σ1

∑
k,i

(xi − xk) − σ1

∑
k, j

(x j − xk) = σ1(n − 1)(xi − x j),

σ2

∑
k,i

(yi − yk) − σ2

∑
k, j

(y j − yk) = σ2(n − 1)(yi − y j).

By virtue of Lemma 2, we obtain

u̇i, j ≤
∣∣∣xi − x j

∣∣∣ ∣∣∣k1

∥∥∥λi − λ j

∥∥∥
∞

+ k2

∣∣∣xi − x j

∣∣∣ + k3

∣∣∣yi − y j

∣∣∣∣∣∣ − σ1(n − 1)(xi − x j)2

+
∣∣∣yi − y j

∣∣∣ ∣∣∣k4

∥∥∥λi − λ j

∥∥∥
∞

+ k5

∣∣∣xi − x j

∣∣∣ + k6

∣∣∣yi − y j

∣∣∣∣∣∣ − σ2(n − 1)(yi − y j)2

≤ max{k1, k4}
∥∥∥λi − λ j

∥∥∥
∞
×

[ ∣∣∣xi − x j

∣∣∣ +
∣∣∣yi − y j

∣∣∣ ]
+

[
k2 − σ1(n − 1)

] ∣∣∣xi − x j

∣∣∣2 +
[
k6 − σ2(n − 1)

] ∣∣∣yi − y j

∣∣∣2
+ (k3 + k5)

∣∣∣xi − x j

∣∣∣ × ∣∣∣yi − y j

∣∣∣ .
Next, we use the standard inequality a + b ≤

√
2 ×
√

a2 + b2, which is valid for all a, b ∈ R+, to write∣∣∣xi − x j

∣∣∣ +
∣∣∣yi − y j

∣∣∣ ≤ √2
√∣∣∣xi − x j

∣∣∣2 +
∣∣∣yi − y j

∣∣∣2 ≤ 2
√

ui, j,

thus we have
max{k1, k4}

∥∥∥λi − λ j

∥∥∥
∞
×

[ ∣∣∣xi − x j

∣∣∣ +
∣∣∣yi − y j

∣∣∣ ] ≤ η ∥∥∥λi − λ j

∥∥∥
∞

u1/2
i, j ,

with η = 2 ×max{k1, k4}. In parallel, the Young inequality a × b ≤ a2

2 + b2

2 yields

∣∣∣xi − x j

∣∣∣ × ∣∣∣yi − y j

∣∣∣ ≤ ∣∣∣xi − x j

∣∣∣2
2

+

∣∣∣yi − y j

∣∣∣2
2

≤ ui, j.

Finally, we set δ = 2 max{k2, k6} + k3 + k5 and obtain

u̇i, j ≤ η
∥∥∥λi − λ j

∥∥∥
∞

u1/2
i, j +

[
δ − 2(n − 1)σ̃

]
ui, j,

which completes the proof of Theorem 2. �

Let us now discuss on some consequences of Theorem 2. We observe that estimate (3.2) is a
differential inequality, which implies that for all i, j ∈ {1, . . . , n}, the energy function ui, j is bounded
by the solution w of the Bernoulli equation

ẇ = η
∥∥∥λi − λ j

∥∥∥
∞

w1/2 +
[
δ − 2(n − 1)σ̃

]
w. (3.7)

If λi = λ j, the latter differential equation can be simplified, so that estimate (3.2) becomes

u̇i, j(t) ≤
[
δ − 2(n − 1)σ̃

]
ui, j(t),

which directly yields the following corollary.

Corollary 1. Assume that λi = λ j for some i, j ∈ {1, . . . , n}. Then the patches i and j synchronize if the
following condition is fulfilled:

(n − 1)σ̃ > δ. (3.8)
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If λi = λ j for all i, j ∈ {1, . . . , n}, then obviously the whole network synchronizes under condition
(3.8). Next, since the constant δ does not depend on the coupling parameters σ1, σ2, the sufficient
condition (3.8) can easily be satisfied, provided the number n of patches in the network is sufficiently
large, or provided the minimum coupling strength σ̃ = min{σ1, σ2} is sufficiently large.

