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Resumo

Esta tese foca-se na modelização de risco de crédito num modelo dinâmico, enfatisando o

uso de opções barreira.

Começa por obter o preço de opções com multiplas barreiras sob o modelo JDCEV

(jump to default constant elasticity of variance). As opções com multiplas barreiras

partem das opções com uma barreira. No caso de uma barreira, o seu detentor tem uma

opção vanilla contingente do preço do ativo subjacente atravessar ou não a dada barreira.

No caso de barreiras multiplas, apresentado aqui tal como em Jun and Ku (2012), uma

opção de uma barreira é ativada assim que um conjunto de barreiras é atravessado. A

solução dessas opções sob o modelo JDCEV assenta na stopping time approach (ST) para

opções barreira desenvolvida por Dias et al. (2015).

Depois, na segunda parte, o payoff das opções put com multiplas barreiras é uti-

lizado para extender o modelo de d́ıvida dinâmica de Das and Kim (2015) para o modelo

CEV (contant elasticity of variance). O modelo de d́ıvida dinâmica permite a uma firma

aumentar ou diminuir o valor nominal da d́ıvida numa dada sequência, desde que determi-

nadas barreiras sejam atravessadas pelo valor total da firma. Esta caracteristica permite

o uso de opções barreira para obter o valor da d́ıvida e dos respetivos spreads.

Na terceira parte, um outro modelo de d́ıvida dinâmica onde o valor da d́ıvida pode

ser alterado é explorado. Neste, o valor da d́ıvida pode ser alterado, mas através de um

intensity process. Este processo pode ser ligado ao valor da firma através da correlação de

processos estocásticos. Através de mudanças de medida, as fórmulas fechadas para este

modelo são obtidas no geometric Brownian motion (GBM) . Além de estender o modelo

base de Merton (1974), também é feita uma extenção do modelo de d́ıvida subordinada

de Gorton and Santomero (1990).

Classificação JEL: G12, G32

Palavras chave: Modelo CEV, Modelo JDCEV, Opções barreira, Risco de crédito,

Dı́vida dinâmica, Spreads de crédito, Modelo intensity process
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Abstract

This thesis focuses on dynamic debt credit risk modeling, emphasizing the use of barrier

options.

It starts by obtaining the price for multiple barrier options under the JDCEV (jump

to default constant elasticity of variance) model. The multiple barrier options depart

from the single barrier options. In the single barrier case, the owner has vanilla option

contingent on the underlying asset price crossing or not the given barrier. In the multiple

barrier options, presented here as in Jun and Ku (2012), a single barrier option is activated

once a set of barriers is crossed. The solution of these options under the JDCEV model

relies on the ST (stopping time) approach for barrier options developed by Dias et al.

(2015).

Then, in the second part, the payoff of the multiple barrier put options is used to

extend the dynamic debt model of Das and Kim (2015) to the CEV (constant elasticity

of variance) model. The dynamic debt model allows a given firm to increase or decrease

the face value of debt in a given sequence, provided that certain barriers are crossed by

the total firm value. This feature allows the use of barrier options’ formulae to solve the

debt value and respective spreads.

In the third part, another dynamic debt model where the debt can change is explored.

There, debt can change, but through an intensity process. This process can be linked to

the firm value through correlation among the stochastic processes. Through measure

changes, the closed formulae are obtained for the model under the geometric Brownian

motion (GBM) setting. In addition to extending the baseline Merton (1974) model, there

is also a an extension of the subordinated debt model from Gorton and Santomero (1990).

JEL Classification: G12, G32

Keywords : CEV model, JDCEV model, Barrier options, Credit risk, Dynamic debt,

Credit spreads, Intensity based model
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Part I

Introduction

This PhD thesis focuses on three related parts, where various interlinked topics are cov-

ered. The starting point is the dynamic debt model of Das and Kim (2015) where multiple

barrier options are used to build a dynamic debt structural risk model under a geometric

Brownian motion (GBM) setting.

Structural risk models were introduced in Black and Scholes (1973) and Merton (1974)

and are based on modeling the stochastic evolution of the balance sheet of the debtor firm.

They depart from the basic idea that at the maturity date of debt, if the debtor firm value

is less than the face value of the debt, default occurs. This allows the debt discount to be

obtained with the same formula as a put option contract. Various extensions exist on the

model, such as Geske (1977) on the valuation of coupon bonds as a group of compound

options.

Black and Cox (1976) introduce models where default can occur once the firm’s assets

touch a low default boundary, Leland (1994) also uses a first passage debt pricing approach

to value debt while showing that the boundary at which default is triggered can be

chosen by the firm to maximize the value of the equity, while Zhou (2001) extends the

possibility of the asset value suffering log-normally distributed jumps. A test on the

performance of these models is done in Delianedis and Geske (1998) who compute risk

neutral probabilities of default using the models of Merton (1974) and Geske (1977) and

show that the models are able to predict not only the default events by the firms, but

also the migrations in the ratings with months of advance.

The studies comparing the models to real world data go back to Jones et al. (1984) who

use a dataset with both investment grade and noninvestment grade bonds and implement

a rolling estimation approach. Notably, Eom et al. (2004) follow this approach to compare

the corporate spreads for five different structural models empirically with cross-section

data from 1986-1997 and conclude that the accuracy of structural models is an issue with

the Merton model, as it produces spreads that are too low, while other models produce

spreads that are generally too high. Other examples of this approach can be found in

Hull et al. (2005) who propose an estimation method for the model’s parameters from
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the implied volatilities of options on the company’s equity and Arora et al. (2005) who

contrast reduced-form and structural models.

As for different methods, Huang and Huang (2012) use a calibration with representa-

tive firms and show that many different structural models generate similar spreads once

calibrated to the same default probabilities, recovery rates, and the equity premium. With

a similar approach, the link between the Credit Spread Puzzle and the Equity Premium

Puzzle is explored in Chen et al. (2008) to match historical spread levels and Schaefer and

Strebulaev (2008) show that poor performances of credit risk models can be attributed

to not capturing the interest rate sensitivity of corporate debt. For studies of the credit

spreads with regression models, there are for instance Collin-Dufresne et al. (2001) with a

study which points out that credit spread changes are principally explained by supply and

demand shocks independent of credit-risk factors while Zhang et al. (2009) study credit

default premium and calibrate a Merton-type model.

In more recent empirical studies, Huang et al. (2019) use a generalized method of

moments (GMM) of Hansen (1982) which allows to estimate the parameters while allowing

to precisely determine whether the model is rejected or not in the data, reaching the

conclusions that the structural models under-perform capturing the dynamic behavior of

both equity volatility and credit default swaps (CDS) spreads while performing well to

explain the sensitivity of CDS spreads to equity returns. Furthermore, Du et al. (2019)

first consider a model with priced stochastic asset risk which is afterwards estimated

on firm-level data and Shi (2019) first develops a general equilibrium model where an

ambiguity-averse agent applies a discount rate and performs an empirical verification

afterwards.

In the market practice, these Merton style models are the base of the well known

commercial Expected Default Frequency (EDF) model to forecast default probabilities

which is owned by KMV Corporation, later acquired by Moody’s. The KMV model

instead of using the Merton (1974) framework estimates the probability frequency by a

proprietary procedure, built over real world data which includes various years. As for the

variables used, KMV uses the current book value of debt, the face value of near-term debt

plus a fraction of long-term debt, and obtains the probability of default within a year.

Volatility is also used, through an estimate based on the equity volatility. As in the usual

structural models, the estimated level of assets is the sum of the debt value and the value
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of equity in the market.

Das and Kim (2015) depart from one of the Merton (1974) assumptions - the constant

level of nominal debt. Firms holding debt tend to actively manage its debt structure and

levels, and the face total debt — the D variable in the models presented here, which takes

the place of the strike when using the option formulae — is often changed, and this can

result in changes to the market value of debt and the corresponding yield.

The approach tries to emulate the idea that if the firm value increases to a certain

point in the total value, the firm is able to use the new collateral to support more debt.

Therefore, debt is increased and there is an impact over the initial debt value, and hence on

its spreads. The counterpart is a swap-down that is triggered when there is a substantial

drop in firm value. As the firm tries to avoid default, the lenders can swap debt principal

for equity, reducing the total nominal amount of debt, making the default less likely and

reducing the debt credit spreads. The assumption of the changes in debt being reflected

by the opposite move by the amount of equity has the analytical advantage of preserving

the total firm value.

There are several studies that point out to links between the firm value and the

evolution of the debt structure. For instance, Roberts and Sufi (2009) find that a very

big share of long-term debt contracts suffer renegotiations over terms such as the amount,

maturity, and pricing of the loan, Nini et al. (2012) point out an active role played in

the governance of the firms by creditors, even when default is not a close scenario and

Flannery et al. (2012) observe that the contemporaneous leverage alone cannot explain

the bond yields alone while the expected future leverage plays a part.

Das and Kim (2015) obtain closed-form solutions for the ex-ante value of the debt

discount, debt values and corresponding credit spread term structure, with the sequence

of debt changes being explicitly set beforehand alongside with the firm values at which

they occur.

This is done through an extensive use of barrier options, a class of exotic derivatives

that are activated or de-activated upon the firm value accessing barrier levels, coming in

the form of knock-in and knock-out options. For instance, a knock-out option is a plain-

vanilla option with the additional clause that it becomes worthless — is knocked-out —

if the underlying price touches a pre-specified barrier. These are named down-and-out

options in the case where the barrier is lower than the initial underlying asset, and up-
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and-out if it is higher. On the other side, there are also knock-in options, where the

clause specifies that the option remains worthless as long as the underlying asset does not

touch the specified barrier. Once the barrier is crossed, its holder owns a vanilla option.

In addition, it is possible to specify a rebate, a previously agreed (small) amount that

is paid when the option is knocked-out, either at the event, or at another specified date

such as the maturity of the option. In the case of the knock-in option, there can be a

rebate, although only at maturity. Under the most basic framework, the sum of a knock-

in and a knock-out option with the same barrier level corresponds to the vanilla option

with the same parameters. These basic types of barrier option formulae are studied in

Rubinstein and Reiner (1991) and Rich (1994) and summarized in Haug (2006), under a

GBM modeling setup.

The barrier options used in Das and Kim (2015) go beyond the basic kind explained

above. The model also uses “one touch double barrier binary options of the knock-out

kind”, which are deactivated once one of two barriers is reached and are studied for

instance in Hui (1996) and “first-then barrier options”, which have two barriers where

a single barrier option (knock-in or knock-out) is obtained once a preceding barrier is

crossed and are presented in Jun and Ku (2012).

With a weighted sum of these options, Das and Kim (2015) reach the value for various

possible combinations of debt increases and decreases. For instance, the combination of

an up-and-out option and an up-and-in option builds a scenario where there is an increase

in debt. An up-and-out option with a first-up-in-then-down-and-out option and a first-

up-then-down-and-in option build a scenario where there is first a debt increase followed

by a debt decrease. The use of double barrier knock-out options allows the combination

of two possible paths, where the order of crossing the barriers is crucial for the problem.

A total of six cases are studied alongside the Merton (1974) base model, leading to

changes of not only in the magnitude of the credit spread curve but also in its shape,

matching behaviors often observed in empirical studies. Thus, the study provides a valu-

able insight by indicating that the anticipation of the possibility of changes in the debt

structure impacts the value of bonds and respective spreads.

This is done in the GBM setting and the aim in the second part of this thesis is to ex-

pand it to the constant elasticity of variance (CEV) model of Cox (1975). The limitations

of the GBM are widely known and mostly centered in its log-normal distribution. This is
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reflected in two main effects. First, there is the leverage effect, reflected in the negative

correlation between stock returns and realized volatility. Second, there is the implied

volatility skew, which occurs in an option context and results in a negative correlation

between the implied volatility and the strike price of the option.

The presence of the leverage effect can be traced back to the classical reasoning of

Modigliani and Miller (1958), where the fundamental asset of a corporation is the firm in

its totality, where the composition in terms of equity and debt are just different ways of

splitting up the asset. This perspective is discussed by Black (1976) who argues that the

volatility of the firm components, the equity and the debt, comes from the fluctuations in

the total firm value. The different compositions of the firm differ in the claims they have

to the value of the firm, with most variations being transmitted to the value of equity,

except when the firm is close to default, where the debt is more affected. This asymmetry

is revealed when a negative return causes the equity to decrease while the nominal value

of debt remains fixed, which raises the firm leverage, thereby increasing the future equity

volatility.

This theoretical argument finds empirical support in, for instance, Christie (1982),

who concludes that the variance on a underlying asset has a strong positive relation

with the financial leverage. This is further confirmed with studies such as Bekaert and

Wu (2000), who study the phenomenon for the case of the Japanese market, Schwert

(1989) analyses variations not only in the equity volatility over time but also its relation

to other variables, Bollerslev et al. (1992) review the literature on using econometric

models of the ARCH — autoregressive conditional heteroskedasticity — family to time-

varying volatilities for financial variables, confirming the former empirical conclusions.

Nelson (1991) presents the EGARCH — exponential GARCH — model which is able to

accommodate the asymmetric behavior of volatility within a GARCH-family framework.

As for the implied volatility skew, when observing the market price of options under

the GBM model, it is common to find different implied volatility levels for different prices.

A “volatility smile skew” curve emerges, as market investors tend to be willing to overpay

for out-of-the-money and in-the-money options when compared to at-the-money-options,

with the overpricing tending to be stronger for the out-of-the-money cases. This implies

a deficiency in the constant volatility and log-normal distribution of the underlying asset

return assumptions in the GMB based model. This is linked to the previously mentioned
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leverage effect and the higher volatility at lower asset levels, which produce kurtosis in the

asset return distributions. Several studies exist on this phenomenon. Rubinstein (1994)

shows that when the miss-specifications for the BSM framework are corrected with more

precise models, the volatility smile turns into a horizontal line. Jackwerth and Rubinstein

(1996) study the case of options on stock prices, finding that smiles have a largely skewed

form in the cases where the volatility decreases for increasing strike values. Buraschi

and Jackwerth (2001) show that the deterministic volatility assumed by the GBM does

not take into account all the dynamics that determine option prices while models which

include stochastic volatility are more accurate. Dennis and Mayhew (2002) provide an

extensive study on the factors that impact skewness, finding in particular it to be more

intense in periods of high market volatility. In addition, it is shown by Dennis et al.

(2004) that changes in the implied volatility of individual stocks are negatively related to

the stock returns.

While most literature focuses on the equity, as it serves as the underlying asset of the

option contracts, the presence of higher volatilities when the price of assets is negatively

impacted can be extended to debt. Through the Modigliani and Miller (1958) argument

on the composition of the total firm value, the firm value is set as the underlying asset

in the debt literature. Empirical studies on its presence in the specific context of credit

risk can be found, for instance, in Cremers et al. (2008) who find a link between implied

volatilities and credit spreads and Hilscher (2007) that observes that the future volatility

is predicted by corporate bond yields.

Several attempts exist to tackle this. The Heston (1993) aims to capture the in-

creased volatility at lower underlying asset levels through a mean reverting process for

the volatility, whose stochastic process can be correlated to the underlying asset value,

thereby allowing the volatility to increase by setting negative values for the correlation.

The model presented in Merton (1976) emulates the “fat tail” dynamics by introducing a

jump-diffusion model that complements the GBM diffusion with a jump component which

follows a log-normal distribution driven by a Poisson process, allowing sudden changes in

the underlying asset price.

The alternative focused here is the CEV model. Its central feature is the control of

the relationship between the underlying asset price and its volatility, such that with the

choice of the β parameter, the volatility increases or decreases as the price changes. In the
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cases where β < 2, the volatility increases as price falls, if β > 2, the volatility increases

when prices increase while β = 2 nests the original GBM diffusion.

There is a stream in the literature that obtains solutions to option pricing under

the CEV diffusion expressed in terms of the complementary gamma distribution and the

complementary chi-square distribution. Closed-form solutions in this form for vanilla

options for β < 2 were found by Cox (1975), by Emanuel and MacBeth (1982) for β > 2

and Schroder (1989) also presents solutions. An alternative form approach that relies

on the eigenfunction expansion is presented by Davydov and Linetsky (2003). Beyond

the vanilla options, the CEV model is also explored to obtain solutions for lookback

options by Davydov and Linetsky (2001) through the use of the Laplace transform and

by Linetsky (2004) using the spectral expansion approach, in Andersen and Andreasen

(2000) there are extensions for interest rate markets which present high volatility skews

in option prices and there is also the derivation of closed-form expressions for interest

rate cap and swaption prices, and in Nunes (2009) the CEV model is used to price

American-style options. As for the barrier options which are of the interest of this study,

its solutions have been presented in Boyle and Tian (1999) through a trinomial lattice,

Davydov and Linetsky (2001) do so by the Laplace transform, Davydov and Linetsky

(2003) also obtain the value of the barrier options by the same eigenfunction expansion

and also in Mijatović and Pistorius (2013) through the construction of an approximating

continuous-time Markov chain. Dias and Nunes (2011) explore the CEV model in the

field of real options through the payoff of a perpetual American-style option. In terms of

applying the CEV model to credit risk, Campi et al. (2009) model the observable equity

value using a CEV model with the possibility of default linked to the CEV parameter,

and Chen (2015) explores the equity volatility in a structural model that assumes the

CEV model for the diffusion of the firm value.

Most crucially, Dias et al. (2015) develop two novel methodologies for pricing and

hedging European-style barrier option contracts under the CEV model, while allowing

the possibility of a jump to default. The inclusion of this possibility is what sets up the

jump to default extended CEV (JDCEV) of Carr and Linetsky (2006) which is presented

with more detail in a later part of this document. Numerical methods play a crucial role

to researchers and practitioners problems and Dias et al. (2015) generalize two numeri-

cal methods, the stopping time approach (ST) and the static hedging portfolio approach
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(SHP). The stopping time approach is developed by Kuan and Webber (2003) to price

single and double barrier European options through the recovery of the first passage time

density of the underlying asset price to the barrier level(s) via numerically solving an inte-

gral equation. This technique of conditioning on the first time the spot level hits a barrier

is often used for solving level crossing problems. In the probability literature, Park and

Schuurmann (1976), Nobile et al. (1985), Giorno et al. (1989), Buonocore et al. (1990)

and Gutiérrez et al. (1997) provide examples where conditioning is used to characterize

the law of the first passage time in the class of one-dimensional diffusions through integral

equations.

Dias et al. (2015) show that the ST can be extended to obtain exact pricing solutions

under a more general stochastic process, not only allowing it to yield the JDCEV model

but also providing more efficient pricing solutions. The second approach, the SHP, is a

stream of literature that has been widely used to value European-style barrier options.

