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Abstract. Sectorization problems have significant challenges arising from
the many objectives that must be optimised simultaneously. Several
methods exist to deal with these many-objective optimisation problems,
but each has its limitations. This paper analyses an application of Prefer-
ence Inspired Co-Evolutionary Algorithms, with goal vectors (PICEA-g)
to sectorization problems. The method is tested on instances of different
size difficulty levels and various configurations for mutation rate and pop-
ulation number. The main purpose is to find the best configuration for
PICEA-g to solve sectorization problems. Performance metrics are used
to evaluate these configurations regarding the solutions’ spread, conver-
gence, and diversity in the solution space. Several test trials showed that
big and medium-sized instances perform better with low mutation rates
and large population sizes. The opposite is valid for the small size in-
stances.

Keywords: Sectorization Problems, Co-Evolutionary Algorithms, Many-
Objective Optimisation

1 Introduction

Sectorization, the division of a whole – region, network, area – into subsets,
usually appears in real-life situations, such as school/health districting, main-
tenance operations, political districting or design of sales territories. These are
multi-objective problems since it is common to wish for balanced, compact or
connected sectors.

Multi-objective optimisation problems (MOP) require optimising several con-
flicting objectives simultaneously. Various algorithms have been developed and
among the most well known are MOEA, MOGA, NSGA-II, and SPEA, which
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work well for up to 3 objectives (being NSGA-II the most adopted method to
solve MOPs, and also used by many authors to deal with sectorization and re-
lated problems [21,3]). However, more than 3 objectives causes the performance
of these algorithms to degrade [7].

The problems containing four or more objectives are called many-objective
problems (MaOP) and emerge as a particular case of MOPs. MaOPs have harder
challenges and require significantly more effort into the solution strategy [13].
The deterioration of MOP methods performance arises due to the following diffi-
culties when many objectives are included: decreasing search capacity of Pareto
dominance, increasing complexity of the approximation to the Pareto Front (PF),
and the complications in the solution visualisation [7]. The evaluation of the solu-
tions fitness is done through an important concept known as Pareto Dominance,
which enables classifying solutions as dominated or non-dominated. However,
in some situations, the entire solution set may be non-dominated, collecting in
the same Pareto frontier. This reduces the search abilities of Pareto dominance,
which is already very challenging due to the dimensionality of the objective space
increasing in proportion to the number of objectives. When this happens, the
hyper-surface of the PF gets larger, and the number of solutions to approximate
the entire PF extensively increases. Ultimately, decision-making becomes harder,
as the visualisation of solutions is complicated by many objectives. Hence, the
algorithms developed to solve MaOPs try to erase these difficulties where MOP
algorithms stand weak.

In the literature, multiple techniques deal with these challenges. The present
paper overviews them and selects a Co-Evolutionary Algorithm to solve sector-
ization problems, called Preference-Inspired Co-Evolutionary Algorithms, with
goal vectors (PICEA-g). This method uses preferences to lead the solutions in the
solution space to obtain more desirable solutions and facilitate decision-making.
Since sectorization problems can involve many conflicting objectives, PICEA-g
emerged as a promising exploration path. The current work contains the first
application of the method for sectorization problems and offers preliminary re-
sults on its performance. Therefore, it constitutes a relevant contribution to the
sectorization literature.

The remainder of the paper is structured as follows. Section 2 presents the lit-
erature review about methods proposed to cope with MaOPs. Section 3 includes
the framework of PICEA-g as well as the genetic operators and objectives se-
lected. Section 4 shows the results and critically discusses PICEA-g performance
in different instances and configurations. The conclusions are in Section 5.

2 Literature Review

Some techniques are proposed in the literature that enhance the performance of
well-known MOP algorithms when many objectives are in question. For instance,
to improve Pareto-dominance evaluation, the following modifications are pre-
sented: (i) the use of modified dominance instead of Pareto dominance to reduce
the number of non-dominated solutions, such as ϵ-dominance [5], α-domination
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[6], (ii) the introduction of different ranks to non-dominated solutions to create
higher selection pressure in the PF [8], and (iii) the use of different performance
evaluation mechanisms than Pareto dominance. These mechanisms can be fit
in two main groups: indicator-based and scalarising function-based. The former
uses an indicator function to measure the quality of the solutions. The best
known indicator based algorithm is Hypervolume Estimation (HypE) [1]. HypE
employs Monte-Carlo simulation to measure the exact hypervolume values used
as an indicator to evaluate the solutions. On the other hand, the latter evalu-
ates the fitness through a scalarising function, such as weighted sum or weighted
Tchebycheff (Chebyshev). The most well-known scalar function-based algorithm
is Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D)
[22] which decomposes the problem within scalar sub-problems and optimises
them together. Moreover, NSGA-III can be included in the same category [2]
where the predefined reference points are distributed to the objective space to
keep a diverse solution set and help them converge.