From the ecological point of view, increasing the number n of patches in the network would
correspond to a worse fragmentation of the habitat, which is not a reasonable strategy for our purposes.
However, increasing the minimum coupling strength σ̃ can be realized by providing wider ecological
corridors.

The non trivial case of Theorem 2 corresponds to a complex network of non-identical patches, for
which we have λi , λ j for at least one pair (i, j) ∈ {1, . . . , n}2. In that case, the synchronization state
{(xi, yi) = (x j, y j)} is likely to present a soft loss of stability. Indeed, it is well-known that the solution w
of the Bernoulli equation (3.7) converges towards a positive limit given by

lim
t→+∞

w(t) =

 η
∥∥∥λi − λ j

∥∥∥
∞

δ − (n − 1)σ̃

2

,

provided w(0) > 0. We obtain the following corollary.

Corollary 2. The energy function ui, j defined by (3.1), along with the solution of the complex network
(2.7) starting, from X0 ∈ Θ, satisfies

0 ≤ lim sup ui, j(t) ≤

 η
∥∥∥λi − λ j

∥∥∥
∞

δ − (n − 1)σ̃

2

. (3.9)

Finally, since the constants η and δ do not depend on the coupling parameters σ1, σ2, then
a sufficiently large value of the minimum coupling strength σ̃ ensures that any neighborhood of
the synchronization state {(xi, yi) = (x j, y j)} can be reached, which justifies the expression near-
synchronization. This remark can be formalized by the following definition.

Definition 2. Let i, j ∈ {1, . . . , n} such that i , j. We say that the patches i and j of the complex network
(2.7) nearly synchronize in Θ with respect to σ̃ if, for any initial condition X0 ∈ Θ, and for any ε > 0,
the solution of (2.7) starting from X0 satisfies

0 ≤ lim
t→+∞

( ∣∣∣xi(t) − x j(t)
∣∣∣2 +

∣∣∣yi(t) − y j(t)
∣∣∣2 )

< ε,

for σ̃ sufficiently large.
We say that the complex network (2.7) nearly synchronizes in Θ if every pair (i, j) of patches nearly

synchronizes in Θ.

The discussion above can now be formulated as follows.

Corollary 3. The complex network (2.7) nearly synchronizes in Θ with respect to the minimum coupling
strength σ̃.

The latter corollary means that a sufficiently large minimal coupling strength σ̃ ensures that the
dynamics of each patch of the complex network (2.4) will be almost identical. Furthermore, by virtue
of (3.9), if the minimal coupling strength σ̃ increases, or if the number of patches n increases, then the
near-synchronization state is getting closer to a synchronization state. In other words, σ̃ and n can be
viewed as parameters to control the level of near-synchronization in the network.
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4. Numerical simulations

In this section, we provide two examples that illustrate the near-synchronization pattern of a complex
network, under the effect of the couplings. We consider networks with two and ten patches, with
different coupling strengths, so as to highlight various emergent dynamics. For the sake of simplicity,
we assume that σ1 = σ2 and write σ instead of σ1, σ2. Our complete computation codes are provided
in the Appendix.

4.1. Near-synchronization in a two-patches network

We start by showing the effect of the coupling in a simple two-patches network. Although it may
appear simple, the case of a two-patches network is fundamental, since it models a natural habitat which
is divided by a single obstacle. Notably, the construction of a single road crossing a forest ecosystem
exerts a high perturbation on the biodiversity hosted by this environment. Similarly, the establishment
of a single river barrier or of a single maritime dyke profoundly modifies the behavior of a water hosted
ecosystem.