One of the methods to do this is also called variable-strike fixed-maturity static replication

method and is presented in Bowie and Carr (1994), Carr and Chou (1997) and Carr

(1998). It prices barrier options through the hedging of static positions of European-

style plain-vanilla options for a continuum of strikes while holding the same maturity

date as the barrier option. The other method is the fixed-strike variable-maturity static

replication method which uses a set of standard European-style options with a sequence

of maturities and strikes equaling the known boundary until the maturity date of the

barrier option. Here, the value of the static replication portfolio, composed by vanilla

options with various maturities at n evenly spaced time points, matches the zero value

of the barrier option where the underlying asset price equals the barrier, ensuring that

the value of a knock-out option is zero whenever the knock-out event is triggered. It is

presented by Derman et al. (1995) (thus named DEK method) and afterwards Chung et al.

(2010) modify the method to hedge continuous up-and-out call options by constructing a

portfolio of standard options and cash-or-nothing binary options with varying maturities.

This portfolio not only matches the zero value but also the zero theta — the sensitivity

of the value of the option to the passage of time — allowing a smaller replication error

than that of the DEK portfolio and significantly improving the pricing and the hedging

performance. Dias et al. (2015) extend this method to the valuation of double barrier

option contracts with time-dependent barrier levels under the JDCEV model. This is done
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by first deriving the theta sensitivity measures for both plain-vanilla and cash-or-nothing

European-style options under the JDCEV model and then hedging upper barriers through

the addition of call options with varying maturities and strike equal to the upper barrier,

while lower barriers are hedged through put option contracts. The more complex cases of

double barrier options require a unit of a plain-vanilla European-style option conditional

on no default during the time-span of the evaluated option for the knock-out case, whereas

a recovery component with the value of the strike price is used for the knock-in case.

The first of the two explored methodologies in Dias et al. (2015), the stopping time

approach, is the one extended in this thesis in order to provide the solutions to the options

used to replicate the Das and Kim (2015) model, yielding the needed results for the debt

discounts and the yield curves under the CEV model.

In Part II of this thesis, the focus goes to the crucial component of Das and Kim

(2015) - the barrier options. As previously mentioned, there are more kinds of barrier

options beyond the basic one barrier knock-in and knock-out kinds. In particular, there

are the “first-then” options. These are studied in Jun and Ku (2012) under the GBM

diffusion, who not only present the closed formulae for two barrier first-then call options,

but also solve the three barrier case. Jun and Ku (2013) do so for curved barriers. As an

example of these two barrier first-then options, we can have a first-up-then-down-and-in

barrier option, that is, first, a barrier greater than the underlying asset starting value

must be crossed, then a lower barrier must also be crossed, and only then the option is

knocked-in. Or, as an alternative explanation, it is a down-and-in option, that first must

be knocked-in by crossing an upper barrier. As for the knock-out case, one can have for

instance a first-up-in-then-down-and-out option, which is active after the the underlying

asset price crosses the upper barrier, and is deactivated if afterwards a lower barrier is

crossed. Or alternatively, a down-and-out option that is knocked-in once the asset price

crosses an upper barrier. In the GBM setting, the sum of the two options mentioned

above results in a up-and-in barrier option.

Theoretically, the amount of added barriers is limitless, and in the case of Jun and

Ku (2012) the amount reaches three barriers. This leads to, for instance, the case of a

first-up-then-down-then-up-and-in option, which as the name indicates is knocked-in after

an upper barrier is crossed, followed by a lower barrier, followed by an upper barrier. In

other words, a first-down-then-up-and-in barrier option contract which is knocked-in by
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crossing an upper barrier.

In Jun and Ku (2012) closed formulae are obtained through successive applications of

the reflection principle, an important result that allows often to simplify Brownian motion

problems. Haug (2001) also presents formulae for the double barrier first-then options

when the cost of carry is zero, that is, the interest rate is equal to the dividend yield, with

the formulae being obtained through the put call barrier symmetry.

Part II of this thesis takes the option formulae presented by Jun and Ku (2012) and

applies them to the JDCEV model from Carr and Linetsky (2006) using again the stopping

time approach developed by Dias et al. (2015) to obtain the results.

The JDCEV model was introduced and solved in Carr and Linetsky (2006). It departs

from the CEV diffusion - able to control the variance of the underlying asset by movements

of its price - and complements it with the possibility of a jump to default (that is, the

value of the underlying asset becomes zero, and remains so, given it being an absorbing

barrier) ruled by an hazard process which is set up as an affine increasing function on the

underlying asset’s instantaneous volatility. It nests the CEV model, which is yielded by

setting the affine function parameters to zero. This form of the hazard process is supported

by evidence of the link between the asset volatility and the probability of default. For

instance, Campbell and Taksler (2003) find that the volatility has as much explanatory

power as credit ratings in explaining bond yields. Cremers et al. (2008) show that the

implied volatility of stock options is also able to predict credit spreads and options are

able to explain rating migrations and also establish a positive link between CDS rates and

both the implied volatility levels and its slope. Hilscher (2007) is able to predict volatility

with the credit yield spread. Consigli (2004) is able to conclude that implied volatility

movements drive significant CDS spread movements for firms with a sufficient degree of

risk. Carr and Wu (2010) find links between market risk and credit risk with CDS spreads

being explained by stock option implied volatilities. The explanations presented before

for the leverage effect and the implied volatility skew also contribute to justify the link

between the possibility of jump to default and volatility.

Carr and Linetsky (2006) obtain a solution to the JDCEV model that unifies the

valuation of corporate liabilities, credit derivatives and equity derivatives. This solution

is obtained by time changes, scale changes, and measure changes relying on the theory of

Bessel processes - a type of stochastic processes explored in dept for instance in Revuz
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and Yor (1999). The solution comes in the form of known functions such as the Gamma

function and the Kummer confluent hypergeometric function.

Besides Dias et al. (2015) for the barrier options, Nunes (2009) and Ruas et al. (2013)

price American-style options for the JDCEV model.

Therefore, given the advantageous properties of the JCDEV model, the first-then

barrier options with two and three barriers have their solutions obtained in this thesis,

once again expanding the work of Dias et al. (2015).

As for the third and final part of this thesis, the model of Das and Kim (2015)

is explored again. In this analysis, the level at which the debt increase or decrease

is triggered is not deterministic, although the firm leverage at which it happens is set

beforehand, therefore, the only source of uncertainty on a debt increase happening is

reduced to the path of the firm level. The aim of this part is to achieve a framework

where the firm value increases still raise the probability of triggering debt increases and

its decreases do so for the probability of the debt decreases, but without the need of

setting beforehand the levels at which it does so, while allowing other factors to have an

impact.

The approach taken is to set a hazard rate to trigger the debt increases and decreases,

and in order to be able to link those to the path of the firm level, a correlation is defined

for both stochastic movements. Hazard rates are often used in various models, for instance

the jump to default in the JDCEV model of Carr and Linetsky (2006) is ruled by one.

These are a key part of a class of credit risk models named the intensity models.

These models present a counterpart to the structural credit models and are able to

incorporate factors beyond the total firm’s asset value into the debt pricing models while

maintaining the default-free term-structure modeling. The externally specified intensity

process may or may not be related to the asset value and, therefore, the default can

be treated as an unexpected event. Among the popular diffusions to model the hazard

rate we can note the Vasicek (1977) and the Cox et al. (1985) which are also popular to

model interest rates and the affine jump process as presented for instance in Duffie and

Gârleanu (2001). They yield the probability of not defaulting in a given time period,

which allows to easily obtain the probability of a default on the debt. The literature

on these goes back to Jarrow and Turnbull (1995) who consider two types of risk on

a derivative, the one coming from the underlying asset and the other coming from the
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writer of the derivative and Madan and Unal (1998) who also decompose the risk into two

kinds, timing risk and recovery risk. Duffie and Singleton (1997) use an intensity model

of default with fractional recovery to analyze the term structure of swap spreads and

Duffee (1999) specifies a two-factor model for the treasury-bond and a one-factor firm-

specific intensity process, and conclude that the intensity models appear to be capable

of fitting term-structure changes for corporate bonds. As for empirical studies that rely

on this class of models, one can cite Driessen (2005) who analyses the event risk premia

by comparing the empirical default rates with corporate bond spreads and Duffie et al.

(2003) who analyze with an intensity-based model the Russian bonds around the crisis in

the year 1998.

Another literature stream that uses intensity processes and show a payoff structure

similar to the one in this thesis is the one on vulnerable options. These emerge due to the

fact that those who hold derivatives contracts often cannot ignore counterparty risk. The

fact that those on the other side of a contract can default and not be able to pay their

obligations can reduce the realized values of that contract. To do this, the possibility of

the default by the counterpart is defined, and it can be so through an intensity model.

There are early works with the approach that default occurs at option expiry and assume

stochastic processes for both the firm value of the option writer and the underlying asset

value of the option. Johnson and Stulz (1987) derive options with the possibility of

correlation between the option’s underlying asset and the credit risk of the counterparty

with the possibility of an option writer defaulting, Klein (1996) does a similar exercise,

including the possibility of counterparty and the option writer to have other liabilities and

Klein and Inglis (2001) do a combination of the features of the two other papers which

is solved through a numerical solution. Follow up works include, for instance, Hung and

Liu (2004) who extend Klein’s work in incomplete markets under the stochastic interest

rate, Klein and Yang (2010) study the American-style vulnerable options by extending

the previous works and Yang et al. (2014) incorporate the volatility of the underlying

asset following a mean-reverting Ornstein–Uhlenbeck process.

More recent literature such as Fard (2015) and Koo and Kim (2017) explore intensity

based models for vulnerable options where the default of the firm is ruled by a process

similar to the one that rules the debt changes in this study. The obtained framework

for the debt studied in the third part of this thesis adds the possibility of increasing and
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decreasing debt to the Merton model, although the flexible framework can be applied to

other cases. In part IV, the case of the presence of subordinated debt is also studied. In

Black and Cox (1976) the possibility of multiple debt claimants is explored and Gorton

and Santomero (1990) present a formula where debt is separated into two categories upon

default: the senior debt which has the priority in receiving its nominal debt value and the

junior debt that only receives the nominal face value once the senior debt has been fully

paid. They observe that under the presence of subordinated debt, the risk preference of

debtholders may change, with the junior debtors preferring a higher amount of risk in

certain circumstances. With the proper adaptations, the value of the junior debt when

there is the possibility of increasing the senior debt is obtained.

The remainder of the thesis is organized as follows. Part II prices first-then-options

under the JDCEV model. Part III studies credit spreads with dynamic debt under the

CEV model. Part IV analyzes dynamic debt with intensity-ruled debt jumps. Finally,

Part V presents the main conclusions of the research problems discussed in this thesis.
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Part II

First-then-options under the JDCEV

model

1 Introduction

Barrier options are a highly popular kind of path dependent exotic options, particularly

in the over-the-counter markets and foreign exchange markets.

As the standard options, these have an underlying asset price, a strike price and a

maturity. The addition comes in the form of one or more barriers of either knock-in or

knock-out types. For example, a single barrier option with a knock-out barrier becomes

worthless if that barrier is crossed by the asset price before the maturity date, while

a single barrier option with a knock-in barrier is worthless unless the barrier is crossed.

Given these constraints, these options are cheaper than the corresponding vanilla options,

while allowing market participants to better fit their needs. The study of these options

is well documented, especially for the geometric Brownian motion (GBM) setup. Merton

(1973) reaches the price for a down-and-out call, while Rubinstein and Reiner (1991)

and Rich (1994) derive the price of knock-in and knock-out put and call options for the

remaining single barrier option contracts.

The complexity of these barrier options can be increased alongside the number of

barriers. Double barrier contracts are popular in various forms. For instance, the double

barrier knock-out options where there are two barriers and when either one is crossed,

the option becomes worthless. This kind of contracts is well studied under the GBM

assumption, as it can be seen in Kunitomo and Ikeda (1992), Geman and Yor (1996),

Sidenius (1998), Pelsser (2000), Schröder (2000) or Buchen and Konstandatos (2009).

In this part of the thesis, a particular family of barrier options is studied, the first-

then-barrier options. These rely on barriers starting their monitorization period after

another barrier is crossed. For instance, a first-up-then-down-and-in call is worthless

before the asset price crosses an upper barrier, and in addition, afterwards, also crosses

a second lower barrier. In another case, one might have a first-up-in-then-down-and-out
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call, where an investor obtains a down-and-out call after an upper barrier is crossed.

The first-then options were studied in the GBM setting by Haug (2006), with closed

formulae for the case where the cost-of-carry is null, that is, the interest rate equals the

dividend rate. Furthermore, Jun and Ku (2012) also derive closed formulae for the call

options, while allowing flexibility in the cost-of-carry parameter, and also including the

case of triple barriers. For instance, a first-up-then-down-then-up-and-in option becomes

active only after three barriers are crossed. In Jun and Ku (2013), options with multiple

curved barriers are explored.

Given that all these results are presented for the GBM setting, they are exposed to

its log-normal distribution assumption. This fails to capture various empirical facts, as

for instance Jackwerth and Rubinstein (1996) explore. These limitations can be anchored

in two effects: firstly, as shown in Bekaert and Wu (2000), there is a negative correlation

between stock returns and realized volatility, the leverage effect ; and secondly, as Dennis

and Mayhew (2002) document, the negative correlation between the implied volatility

and the strike of the stock, the implied volatility skew.

To address these issues, Cox (1975) introduces the constant elasticity of variance

(CEV) model. This model departs from the GBM, allowing the volatility to be a function

of the underlying asset price, thus addressing the mentioned limitations if one sets the

price and volatility to be negatively connected. A further step is taken by Carr and

Linetsky (2006), who include the possibility of a jump to default, where default is based

on an affine function of equity and volatility, and so arriving at the jump to default

extended CEV (JDCEV) model.

In this part of the thesis, we price the first-then style options presented in Jun and Ku

(2012) in the CEV and JDCEV frameworks. To do so, the stopping time approach based

on the work of Park and Schuurmann (1976) and developed in Dias et al. (2015) is crucial,

adapting its methodology to the first-then options. The latter paper develops numerical

methods capable of yielding accurate results for the double barrier options under the

JDCEV model. In Dias et al. (2021), the authors explore more types of barrier options.

Here, the developed methodology, in addition to extending to the JDCEV model to

the case of three barriers, allows for the first and the third barriers to hold different values,

a possibility Jun and Ku (2012) do not contemplate, as these must hold the same value.
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2 Markovian diffusion process with killing

Assume a general one-dimensional Markovian diffusion process with killing, under which

the underlying asset price can diffuse to zero, where zero is an absorbing barrier,

τ0 := inf {t > t0 : St = 0} , (1)

or, alternatively, the asset price can also jump to zero at the first time ζ̃ of a doubly-

stochastic Poisson process with intensity λ(S, t) ∈ R+.

The random time of default will occur when the first of two events occurs, that is,

ζ = τ0 ∧ ζ̃ . (2)

Therefore, at time ζ, the process heads towards zero, remaining there afterwards,

emulating a default time. We will evaluate the options’ prices assuming that the default

is yet to occur.

Before ζ, at time-t, the price of the underlying asset under the martingale measure Q,

associated to the numéraire “money market account”, follows the stochastic differential

equation

dSt
St

= [r(t)− q(t) + λ(S, t)]dt+ σ(S, t)dWQ
t . (3)

As usual, r(t) represents the interest rate, q(t) stands for the dividend yield, σ(S, t)

is the instantaneous volatility of the asset returns at time-t given the asset price S and{
WQ
t , t ≥ t0

}
is a standard Brownian motion defined under measure Q, generating the

filtration F := {Ft, t ≥ t0}.

Let D = {Dt : t ≥ t0} denote the filtration denoted by the default indicator process

Dt = 11{t<ζ}. With the two filtrations, we can denote the enlarged filtration Gt = Ft ∨Dt.

The volatility is given with a CEV-type specification which accommodates the leverage

effect. Therefore
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σ(t, S) = atS
β̄
t , (4)

where β̄ < 0 is the volatility elasticity parameter and at > 0 is a deterministic volatility

scale function.

As for the default intensity process, the Carr and Linetsky (2006) specification is

used, with the default intensity being an affine function in terms of the instantaneous

underlying asset variance. So we have

λ(S, t) = bt + cσ(S, t)2, (5)

with c ≥ 0 and bt ≥ 0 being a deterministic function of time.

Overall, equations (1) - (5) compose the JDCEV model which is used in this part of

the thesis.

3 Barrier options contract payoffs and first passage

times

In this section, the formal definitions for the option contracts are presented, alongside

with the formal definitions of the first passage times. We start with the plain-vanilla

options, which are the base of the barrier options.

3.1 Single barrier options

At time t0, the price of a plain-vanilla European-style call (if φ = −1) or put (if φ = 1)

with the underlying asset price S, with strike K and maturity at T is composed by the

sum of the option in the case of no default and the recovery value in the case of default,

that is:

vt0 (St0 , K, T ;φ) = v0
t0

(St0 , K, T ;φ) + vDt0 (St0 , K, T ;φ) . (6)
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The first component corresponds to the value of the option, although conditional on

the survival of the underlying asset until the maturity date, T .

The second component corresponds to what is ”recovered” in the case of the default

event, ζ, happens before T . Given the options’ payoff, it is null in the case of the call

options.

3.2 First passage times

The first passage times are used to signal when the barriers are crossed, so let

τB := inf {u > t0 : Su = B(t)} , (7)

be the first time that the underlying asset price hits the finite and deterministic barrier

level B(t) , with B ∈ {L,U}, that is, it can be either a lower barrier (below the staring

asset value) or an upper barrier (above the staring asset value).

3.3 One-touch single barrier options

We first borrow the single barriers valuation approach from Dias et al. (2021). These

contracts represent plain-vanilla options that are activated (knocked-in) or deactivated

(knocked-out) once a given barrier level is crossed, a lower barrier - designated by L(t) -

or an upper barrier - designated by U(t).

These contracts are the most simple barrier options, which were studied by Rubinstein

and Reiner (1991) and Rich (1994) under the GBM framework. First, a single barrier

knock-in option only results in a payoff, if, before maturity, a given time dependent barrier

level L(t) - in case of a down-and-in option - or a barrier level U(t) - for up-and-in options

- is crossed. In the cases where the barrier is not crossed, the option contract is worthless.

Second, a single barrier knock-out option only results in a payoff if a given time dependent

barrier level L(t) - in case of a down-and-out option - or a barrier level U(t) - for up-

and-out options - is not crossed. In the cases where the barrier is crossed, the option is

worthless. In both the knock-in and knock-out cases where the option becomes worthless,

a cash rebate may also be received until the maturity date (although it is not approached

here).

In addition, the possibility of default must be taken into account when evaluating
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these options. For the case of a call option, when the price hits the absorbing barrier of

zero, the option becomes worthless. The case of the put option is more nuanced, as one

must regard that in the case of default, the value is equal to the strike, K, but only if the

option is active, and this depends on the underlying asset’s price path until the default

time.

The following four definitions borrowed from Dias et al. (2021) summarize the contrac-

tual features of one-touch knock-in and knock-out single barrier options with no rebate

for the case of time-dependent barriers.