A proposed alternative to improve the PF approximation uses preference-
based procedures [4,17]. Priory integration of the preferences into the algorithm
reduces the search in the objective space, by concentrating in a more representa-
tive sub-space, increasing the chance of finding improved solutions. The concept
of simultaneous evolution of the candidate solutions regarding the preferences
in practice is called preference inspired algorithms. The preference points used
in these algorithms are randomly generated and are only used to increase the
selection pressure of the candidate solutions [15].

Purshouse et al. [14] presented preference-inspired evolutionary algorithms
that used target objective vectors as preference solutions (PICEA). The candi-
date solutions are then co-evolved according to their dominance on the prefer-
ence solutions. Soon after, Wang et al. [18] proposed the idea of goal vectors
to lead the candidate solutions, and called it a preference-inspired evolutionary
algorithm with goals (PICEA-g). If a candidate solution dominates more goal
vectors (while fewer candidate solutions dominate those goal vectors) it has a
higher chance to proceed to the next generation [10]. PICEA-g is compared with
several MaOP algorithms, and its superiority is shown in [18].

In the literature, it is likely to find some applications of PICEA-g address-
ing real-world problems that show it may be modified and adapted for a new
application on a specific problem, as seen in the dynamic districting and rout-
ing problem by Lei et al. [9]. The authors implemented the method with a
minor modification by mating neighbouring solutions to improve the offsprings
during the coevolution. Moreover, Long et al. [11] implemented PICEA-g for
multi-period location routing problem by integrating the Tchebycheff method to
decompose the objective space while improving the diversity of the solutions. It
is also possible to find some papers on workflow scheduling [10,12] with modi-
fications of the original PICEA-g, appropriate to their specific problems. In all
these applications, PICEA-g gave promising results and exemplary performance
in MaOPs. For this reason, this paper focuses on this method to tackle current
challenges in sectorization problems.
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3 Approximation Method: PICEA-g

This section explains the PICEA-g method step by step, following procedures
and equations based on Wang et al. [18].

The generation of the full PF is a challenging problem due to existing lim-
itations (convergence efficiency and computational cost), so an adequate repre-
sentation is desired. A good representation of the PF requires having a sufficient
number of solutions that provide ample coverage across its length while in close
proximity, but maintaining the solutions with a certain degree of dispersion.
When these requirements are not met, as in Fig. 1, the representation quality of
the PF is significantly reduced.

In Fig. 1a the solutions are shown as not converging to the PF, where close
proximity is desired. Alternatively, Fig. 1b shows a situation where the solu-
tions converged to a specific region, very close to the PF, being all very close
to one another. This leads to almost redundant solutions, with a very small
distinction between each adjacent solution, where having solutions with higher
distinction, or separation, between the adjacent ones is desired. Finally, in Fig.1c
the solutions are in close proximity to the PF and dispersed enough so that few
redundant solutions exist, but insufficient coverage of the full PF as seen by the
empty gaps along with it. These complications arise due to, among other factors,
the maximum size of the population, the total number of generations, and the
guiding procedure that pushes the solutions into new unexplored regions of the
solution space. Tweaking the size of population and number of generations will
not overcome these challenges due to heavy computational constraints.

An efficient approach to guide the solutions can dramatically improve the
convergence efficiency to the PF, generating better quality solutions and reducing
the cost of dealing with tradeoffs between solution quality, solution variety, and
computational cost. This convergence process can be improved using the PICEA-
g algorithm, which produces goal vectors that enable guiding the generation of
new solutions into different regions of the solution space, closer to the PF, and
into its regions without solution representation.