Therefore, we consider the system given by

ẋ1 = r1x1(1 − x1) −
c1x1y1

α1 + x1
− σ(x1 − x2),

ẏ1 = −d1y1 +
c1x1y1

α1 + x1
− σ(y1 − y2),

ẋ2 = r2x2(1 − x2) −
c2x2y2

α2 + x2
− σ(x2 − x1),

ẏ2 = −d2y2 +
c2x2y2

α2 + x2
− σ(y2 − y1),

(4.1)

with the parameter values from Table 1 and σ > 0. On patch 1, the parameters are chosen so that the
system converges to a coexistence steady state (α = 0.5) or to a limit cycle (α = 0.05): the birth rate r1

of preys and the death rate d1 of predators are of the same order; in both cases, extinction is avoided.
On patch 2, the parameters are chosen so that the system converges to the extinction state (it suffices to
decrease the birth rate of preys: r1 = 0.2).

Table 1. Parameter values for the two patches network given by system (4.1).

Patch 1 Patch 2
Parameter Value

r1 1
d1 1
c1 2
α1 0.5 or 0.05

Parameter Value
r2 0.2
d2 1
c2 3
α2 0.05

The initial conditions are defined by

(x1(0), y1(0)) = (0.3, 0.2), (x2(0), y2(0)) = (0.5, 0.3).

We show in Figure 3 the corresponding orbits of the two-patches complex network (4.1), in absence of
coupling (σ = 0), and in Figure 4 the orbits for a positive coupling strength (σ = 0.3); two cases are
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investigated: in the first case, we have α1 = 0.5, whereas in the second case, we have α1 = 0.05. Let us
discuss the numerical results in regard of Theorem 2.

For σ = 0 and α1 = 0.5 (Figure 3(a)), the orbit (x1, y1) of the first patch is attracted to a persistence
equilibrium, while the orbit (x2, y2) of the second patch is attracted to the extinction equilibrium. For
σ = 0 and α1 = 0.05 (Figure 3(b)), the orbit of the second patch is the same, but the orbit (x1, y1) of the
first patch is now attracted to a limit cycle. We can predict, by virtue of Theorem 2, that the two-patches
network will present a near-synchronization dynamic if the coupling strength σ is sufficiently large.
However, we aim to describe the common dynamic which is reached under this near-synchronization
pattern. Indeed, for σ = 0.3, Figure 4 shows that the near-synchronization can hide various emergent
dynamics that might occur. For σ = 0.3 and α1 = 0.5 (Figure 4(a)), the two patches nearly synchronize
towards a persistence equilibrium, whereas for σ = 0.3 and α1 = 0.05 (Figure 4(b)), the two patches
nearly synchronize towards a limit cycle. In both cases, the dynamics are obviously modified: the
level of persistence is decreased on patch 1 for α1 = 0.5 (Figure 4(a)), as well as the amplitude of
the oscillations on patch 1 for α1 = 0.05 (Figure 4(b)); however, the extinction on patch 2 is avoided.
Overall, these results that show the good health of the ecosystem (persistence or ecological oscillations)
can be recovered by the setting of a strong connection between the patches of the fragmented habitat.

(a) σ = 0, α1 = 0.5
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0.4

0.6
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(b) σ = 0, α1 = 0.05
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Figure 3. Orbits of the two-patches network (4.1) in absence of coupling. (a) For σ = 0 and
α1 = 0.5, the orbit (x1, y1) of the first patch is attracted to a persistence equilibrium, while the
orbit (x2, y2) of the second patch is attracted to the extinction equilibrium. (b) For σ = 0 and
α1 = 0.05, the orbit of the second patch is the same, but the orbit (x1, y1) of the first patch is
now attracted to a limit cycle.
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(a) σ = 0.3, α1 = 0.5
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(b) σ = 0.3, α1 = 0.05
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Figure 4. Orbits of the two-patches network (4.1) with a positive coupling strength. (a) For
σ = 0.3 and α1 = 0.5, the two patches nearly synchronize towards a persistence equilibrium.
(b) For σ = 0.3 and α1 = 0.05, the two patches nearly synchronize towards a limit cycle
corresponding to ecological oscillations.