Definition 1 Up-and-in options. The time-T price of a unit face value and zero

rebate European-style up-and-in single barrier option on the asset price S, with strike K,

barrier levels U : T → R+ (with U(t0) > St0), and maturity at time T (≥ t0) is equal to

EUIT (ST , K, U, T ;φ, τU) = EUI0
T (ST , K, U, T ;φ, τU) + EUIDT (ST , K, U, T ;φ, τU)

= (φK − φST )+ 11{τU≤T,ζ>T} + (φK)+11{τU≤ζ≤T}, (8)

where φ = 1 for a put option and φ = −1 for a call option. We note that there is no

recovery component for an up-and-in call and, therefore, EUIDT (ST , K, U, T ;−1, τU) = 0.

Definition 2 Down-and-in options. The time-T price of a unit face value and zero

rebate European-style down-and-in single barrier option on the asset price S, with strike

K, barrier levels L : T → R+ (with L(t0) < St0), and maturity at time T (≥ t0) is equal

to

EDIT (ST , K, L, T ;φ, τL) =EDI0
T (ST , K, L, T ;φ, τL) + EDIDT (ST , K, L, T ;φ, τL)

= (φK − φST )+ 11{τL≤T,ζ>T} + (φK)+ 11{τL≤ζ≤T}

= (φK − φST )+ 11{τL≤T,ζ>T} + (φK)+ 11{ζ≤T}

− (φK)+ 11{ζ<τL}

= (φK − φST )+ 11{τL≤T,ζ>T} + vDT (S,K, T ;φ), (9)

where φ = 1 for a put option and φ = −1 for a call option. We note that there is no

recovery component for a down-and-in call and, therefore, EDIDT (ST , K, L, T ;−1, τL) = 0.
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Moreover, since the default event cannot precede the knock-in event, then 11{ζ<τL} = 0 and,

hence, EDIDT (ST , K, L, T ; 1, τL) = vDT (ST , K, T ; 1), which is the recovery component of a

vanilla put option, as defined in Carr and Linetsky (2006) and Dias et al. (2015).

Definition 3 Up-and-out options. The time-T price of a unit face value and zero

rebate European-style up-and-out single barrier option on the asset price S, with strike K,

barrier levels U : T → R+ (with U(t0) > St0) , and maturity at time T (≥ t0) is equal to

EUOT (ST , K, U, T ;φ, τU) =EUO0
T (ST , K, U, T ;φ, τU) + EUOD

T (ST , K, U, T ;φ, τU)

= (φK − φST )+ 11{τU>T,ζ>T} + (φK)+11{ζ≤T∧τU}

=v0
T (ST , K, T ;φ)− EUI0

T (ST , K, U, T ;φ, τU)

+ (φK)+11{ζ≤T∧τU}, (10)

where φ = 1 for a put option and φ = −1 for a call option. We note that there is no

recovery component for an up-and-out call and, therefore,

EUOD
T (ST , K, U, T ;−1, τU) = 0.

Definition 4 Down-and-out options The time-T price of a unit face value and zero

rebate European-style down-and-out single barrier option on the asset price S, with strike

K, barrier levels L : T → R+ (with L(t0) < St0) , and maturity at time T (≥ t0) is equal

to

EDOT (ST , K, L, T ;φ, τL) =EDO0
T (ST , K, L, T ;φ, τL) + EDOD

T (ST , K, L, T ;φ, τL)

= (φK − φST )+ 11{τL>T,ζ>T} + (φK)+11{ζ≤T∧τL}

=v0
T (ST , K, T ;φ)− EDI0

T (ST , K, L, T ;φ, τL) , (11)

where φ = 1 for a put option and φ = −1 for a call option. We note that there is no

recovery component for a down-and-out call and, therefore,

EDOD
T (ST , K, L, T ;−1, τL) = 0. Furthermore, since the default event cannot precede the

knock-out event, 11{ζ≤τL} = 0 and, hence, EDOD
T (ST , K, L, T ; 1, τL) = 0.
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3.4 First-then-barrier options

First-then-barrier options are barrier options contracts whose barrier monitoring starts

when another barrier is crossed.

For instance, we can have a knock-in option than in addition to crossing a first upper

barrier, it must also cross a second lower barrier in order to be activated. One can also

have the knock-out option cases, where, for instance, first an upper barrier must be crossed

to start the monitoring of a second lower knock-out barrier.

These contracts were studied by Jun and Ku (2012) and Jun and Ku (2013) under the

GBM assumption for the call options with closed formulae through successive applications

of the reflection principle. In this section, the contractual features of the knock-out and

knock-in options are studied. In general, these are the previous four payoffs, but with

the feature that beforehand an additional barrier must be crossed in order to start the

barrier’s monitorization.

Definition 5 First-down-then-up-and-in options. The time-T price of a unit face

value and zero rebate European-style first-down-then-up-and-in option on the asset price

S, with strike K, barrier levels L : T → R+ (with L(t0) < St0), U : T → R+ (with

U(t0) > St0), and maturity at time T (≥ t0) is equal to

EDUIT (ST , K, L, U, T ;φ, τL, τU)

=EDUI0
T (ST , K, L, U, T ;φ, τL, τU) + EDUIDT (ST , K, L, U, T ;φ, τL, τU)

= (φK − φST )+ 11{τL<τU≤T,ζ>T} + (φK)+11{τL<τU≤ζ≤T}, (12)

where φ = 1 for a put option and φ = −1 for a call option. Hence, τL activates a

European-style up-and-in barrier option with barrier level U . We note that there is no

recovery component for the first-down-then-up-and-in call and, therefore,

EDUIDT (ST , K, L, U, T ;−1, τL, τU) = 0.

Definition 6 First-up-then-down-and-in options. The time-T price of a unit face

value and zero rebate European-style first-up-then-down-and-in barrier option on the asset

price S, with strike K, barrier levels L : T → R+ (with L(t0) < St0), U : T → R+ (with
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U(t0) > St0), and maturity at time T (≥ t0) is equal to

EUDIT (ST , K, L, U, T ;φ, τL, τU)

=EUDI0
T (ST , K, L, U, T ;φ, τL, τU) + EUDIDT (ST , K, L, U, T ;φ, τL, τU)

= (φK − φST )+ 11{τU<τL≤T,ζ>T} + (φK)+11{τU<τL≤ζ≤T}

where φ = 1 for a put option and φ = −1 for a call option. Hence, τU activates a

European-style down-and-in barrier option with barrier level L. We note that there is no

recovery component for a first-up-then-down-and-in call and, therefore,

EUDIDT (ST , K, L, U, T ;−1, τL, τU) = 0.

Definition 7 First-down-in-then-up-and-out options. The time-T price of a unit

face value and zero rebate European-style first-down-in-then-up-and-out barrier option on

the asset price S, with strike K, barrier levels L : T → R+ (with L(t0) < St0), U : T → R+

(with U(t0) > St0), and maturity at time T (≥ t0) is equal to

EDI, UOT (ST , K, L, U, T ;φ, τL, τU)

=EDI, UO0
T (ST , K, L, U, T ;φ, τL, τU) + EDI, UOD

T (ST , K, L, U, T ;φ, τL, τU)

=(φK − φST )+11{τL≤T<τU ,ζ>T} + (φK)+11{τL≤ζ≤T∧τU}, (13)

where φ = 1 for a put option and φ = −1 for a call option. Hence, τL activates a

European-style up-and-out barrier option with barrier level U . We note that there is no

recovery component for the first-down-in-then-up-and-out call, and, therefore

EDI, UOT (ST , K, L, U, T ;−1, τU , τL) = 0.

Definition 8 First-up-in-then-down-and-out-options. The time-T price of a unit

face value and zero rebate European-style first-up-in-then-down-and-out barrier option on

the asset price S, with strike K, barrier levels L : T → R+ (with L(t0) < St0), U : T → R+

(with U(t0) > St0), and maturity at time T (≥ t0) is equal to

EUI,DOT (ST , K, L, U, T ;φ, τL, τU)

=EUI,DO0
T (ST , K, L, U, T ;φ, τL, τU) + EUI,DOD

T (ST , K, L, U, T ;φ, τL, τU)

=(φK − φST )+11{τU≤T<τL,ζ>T} + (φK)+11{τU<ζ≤T∧τL}, (14)
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where φ = 1 for a put option and φ = −1 for a call option. Hence, τU activates a

European-style down-and-out barrier option with barrier level L.

In the previous Propositions, a new barrier is added to a single barrier option, thus

originating two barriers. More barriers can be added to the option indefinitely, and here,

the case of the three barriers will be explored. For instance, one can have a first-up-then-

down-then-up-and-in barrier option which is knocked-in after three barriers are crossed

in sequence: first an upper barrier, then a lower barrier and, finally, an upper barrier.

Jun and Ku (2012) derive the closed formulae for this kind of barrier option for the

call case, although with the limitation of the first barrier to being equal to the third

barrier. That is, they assume that L1 = L2 in the case of two lower barriers and U1 = U2

in the case of two upper barriers. Here the possibility of the first and third barriers being

different is considered, that is, U1 6= U2 and L1 6= L2 are contemplated.

Definition 9 First-up-then-down-then-up-and-in options. The time-T price of a

unit face value and zero rebate European-style first-up-then-down-then-up-and-in option

on the asset price S, with strike K, barrier levels L : T → R+ (with L(t0) < St0),

U1 : T → R+ (with U1(t0) > St0), U2 : T → R+ (with U2(t0) > St0) and maturity at time

T (≥ t0) is equal to

EUDUIT (ST , K, L, U1, U2, T ;φ, τL, τU1 , τU2)

=EUDUI0
T (ST , K, L, U1, U2, T ;φ, τL, τU1 , τU2)

+ EUDUIDT (ST , K, L, U1, U2, T ;φ, τL, τU1 , τU2)

= (φK − φST )+ 11{τU1
<τL<τU2

≤T,ζ>T} + (φK)+11{τU1
<τL<τU2

≤ζ≤T}, (15)

where φ = 1 for a put option and φ = −1 for a call option. Hence, if τU1 has occurred,

τL activates a European-style up-and-in barrier option with the barrier level at U2. We

note that there is no recovery component for a first-up-then-down-then-up-and-in call and,

therefore, EUDUIDT (ST , K, L, U1, U2, T ;−1, τL, τU1 , τU2) = 0.

Definition 10 First-down-then-up-then-down-and-in options. The time-T price

of a unit face value and zero rebate European-style first-down-then-up-then-down-and-in

barrier option on the asset price S, with strike K, barrier levels L1 : T → R+ (with
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L1(t0) < St0), L2 : T → R+ (with L2(t0) < St0), U : T → R+ (with U(t0) > St0) and

maturity at time T (≥ t0) is equal to

EDUDIT (ST , K, L1, L2, U, T ;φ, τL1 , τL2 , τU)

=EDUDI0
T (ST , K, L1, L2, U, T ;φ, τL1 , τL2 , τU)

+ EDUDIDT (ST , K, L1, L2, U, T ;φ, τL1 , τL2 , τU)

= (φK − φST )+ 11{τL1
<τU<τL2

≤T,ζ>T} + (φK)+11{τL1
<τU<τL2

≤ζ≤T,}, (16)

where φ = 1 for a put option and φ = −1 for a call option. Hence, if τL1 has occurred,

τU activates a European-style down-and-in barrier option with the barrier level at L2. We

note that there is no recovery component for the first-down-then-up-then-down-and-in call

and, therefore, EDUDIDT (ST , K, L1, U, L2, T ;−1, τL1 , τU , τL2) = 0.

Definition 11 First-up-then-down-in-then-up-and-out options. The time-T price

of a unit face value and zero rebate European-style first-up-then-down-in-then-up-and-out

barrier option on the asset price S, with strike K, barrier levels L : T → R+ (with

L(t0) < St0), U1 : T → R+ (with U1(t0) > St0), U2 : T → R+ (with U2(t0) > St0), and

maturity at time T (≥ t0) is equal to

EUDI, UOT (ST , K, L, U1, U2, T ;φ, τL, τU1 , τU2)

=EUDI, UO0
T (ST , K, L, U1, U2, T ;φ, τL, τU1 , τU2)

+ EUDI, UOD
T (ST , K, L, U1, U2, T ;φ, τL, τU1 , τU2)

= (φK − φST )+ 11{τU1
<τL<T<τU2

,ζ>T} + (φK)+11{τU1
<τL≤ζ≤T∧τU2

} (17)

where φ = 1 for a put option and φ = −1 for a call option. Hence, if τU1 has occurred,

τL activates a European-style up-and-out barrier option with the barrier level at U2.

Definition 12 First-down-then-up-in-then-down-and-out options. The time-T

price of a unit face value and zero rebate European-style first-down-then-up-in-then-down-

and-out barrier option on the asset price S, with strike K, barrier levels L1 : T → R+

(with L1(t0) < St0), L2 : T → R+ (with L2(t0) < St0), U : T → R+ (with U(t0) > St0),

and maturity at time T (≥ t0) is equal to
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EDUI,DOT (ST , K, L1, L2, U, T ;φ, τL1 , τL2 , τU)

=EDUI,DO0
T (ST , K, L1, L2, U, T ;φ, τL1 , τL2 , τU)

+ EDUI,DOD
T (ST , K, L1, L2, U, T ;φ, τL1 , τL2 , τU)

= (φK − φST )+ 11{τL1
<τU<T<τL2

,ζ>T} + (φK)+1{τL1<τU<ζ≤T∧τL2
}

where φ = 1 for a put option and φ = −1 for a call option. Hence, if τL1 has occurred, τU

activates a European-style down-and-out barrier option with the barrier level at L2. We

note that there is no recovery component for the first-down-then-up-in-then-down-and-out

call and, therefore, EDUI,DOD
T (ST , K, L1, L2, U, T ;−1, τL1 , τL2 , τU) = 0.

4 Valuation under the JDCEV model

With the barrier option payoffs derived, the standard options and various barrier cases

results are computed for the conditional on no default components and the corresponding

recovery values.

4.1 Plain-vanilla options

The results for the plain-vanilla options are obtained in Carr and Linetsky (2006) and the

results are as follows.

v0
t0

(St0 , K, T ;φ) := EQ
[
e
−

∫ T
t0
r(t)dl

(φK − φST )+ 11{ζ>T} | Gt0
]

(18)

and

vDt0 (St0 , K, T ;φ) := EQ
[
e
−

∫ T
t0
r(l)dl

(φK)+11{ζ≤T} | Gt0
]
. (19)

As mentioned before, in the case of the recovery component, its value is null for

European-style calls, i.e., vDt0 (St0 , K, T ;−1) = 0. In the case of the put, it is given by the

probability of default multiplied by the strike level to be paid at the maturity date T .

That is,
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vDt0 (St0 , K, T ;φ) = (φK)+e
−

∫ T
t0
r(l)dl

[1− SP (St0 , t0;T )] , (20)

where we have the risk-neutral survival probability beyond time T (> t0) to be

SP (St0 , t0;T ) := EQ
[
11{ζ>T} | Gt0

]
= 11{ζ>t0}EQ

[
e
−

∫ T
t0
λ(Sl,l)dl11{τ0>T} | Ft0

]
, (21)

as defined in Carr and Linetsky (2006, Equation 3.1).

4.2 Single barrier results

First, the components conditional on no default formulae borrowed from Dias et al. (2021)

allow the computation of both up and down kinds of single barrier options.

Proposition 1 Under the financial model defined by equations (1) to (5) and assuming

that ζ > t0, the time-t0 (conditional on no default) value of a unit face value and zero

rebate European-style knock-in call (if φ = −1) or put (if φ = 1) on the asset price S,

with strike K, barrier levels B : T → R+ (with B(t0) > St0 for up barrier contracts and

B(t0) < St0 for down barrier contracts), τB ∈ {τL, τU}, and maturity at time T (≥ t0) is

equal to

EKI0
t0

(St0 , K,B, T ;φ, τB)

=

∫ T

t0

e
−

∫ u
t0
r(l)dl

SP (St0 , t0;u) v0
u(B(u), K, T ;φ)Q (τB ∈ du | Ft0) , (22)

where v0
u(B(u), K, T ;φ) is the conditional on no default plain-vanilla option, SP (St0 , t0;u)

is the risk-neutral survival probability and Q (τB ∈ du | Ft0) represents the density function

of the first passage time τB.

Proof. See Dias et al. (2021, Proposition 1).

Remark 1 The conditional on no default value formulae for the knock-out options are
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obtained as

EKO0
t0

(St0 , K,B, T ;φ, τB) = v0
t0

(St0 , K, T ;φ)− EKI0
t0

(St0 , K,B, T ;φ, τB). (23)

Next, we discuss how to compute the recovery components in case of default for the

knock-in options and knock-out options. Again, the value is null for all kinds of call

options, because when the underlying asset value remains at zero, the payoff becomes

null.

As for the down-and-out puts, its value is also zero, as the lower knock-out barrier is

crossed before the underlying asset becomes zero, thus, as mentioned in Dias et al. (2021,

Definition 6):

EDOD
t0

(St0 , K, L, T ; 1, τL) = 0. (24)

In the case of the down-and-in puts, the jump to default automatically triggers the

lower barrier, therefore the recovery value is the same as of a standard put, as shown in

Dias et al. (2021, Definition 4):

EDIDt0 (St0 , K, U, T ; 1, τL) = vDt0 (St0 , K, T ; 1) . (25)

Still, there are two missing cases that require the two following Propositions, the

up-and-in and the up-and-out puts, that are also borrowed from Dias et al. (2021).

Proposition 2 Under the financial model defined by equations (1) to (5) and assuming

that ζ > t0, the time-t0 recovery value of a unit face value and zero rebate European-style

up-and-in put on the asset price S, with strike K, upper barrier levels U : T → R+ (with

U(t0) > St0), and maturity at time T (≥ t0) is equal to

EUIDt0 (St0 , K, U, T ; 1, τU)

=Ke
−

∫ T
t0
r(l)dl

[∫ T

t0

SP (St0 , t0; v) [1− SP (U(v), v;T )]Q (τU ∈ dv | Ft0)
]
, (26)
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where SP (U(v), v;T ) is the risk-neutral survival probability and Q (τU ∈ du | Ft0) repre-

sents the density function of the first passage time τU .

Proof. See Dias et al. (2021, Proposition 2).

Proposition 3 Under the financial model defined by equations (1) to (5) and assuming

that ζ > t0, the time-t0 recovery value of a unit face value and zero rebate European-style

up-and-out put on the asset price S, with strike K, upper barrier levels U : T → R+ (with

U(t0) > St0), and maturity at time T (≥ t0) is equal to

EKOD
t0

(St0 , K, U, T ; 1, τU) = vDt0 (St0 , K, T ; 1)− EUIDt0 (St0 , K, U, T ; 1, τU) , (27)

where vDt0 (St0 , K, T ; 1) is the recovery component of a standard put andEUIDt0 (St0 , K, U, T ; 1)

is the recovery value of an up-and-in put.

Proof. See Dias et al. (2021, Proposition 3).

4.3 First-then-barrier results

Now, by conditioning the previous one-barrier formulae with respect to the filtration that

represents the crossing of other barriers, we obtain the two-barrier cases. We start with

the conditional on no default components for the first two options.