The PICEA-g uses the evolution process that is common in all Evolutionary
Algorithms, that start with an initial solution population of size N defined by
S(t) ( where t is the generation index), and through the use of a crossover and

(a) No convergence (b) No dispersion (c) No representation

Fig. 1: The different problems can appear in the PF convergence
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mutation operation produces offspring Sc(t) that are evaluated using the fitness
function Fs (in Eq. 1, using the goal vectors of PICEA-g method) which then
allows filtering the full population (parent S and offspring Sc) using a truncation
operation, producing a new solution population of size N , defined as S(t + 1).
This cycle is repeated until stopping criteria is met, usually a specific number of
generations. A diagram with this process is exemplified in Fig. 2.

Fs = 0 +
∑

g∈G⊎Gc|s⪯g

1

ng
(1)

The PICEA-g algorithm generates new goal vectors, defined as Gc(t) using
random selection. The new goal vectors Gc are added to the population of ex-
isting goal vectors G, evaluated using the fitness function Fg (in Eq. 2) and
truncated considering their fitness and population size. The fitness evaluation
procedure follows a dominance metric where the solutions population is com-
pared against the preference population, and vice-versa. This process happens
in the Evaluation block of Fig. 2.

Fg =
1

1 + α
, α =

{
1, ng = 0
ng−1

2N−1
, otherwise

(2)

Depending on the goal vectors’ distance to the ideal PF and their location
on the solution space, their usefulness as a mean for comparability between dif-
ferent solutions varies significantly. As specified on [19], goal vectors closer to
the PF help the convergence of solutions to it, and depending on the solution
space region where the goal vectors are located, they push the solutions to cover
new sections of the PF. Using a random generation process for the goal vectors
is a reasonable starting approach (since it does not have any specific optimisa-
tion that facilitates the convergence of the solution population to the PF) that
produces a baseline performance that allows improvements in the goal vectors
generation process to be compared to.

The fitness of a given preference (Fg) is given by the expression defined in Fg

shown in Eq.2, which attributes the fitness value for each one of the goal vectors.

Fig. 2: Solution and preference population evolution process in PICEA-g.
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The parameters N and ng represent, respectively, the maximum population size,
and the number of solutions that satisfy preference g. By penalising the goal
vectors that are satisfied by a large number of solutions, this process creates
an incentive to eliminate them from the population. Goals that are satisfied
(dominated) by fewer solutions are given high fitness value, which remain on
the solution space, pushing the generation of new solutions that try to satisfy
(dominate) them.

The fitness of a given solution (Fs) is dependent on the aggregated quality of
all individual preferences g it satisfies. This fitness expression, seen in Eq.1, states
that the fitness for a given s is the sum of the relative quality of each solution that
it satisfies (as in 1/ng, where ng is the number of solutions that satisfy preference
g). If s does not satisfy any g, its fitness value is 0. A preference g that satisfies
many solutions provides a very small contribution to the individual fitness of each
one, but a preference g that satisfies only a few contributes significantly more.
This creates the incentive to generate solutions outside of the solution space
region where most other solutions are concentrated. This constant interaction
between both populations (solutions and preferences) is the basis for the PICEA-
g approach.

3.1 Genetic Operators

PICEA-g is based on evolutionary algorithms composed of specific operators,
such as encoding scheme, crossover and mutation.

In the encoding scheme, the solutions were encoded using a ‘matrix form
binary grouping’ (MFBG) genetic encoding system. MFBG is a binary matrix
where the rows represent the total number of basic units, while the columns
represent the sectors. The feasibility of MFBG requires: (i) a basic unit cannot
be assigned more than one sector, and (ii) each sector must have at least one
basic unit, and cannot be empty. Thus, the sum of each row must be one, and
the sum of each column must be one or more.

The crossover operator is based on a multi-point crossover, where it randomly
selects multiple rows from the two-parent solutions and switches them to gener-
ate two offspring solutions. This eliminates the need to set a crossover probability
due to the advantageous design of the genetic encoding system used. Although
simple, this method also improves the diversity in the following generations due
to the random selection of multiple points.

The mutation operator is applied to every offspring population with a given
probability in order to provide some randomness to the population. The muta-
tion is implemented row by row in a whole chromosome by assigning the basic
unit to another sector when the mutation value exceeds the defined probability
threshold.