4.2. Synchronization of oscillatory behaviors in small networks

Finally, we aim to experiment an increase of the number n of patches in the network. Therefore, we
consider a ten-patches network with a complete graph topology; we choose randomly a set of parameters
for each patch, such that

0 ≤ ri ≤ 1, 0 ≤ di ≤ 1, 0 ≤ ci ≤ 3, 0.01 ≤ αi ≤ 0.41,

for each i ∈ {1, 2, . . . , 10}; the initial conditions are also chosen randomly in the interval [0.1, 0.6]. In
this way, the patches of the complex network exhibit various local dynamics in absence of coupling. The
corresponding orbits are show in Figure 5; the corresponding time series are also provided in Figure 6.
For instance, the orbit (x3, y3) of patch 3 is attracted to a limit cycle; the orbit (x4, y4) of patch 4 converges
to the equilibrium E2(1, 0) (persistence of the preys and extinction of the predators); the orbit (x6, y6) of
patch 6 converges to the extinction equilibrium.

We depict in Figure 7 the orbits of the same ten-patches complex network, with a relatively large
coupling strength (σ = 1); the corresponding time series are again provided in Figure 8. According
to Theorem 2, we observe that the orbits nearly synchronize. The coupling strength is large enough to
ensure that the near-synchronization is very closed to a synchronization state. Furthermore, the near-
synchronization is characterized by a limit cycle; the amplitude of that limit cycle can slightly vary from
one patch to another (for instance, y7 is less than 0.7, while y8 reaches 0.8).
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From the ecological point of view, these results show again that healthy biological oscillations can
be recovered by the setting of numerous and efficient connections between the patches of a fragmented
environment.
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Figure 5. Local dynamics in a ten-patches network in absence of coupling (σ = 0). The orbits
of patches 1, 2, 3, 5, 9, 10 are attracted to a limit cycle; the orbits of patches 4, 7 converge to
the equilibrium E2(1, 0) (persistence of the preys and extinction of the predators); the orbit of
patch 6 converges to the extinction equilibrium.
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Figure 6. Time series of a ten-patches network in absence of coupling (σ = 0). Depending on
the values of the parameters, the solutions are attracted to a limit cycle, to the equilibrium
E2(1, 0) (persistence of the preys and extinction of the predators) or to the extinction
equilibrium.
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Figure 7. Near-synchronization in a ten-patches network with a relatively large coupling
strength (σ = 1). The non-identical dynamics are nearly synchronized towards a limit cycle.
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Figure 8. Time series of a ten-patches network with a relatively large coupling strength (σ =

1), showing the near-synchronization of the local dynamics.

5. Conclusions and future work

In this paper, we proposed a complex network to model a heterogeneous geographical habitat of
species which is perturbed by an anthropic extension, being fragmented in several patches, where the
fragmentation is likely to alter the equilibrium of the ecological system. The complex network was
constructed by coupling several patches on which interacting wild species are living and where, for each
patch, the ecological inter-species dynamics were modeled by a Lotka-Volterra predator-prey model
with Holling type II functional response. An important feature of the complex network is that each patch
can admit its own dynamic and migrations of biological individuals in space, between each component
of the fragmented environment, are taken into account by coupling the patches of the network. We
proved new sufficient conditions for the near-synchronization of the complex network, which guarantees
that the complex network remains in a neighborhood of a synchronization state, provided the coupling
strength is strong enough, even if the local behaviors are non-identical. This result allows us to modify
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the local dynamic of extinction of the species, by increasing the couplings with patches on which
persistence, with or without oscillations, is ensured.

When proving the sufficient conditions of synchronization, we discovered that a complex network of
non-identical instances of the predator-prey model (2.1) is likely not to fully synchronize. This feature
motivates the setting of an optimal control problem, so as to exert a command on the dynamics of the
complex network (2.7) and to reach a synchronization state, even in the case of non-identical patches.
As future work, we intend to apply optimal control theory to remedy the default of synchronization,
where the coupling strengths will be represented by external controls acting on the dynamics of the
network.

Another interesting research perspective corresponds to the fact that the dispersion of the species
from one patch to another could be modeled at a refined level by adding time delays in the coupling
terms; in particular, it will be natural to investigate the impact of time delays on the near synchronization
dynamic that we have established in the present paper.
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Appendix

In this appendix, we provide the computation codes of our numerical simulations. These codes are
written in Python3 and require the scientific libraries matplotlib, numpy and scipy.