Proposition 4 Under the financial model defined by equations (1) to (5) and assuming

that ζ > t0, the time-t0 value of a conditional on no default unit face value and zero rebate

European-style first-down-then-up-and-in call (if φ = −1) or put (if φ = 1) on the asset

price S, with strike K, lower barrier levels L : T → R+ (with L(t0) < St0), upper barrier

levels U : T → R+ (with U(t0) > St0) and maturity at time T (≥ t0) is equal to

EDUI0
t0

(St0 , K, L, U, T ;φ, τL, τU)

=

∫ T

t0

e
−

∫ l
t0
r(l)dl

SP (St0 , t0; l)EUI0
l (L,K,U, T ;φ, τU)Q (τL ∈ dl| Ft0) , (28)

where EUI0
l (L,K,U, T ;φ, τU) is the conditional on no default time-l price of a European-

style down-and-in call (if φ = −1) or put (if φ = 1), SP (St0 , t0; l) is the risk-neutral
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survival probability and Q (τL ∈ dl| Ft0) represents the probability density function of the

first passage time τL.

Proof. The time-t0 risk-neutral expectation of the conditional on no default payoff

of a first-down-then-up-and-in barrier option is defined as

EDUI0
t0

(St0 , K, L, U, T ;φ, τL, τU) = 11{ζ>t0}e
−

∫ T
t0
r(l)dlEQ

[
(φK − φST )+ 11{τL<τU≤T,ζ>T} | Gt0

]
.

(29)

By using the tower law and Dias et al. (2015, equation (19)),

EQ

[
(φK − φST )+11{τL<τU≤T,ζ>T} | Gt0

]
=EQ

[
(φK − φST )+11{τL<τU}11{τU≤T}11{T<ζ} | Gt0

]
=EQ

[
EQ

[
11{τL<τU}EQ

[
11{τU≤T}(φK − φST )+11{T<ζ} | GτU

]
| GτL

]
| Gt0

]
. (30)

Through successive uses of Dias et al. (2015, equation (19)), we obtain

EQ

[
(φK − φST )+11{τL<τU≤T,ζ>T} | Gt0

]
=EQ

[
EQ

[
11{τL<τU}EQ

[
11{τU<T}(φK − φST )+e

−
∫ T
t0
λ(S,i)di

11{inf{t0≤v≤T}(Sv)>0} | FτU
]
| GτL

]
| Gt0

]
=EQ

[
EQ

[
11{τL<τU}e

−
∫ τU
t0

λ(S,i)di11{inf{t0≤v≤τU}(Sv)>0}

× EQ

[
11{τU<T}(φK − φST )+e

−
∫ T
τU

λ(S,i)di
11{inf{τU≤v≤T}(Sv)>0} | FτU

]
| FτL

]
| Gt0

]
=11{ζ>t0}EQ

[
e−

∫ τL
t0

λ(S,i)di11{inf{t0≤v≤τL}(Sv)>0}EQ

[
e
−

∫ τU
τL

λ(S,i)di
11{inf{τL≤v≤τU}(Sv)>0}

× EQ

[
(φK − φST )+e

−
∫ T
τU

λ(S,i)di
11{inf{τU≤v≤T}(Sv)>0} | FτU

]
| FτL

]
| Ft0

]
. (31)

Given the underlying asset process behaves as a pure Markovian diffusion process

with respect to the restricted filtration F ,

EQ

[
(φK − φST )+11{τL<τU≤T,ζ>T} | Gt0

]
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=11{ζ>t0}

∫ T

t0

∫ T

l

EQ

[
e
−

∫ l
t0
λ(S,i)di

11{inf{t0≤v≤l}(Sv)>0}EQ

[
e−

∫ u
l λ(S,i)di11{inf{l≤v≤u}(Sv)>0}

× EQ

[
(φK − φST )+e−

∫ T
u λ(S,i)di11{inf{u≤v≤T}(Sv)>0} | Su = U(u)

]
| Sl = L(l)

]
| Ft0

]
×Q (τU ∈ du | Sl = L(l))Q (τL ∈ dl | Ft0) . (32)

Combining equations (29) and (32), plus using again Dias et al. (2015, equation (19)),

EDUI0
t0

(St0 , K, L, U, T ;φ, τL, τU)

=11{ζ>t0}e
−

∫ T
t0
r(l)dl

∫ T

t0

SP (St0 , t0; l)

×
∫ T

l

SP (L(l), l;u)EQ

[
(φK − φST )+ 11{ζ>T} | Su = U(u)

]
Q (τU ∈ du | Sl = L(l))

×Q (τL ∈ dl | Ft0)

=11{ζ>t0}e
−

∫ u
t0
r(l)dl

∫ T

t0

SP (St0 , t0; l)

×
∫ T

l

SP (L(l), l;u)e−
∫ T
u r(l)dlEQ

[
(φK − φST )+ 11{ζ>T} | Su = U(u)

]
×Q (τU ∈ du | Sl = L(l))Q (τL ∈ dl | Ft0) . (33)

Since, by using Carr and Linetsky (2006, equation (3.8)), we can observe that

e−
∫ T
u r(l)dlEQ

[
(φK − φST )+ 11{ζ>T} | Su = U(u)

]
:= v0

u(U(u), K, T ;φ), (34)

therefore we have

EDUI0
t0

(St0 , K, L, U, T ;φ, τL, τU)

=11{ζ>t0}e
−

∫ u
t0
r(l)dl

∫ T

t0

SP (St0 , t0; l)

×
∫ T

l

SP (L(l), l;u)v0
u(U(u), K, T ;φ)Q (τU ∈ du | Sl = L(l))Q (τL ∈ dl | Ft0) . (35)

Furthermore,
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EDUI0
t0

(St0 , K, L, U, T ;φ, τL, τU)

=11{ζ>t0}e
−

∫ l
t0
r(l)dl

∫ T

t0

SP (St0 , t0; l)

× e−
∫ u
l r(l)dl

∫ T

l

SP (L(l), l;u)v0
u(U,K, T ;φ)Q (τU ∈ du | Sl = L(l))Q (τL ∈ dl | Ft0) ,

(36)

and by Dias et al. (2021, equation (34)), we observe

e−
∫ u
l r(l)dl

∫ T

l

SP (L, l;u)v0
l (U(l), K, T ;φ)Q (τU ∈ du | Sl = L(l))

:=EUI0
l (L(l), K, U(u);φ, τU),

thus we obtain the intended result

EDUI0
t0

(St0 , K, L, U, T ;φ, τL, τU)

=

∫ T

t0

e
−

∫ l
t0
r(l)dl

SP (St0 , t0; l)EUI0
l (L(l), K, U(l);φ, τU)Q (τL ∈ dl | Ft0) . (37)

�

Proposition 5 Under the financial model defined by equations (1) to (5) and assuming

that ζ > t0, the time-t0 conditional on no default value of a unit face value and zero rebate

European-style first-up-then-down-and-in call (if φ = −1) or put (if φ = 1) on the asset

price S, with strike K, lower barrier levels L : T → R+ (with L(t0) < St0), upper barrier

levels U : T → R+ (with U(t0) > St0), maturity at time T (≥ t0) is equal to

EUDI0
t0

(St0 , K, U, L, T ;φ, τL, τU)

=

∫ T

t0

e
−

∫ u
t0
r(l)dl

SP (St0 , t0;u)EDI0
u (U,K,L(l), T ;φ, τL)Q (τU ∈ du| Ft0) , (38)

where EDI0
u (U,K,L, T ;φ, τL) is the conditional on no default price of a down-and-in call
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(if φ = −1) or put (if φ = 1), SP (St0 , t0;u) is the risk-neutral survival probability and

Q (τU ∈ du| Ft0) represents the probability density function of the first passage time τU .

Proof. The time-t0 risk-neutral expectation of the conditional on no default payoff

of a first-up-then-down-and-in barrier option is defined as

EUDI0
t0

(St0 , K, L, U, T ;φ, τL, τU) = e
−

∫ T
t0
r(l)dlEQ

[
(φK − φST )+ 11{τU<τL≤T,ζ>T} | Gt0

]
.

It can be observed that the roles of the upper barrier level, U , and the lower barrier level,

L, are reversed in relation to Proposition 4. So, by having L in the place of U and U in

the place of L in this Proposition, the steps are the same as in the previous Proposition.

Hence, the proof is omitted. �

Now, we compute the recovery value of the two former options. Again, the recovery

value is null for call options, leaving the cases of the put options to be computed.

Proposition 6 Under the financial model defined by equations (1) to (5) and assuming

that ζ > t0, the time-t0 recovery value of a unit face value and zero rebate European-

style first-down-then-up-and-in put on the asset S, with strike K, upper barrier levels

U : T → R+ (with U(t0) > St0), lower barrier levels L : T → R+ (with L(t0) < St0) and

maturity at time T (≥ t0) is equal to

EDUIDt0 (St0 , K, L, U, T ; 1, τL, τU)

=

∫ T

t0

e
−

∫ l
t0
r(l)dl

SP (St0 , t0; l)EUIDl (L,K,U, T ; 1, τU)Q (τL ∈ dl | Ft0) , (39)

where EUIDl (U,K,L, T ; 1, τU) is the recovery component of a up-and-in put, SP (St0 , t0; l)

is the risk-neutral survival probability and Q (τL ∈ dl| Ft0) represents the probability den-

sity function of the first passage time τL.

Proof. The time-t0 risk-neutral expectation of the recovery value of a first-down-

then-up-and-in barrier put option is defined as

EDUIDt0 (S0, K, L, U, T ; 1, τL, τU) = Ke
−

∫ T
t0
r(l)dlEQ

[
11{τL<τU≤ζ≤T} | Gt0

]
. (40)
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The expectation can be written as

EQ

[
11{τL<τU<T≤ζ} | Gt0

]
=EQ

[
11{τL<τU ,τU<ζ,ζ≤T} | Gt0

]
=EQ

[
11{τL<τU}11{τU<ζ}11{ζ≤T} | Gt0

]
, (41)

and given 11{ζ≤T} = 1− 11{ζ>T} we have

EQ

[
11{τL<τU<T≤ζ} | Gt0

]
= EQ

[
11{τL<τU}11{τU<ζ}(1− 11{ζ>T}) | Gt0

]
, (42)

and by the tower law,

EQ

[
11{τL<τU<T≤ζ} | Gt0

]
= EQ

[
EQ

[
11{τL<τU}11{τU<ζ}EQ

[
(1− 11{ζ>T}) | GτU

]
| GτL

]
| Gt0

]
.

(43)

Through successive uses of Dias et al. (2015, equation (19)), we obtain

EQ

[
11{τL<τU<T≤ζ} | Gt0

]
=EQ

[
EQ

[
11{τL<τU}11{τU<ζ}EQ

[
(1− e−

∫ T
τU

λ(S,i)di
11{inf{τU≤v≤T}(Sv)>0}) | FτU

]
| GτL

]
| Gt0

]
=EQ

[
11{τL<τU ,τL<ζ}EQ

[
e
−

∫ τU
τL

λ(S,i)di
11{inf{τL≤v≤τU}(Sv)>0}

×EQ

[
(1− e−

∫ T
τU

λ(S,i)di
11{inf{τU≤v≤T}(Sv)>0}) | FτU

]
| FτL

]
| Gt0

]
=11{ζ>t0}EQ

[
e−

∫ τL
t0

λ(S,i)di11{τL<τU ,inf{0≤v≤τL}(Sv)>0}

×EQ

[
e
−

∫ τU
τL

λ(S,i)di
11inf{τL≤v≤τU}(Sv)>0

×EQ

[
(1− e

∫ T
τU

λ(S,i)di
11{inf{τU≤v≤T}(Sv)>0}) | FτU

]
| FτL

]
| Ft0

]
. (44)

Given the asset price process behaves as a pure Markovian diffusion process with

respect to the restricted filtration F, the equation above can be restated as
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EQ

[
11{τL<τU<T≤ζ} | Gt0

]
= 11{ζ>t0}

∫ T

t0

∫ T

l

EQ

[
e
−

∫ l
t0
λ(S,i)di

11{inf{0≤v≤l}(Sv)>0}EQ

[
e−

∫ u
l λ(S,i)di11inf{l≤v≤u}(Sv)>0}

× EQ

[
(1− e−

∫ T
u λ(S,i)di11{inf{u≤v≤T}(Sv)>0}) | Su = U(u)

]
| Sl = L(l)

]
| Ft0

]
×Q (τU ∈ du | Sl = L(l))Q (τL ∈ dl | Ft0) . (45)

Again, through Dias et al. (2021, equation (19))

EQ

[
11{τL<τU<T≤ζ} | Gt0

]
=11{ζ>t0}

∫ T

t0

∫ T

l

EQ

[
e
−

∫ l
t0
λ(S,i)di

11{inf{0≤v≤l}(Sv)>0}

× EQ

[
e−

∫ u
l λ(S,i)di11inf{l≤v≤u}(Sv)>0}(1− SP (U(u), u;T )) | Sl = L(l)

]
| Ft0

]
×Q (τU ∈ du | Sl = L(l))Q (τL ∈ dl | Ft0)

=11{ζ>t0}

∫ T

t0

∫ T

l

EQ

[
e
−

∫ l
t0
λ(S,i)di

11{inf{0≤v≤l}(Sv)>0}

× SP (L(l), l;u) | Ft0
]
(1− SP (U(u), u;T ))

×Q (τU ∈ du | Sl = L(l))Q (τL ∈ dl | Ft0)

=11{ζ>t0}

∫ T

t0

∫ T

l

SP (St0 , t0; l)SP (L(l), l;u)
]
(1− SP (U(u), u;T ))

×Q (τU ∈ du | Sl = L(l))Q (τL ∈ dl | Ft0) . (46)

Therefore, combining equations (40) and (46)

EDUIDt0 (S0, K, L, U, T ; 1, τL, τU)

=11{ζ>t0}Ke
−

∫ T
t0
r(l)dl

∫ T

t0

∫ T

l

SP (St0 , t0; l)SP (L(l), l;u)(1− SP (U(u), u;T ))

×Q (τU ∈ du | Sl = L(l))Q (τL ∈ dl | Ft0)

EDUIDt0 (S0, K, L, U, T ; 1, τL, τU)

=11{ζ>t0}e
−

∫ l
t0
r(l)dl

∫ T

t0

∫ T

l

Ke−
∫ T
l r(l)dlSP (St0 , t0; l)SP (L(l), l;u)(1− SP (U(u), u;T ))
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×Q (τU ∈ du | Sl = L(l))Q (τL ∈ dl | Ft0) . (47)

With Dias et al. (2021, equation (36)), we can observe that

EUIDl (L,K,U, T ; 1, τU)

:=

∫ T

l

e−
∫ T
l r(l)dlSP (St0 , t0, l)SP (L(l), l, u)

]
(1− SP (U(u), u, T ))×Q (τU ∈ du | Sl = L(l)) ,

(48)

thus we obtain the intended result.

�

Proposition 7 Under the financial model defined by equations (1) to (5) and assuming

that ζ > t0, the time-t0 recovery value of a unit face value and zero rebate European-

style first-up-then-down-and-in put on the asset S, with strike K, upper barrier levels

U : T → R+ (with U(t0) > St0), lower barrier levels L : T → R+ (with L(t0) < St0) and

maturity at time T (≥ t0) is equal to

EUDIDt0 (S0, K, L, U, T ; 1, τL, τU) = EUIDT (ST , K, U, T ; 1, τU) (49)

where EUIDT (ST , K, U, T ; 1, τU) is the recovery component of an up-and-in put.

Proof. The time-t0 risk-neutral expectation of the recovery value of a first-down-

then-up-and-in barrier put is defined as

EUDIDt0 (S0, K, L, U, T ; 1, τL, τU) = 11{ζ>t0}Ke
−

∫ T
t0
r(l)dlEQ

[
11{τU<τL≤ζ≤T}

]
. (50)

The indicator function can be written as

11{τU<τL≤ζ≤T} = 11{τU<ζ≤T} − 11{τU<ζ<τL} (51)

Since the default event cannot precede the lower barrier knock-in event, 11{τU<ζ<τL} =
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0, therefore

11{τU<τL≤ζ≤T} = 11{τU<ζ≤T} (52)

Combining equations (50) and (52),

EUDIDt0 (S0, K, L, U, T ; 1, τL, τU) = 11{ζ>t0}Ke
−

∫ T
t0
r(l)dlEQ

[
11{τU<ζ≤T}

]
. (53)

By Dias et al. (2021, equation (37)),

EUIDT (ST , K, U, T ; 1, τU) := 11{ζ>t0}e
−

∫ T
t0
r(l)dlEQ

[
(φK)+11{τU<ζ≤T}

]
. (54)

Therefore, we reach the intended result. �

Proposition 8 Under the financial model defined by equations (1) to (5) and assuming

that ζ > t0, the time-t0 recovery value of a unit face value and zero rebate European-

style first-down-in-then-up-and-out on call (if φ = −1) or put (if φ = 1) on the asset S,

with strike K, upper barrier levels U : T → R+ (with U(t0) > St0), lower barrier levels

L : T → R+ (with L(t0) < St0) and maturity at time T (≥ t0) is equal to

EDI, UO0
t0

(St0 , K, L, U, T ;φ, τL, τU)

=EDI0
t0

(St0 , K, L, T ;φ, τL)− EDUI0
t0

(St0 , K, L, U, T ;φ, τL, τU). (55)

where EDI0
t0

(St0 , K, L, T ;φ, τL) is the conditional on no default first-down-and-in option

and EDUI0
t0

(St0 , K, L, U, T ;φ, τL, τU) is the conditional on no default first-down-then-up-

and-in option.

Proof.

The time-t0 risk-neutral expectation of the conditional on no default payoff of a first-
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down-then-up-and-in option is defined as

EDI, UO0
t0

(St0 , K, L, U, T ;φ, τL, τU)

= 11{ζ>t0}e
−

∫ T
t0
r(l)dlEQ

[
(φK − φST )+ 11{τL≤T<τU ,ζ>T} | Gt0

]
. (56)

The expected value can be written using the tower law

EQ

[
(φK − φST )+ 11{τL≤T<τU ,ζ>T} | Gt0

]
=EQ

[
(φK − φST )+ 11{τL≤T<τU}11{ζ>T} | Gt0

]
=EQ

[
(φK − φST )+ 11{τL≤T}11{T<τU}11{ζ>T} | Gt0

]
=EQ

[
EQ

[
(φK − φST )+ 11{τL≤T}11{T<τU}11{ζ>T} | GτL

]
| Gt0

]
(57)

Using equation Dias et al. (2015, equation(19)) plus the fact that the asset price process

behaves as a pure Markovian diffusion process,

EQ

[
(φK − φST )+ 11{τL≤T<τU ,ζ>T} | Gt0

]
=EQ

[
EQ

[
(φK − φST )+ 11{τL≤T}11{T<τU}e

−
∫ T
t0
λ(S,i)di

11{inft0≤s≤T (Ss)>0} | GτL
]
| Ft0

]
=

∫ T

t0

EQ

[
EQ

[
(φK − φST )+ 11{T<τU}e

−
∫ T
t0
λ(S,i)di

11{inft0≤s≤T (Ss)>0} | Sl = L(l)
]
| Ft0

]
Q (τL ∈ dl | Ft0) .