3.2 Objectives

Three objectives commonly used in sectorization problems are considered in the
solution method: Equilibrium, Compactness and Contiguity.
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Equilibrium is the balance between sectors. This indicator can refer to mul-
tiple sector characteristics, such as balance in demand, balance in workload or
working hours, etc. Considering the current approach, the equilibrium was de-
fined as the deviation from the mean, adopted from [16] and is shown in Eq.3
and Eq.4.

q̄ =

∑J
j=1

∑
i xij × yi

J
(3)

In Eq. 3, q̄ represents the mean demand of each sector, where J is the total
number of sectors, xij represents if the basic unit i is assigned to sector j and
yi is its corresponding demand. Eq. 4 refers to the deviation from the mean
demand of the sectors. Here, qj is the sum of the basic units in sector j. A better
equilibrium level represents a smaller standard deviation value from the mean.

std′eq =

√√√√ 1

J − 1

J∑
j=1

(qj − q̄)2 (4)

Compactness refers to density in each sector. That is quite a relevant ob-
jective for most sectorization problems, especially if they are further concerned
about routing or travelling. Eq. 5 shows the mathematical representation of the
compactness in this study. Here d gives the compactness level of the chromo-
some or solution. It is the sum of the distances between the centroid oj and the
furthest point to the centroid pj in each sector j. The smaller the d gets, the
more compact the sectors are.

d =

J∑
j=1

dist(oj , pj ) (5)

Contiguity indicates the connectivity of a sector. It is a common objective
in sectorization problems that evaluates the flexibility of moving from one basic
unit to another within the sectors. The measure for this objective is also adopted
from [16]. The authors represent contiguity through a square matrix of size equal
to the number of basic units, and set the value 1 to all feasible paths between two
nodes in the same sector, 0 otherwise. Eq. 6 represents the contiguity in sector
j. Here, the nominator is the sum of the links in a sector, and the denominator
is the maximum number of links if all the basic units are linked. Thus, cj takes
the value 1 when the sector is fully connected.

cj =

∑ij
i=1(

∑ij
w=1 m

j
wi)

ij(ij − 1)
, mj

wi =

{
1 if path between w and i in sector j

0 otherwise
(6)

The contiguity of the chromosome (c̄) is calculated by the formula represented
in Eq. 7. Here, the numerator is the sum of sector base contiguity calculated in
Eq. 6, and the denominator is the total number of basic units I. Value c̄ varies
between 0 and 1, being 1 the best, and 0 worst. In order to evaluate all objectives
as minimisation, it is refactored as (1− c̄) while also switching the best and worst
limit values.

c̄ =

∑k
j=1 cjij

I
(7)
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4 Results and Discussion

The performance of PICEA-g is tested using the 3 specified objectives over 10
different sectorization instances, each with a different size and difficulty. These
instances are generated following gamma distribution, where shape and scale
parameters are created randomly for each basic unit produced. The demand for
each basic unit is created following a uniform distribution. Finally, connected
graph theory is considered while the links between the basic units are generated.
The aim is to find a pattern that shows the best parameter composition for each
instance type. For that, 3 performance metrics are used, namely, Error Ratio
(ER), Inverted Generational Distance (IGD) and Spacing (S).

ER is a cardinality metric and measures the proportion of the solutions on
the approximation PF over the population size. IGD is a convergence and dis-
tribution metric. The distance of the approximation PF from the reference PF
and the distribution of the solutions in the objective space are estimated by
IGD. Finally, S is a spread metric that measures the deviations of the distances
between the solutions in the approximation PF. All these metrics are assumed
better when they have lower values. These metrics were adopted from Yen and
He [20].

Table 1 shows the instances characteristics. The configuration parameters
that were selected consisted on a combination of mutation rates (using 0.00,
0.02, 0.04, 0.06, 0.08 and 0.10) and population size (with 50, 60, 70, 80, 90,
100), which were evolved for a total number of 1000 generations. Name refers
to the Gamma (γ) instances set. Nodes represent the number of basic units to
be sectorized, while Sectors are the sector number.

Each instance was tested with every combination of population size and mu-
tation rate through PICEA-g, being run 20 times each. In total, every instance
is tested 720 times for 36 configurations with 20 trials each. It is possible to
obtain the instances and observe the results for all instances from the following
link: https://drive.inesctec.pt/s/EQn6yCD3jdap3TW.