Computation code for a two-patches network

#!/usr/bin/env python3

# Scientific libraries

from matplotlib import pyplot as plt

import numpy as np

from scipy.integrate import odeint

from random import random

# Parameters

r1 = 1; d1 = 1; c1 = 2; alpha1 = 0.05 # or 0.5

sigma = 0.3 # or 0

r2 = 0.2; d2 = 1; c2 = 3; alpha2 = 0.05

def lotka(X, t):

x1, y1, x2, y2 = X

dx1 = r1∗x1∗(1−x1)− c1∗x1∗y1/(alpha1+x1)− sigma∗(x1−x2)

dy1 =−d1∗y1 + c1∗x1∗y1/(alpha1+x1)− sigma∗(y1−y2)

dx2 = r2∗x2∗(1−x2)− c2∗x2∗y2/(alpha2+x2) + sigma∗(x1−x2)

dy2 =−d2∗y2 + c2∗x2∗y2/(alpha2+x2) + sigma∗(y1−y2)

return [dx1, dy1, dx2, dy2]

# Phase portrait

time = np.arange(0, 50, 0.01)

plt.figure()

x10 = 0.3; y10 = 0.2; x20 = 0.5; y20 = 0.3

orbit = odeint(lotka, [x10, y10, x20, y20], time)

x1, y1, x2, y2 = orbit.T

plt.plot(x1, y1, ’b’, lw=0.5)

plt.plot(x2, y2, ’r’, lw=1)

plt.show()
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Computation code for a ten-patches network

#!/usr/bin/env python3

# Scientific libraries

from matplotlib import pyplot as plt

import numpy as np

from scipy.integrate import odeint

from random import random

# Parameters

r1 = random(); d1 = random(); c1 = 3∗random(); alpha1 = 0.01 + 0.4∗random()

r2 = random(); d2 = random(); c2 = 3∗random(); alpha2 = 0.01 + 0.4∗random()

r3 = random(); d3 = random(); c3 = 3∗random(); alpha3 = 0.01 + 0.4∗random()

r4 = random(); d4 = random(); c4 = 3∗random(); alpha4 = 0.01 + 0.4∗random()

r5 = random(); d5 = random(); c5 = 3∗random(); alpha5 = 0.01 + 0.4∗random()

r6 = random(); d6 = random(); c6 = 3∗random(); alpha6 = 0.01 + 0.4∗random()

r7 = random(); d7 = random(); c7 = 3∗random(); alpha7 = 0.01 + 0.4∗random()

r8 = random(); d8 = random(); c8 = 3∗random(); alpha8 = 0.01 + 0.4∗random()

r9 = random(); d9 = random(); c9 = 3∗random(); alpha9 = 0.01 + 0.4∗random()

r10 = random(); d10 = random(); c10 = 3∗random(); alpha10 = 0.01 + 0.4∗random()

def lotka(X, t):

x1, y1, x2, y2, x3, y3, x4, y4, x5, y5, x6, y6, x7, y7, x8, y8, x9, y9, x10, y10 = X

dx1 = r1∗x1∗(1−x1)− c1∗x1∗y1/(alpha1+x1)− sigma∗(9∗x1−x2−x3−x4−x5−x6−x7−x8−x9−x10)

dy1 =−d1∗y1 + c1∗x1∗y1/(alpha1+x1)− sigma∗(9∗y1−y2−y3−y4−y5−y6−y7−y8−y9−y10)

dx2 = r2∗x2∗(1−x2)− c2∗x2∗y2/(alpha2+x2)− sigma∗(9∗x2−x1−x3−x4−x5−x6−x7−x8−x9−x10)

dy2 =−d2∗y2 + c2∗x2∗y2/(alpha2+x2)− sigma∗(9∗y2−y1−y3−y4−y5−y6−y7−y8−y9−y10)