(58)

Given that 11{T<τU} = 1− 11{T≥τU}, and combining equations (56) and (58),

EDI, UO0
t0

(St0 , K, L, U, T ;φ, τL, τU)

=11{ζ>t0}e
−

∫ T
t0
r(l)dl

×
∫ T

t0

EQ

[
EQ

[
(φK − φST )+ (1− 11{T≥τU})e

−
∫ T
t0
λ(S,i)di

11{inft0≤s≤T (Ss)>0} | Sl = L(l)
]
| Ft0

]
×Q (τL ∈ dl | Ft0)

=11{ζ>t0}e
−

∫ T
t0
r(l)dl

×
∫ T

t0

EQ

[
EQ

[
(φK − φST )+ e

−
∫ T
t0
λ(S,i)di

11{inft0≤s≤T (Ss)>0} | Sl = L(l)
]
| Ft0

]
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×Q (τL ∈ dl | Ft0)

− 11{ζ>t0}e
−

∫ T
t0
r(l)dl

×
∫ T

t0

EQ

[
EQ

[
(φK − φST )+ 11{T≥τU}e

−
∫ T
t0
λ(S,i)di

11{inft0≤s≤T (Ss)>0} | Sl = L(l)
]
| Ft0

]
×Q (τL ∈ dl | Ft0) . (59)

From equations (30) and Dias et al. (2021, equation (35)), we can observe, respectively,

that

EDI0
t0

(St0 , K, L, T ;φ, τL)

:=11{ζ>t0}e
−

∫ T
t0
r(l)dl

×
∫ T

t0

EQ

[
EQ

[
(φK − φST )+ e

−
∫ T
t0
λ(S,i)di

11{inft0≤s≤T (Ss)>0} | Sl = L(l)
]
| Ft0

]
×Q (τL ∈ dl | Ft0) (60)

and

EDUI0
t0

(St0 , K, L, U, T ;φ, τL, τU)

:=11{ζ>t0}e
−

∫ T
t0
r(l)dl

×
∫ T

t0

EQ

[
EQ

[
(φK − φST )+ 11{T≥τU}e

−
∫ T
t0
λ(S,i)di

11{inft0≤s≤T (Ss)>0} | Sl = L(l)
]
| Ft0

]
×Q (τL ∈ dl | Ft0) , (61)

therefore,

EDI, UO0
t0

(St0 , K, L, U, T ;φ, τL, τU)

=EDI0
t0

(St0 , K, L, T ;φ, τL)− EDUI0
t0

(St0 , K, L, U, T ;φ, τL, τU). (62)

�

Proposition 9 Under the financial model defined by equations (1) to (5) and assuming

that ζ > t0, the time-t0 recovery value of a unit face value and zero rebate European-style
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first-down-in-then-up-and-out on call (if φ = −1) or put (if φ = 1) the asset S, with strike

K, upper barrier levels U : T → R+ (with U(t0) > St0), lower barrier levels L : T → R+

(with L(t0) < St0) and maturity at time T (≥ t0) is equal to

EUI,DO0
t0

(St0 , K, L, U, T ;φ, τL, τU)

=EUI0
t0

(St0 , K, L, T ;φ, τL)− EUDI0
t0

(St0 , K, L, U, T ;φ, τL, τU). (63)

where EUI0
t0

(St0 , K, L, T ;φ, τL) is the conditional on no default first-up-and-in option and

EUDI0
t0

(St0 , K, L, U, T ;φ, τL, τU) is the conditional on no default first-up-then-down-and-

in option.

Proof.

The time-t0 risk-neutral expectation of the conditional on no default payoff of a first-

up-then-down-and-in option is defined as

EUI,DO0
t0

(St0 , K, L, U, T ;φ, τL, τU)

= 11{ζ>t0}e
−

∫ T
t0
r(l)dlEQ

[
(φK − φST )+ 11{τU≤T<τL,ζ>T} | Gt0

]
.

It can be observed that the roles of the upper barrier level, U , and the lower barrier level,

L, are reversed in relation to Proposition 8. So, by having L in the place of U and U in the

place of L in this Proposition, the steps are similar to those of the previous Proposition.

Hence, the proof is omitted.

�

Proposition 10 Under the financial model defined by equations (1) to (5) and assuming

that ζ > t0, the time-t0 recovery value of a unit face value and zero rebate European-

style first-down-in-then-up-and-out put on the asset S, with strike K, upper barrier levels

U : T → R+ (with U(t0) > St0), lower barrier levels L : T → R+ (with L(t0) < St0) and

maturity at time T (≥ t0) is equal to

EDI, UOD
t0

(ST , K, L, U, T ;φ, τL, τU) = EUOD
t0

(ST , K, U, T ;φ, τU) (64)

where EUOD
t0

(ST , K, U, T ;φ, τU) is the recovery value of a up-and-out put.
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Proof.

The time-t0 risk-neutral expectation of the recovery value payoff of a first-down-and-

in-then-up-and-out put is defined as

EDI, UOD
t0

(ST , K, L, U, T ;φ, τL, τU) = 11{ζ>t0}Ke
−

∫ T
t0
r(l)dlEQ

[
11{τL≤ζ≤T∧τU}

]
(65)

The indicator function can be written as

11{τL≤ζ≤T∧τU} = 11{ζ≤T∧τU} − 11{ζ<τL}. (66)

Given crossing the lower barrier cannot precede the option’s default, 11{ζ<τL} = 0,

11{τL≤ζ≤T∧τU} = 11{ζ≤T∧τU}. (67)

Combining equations (65) and (67),

EDI, UOD
t0

(ST , K, L, U, T ;φ, τL, τU) = 11{ζ>t0}Ke
−

∫ T
t0
r(l)dlEQ

[
11{ζ≤T∧τU}

]
. (68)

By Dias et al. (2021, equation (44)),

EUOD
T (ST , K, U, T ;φ, τU) := 11{ζ>t0}Ke

−
∫ T
t0
r(l)dlEQ

[
11{ζ≤T∧τU}

]
. (69)

Therefore, we reach the intended result.

�

Proposition 11 Under the financial model defined by equations (1) to (5) and assuming

that ζ > t0, the time-t0 recovery value of a unit face value and zero rebate European-

style first-up-in-then-down-and-out put on the asset S, with strike K, upper barrier levels

U : T → R+ (with U(t0) > St0), lower barrier levels L : T → R+ (with L(t0) < St0) and

maturity at time T (≥ t0) is equal to
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EUI,DOD
t0

(ST , K, L, U, T ; 1, τL, τU) = 0 (70)

Proof.

The time-t0 risk-neutral expectation of the recovery value payoff of a first-up-and-in-

then-down-and-out put is defined as

EUI,DOD
t0

(ST , K, L, U, T ; 1, τL, τU) = 11{ζ>t0}Ke
−

∫ T
t0
r(l)dlEQ

[
11{τU<ζ≤T∧τL}

]
. (71)

The indicator function can be written as

11{τU<ζ≤T∧τL} = 11{ζ≤T∧τL} − 11{ζ≤τU}. (72)

Given 11{ζ≤T∧τL} = 0, by the arguments used in Dias et al. (2021, Definition 6), plus

11{ζ≤τU} = 0, as crossing the upper barrier cannot precede the option’s default. Therefore,

the value of equation (72) is equal to zero, which yields:

EUI,DOD
t0

(ST , K, L, U, T ; 1, τL, τU) = 0. (73)

�

Now, the three-barrier formulae are obtained in a similar fashion.

Proposition 12 Under the financial model defined by equations (1) to (5) and assuming

that ζ > t0, the time-t0 value unit face value of a conditional on no default and zero rebate

European-style first-up-then-down-then-up-and-in call (if φ = −1) or put (if φ = 1) on

the asset price S, with strike K, lower barrier levels L : T → R+ (with L(t0) < St0),

first upper barrier levels U1 : T → R+ (with U1(t0) > St0), second upper barrier levels

U2 : T → R+ (with U2(t0) > St0), maturity at time T (≥ t0) is equal to

EUDUI0
t0

(St0 , K, L, U1, U2, T ;φ, τL, τU1 , τU2)
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=

∫ T

t0

e−
∫ u1
t0

r(l)dlSP (St0 , t0;u1)EDUI0
u1

(U1, K, L, U2, T ;φ, τL, τU2)Q (τU1 ∈ du1| Ft0) ,

(74)

where EDUI0
u (L1, K, U, L2, T ;φ, τL, τU2) is the conditional on no default price of a first-

down-then-up-and-in call (if φ = −1) or put (if φ = 1), SP (St0 , t0;u1) is the risk-neutral

survival probability and Q (τU1 ∈ du1| Ft0) represents the probability density function of

the first passage time τU1.

Proof. Assuming that ζ > t0, the time-t0 risk-neutral expectation of the conditional

on no default payoff of a first-up-then-down-then-up-and-in barrier option is defined as

EUDUI0
t0

(St0 , K, L, U1, U2, T ;φ, τL, τU1 , τU2)

=e
−

∫ T
t0
r(l)dlEQ

[
(φK − φST )+ 11{τU1

<τL<τU2
≤T,ζ>T} | Gt0

]
=e
−

∫ T
t0
r(l)dlEQ

[
(φK − φST )+ 11{τU1

<τL}11{τL<τU2}11{τU2
≤T}11{ζ>T} | Ft0

]
. (75)

Using the lower law and Dias et al. (2015, equation (19)) the expectation becomes

EQ

[
(φK − φST )+ 11{τU1

<τL}11{τL<τU2}11{τU2
≤T}11{ζ>T} | Gt0

]
=EQ

[
EQ

[
11{τU1

<τL}EQ

[
11{τL<τU2}EQ

[
11{τU2

≤T}(φK − φST )+11{T<ζ} | GτU2

]
| GτL

]
| GτU1

]
| Gt0

]
=11{ζ>t0}EQ

[
e−

∫ τU1
t0

λ(S,i)di11{inf{t0≤v≤τU1
}(Sv)>0}

×EQ

[
e
−

∫ τL
τU1

λ(S,i)di
11{inf{τU1

≤v≤L}(Sv)>0}EQ

[
e−

∫ τU2
τL

λ(S,i)di11{inf{L≤v≤τU2
}(Sv)>0}

×EQ

[
e
−

∫ T
τU2

λ(S,i)di
11{inf{τU2

≤v≤T}(Sv)>0}(φK − φST )+ | FτU2

]
| FτL

]
| FτU1

]
| Ft0

]
. (76)

Given the asset price process behaves as a pure Markovian diffusion process with respect

to the restricted filtration F, the equation above can be restated as

EQ

[
(φK − φST )+ 11{τU1

<τL}11{τL<τU2}11{τU2
≤T}11{ζ>T} | Gt0

]
=11{ζ>t0}

∫ T

t0

∫ T

u1

∫ T

l

EQ

[
e−

∫ u1
t0

λ(S,i)di11{inf{t0≤v≤u1}(Sv)>0}EQ

[
e
−

∫ l
u1
λ(S,i)di

11{inf{u1≤v≤l}(Sv)>0}

×EQ

[
e−

∫ u2
l λ(S,i)di11{inf{l≤v≤u2}(Sv)>0} × EQ

[
e
−

∫ T
u2
λ(S,i)di

11{inf{u2≤v≤T}(Sv)>0}

×(φK − φST )+ | Su2 = U2(u2)
]
| Sl = L(l)

]
| Su1 = U1(u1)

]
| Ft0

]
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×Q (τU2 ∈ du2 | Sl = L(l))Q (τL ∈ dl | Su1 = U(u1))Q (τU1 ∈ du1 | Ft0) . (77)

Using again Dias et al. (2015, equation (19)) we obtain

EQ

[
(φK − φST )+ 11{τU1

<τL}11{τL<τU2}11{τU2
≤T}11{ζ>T} | Gt0

]
=11{ζ>t0}

∫ T

t0

∫ T

u1

∫ T

l

SP (St0 , t0;u1)

× SP (S(u1), u1; l)SP (S(l), l;u2)(φK − φST )+Q (τU2 ∈ du2 | Sl = L(l))Q (τL ∈ dl | Su1 = U(u1))

×Q (τU1 ∈ du1 | Ft0) . (78)

Combining equations (75) and (78), we obtain

EUDUI0
t0

(St0 , K, L, U1, U2, T ;φ, τL, τU1 , τU2)

=11{ζ>t0}e
−

∫ T
t0
r(l)dl

∫ T

t0

∫ T

u1

∫ T

l

SP (St0 , t0;u1)

× SP (S(u1), u1; l)SP (S(l), l, u2)(φK − φST )+Q (τU2 ∈ du2 | Sl = L(l))Q (τL ∈ dl | Su1 = U(u1))

×Q (τU1 ∈ du1 | Ft0)

=11{ζ>t0}e
−

∫ u1
t0

r(l)dl

∫ T

t0

× e−
∫ T
u1
r(l)dl

∫ T

u1

∫ T

l

SP (St0 , t0;u1)

× SP (S(u1), u1; l)SP (S(l), l;u2)(φK − φST )+Q (τU2 ∈ du2 | Sl = L(l))Q (τL ∈ dl | Su1 = U(u1))

×Q (τU1 ∈ du1 | Ft0) . (79)

We can observe that

EDUI0
u1

(U1, K, L, U2, T ;φ, τL, τU2) :=

11{ζ>t0}e
−

∫ T
u1
r(l)dl

∫ T

u1

∫ T

l

SP (St0 , t0;u1)

× SP (S(u1), u1; l)SP (S(l), l;u2)(φK − φST )+Q (τU2 ∈ du2 | Sl = L(l))Q (τL ∈ dl | Su1 = U(u1)) .

(80)

Thus we obtain the intended result. �
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Proposition 13 Under the financial model defined by equations (1) to (5) and assuming

that ζ > t0, the time-t0 value of a unit face value conditional on no default and zero

rebate European-style first-down-then-up-then-down-and-in call (if φ = −1) or put (if

φ = 1) on the asset price S, with strike K, first lower barrier levels L1 : T → R+ (with

L1(t0) < St0), second lower barrier levels L2 : T → R+ (with L2(t0) < St0), upper barrier

levels U : T → R+ (with U(t0) > St0), maturity at time T (≥ t0) is equal to

EDUDI0
t0

(St0 , K, L1, L2, U, T ;φ, τL1 , τL2 , τU)

=

∫ T

t0

e−
∫ l1
t0
r(l)dlSP (St0 , t0; l1)EUDI0

l1
(L1, K, L2, U, T ;φ, τL2 , τU)Q (τL1 ∈ dl1| Ft0) ,

(81)

where EUDI0
l1

(L1, K, L2, U, T ;φ, τL2 , τU) is the conditional on no default price of a first-

up-then-down-and-in call (if φ = −1) or put (if φ = 1), SP (St0 , t0; l1) is the risk-neutral

survival probability and Q (τL1 ∈ dl1| Ft0) represents the probability density function of the

first passage time τL1.

Proof. The time-t0 risk-neutral expectation of the conditional on no default payoff

of a first-down-then-up-then-down-and-in barrier option is defined as

EDUDI0
t0

(St0 , K, L1, L2, U, T ;φ, τL1 , τL2 , τU)

=e
−

∫ T
t0
r(l)dlEQ

[
(φK − φST )+ 11{τL1

<τU<τL2
≤T,ζ>T} | Gt0

]
,

By switching the roles of the barriers L1, L2, U of this Proposition with those of U1, U2, L

of Proposition 12, respectively, this proof follows the same steps, and is therefore omitted.

�

Proposition 14 Under the financial model defined by equations (1) to (5) and assuming

that ζ > t0, the time-t0 recovery value of a unit face value and zero rebate European-

style first-up-then-down-then-up-and-in put on the asset S, with strike K, lower barrier

levels L : T → R+ (with L(t0) < St0), first upper barrier levels U1 : T → R+ (with

U1(t0) > St0), second upper barrier levels U2 : T → R+ (with U2(t0) > St0) and maturity
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at time T (≥ t0) is equal to

EUDUIDt0 (St0 , K, L, U1, U2, T ; 1, τL, τU1 , τU2)

=

∫ T

t0

e−
∫ u1
t0

r(l)dlSP (St0 , t0;u1)EDUIDu1(U1, K, L, U2, T ; 1, τL, τU2)Q (τU1 ∈ du1 | Ft0) ,

(82)

where EDUIDu1(U1, K, L, U2, T ; 1, τL, τU2) is the time-u1 recovery value of a first-down-

then-up-and-in put, SP (St0 , t0;u1) is the risk-neutral survival probability and Q (τU1 ∈ du1| Ft0)

represents the probability density function of the first passage time τU1.

Proof. The time-t0 risk-neutral expectation of the recovery value of a first-up-then-

down-then-up-and-in barrier put is defined as

EUDUIDt0 (S0, K, L, U1, U2, T ;φ, τL1 , τL2 , τU) = 11{ζ>t0}Ke
−

∫ T
t0
r(l)dlEQ

[
11{τU1

<τL<τU2
≤ζ≤T} | Gt0

]
.

(83)

Using the tower law, we can write the expectation as

EQ

[
11{τU1

<τL<τU2
<ζ≤T} | Gt0

]
=EQ

[
11{τU1

<τL}11{τL<τU2}11{τU2
<ζ}11{ζ≤T} | Gt0

]
=EQ

[
11{τU1

<τL}11{τL<τU2}11{τU2
<ζ}(1− 11{ζ>T}) | Gt0

]
=EQ

[
EQ

[
11{τU1

<τL}EQ

[
11{τL<τU2}11{τU2

<ζ}EQ

[
(1− 11{ζ>T}) | GτU2

]
| GτL

]
| GτU1

]
| Gt0

]
.