According to the results presented in the link, large and middle-size instances
performed better regarding selected performance metrics when the mutation rate
was lower. However, smaller instances produced better results with higher mu-
tation rate. This behaviour is not unexpected, since the large instance solutions
set shows a higher degree of population diversity compared to the smaller ones
and manages to converge to the PF successfully when no significant disturbances
(mutations) are present. With high mutation probability, this convergence re-
duces or even stops. On the other hand, in the smaller instances, the diversity in
the initial solution set is more constrained. In this situation, a higher mutation

Table 1: Instances characteristics
Name γ2 γ3 γ8 γ9 γ10 γ11 γ14 γ18 γ28 γ49
Nodes 690 56 873 432 102 288 204 528 350 1000
Sectors 30 5 30 10 10 10 10 30 10 30

https://drive.inesctec.pt/s/EQn6yCD3jdap3TW
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probability compensated this limitation, which helps creating disturbances that
increase the chances of finding better solutions.

In the remainder of the section, we focused on the performance of two in-
stances as a representative examples of our experiments. Fig. 3a and 3b show
the performance of the two instances, γ3 and γ8 respectively, on different met-
rics. We selected these instances to show how PICEA-g behaves in small and
big instances. The bars show the mean value of the performance metrics for 20
runs, and the lines are the standard deviations (std) from the mean for each
configuration.

(a) 873 nodes

(b) 56 nodes

Fig. 3: The performance of two instances for selected performance metrics

Fig. 3a shows that when the mutation rate is higher, the performance of
IGD and S get worse for the same population size, although ER remains in
the same range. Thus, the solutions’ convergence, distribution, and spread are
better with the lower mutation rate applied to the algorithm. On the other
hand, Fig. 3b shows that higher mutation rates improve the performance of
IGD while worsening the performance of S. ER again appears to be in similar
ranges for different configurations. The IGD is a convergence and distribution
metric. It is possible to say that the convergence of the solutions is better with
a higher mutation probability, although the spread of the solutions on the PF
decreases. This result shows that the solutions may converge well but not cover
the objective space sufficiently.
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Moreover, Fig.4 and 5 shows the performance of selected metrics over each
other. The Pareto dominance concept is used for this comparison. In other words,
after performance metrics are measured for each configuration considering each
run, they are located on Pareto frontiers according to their dominance for three
selected metrics. As seen, for γ3 with 56 nodes the sequence of the Pareto fron-
tiers show that the solutions perform better with higher mutation probability.
On the other hand, the lower mutation probability results better in the γ8 with
873 nodes. Unfortunately, the produced results were not sufficient to clearly
identify the best parameters for each instance type, requiring further research.

The algorithm is implemented through Python 3.9.6, and the method is ex-
ecuted on a PC Intel Xeon gold 6148 @ 2.4GHz, 20 cores, 40 threads, 96Gb
ram and Win X64 operating system. The computation time for the PICEA-g
algorithm was 3.5 seconds per generation for a 100 population size.

(a) Population size 60 (b) Population size 100

Fig. 4: The performance of selected metrics over each other: case of γ3

(a) Population size 60 (b) Population size 100

Fig. 5: The performance of selected metrics over each other: case of γ8



An application of PICEA to Sectorization 11

5 Conclusion

This work presented the first application of the PICEA-g to Sectorization prob-
lems. The current configuration used three performance metrics for the evalua-
tion: ER, IGD and S. The instances were selected based on their small, medium
and large sizes (number of basic units) and distinct features (connectivity and
number of sectors), producing different difficulty levels. In order to estimate the
performance of PICEA-g on different sectorization problems, a combination of
diverse configuration parameters was selected (mutation rates, maximum popu-
lation sizes, total number of generations).

According to the preliminary results obtained, smaller instances show better
performance when higher mutation rates are selected, while larger instances show
better performance with lower mutation rates. A possible explanation for this
behaviour is that the low degree of distinction between solutions (individuals) in
smaller instances leads them to become stuck on a local minimum, which requires
a significant amount of disturbance (mutation) to change. On the other hand,
the high degree of distinction of the solutions in larger instances has difficulties
converging to a neighbouring local minimum solution if the mutation rate is very
high, showing better performance with a smaller rate of disturbance.

Albeit these are preliminary results, the experiments revealed that the PICEA-
g is a promising method to solve sectorization and related problems. More precise
insights require further analysis with different configuration parameters and in-
stance types. Thus, future work consists of improving the parametrisation of the
method depending on the instance type, improving performance, and comparing
with other methods usually referenced in the sectorization literature.
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