dx3 = r3∗x3∗(1−x3)− c3∗x3∗y3/(alpha3+x3)− sigma∗(9∗x3−x1−x2−x4−x5−x6−x7−x8−x9−x10)

dy3 =−d3∗y3 + c3∗x3∗y3/(alpha3+x3)− sigma∗(9∗y3−y2−y1−y4−y5−y6−y7−y8−y9−y10)

dx4 = r4∗x4∗(1−x4)− c4∗x4∗y4/(alpha4+x4)− sigma∗(9∗x4−x1−x2−x3−x5−x6−x7−x8−x9−x10)

dy4 =−d4∗y4 + c4∗x4∗y4/(alpha4+x4)− sigma∗(9∗y4−y2−y3−y1−y5−y6−y7−y8−y9−y10)

dx5 = r5∗x5∗(1−x5)− c5∗x5∗y5/(alpha5+x5)− sigma∗(9∗x5−x2−x3−x4−x1−x6−x7−x8−x9−x10)

dy5 =−d5∗y5 + c5∗x5∗y5/(alpha5+x5)− sigma∗(9∗y5−y2−y3−y4−y1−y6−y7−y8−y9−y10)

dx6 = r6∗x6∗(1−x6)− c6∗x6∗y6/(alpha6+x6)− sigma∗(9∗x6−x2−x3−x4−x5−x1−x7−x8−x9−x10)

dy6 =−d6∗y6 + c6∗x6∗y6/(alpha6+x6)− sigma∗(9∗y6−y2−y3−y4−y5−y1−y7−y8−y9−y10)

dx7 = r7∗x7∗(1−x7)− c7∗x7∗y7/(alpha7+x7)− sigma∗(9∗x7−x2−x3−x4−x5−x6−x1−x8−x9−x10)

dy7 =−d7∗y7 + c7∗x7∗y7/(alpha7+x7)− sigma∗(9∗y7−y2−y3−y4−y5−y6−y1−y8−y9−y10)

dx8 = r8∗x8∗(1−x8)− c8∗x8∗y8/(alpha8+x8)− sigma∗(9∗x8−x2−x3−x4−x5−x6−x7−x1−x9−x10)

dy8 =−d8∗y8 + c8∗x8∗y8/(alpha8+x8)− sigma∗(9∗y8−y2−y3−y4−y5−y6−y7−y1−y9−y10)

dx9 = r9∗x9∗(1−x9)− c9∗x9∗y9/(alpha9+x9)− sigma∗(9∗x9−x2−x3−x4−x5−x6−x7−x8−x1−x10)

dy9 =−d9∗y9 + c9∗x9∗y9/(alpha9+x9)− sigma∗(9∗y9−y2−y3−y4−y5−y6−y7−y8−y1−y10)

dx10 = r10∗x10∗(1−x10)− c10∗x10∗y10/(alpha10+x10)− sigma∗(9∗x10−x2−x3−x4−x5−x6−x7−x8−x9−x1)

dy10 =−d10∗y10 + c10∗x10∗y10/(alpha10+x10)− sigma∗(9∗y10−y2−y3−y4−y5−y6−y7−y8−y9−y1)
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return [dx1, dy1, dx2, dy2, dx3, dy3, dx4, dy4, dx5, dy5,

dx6, dy6, dx7, dy7, dx8, dy8, dx9, dy9, dx10, dy10]

# Phase portrait

time = np.arange(0, 200, 0.01)

plt.figure()

X0 = [0.1 + 0.5∗random() for k in range(20)]

sigma = 0 # or 1

orbit = odeint(lotka, X0, time)

x1, y1, x2, y2, x3, y3, x4, y4, x5, y5, x6, y6, x7, y7, x8, y8, x9, y9, x10, y10 = orbit.T

plt.plot(x1, y1)

plt.plot(x2, y2)

plt.plot(x3, y3)

plt.plot(x4, y4)

plt.plot(x5, y5)

plt.plot(x6, y6)

plt.plot(x7, y7)

plt.plot(x8, y8)

plt.plot(x9, y9)

plt.plot(x10, y10)

plt.show()
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