(84)

Using Dias et al. (2015, equation (19))

EQ

[
11{τU1

<τL<τU2
<ζ≤T} | Gt0

]
=EQ

[
EQ

[
11{τU1

<τL}EQ

[
11{τL<τU2}11{τU2

<ζ}

× EQ

[
(1− e−

∫ T
τU2

λ(S,i)di
11{inf{τU2

≤v≤T}(Sv)>0}) | FτU2

]
| GτL

]
| GτU1

]
| Gt0

]
=EQ

[
EQ

[
11{τU1

<τL}11{τL<τU2}11{τU2
<ζ}EQ

[
e−

∫ τU2
τL

λ(S,i)di11{inf{τL≤v≤τU2
}(Sv)>0}

× EQ

[
(1− e−

∫ T
τU2

λ(S,i)di
11{inf{τU2

≤v≤T}(Sv)>0}) | FτU2

]
| FτL

]
| GτU1

]
| Gt0

]
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=EQ

[
11{τU1

<τL}11{τL<τU2}11{τU2
<ζ}EQ

[
e
−

∫ τL
τU1

λ(S,i)di
11{inf{τU1

≤v≤τL}(Sv)>0}

× EQ

[
e−

∫ τU2
τL

λ(S,i)di11{inf{τL≤v≤τU2
}(Sv)>0}

× EQ

[
(1− e−

∫ T
τU2

λ(S,i)di
11{inf{τU2

≤v≤T}(Sv)>0}) | FτU2

]
| FτL

]
| FτU1

]
| Gt0

]
=11{ζ>t0}EQ

[
11{τU1

<τL}11{τL<τU2}e
−

∫ τU1
τt0

λ(S,i)di11{inf{t0≤v≤τU1
}(Sv)>0}

× EQ

[
e
−

∫ τL
τU1

λ(S,i)di
11{inf{τU1

≤v≤τL}(Sv)>0}EQ

[
e−

∫ τU2
τL

λ(S,i)di11{inf{τL≤v≤τU2
}(Sv)>0}

× EQ

[
(1− e−

∫ T
τU2

λ(S,i)di
11{inf{τU2

≤v≤T}(Sv)>0}) | FτU2

]
| FτL

]
| FτU1

]
| Ft0

]
. (85)

Given the asset price process behaves as a pure Markovian diffusion process with respect

to the restricted filtration F, the equation above can be restated as

EQ

[
11{τU1

<τL<τU2
<ζ≤T} | Gt0

]
=11{ζ>t0}

∫ T

t0

∫ T

u1

∫ T

l

EQ

[
e
−

∫ u1
τt0

λ(S,i)di
11{inf{t0≤v≤u1}(Sv)>0}

× EQ

[
e
−

∫ l
u1
λ(S,i)di

11{inf{u1≤v≤l}(Sv)>0}EQ

[
e−

∫ u2
l λ(S,i)di11{inf{l≤v≤u2}(Sv)>0}

× EQ

[
(1− e−

∫ T
u2
λ(S,i)di

11{inf{u2≤v≤T}(Sv)>0}) | Su2 = U2(u2)
]
| Sl = L(l)

]
| Su1 = U1(u1)

]
| Ft0

]
×Q (τU2 ∈ du2 | Sl = L(l))Q (τL ∈ dl | Su1 = U1(u1))Q (τU1 ∈ du1 | Ft0) . (86)

Again, through Dias et al. (2015, equation (19))

EQ

[
11{τU1

<τL<τU2
<ζ≤T} | Gt0

]
=

=11{ζ>t0}

∫ T

t0

∫ T

u1

∫ T

l

EQ

[
e
−

∫ u1
τt0

λ(S,i)di
11{inf{t0≤v≤u1}(Sv)>0}

× EQ

[
e
−

∫ l
u1
λ(S,i)di

11{inf{u1≤v≤l}(Sv)>0}EQ

[
e−

∫ u2
l λ(S,i)di11{inf{l≤v≤u2}(Sv)>0}

× (1− SP (U2(u2), u2, T ))
]
| Sl = L(l)

]
| Su1 = U1(u1)

]
| Ft0

]
×Q (τU2 ∈ du2 | Sl = L(l))Q (τL ∈ dl | Su1 = U1(u1))Q (τU1 ∈ du1 | Ft0)

=11{ζ>t0}

∫ T

t0

∫ T

u1

∫ T

l

EQ

[
e
−

∫ u1
τt0

λ(S,i)di
11{inf{t0≤v≤u1}(Sv)>0}

× EQ

[
e
−

∫ l
u1
λ(S,i)di

11{inf{u1≤v≤l}(Sv)>0}SP (L(l), l, u2)

× (1− SP (U2(u2), u2, T ))
]
| Su1 = U1(u1)

]
| Ft0

]
×Q (τU2 ∈ du2 | Sl = L(l))Q (τL ∈ dl | Su1 = U1(u1))Q (τU1 ∈ du1 | Ft0)
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=11{ζ>t0}

∫ T

t0

∫ T

u1

∫ T

l

EQ

[
e
−

∫ u1
τt0

λ(S,i)di
11{inf{t0≤v≤u1}(Sv)>0}

× SP (U1(u1), u1, l)SP (L(l), l, u2)

× (1− SP (U2(u2), u2, T ))
]]
| Ft0

]
×Q (τU2 ∈ du2 | Sl = L(l))Q (τL ∈ dl | Su1 = U1(u1))Q (τU1 ∈ dl | Ft0)

=11{ζ>t0}

∫ T

t0

∫ T

u1

∫ T

l

SP (S0, t0, u1)SP (U1(u1), u1, l)SP (L(l), l, u2)(1− SP (U2(u2), u2, T ))

×Q (τU2 ∈ du2 | Sl = L(l))Q (τL ∈ dl | Su1 = U1(u1))Q (τU1 ∈ du1 | Ft0) . (87)

Therefore, by combining equations (83) and (87), and by taking into account equation

(47), we observe that

EDUIDu1(U1, K, L, U2, T ; 1, τL, τU2)

:=11{ζ>t0}Ke
−

∫ T
u1
r(l)dl

∫ T

u1

∫ T

l

SP (U1(u1), u1, l)SP (L(l), l, u2)(1− SP (U2(u2), u2, T ))

×Q (τU2 ∈ du2 | Sl = L(l))Q (τL ∈ dl | Su1 = U1(u1)) , (88)

thus we reach the intended result. �

Proposition 15 Under the financial model defined by equations (1) to (5) and assuming

that ζ > t0, the time-t0 recovery value of a unit face value and zero rebate European-style

first-down-then-up-then-down-and-in put on the asset S, with strike K, lower barrier levels

L : T → R+ (with L(t0) < St0), first upper barrier levels U1 : T → R+ (with U1(t0) > St0),

second upper barrier levels U2 : T → R+ (with U2(t0) > St0) and maturity at time T (≥ t0)

is equal to

EDUDIDt0 (St0 , K, L1, U, L2, T ; 1; τL1 , τL2 , τU) = EDUIDt0 (L1, K, U, T ; 1, τL1 , τU) (89)

where EDUIDu1(U1, K, L, U2, T ; 1, τL, τU2) is the time-u1 recovery value of a first-down-

then-up-and-in put.

Proof.
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The time-t0 risk-neutral expectation of the recovery value of a first-up-then-down-

then-up-and-in barrier put is defined as

EDUDIDt0 (St0 , K, L1, U, L2, T ; 1; τL1 , τL2 , τU)

=11{ζ>t0}Ke
−

∫ T
t0
r(l)dlEQ

[
11{τL1

<τU<τL2
≤ζ≤T,}

]
. (90)

The indicator function can be written as

(φK)+11{τL1
<τU<τL2

≤ζ≤T,} = (φK)+11{τL1
<τU≤ζ≤T} − (φK)+11{τL1

<τU<ζ<τL2
}. (91)

Since the default event cannot precede the knock-in event, we have 11{τL1
<τU<ζ<τL2

} =

0, therefore

(φK)+11{τL1
<τU<τL2

≤ζ≤T,} = (φK)+11{τL1
<τU≤ζ≤T} (92)

Combining equations (90) and (92),

EDUDIDt0 (St0 , K, L1, U, L2, T ; 1; τL1 , τL2 , τU) = 11{ζ>t0}Ke
−

∫ T
t0
r(l)dlEQ

[
11{τL1

<τU≤ζ≤T,}

]
.

(93)

And from equation (40), we can observe that

EDUIDt0 (L1, K, U, T ; 1, τL1 , τU) := (φK)+11{τL1
<τU≤ζ≤T}, (94)

Thus, the result is obtained. �

Proposition 16 Under the financial model defined by equations (1) to (5) and assuming

that ζ > t0, the time-t0 recovery value of a unit face value and zero rebate European-style

first-up-then-down-in-then-up-and-out on call (if φ = −1) or put (if φ = 1) the asset S,

with strike K, first upper barrier levels U : T → R+ (with U1(t0) > St0), second upper
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barrier levels U : T → R+ (with U2(t0) > St0), lower barrier levels L : T → R+ (with

L(t0) < St0) and maturity at time T (≥ t0) is equal to

EUDI, UO0
t0

(St0 , K, L, U1, U2, T ;φ, τL, τU1 , τU2)

=EUDI0
t0

(St0 , K, L, U1, T ;φ, τL, τU1)− EUDUI0
t0

(St0 , K, L, U1, U2, T ;φ, τL, τU1 , τU2).

(95)

where EUDI0
t0

(St0 , K, L, T ;φ, τL, τU1) is the conditional on no default first-up-then-down-

and-in option and EUDUI0
t0

(St0 , K, L, U1, U2, T ;φ, τL, τU1 , τU2) is the conditional on no

default first-up-then-down-then-up-and-in option.

Proof. The time-t0 risk-neutral expectation of the conditional on no default payoff

of a first-up-then-down-then-up-and-in option is defined as

EUDI, UO0
t0

(St0 , K, L, U1, U2, T ;φ, τL, τU) (96)

=11{ζ>t0}e
−

∫ T
t0
r(l)dlEQ

[
(φK − φST )+ 11{τU1

<τL≤T<τU2
,ζ>T} | Gt0

]
.

Using the tower law, the expected value can be written as

EQ

[
(φK − φST )+ 11{τU1

<τL≤T<τU2
,ζ>T} | Gt0

]
=EQ

[
(φK − φST )+ 11{

τU1
≤τL
}11{

τL≤T
}11{

T<τU2

}11{
ζ>T
} | Gt0]

=EQ

[
EQ

[
EQ

[
(φK − φST )+ 11{

τU1
≤τL
}11{

τL≤T
}11{

T<τU2

}11{
ζ>T
} | GτL] | GτU1

]
| Gt0

]
(97)

Using equation Dias et al. (2015, equation(19))

EQ

[
(φK − φST )+ 11{τU1

<τL≤T<τU2
,ζ>T} | Gt0

]
=EQ

[
EQ

[
EQ

[
(φK − φST )+ 11{

τU1
≤τL
}11{

τL≤T
}11{

T<τU2

}
× e−

∫ T
t0
λ(S,i)di

11{inft0≤s≤T (Ss)>0} | FτL
]
| GτU1

]
| Gt0

]
. (98)
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Combining equations (96) - (98), given the underlying asset process behaves as a pure

Markovian diffusion process with respect to the restricted filtration F ,

EUDI, UO0
t0

(St0 , K, L, U1, U2, T ;φ, τL, τU)

= 11{ζ>t0}e
−

∫ T
t0
r(l)dl

×
∫ T

t0

∫ T

u1

EQ

[
EQ

[
EQ

[
(φK − φST )+ 11{T<τU2}e

−
∫ T
t0
λ(S,i)di

11{inf{t0≤v≤T}(Sv)>0} | FτL
]
| FτU1

]
| Ft0

]
×Q (τL ∈ dl | Su1 = U1(u1))Q (τU1 ∈ dl | Ft0) (99)

Given 11{T<τU} = 1− 11{T≥τU}

EUDI, UO0
t0

(St0 , K, L, U1, U2, T ;φ, τL, τU)

= 11{ζ>t0}e
−

∫ T
t0
r(l)dl

∫ T

t0

∫ T

u1

EQ

[
EQ

[
EQ

[
(φK − φST )+ (1− 11{T≥τU})e

−
∫ T
t0
λ(S,i)di

× 11{inf{t0≤v≤T}(Sv)>0} | FτL
]
| FτU1

]
| Ft0

]
×Q (τL ∈ dl | Su1 = U1(u1))Q (τU1 ∈ dl | Ft0) . (100)

Therefore,

EUDI, UO0
t0

(St0 , K, L, U1, U2, T ;φ, τL, τU)

=11{ζ>t0}e
−

∫ T
t0
r(l)dl

×
∫ T

t0

∫ T

u1

EQ

[
EQ

[
EQ

[
(φK − φST )+ e

−
∫ T
t0
λ(S,i)di

11{inf{t0≤v≤T}(Sv)>0}× | FτL
]
| FτU1

]
| Ft0

]
×Q (τL ∈ dl | Su1 = U1(u1))Q (τU1 ∈ dl | Ft0)

− 11{ζ>t0}e
−

∫ T
t0
r(l)dl

×
∫ T

t0

∫ T

u1

EQ

[
EQ

[
EQ

[
(φK − φST )+ 11{T≥τU}e

−
∫ T
t0
λ(S,i)di

11{inf{t0≤v≤T}(Sv)>0}× | FτL
]
| FτU1

]
| Ft0

]
×Q (τL ∈ dl | Su1 = U1(u1))Q (τU1 ∈ dl | Ft0)

With the result from Proposition 5 and equation (86), respectively, we can observe
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EUDI0
t0

(St0 , K, L, U1, T ;φ, τL, τU1)

:=11{ζ>t0}e
−

∫ T
t0
r(l)dl

×
∫ T

t0

∫ T

u1

EQ

[
EQ

[
EQ

[
(φK − φST )+ e

−
∫ T
t0
λ(S,i)di

11{inf{t0≤v≤T}(Sv)>0}× | FτL
]
| FτU1

]
| Ft0

]
×Q (τL ∈ dl | Su1 = U1(u1))Q (τU1 ∈ dl | Ft0) and (101)

EUDUI0
t0

(St0 , K, L, U1, U2, T ;φ, τL, τU1 , τU2)

= 11{ζ>t0}e
−

∫ T
t0
r(l)dl

×
∫ T

t0

∫ T

u1

EQ

[
EQ

[
EQ

[
(φK − φST )+ 11{T≥τU}e

−
∫ T
t0
λ(S,i)di

11{inf{t0≤v≤T}(Sv)>0}× | FτL
]
| FτU1

]
| Ft0

]
×Q (τL ∈ dl | Su1 = U1(u1))Q (τU1 ∈ dl | Ft0) , (102)

therefore,

EUDI, UO0
t0

(St0 , K, L, U1, U2, T ;φ, τL, τU)

=EUDI0
t0

(St0 , K, L, U1, T ;φ, τL, τU1)− EUDUI0
t0

(St0 , K, L, U1, U2, T ;φ, τL, τU1 , τU2)

(103)

�

Proposition 17 Under the financial model defined by equations (1) to (5) and assuming

that ζ > t0, the time-t0 recovery value of a unit face value and zero rebate European-style

first-down-then-up-in-then-down-and-out on call (if φ = −1) or put (if φ = 1) the asset

S, with strike K, upper barrier levels U : T → R+ (with U(t0) > St0), first lower barrier

levels L1 : T → R+ (with L(t0) < St0), second lower barrier levels L2 : T → R+ (with

L(t0) < St0) and maturity at time T (≥ t0) is equal to

EDUI,DO0
t0

(St0 , K, L, U1, U2, T ;φ, τL1 , τL2 , τU)
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=EDUI0
t0

(St0 , K, L1, U, T ;φ, τL, τU1)− EDUDI0
t0

(St0 , K, L1, L2, U, T ;φ, τL1 , τL2 , τU).

(104)

where EDUI0
t0

(St0 , K, L1, U, T ;φ, τL, τU1) is the conditional on no default first-down-then-

up-and-in option and EDUDI0
t0

(St0 , K, L1, L2, U, T ;φ, τL1 , τL2 , τU) is the conditional on

no default first-up-then-down-then-up-and-in option.

Proof. By switching the roles of the barriers L1, L2, U of this Proposition with those of

U1, U2, L of Proposition 16, respectively, this proof follows the same steps, and is therefore

omitted. �

Proposition 18 Under the financial model defined by equations (1) to (5) and assuming

that ζ > t0, the time-t0 recovery value of a unit face value and zero rebate European-style

first-up-then-down-in-then-up-and-out put on the asset S, with strike K, lower barrier

levels L : T → R+ (with L(t0) < St0), first upper barrier levels U1 : T → R+ (with

U1(t0) > St0), second upper barrier levels U2 : T → R+ (with U2(t0) > St0) and maturity

at time T (≥ t0) is equal to

EUDI, UOD
t0

(St0 , K, L, U1, U2, T ; 1, τL, τU1 , τU2)

=

∫ T

t0

e−
∫ u1
t0

r(l)dlSP (St0 , t0;u1)EDI, UOD
u1

(U1, K, L, U2, T ; 1, τL, τU2)Q (τU1 ∈ du1| Ft0) ,

(105)

where EDI, UOD
u1

(U1, K, L, U2, T ; 1, τL, τU2) is the recovery value of a first-down-in-then-

up-and-out put and SP (St0 , t0;u1) is the risk-neutral survival probability and Q (τU1 ∈ du1| Ft0)

represents the probability density function of the first passage time over the lower barrier

τU1.

Proof. The time-t0 risk-neutral expectation of the recovery value of first-up-the-

down-then-up-out put is defined by

EUDI, UOD
t0

(St0 , K, L, U1, U2, T ; 1, τL, τU1 , τU2) = Ke
−

∫ T
t0
r(l)dlEQ

[
11{τU1<τL<ζ≤T∧τU2

} | Gt0
]
.

(106)
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Using the tower law and Dias et al. (2015, Equation (19)), the expected value becomes

EQ

[
11{τU1

<τL<ζ≤T∧τU2
} | Gt0

]
=EQ

[
EQ

[
11{τU1

<τL<ζ≤T∧τU2
} | GτU1

]
| Gt0

]
=EQ

[
EQ

[
11{τU1<τL

}11{τL<ζ≤T∧τU2
} | GτU1

]
| Gt0

]
=EQ

[
e−

∫ τL1
t0

λ(S,i,)di11{
inft0≤s≤τL1

(Ss)>0
}EQ

[
11{τL<ζ≤T∧τU2

} | FτU1

]
| Ft0

]
. (107)

Given the asset price with respect to the restricted filtration F, the expectation can

be written as

EQ

[
11{τL1

<τL<ζ≤T∧τL2
} | Gt0

]
=

∫ T

t0

EQ

[
e−

∫ τL1
t0

λ(S,i,)di11{
inft0≤s≤τL1

(Ss)>0
}EQ

[
11{τL<ζ≤T∧τL2

} | Su1 = U(u1)
]
| Ft0

]
×Q (τU1 ∈ du1| Ft0) . (108)

And using again Dias et al. (2015, Equation (19))

EQ

[
11{τL1

<τL<ζ≤T∧τL2
} | Gt0

]
=

∫ T

t0

SP (St0 , t0, u1)EQ

[
11{τL<ζ≤T∧τL2

} | Su1 = U(u1)
]
Q (τU1 ∈ du1| Ft0) . (109)

By combining equations(106) and (109),

EUDI, UOD
t0

(St0 , K, L, U1, U2, T ; 1, τL, τU1 , τU2)

=Ke
−

∫ T
t0
r(l)dl

∫ T

t0

SP (St0 , t0, u1)EQ

[
11{τL<ζ≤T∧τL2

} | Su1 = U(u1)
]
Q (τU1 ∈ du1| Ft0)

=e−
∫ u1
t0

r(l)dl

∫ T

t0

Ke
−

∫ T
u1
r(l)dl

SP (St0 , t0, u1)EQ

[
11{τL<ζ≤T∧τL2

} | Su1 = U(u1)
]
Q (τU1 ∈ du1| Ft0) .

(110)

Given equation (65), it can be observed that
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Ke
−

∫ T
u1
r(l)dlEQ

[
11{τL<ζ≤T∧τU2

} | Su1 = U(u1)
]

:= EDI, UOD
u1

(Su1 , K, L, U2, T ; 1, τL, τU2),

thus we achieve the intended result �

Proposition 19 Under the financial model defined by equations (1) to (5) and assuming

that ζ > t0, the time-t0 recovery value of a unit face value and zero rebate European-style

first-down-then-up-in-then-down-and-out put on the asset S, with strike K, first lower

barrier levels L1 : T → R+ (with L(t0) < St0), second lower barrier levels L2 : T → R+

(with U1(t0) > St0), upper barrier levels U : T → R+ (with U2(t0) > St0) and maturity at

time T (≥ t0) is equal to

EDUI,DOD
t0

(St0 , K, L, U1, U2, T ; 1, τL1 , τL2 , τU) = 0 (111)

Proof. The time-t0 risk-neutral expectation of the recovery value of first-up-the-down-

then-up-out put is defined by

EDUI,DOD
t0

(St0 , K, L, U1, U2, T ; 1, τL1 , τL2 , τU) = Ke
−

∫ T
t0
r(l)dlEQ

[
11{τL1<τU<ζ≤T∧τL2

} | Gt0
]
.

(112)

By switching the roles of the barriers L1, L2, U of this Proposition with those of U1,

U2, L of Proposition 18, respectively, following the same steps until equation (110), we

obtain

EQ

[
11{τL1<τU<ζ≤T∧τL2

} | Gt0
]

=

∫ T

t0

SP (St0 , t0, l1)EQ

[
11{τU<ζ≤T∧τU2

} | Sl1 = U(l1)
]
Q (τL1 ∈ dl1| Ft0) . (113)

We can observe that
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Ke
−

∫ T
t0
r(l)dlEQ

[
11{τU<ζ≤T∧τU2

} | Sl1 = U(l1)
]

=: EUI,DOD
t0

(ST , K, L, U2, T ; 1, τL, τU2),

(114)

which is turn EUI,DOD
t0

(ST , K, L, U2, T ; 1, τL, τU2) = 0 as stated in Proposition 11, thus

equation (114) is equal to zero. �

5 Numerical results

In this section, we start by testing the accuracy of the ST approach as in Dias et al. (2015)

numerical results by comparing those with the closed formula of Jun and Ku (2012) and

afterwards we explore the results with various JDCEV model parameters.

Although Jun and Ku (2012) derive the options’ values under GBM assumptions,

the JDCEV model encompasses it as a special case, when, as presented in Definition 1

Nunes et al. (2015), r(t) = r, q(t) = q, λ = 0 (b = c = 0), δ(t, S) = σ. The recovery

value is absent, as it is not relevant when studying the GBM setting. Afterwards, the

first-then-options are studied under various parameter sets.

The strike level is presented for K = {95, 100, 105}, the initial underlying asset price

is St0 = 100, the time period is T − t0 = 0.5, the interest rate r = 0.1, the dividend yield

q = 0, the parameter a is such that σ(St0 , t0) = 0.25, the upper barrier U = 110, and the

lower barriers are all equal to 90, that is, L = L1 = L2 = 90.

In Table 1, we test the accuracy of the ST approach to obtain the value of the

two barrier first-then-barrier options. The values for call options are obtained with the

closed formulae provided by Jun and Ku (2012) under GBM assumptions. As mentioned

in Definition 1 Nunes et al. (2015), using the JDCEV model, we find the GBM when

λ = 0 (b = c = 0) and β̄ = 0. Given the solutions obtained for the JDCEV model

are only valid when β̄ < 0, small values approaching zero from negative values are used,

therefore β̄ = {−0.02,−0.05,−0.1}. As it can be observed, the difference between the

two approaches is small, and the closer β̄ is to zero, the smaller it is. When β̄ = −0.02,

the average of the absolute value of the relative difference between the closed formulae

and the ST approach is 0.0282, that is, less than 3%. The same analysis is performed for

the three barrier first-then calls in Table 2 and the conclusions are similar, with the case
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of β̄ = −0.02 yielding the average value for the absolute value of the relative difference

between the closed formulae and the ST approach at 0.0265.

As for studying the values while exploring the JDCEV parameters, three different JD-

CEV parameter sets are explored for β̄, and as known, the first set b = c = 0 corresponds

to the CEV model and the two other sets are b = 0 and c = 1 where λ(S, t) is equal to

the instantaneous volatility plus b = 0.02 and c = 0.5 where λ is a affine function of the

volatility. The put contracts are studied, given these allow to observe the recovery values

upon default. The default free component for each option will be designated by V 0
t0

, the

recovery-value upon default will be V D
t0

, and their sum Vt0 .

In Table 3 and Table 4, respectively, the results for various first-up-then-down-and-

in puts and first-down-then-up-then-down-and-in puts are presented as the sum of the

conditional on no default and the recovery value.

Several observations arise from the results. The values of the put options decrease from

the two-barrier cases to the three barrier cases. As one would expect, due to the reduced

probability of the required barriers being crossed and activating the barrier option, the

values of the options tend to decrease.

In addition, overall, the increases in the jump-to-default parameters, b and c, lead to

decreases in the conditional on no default components, V 0
t0

, and an increase of the recovery

values, V D
t0

, and an increase in the puts’ total values, Vt0 . The recovery value in the case

of default tends relatively low values the CEV model, while being often greater than the

conditional on no default value in the other cases. Again, an expected result, given the

JDCEV parameters reduce the survival probability as the possibility of a jump to default

is included.

In Table 5 and Table 6, the results are respectively presented for the first-down-in-

then-up-and-out puts and first-up-down-in-then-up-and-out puts. The set of parameters

is the same, except that U = U1 = U2 = 110 and L = 90. Regarding the addition of

barriers, the expected result of decreasing in value as more barriers are added is observed

again.

In addition, it can be observed that increases in the β̄, parameter although tending

to decrease the conditional on no default component and decrease the recovery value, do

not always do so. The outcome of changes β̄ has mixed effects due to the knock-in and

knock-out barriers.
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Table 1: Jun and Ku (2012) closed form two barrier first-then call option solutions com-
pared with the ST approach based on Dias et al. (2015)

Closed

solution
ST

Rel.

Dif.
ST

Rel.

Dif.
ST

Rel.

Dif.

β̄ −0.02 −0.05 −0.1

K 95 EDUI 1,4691 1,4665 0,0018 1,4622 0,0047 1,4550 0,0096

K 95 EUDI 0,1623 0,1639 0,0102 0,1664 0,0253 0,1705 0,0508

K 95 DI,UO 0,4881 0,4951 0,0143 0,5056 0,0357 0,5231 0,0716

K 95 UI,DO 11,8849 11,9892 0,0088 11,9884 0,0087 11,9870 0,0086

K 100 EDUI 1,0688 1,0665 0,0022 1,0628 0,0057 1,0565 0,0115

K 100 EUDI 0,0794 0,0804 0,0125 0,0818 0,0307 0,0843 0,0615

K 100 DI,UO 0,1436 0,1488 0,0361 0,1566 0,0902 0,1695 0,1806

K 100 UI,DO 9,3361 9,3196 0,0018 9,3180 0,0019 9,3153 0,0022

K 105 EDUI 0,7096 0,7074 0,0031 0,7038 0,0081 0,6980 0,0163

K 105 EUDI 0,0377 0,0383 0,0144 0,0391 0,0349 0,0404 0,0697

K 105 DI,UO 0,0178 0,0215 0,2097 0,0271 0,5227 0,0364 1,0435

K 105 UI,DO 7,0406 6,8744 0,0236 6,8713 0,0240 6,8662 0,0248

Avg.

dif.
0,0282 0,0661 0,1292

This table compares the closed form solution values obtained for the call options in Jun and Ku

(2012) for the two barrier first-then options under the GBM with the values obtained by the

Stopping Time approach for the same options under the JDCEV model. In order to compare

the GBM with the JDCEV, b = c = 0 and while the GBM model is found when β̄ = 0, that

value cannot be used as a solution for the JDCEV model given β̄ < 0, therefore values close

to zero are explored, with β̄ = {−0.02,−0.05,−0.1}. The remainder of the parameters are as

mentioned above: K = {95, 100, 105}, St0 = 100, T − t0 = 0.5, r = 0.1, q = 0, a is such that

σ(St0 , t0) = 0.25, all the upper barriers are 110 and all the lower barriers are 90. The relative

difference is calculated through dividing the absolute value of the difference between the two

approaches by the closed formula value. The average difference is the simple average of the

differences for each β̄.
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Table 2: Jun and Ku (2012) closed form three barrier first-then call option solutions
compared with the ST approach based on Dias et al. (2015)

Closed

solution
ST

Rel.

Dif.
ST

Rel.

Dif.
ST

Rel.

Dif.

β̄ −0.02 −0.05 −0.1

K 95 UDUI 0,0826 0,0827 0,0020 0,0829 0,0038 0,0831 0,0067

K 95 DUDI 0,0035 0,0036 0,0127 0,0036 0,0276 0,0037 0,0526

K 95 UDI,UO 0,0797 0,0812 0,0188 0,0835 0,0476 0,0874 0,0964

K 95 DUI,DO 1,4656 1,4629 0,0018 1,4585 0,0048 1,4513 0,0098

K 100 UDUI 0,0578 0,0580 0,0018 0,0580 0,0033 0,0582 0,0057

K 100 DUDI 0,0013 0,0013 0,0163 0,0013 0,0350 0,0014 0,0666

K 100 UDI,UO 0,0216 0,0224 0,0413 0,0238 0,1042 0,0261 0,2113

K 100 DUI,DO 1,0675 1,0652 0,0022 1,0614 0,0057 1,0551 0,0116

K 105 UDUI 0,0352 0,0352 0,0012 0,0353 0,0015 0,0353 0,0019

K 105 DUDI 0,0005 0,0005 0,0194 0,0005 0,0408 0,0005 0,0769

K 105 UDI,UO 0,0025 0,0030 0,1970 0,0038 0,4973 0,0051 1,0100

K 105 DUI,DO 0,7091 0,7069 0,0031 0,7034 0,0081 0,6975 0,0164

Avg.

dif.
0,0265 0,0650 0,1305

This table compares the closed form solution values obtained for the call options in Jun and Ku

(2012) for the three barrier first-then options under the GBM with the values obtained by the

Stopping Time approach for the same options under the JDCEV model. In order to compare

the GBM with the JDCEV, b = c = 0 and while the GBM model is found when β̄ = 0, that

value cannot be used as a solution for the JDCEV model given β̄ < 0, therefore values close

to zero are explored, with β̄ = {−0.02,−0.05,−0.1}. The remainder of the parameters are as

mentioned above: K = {95, 100, 105}, St0 = 100, T − t0 = 0.5, r = 0.1, q = 0, a is such that

σ(St0 , t0) = 0.25, all the upper barriers are 110 and all the lower barriers are 90. The relative

difference is calculated through dividing the absolute value of the difference between the two

approaches by the closed formula value. The average difference is the simple average of the

differences for each β̄.
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Table 3: European style first-up-then-down-and-in put options under the JDCEV model

b = c = 0 b = 0 and c = 1 b = 0.02 and c = 0.5

K β̄ V 0
t0

V D
t0

Vt0 V 0
t0

V D
t0

Vt0 V 0
t0

V D
t0

Vt0

95 -0.5 0.5101 0.0000 0.5101 0.3819 1.2708 1.6528 0.4086 1.0398 1.4485

95 -1 0.5800 0.0000 0.5800 0.4215 1.2617 1.6832 0.4603 1.0370 1.4973

95 -2 0.7236 0.0139 0.7375 0.4758 1.3030 1.7788 0.5504 1.0706 1.6210

95 -3 0.7043 0.2222 0.9265 0.4235 1.4951 1.9186 0.5152 1.2676 1.7827

95 -4 0.5144 0.6457 1.1602 0.2987 1.8019 2.1006 0.3711 1.6172 1.9884

100 -0.5 0.8370 0.0000 0.8370 0.6444 1.3377 1.9821 0.6843 1.0946 1.7789

100 -1 0.9195 0.0000 0.9195 0.6907 1.3281 2.0188 0.7460 1.0916 1.8375

100 -2 1.0751 0.0146 1.0898 0.7448 1.3716 2.1163 0.8425 1.1269 1.9694

100 -3 1.0388 0.2339 1.2726 0.6688 1.5738 2.2426 0.7882 1.3343 2.1225

100 -4 0.7996 0.6797 1.4793 0.5002 1.8967 2.3969 0.5998 1.7024 2.3022

105 -0.5 1.2106 0.0000 1.2106 0.9496 1.4046 2.3542 1.0036 1.1493 2.1529

105 -1 1.3110 0.0000 1.3110 1.0074 1.3945 2.4019 1.0800 1.1461 2.2261

105 -2 1.4882 0.0154 1.5035 1.0696 1.4402 2.5097 1.1916 1.1833 2.3749

105 -3 1.4437 0.2455 1.6893 0.9771 1.6525 2.6296 1.1260 1.4010 2.5270

105 -4 1.1636 0.7137 1.8773 0.7697 1.9915 2.7612 0.8996 1.7875 2.6870

The table obtains the values for the first-up-then-down-and-in put options under the
JDCEV model. The value of the default-free component and the recovery value are
presented and their sum are presented. The sets of parameters are b = c = 0, b = 0 and
c = 1 plus b = 0.02 and c = 0.5.
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Table 4: European style first-down-then-up-then-down-and-in put options under the JD-
CEV model

b = c = 0 b = 0 and c = 1 b = 0.02 and c = 0.5

K β̄ V 0
t0

V D
t0

Vt0 V 0
t0

V D
t0

Vt0 V 0
t0

V D
t0

Vt0

95 -0.5 0.0202 0.0000 0.0202 0.0157 0.0741 0.0898 0.0167 0.0609 0.0777

95 -1 0.0218 0.0000 0.0218 0.0167 0.0683 0.0849 0.0181 0.0566 0.0747

95 -2 0.0237 0.0000 0.0238 0.0173 0.0574 0.0747 0.0197 0.0481 0.0678

95 -3 0.0224 0.0017 0.0241 0.0154 0.0482 0.0636 0.0185 0.0411 0.0596

95 -4 0.0167 0.0059 0.0226 0.0111 0.0407 0.0518 0.0139 0.0363 0.0502

100 -0.5 0.0359 0.0000 0.0359 0.0285 0.0780 0.1065 0.0302 0.0641 0.0944

100 -1 0.0377 0.0000 0.0377 0.0296 0.0719 0.1015 0.0319 0.0596 0.0915

100 -2 0.0391 0.0000 0.0391 0.0296 0.0604 0.0901 0.0332 0.0506 0.0838

100 -3 0.0358 0.0017 0.0375 0.0259 0.0508 0.0766 0.0303 0.0432 0.0736

100 -4 0.0270 0.0062 0.0332 0.0190 0.0429 0.0619 0.0232 0.0382 0.0614

105 -0.5 0.0533 0.0000 0.0533 0.0429 0.0819 0.1248 0.0453 0.0674 0.1126

105 -1 0.0556 0.0000 0.0556 0.0443 0.0755 0.1198 0.0475 0.0626 0.1101

105 -2 0.0566 0.0001 0.0566 0.0439 0.0635 0.1073 0.0487 0.0531 0.1018

105 -3 0.0513 0.0018 0.0531 0.0383 0.0533 0.0916 0.0443 0.0454 0.0897

105 -4 0.0394 0.0065 0.0459 0.0288 0.0450 0.0738 0.0346 0.0401 0.0747

The table obtains the values for the first-down-then-up-then-down-and-in put options
under the JDCEV model. The value of the default-free component and the recovery value
are presented and their sum are presented. The sets of parameters are b = c = 0, b = 0
and c = 1 plus b = 0.02 and c = 0.5.
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Table 5: European style first-down-in-then-up-and-out put options under the JDCEV
model

b = c = 0 b = 0 and c = 1 b = 0.02 and c = 0.5

K β̄ V 0
t0

V D
t0

Vt0 V 0
t0

V D
t0

Vt0 V 0
t0

V D
t0

Vt0

95 -0.5 2.9921 0.0000 2.9921 2.1387 1.5560 3.6948 2.2964 1.2732 3.5696

95 -1 3.0796 0.0000 3.0796 2.1349 1.6446 3.7795 2.3313 1.3212 3.6524

95 -2 3.1809 0.0856 3.2665 1.9995 1.9580 3.9575 2.2938 1.5343 3.8281

95 -3 2.6175 0.8459 3.4634 1.5361 2.6114 4.1475 1.8253 2.1915 4.0168

95 -4 1.7474 1.9371 3.6844 1.0056 3.3505 4.3561 1.2048 3.0245 4.2293

100 -0.5 4.4859 0.0000 4.4859 3.3078 1.6379 4.9457 3.5235 1.3402 4.8638

100 -1 4.5242 0.0000 4.5242 3.2526 1.7312 4.9837 3.5105 1.3907 4.9012

100 -2 4.5102 0.0901 4.6003 2.9964 2.0611 5.0574 3.3599 1.6151 4.9750

100 -3 3.7752 0.8904 4.6656 2.3779 2.7489 5.1268 2.7372 2.3068 5.0440

100 -4 2.6905 2.0390 4.7295 1.6747 3.5269 5.2015 1.9352 3.1837 5.1188

105 -0.5 6.2067 0.0000 6.2067 4.6850 1.7198 6.4048 4.9618 1.4072 6.3690

105 -1 6.2041 0.0000 6.2041 4.5857 1.8177 6.4035 4.9076 1.4602 6.3678

105 -2 6.0919 0.0946 6.1865 4.2235 2.1641 6.3876 4.6573 1.6959 6.3532

105 -3 5.2036 0.9349 6.1386 3.4648 2.8863 6.3511 3.8941 2.4221 6.3162

105 -4 3.9243 2.1410 6.0653 2.6007 3.7032 6.3039 2.9233 3.3428 6.2661

The table obtains the values for the first-down-then-up-and-out put options under the
JDCEV model. The value of the default-free component and the recovery value are
presented and their sum are presented. The sets of parameters are b = c = 0, b = 0 and
c = 1 plus b = 0.02 and c = 0.5.
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Table 6: European style first-up-then-down-in-then-up-and-out put options under the
JDCEV model

b = c = 0 b = 0 and c = 1 b = 0.02 and c = 0.5

K β̄ V 0
t0

V D
t0

Vt0 V 0
t0

V D
t0

Vt0 V 0
t0

V D
t0

Vt0

95 -0.5 0.5098 0.0000 0.5098 0.3817 0.0100 0.3916 0.4083 0.0083 0.4167

95 -1 0.5797 0.0000 0.5797 0.4213 0.0096 0.4309 0.4601 0.0081 0.4682

95 -2 0.7235 0.0007 0.7242 0.4757 0.0100 0.4857 0.5503 0.0086 0.5589

95 -3 0.7043 0.0054 0.7097 0.4235 0.0123 0.4358 0.5151 0.0117 0.5268

95 -4 0.5144 0.0098 0.5242 0.2988 0.0138 0.3125 0.3711 0.0141 0.3852

100 -0.5 0.8358 0.0000 0.8358 0.6434 0.0105 0.6539 0.6833 0.0088 0.6921

100 -1 0.9186 0.0000 0.9186 0.6900 0.0101 0.7001 0.7452 0.0085 0.7537

100 -2 1.0747 0.0007 1.0754 0.7444 0.0106 0.7550 0.8421 0.0091 0.8512

100 -3 1.0386 0.0057 1.0443 0.6687 0.0130 0.6816 0.7881 0.0123 0.8004

100 -4 0.7996 0.0103 0.8099 0.5002 0.0145 0.5147 0.5998 0.0149 0.6147

105 -0.5 1.2067 0.0000 1.2067 0.9461 0.0110 0.9571 1.0000 0.0092 1.0092

105 -1 1.3079 0.0000 1.3079 1.0046 0.0106 1.0152 1.0771 0.0090 1.0861

105 -2 1.4864 0.0007 1.4871 1.0680 0.0111 1.0791 1.1900 0.0095 1.1996

105 -3 1.4429 0.0060 1.4489 0.9764 0.0136 0.9900 1.1252 0.0129 1.1382

105 -4 1.1634 0.0108 1.1742 0.7695 0.0152 0.7847 0.8994 0.0156 0.9149

The table obtains the values for the first-up-then-down-then-up-and-out put options under
the JDCEV model. The value of the default-free component and the recovery value are
presented and their sum are presented. The sets of parameters are b = c = 0, b = 0 and
c = 1 plus b = 0.02 and c = 0.5.
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6 Conclusions

In this part of the thesis, we have extended the JDCEV model presented in Carr and

Linetsky (2006) to the multiple barrier options that are developed in Jun and Ku (2012).

This was achieved through extensive use of the stopping time methodologies developed in

Dias et al. (2015) and Dias et al. (2021), who extend the Kuan and Webber (2003) model.

This leads to formulae that rely on the first-hitting times of crossing barriers, and the

survival probabilities - probabilities of not defaulting - before doing so. As in Dias et al.

(2015), these first hitting time densities are recovered by solving integral equations that

involve truncated moments of a noncentral chi-square law.

In total, the results for eight different kinds of options - that can either be call options

or put options - are obtained. When reduced to the GBM setting, the values are found

to be accurate. In the case of the put options, this takes into account the recovery value

received upon default - either through the jump to default or the diffusion process.

This was mostly achieved through preconditioning options that are received upon

crossing a given barrier with respect to the filtrations that represent the crossing of those

barriers, while relying on the Markov property of the underlying asset price.

Many of the results in this part of the thesis are widely instrumental to the credit risk

model explored in the second part, which relies on the CEV model, nested in the JDCEV

model explored here.
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Part III

Credit spreads with dynamic debt

under the CEV model

7 Introduction

A key factor always played a role when economic agents engage in the lending and bor-

rowing: the likelihood of default by the debtor. Since Black and Scholes (1973) and

Merton (1974), a wide class of models emerged: the structural models. These use finan-

cial options’ formulation, considering the firm’s total value as the underlying asset, and

the nominal value of the debt as the strike price.

As Eom et al. (2004) find, however, the classical Merton (1974) model is not able

to properly capture the observed empirical observations. The Merton model spreads are

too low when compared to the real data, while other structural models predict spreads

that are to high as for instance Collin-Dufresne and Goldstein (2001) do. A key assump-

tion in the standard structural models is the immutability of the liabilities level through

time, although debt rarely remains fixed and firms actively manage it. One expects the

firm value to influence the debt level, with higher levels in the former being associated

with increases of the latter. There are several papers that try to tackle this issue, for

instance, Collin-Dufresne and Goldstein (2001) study debt with a continuous variation,

which follows the total value of the firm, while Eisenthal-Berkovitz et al. (2020) consider

the possibility of a leveraged buyout event on the firm, which increases the value of debt

by a lump sum.

An approach based on barrier options is used in Das and Kim (2015), modeling the

changes in the debt level through discrete changes at prescribed thresholds of the firm’s

value.

As for the justifications on why to allow the debt to be changed, there are several

studies that contest the assumption of a fixed amount of debt. Roberts and Sufi (2009)

find that most of long-term debt contracts suffer renegotiations over the amount, maturity,

and pricing of the contract, Nini et al. (2012) highlight the active role of creditors through
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informal channels in the governance of firms (even when default is a far scenario), and

Flannery et al. (2012) point a direct impact on the credit risk, as it is affected by the

expected future leverage.

To do so, the standard options in the original Merton model are replaced by various

kinds of barrier options, and as the corresponding barriers are reached, the liability values

are updated. Doing so, Das and Kim (2015) are able to match features that would be

expected empirically: the credit spreads are increased in anticipation to debt increases and

decreased when expecting debt decreases. They obtain closed-form solutions for the ex-

ante debt discount and corresponding debt spreads. When compared to other models, the

authors are able to replicate the upward slope of the spread curve, not only for investment

grade debt but also for low-grade debt.

There is an improvement in comparison to Merton (1974), but the model still depends

on the geometric Brownian motion (GBM) to reach the asset price. The GBM formu-

lation has long been recognized as limited in mathematical finance, given its log-normal

distribution assumption, as for instance Jackwerth and Rubinstein (1996) explore. The

limitation can be summed up in two effects. Bekaert and Wu (2000) study the negative

correlation between stock returns and realized volatility - the leverage effect ; and in op-

tion context, Dennis and Mayhew (2002) approach the negative correlation between the

implied volatility and strike of stock options - the implied volatility skew. In the context of

credit risk, several studies exist, such as Cremers et al. (2008), which find a link between

implied volatilities and credit spreads, while Hilscher (2007) finds that corporate bond

yields can predict future volatility.

To address this kind of issues, Cox (1975) introduced the CEV model, standing for

constant elasticity of variance. This well known model departs from the GBM, allowing

the volatility to be a function of the underlying asset price, and with the proper calibration,

increasing the volatility at lower underlying asset values. This part of the thesis attempts

to extend the original dynamic debt model, making it so that the firm’s assets follow a

CEV process, thus aspiring to observe how the inclusion of non-constant volatility affects

the dynamic model’s credit spreads. Therefore, here, the CEV model is used to evaluate

well known barrier options: the single barrier kind which is presented for instance in

Rubinstein and Reiner (1991), the double barrier options in works such as Geman and

Yor (1996) and the first-then options as presented in Jun and Ku (2012).
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To do this, the work of Dias et al. (2015) is instrumental. Dias et al. (2015) develop

two alternative accurate methodologies to price European-style barrier options under the

JDCEV model - an extension of the CEV model which nests it - adding the possibility of

a jump to default to the asset’s process. In Dias et al. (2021) the methodology is expanded

to more kinds of barrier options. Those two studies are instrumental here, as this part

of the thesis uses the first of the two methodologies, the stopping time approach (ST),

to price double barrier options under the CEV model. Part II of this thesis expands on

these two studies to obtain more barrier options which are used here. With those option

contract formulae, we are able to adapt the payoffs and reach all the required components

to set up the intended dynamic debt model cases.

In the literature, the stopping time approach is a well known applied probability

method for solving level-crossing problems, as for instance Park and Schuurmann (1976)

do for the standard Wiener process and Kuan and Webber (2003) are able to price single

and double barrier options under the GBM assumptions.

8 The firm value under the CEV model

First, the CEV model is introduced. Let the process for the firm value Vt be defined by:

dVt
Vt

= (r − q)dt+ σ(Vt)dW
Q
t , (115)

As usual, r represents the interest rate, q stands for the total payout to debt and

equity-holders, σ(Vt) is the instantaneous volatility of the asset returns at time-t given

the asset price V , which is defined by the expression

σ(Vt) = δV
β
2
−1

t , (116)

and
{
WQ
t , t ≥ t0

}
is a standard Brownian motion defined under measure Q, thus gener-

ating the filtration F := {Ft, t ≥ t0}.

In this part of the thesis, we will explore the CEV process with β < 2 - the cases

where volatility is increased at lower underlying asset levels - which implies that the firm
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value hits zero with positive probability. See Davydov and Linetsky (2001) for additional

details on the boundary zero. Therefore, there is a possibility of default by diffusion,

which is represented by

τ0 := inf {t > t0 : Vt = 0}. (117)

9 The barrier options

9.1 First passage times

In order to solve the options that compose the dynamic debt model, this valuation method

conditions the first time the spot level hits a (constant) barrier. The two following defi-

nitions are analogous to Dias et al. (2021, Definitions 1 and 2).

Definition 13 For a barrier option contract, we define

τL := inf{l > t0 : Vl = L} (118)

as the first hitting time of the lower barrier L by the underlying asset, Vl, for l ∈ T , with

T := [t0, T ]. For the upper barriers, we denote

τU := inf{u > t0 : Vu = U} (119)

as the first hitting time of the upper barrier U by the firm value, Vu, for u ∈ T .

In the dynamic debt model, there will be cases where not only a barrier must be

crossed in order to obtain a payoff, but if a second barrier is crossed, the payoff is not

obtained. Therefore, we need the passage times with two trigger clauses.

These are used in Dias et al. (2015) to obtain the value for one-touch double barrier

options. Here, they will be used for those options, but not only. So, the definitions are as

follow.
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Definition 14 For barrier option contracts with two trigger clauses,

τ̄L := inf

{
l > t0 : Vl = L, sup

t0≤v≤l
(Vv − U) < 0

}
, (120)

denotes the first passage time of the asset price to the lower barrier before ever crossing

the upper barrier while

τ̄U := inf

{
u > t0 : Vu = U, inf

t0≤v≤u
(Vv − L) > 0

}
. (121)

represents the first hitting time of the upper barrier by the firm value before touching the

lower barrier level. Finally, the first hitting time

τLU = τ̄L ∧ τ̄U , (122)

represents the first passage time of the underlying asset price to one of the two barriers,

with L < U .

9.2 First passage time densities

The implementation of the pricing solutions requires the knowledge of the two optimal

hitting times densities, as in Definition 13, contained in the respective equations. Based on

Park and Schuurmann (1976, Theorem 2), both densities can be recovered as the implicit

solution of the integral equations that simply involve the transition density function of

the underlying asset price. The following Proposition uses Dias et al. (2015, equations

(52) and (53)).

Proposition 20 The first passage time densities Q (τL ∈ du| Ft0) and Q (τU ∈ du| Ft0)

are, respectively, the implicit solutions of

F (t0, Vt0 ;u, L) =

∫ u

t0

F (v, L;u, L)Q (τL ∈ dv| Ft0) (123)
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and

F (t0, Vt0 ;u, U) =

∫ u

t0

F (v, U ;u, U)Q (τU ∈ dv| Ft0) (124)

and given β < 2, with

F (v, Ev;u,E) := Qχ2( 2
2−β ,2κv,uE

2−β)
(
2κv,uE

2−β
v e(2−β)(r−q)(u−v)

)
(125)

representing the transition density function Q (Vu ≤ E|Vv = E) of the CEV process, as

given by Schroder (1989, Equation 1) for β < 2,

κv,u :=
2 (r − q)

(2− β) δ2 [e(2−β)(r−q)(u−v) − 1]
, (126)

and where Qχ2(v,λ) (x) represents the complementary distribution function of a noncentral

chi-square law with v degrees of freedom and noncentrality parameter λ.

As in Dias et al. (2015), these are solved with the algorithm offered by Benton and

Krishnamoorthy (2003).

In addition, the two trigger densities, as in Definition 14, are obtained using simulta-

neously equations (123) and (124) but with τ̄L and τ̄U .

With the density solutions presented, we define the options that will be needed to

solve the dynamic debt model.

9.3 Single barrier options

Here, four definitions for various single barriers borrowed from Dias et al. (2021) are

provided, adapted for the CEV model, where there is no jump to default. These will be

used to obtain the results for the dynamic debt model.

These are the most common barrier option contracts, studied in Rubinstein and Reiner

(1991) and Rich (1994) under the GBM setting. A knock-in single barrier option has the

payoff of a vanilla option if a given barrier (upper or lower) is touched during its lifetime.

A knock-out single barrier option, has the payoff of vanilla option if a given barrier (upper

or lower) is not touched during its lifetime.

In both cases, there is a possibility of a rebate if the underlying asset does not touch

the knock-in barrier or touches the knock-out barrier. The definitions provided next do
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not take into account the possibility of a rebate. The strike price here is represented by

D, which later will take the place of the nominal debt value.

Definition 15 Up-and-in options. The time-T price of a unit face value and zero

rebate European-style up-and-in single barrier option on the asset price V , with strike D,

barrier level U : T → R+ (with U > Vt0), and maturity at time T (≥ t0) is equal to

EUIT (VT , D, U, T ;φ, τU) = EUI0
T (VT , D, U, T ;φ, τU) + EUIDT (VT , D, U, T ;φ, τU)

= (φD − φVT )+ 11{τU≤T,τ0>T} + (φD)+11{τU≤τ0≤T}, (127)

where φ = 1 for a put option and φ = −1 for a call option. We note that there is no

recovery component for an up-and-in call and, therefore, EUIDT (VT , D, U, T ;−1, τU) = 0.

Definition 16 Down-and-in options. The time-T price of a unit face value and zero

rebate European-style down-and-in single barrier option on the asset price V , with strike

D, barrier level L : T → R+ (with L < Vt0), and maturity at time T (≥ t0) is equal to

EDIT (VT , D, L, T ;φ, τL) = EDI0
T (VT , D, L, T ;φ, τL) + EDIDT (VT , D, L, T ;φ, τL)

= (φD − φVT )+ 11{τL≤T,τ0>T} + vDT (VT , D, T ;φ), (128)

where φ = 1 for a put option and φ = −1 for a call option. We note that there is no

recovery component for a down-and-in call and, therefore, EDIDT (VT , D, L, T ;−1, τL) = 0.

Moreover, since the default event cannot precede the knock-in event, then 11{τ0<τL} = 0 and,

hence, EDIDT (VT , D, L, T ; 1, τL) = vDT (VT , D, T ; 1), which is the recovery component of a

vanilla put option.

Definition 17 Up-and-out options. The time-T price of a unit face value and zero

rebate European-style up-and-out single barrier option on the asset price V, with strike D,

barrier level U : T → R+ (with U > Vt0) , and maturity at time T (≥ t0) is equal to
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EUOT (VT , D, U, T ;φ, τU) =EUO0
T (VT , D, U, T ;φ, τU) + EUOD

T (ST , K, U, T ;φ, τU)

=v0
T (VT , D, T ;φ)− EUI0

T (VT , D, U, T ;φ, τU)

+ (φD)+11{τ0≤T∧τU}, (129)

where φ = 1 for a put option and φ = −1 for a call option. We note that there is no

recovery component for an up-and-out call and, therefore, EUOD
T (VT , D, U, T ;−1, τU) =

0.

Definition 18 Down-and-out options The time-T price of a unit face value and zero

rebate European-style down-and-out single barrier option on the asset price V, with strike

D, barrier level L : T → R+ (with L < Vt0) , and maturity at time T (≥ t0) is equal to

EDOT (VT , D, L, T ;φ, τL) = EDO0
T (VT , D, L, T ;φ, τL) + EDOD

T (VT , D, L, T ;φ, τL)

= v0
T (VT , D, T ;φ)− EDI0

T (VT , D, L, T ;φ, τL) , (130)

where φ = 1 for a put option and φ = −1 for a call option. We note that there is no

recovery component for a down-and-out call and, therefore, EDOD
T (VT , D, L, T ;−1, τL) =

0. Furthermore, since the default event cannot precede the knock-out event, 11{τ0≤τL} = 0

and, hence, EDOD
T (VT , D, L, T ; 1, τL) = 0.

9.4 One touch double barrier options

Next, drawn from Dias et al. (2015), we have the one touch barrier options, from which

the knock-out style one is part of the dynamic debt model. A one-touch knock-in double

barrier option has the payoff of a vanilla option if, during the option’s lifetime, one of

these barriers is crossed. A one-touch knock-out double barrier has the payoff a vanilla

option, if during the same period, none of the barriers is touched.

As the single barrier options, these may have a rebate, but its value is not explored

in the two following definitions borrowed from Dias et al. (2021, Definitions 11 and 14).

Definition 19 The time−T price of a unit face value and zero rebate European-style one-

touch double barrier knock-in option on the asset price V , with strike D, lower barrier
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level L : T → R+, upper barrier level U : T → R+ (with L < Vt0 < U) and maturity at

time T (≥ t0) is equal to

EDBKIT (VT , D, L, U, T ;φ, τ̄L, τ̄U)

=EDI0
T (VT , D, L, U, T ;φ, τ̄L) + EUI0

T (VT , D, L, U, T ;φ, τ̄U) + vDT (V,D, T ;φ), (131)

where φ = 1 for a put option and φ = −1 for a call option, and because the sets {T̄L ≤ T}

and {T̄U ≤ T} are disjoint, that is 11{τLU≤T} = 11{τ̄L≤T} + 11{τ̄U≤T}. As expected, there is

no recovery component for a one touch double barrier knock-in call. The last term is the

recovery value associated with a down-and-in vanilla-put option.

Definition 20 The time−T price of a unit face value and zero rebate European-style one-

touch double barrier knock-out option on the asset price V , with strike K, lower barrier

levels L : T → R+, upper barrier levels U : T → R+ (with L < Vt0 < U) and maturity at

time T (≥ t0) is equal to

EDBKOT (VT , D, L, U, T ;φ, τ̄L, τ̄U)

=v0
T (VT , D, T ;φ)− EDBKI0

T (VT , D, L, U, T ;φ, τ̄L, τ̄U), (132)

where φ = 1 for a put option and φ = −1 for a call option, and because the sets {τ̄L ≤ T}

and {τ̄U ≤ T} are disjoint, that is 11{τLU≤T} = 11{τ̄L≤T}+ 11{τ̄U≤T}. As expected, there is no

recovery component for a one-touch double barrier knock-out call. The recovery component

is always zero because the default event forces the option knock-out (as long L ∈ R+).

9.5 First-then-barrier options

Now, four definitions are borrowed from the second part of this thesis and adapted for the

CEV case. These are the first-then barrier option contracts, studied in Haug (2006), Jun

and Ku (2012) and Jun and Ku (2013). These are options whose monitorization period

starts after another barrier is crossed.

For instance, a first-up-then-down-and-in barrier option is knocked-in when the asset

price crosses an upper barrier and afterwards a second lower barrier. Or, in alternative,
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it can be interpreted as a down-and-in barrier option whose monitorization starts when

the upper barrier is crossed.

These can also be of the knock-out kind, as for instance, a first-up-in-then-down-

and-out barrier option is first knocked-in when the asset price crosses an upper barrier,

and knocked-out afterwards if a lower barrier is crossed. Or, in alternative, it can be

interpreted as a down-and-out barrier option which is activated once the upper barrier is

crossed.

Definition 21 First-down-then-up-and-in options. The time-T price of a unit face

value and zero rebate European-style first-down-then-up-and-in option on the asset price

V , with strike D, barrier levels L : T → R+ (with L < Vt0), U : T → R+ (with U > Vt0),

and maturity at time T (≥ t0) is equal to

EDUIT (VT , D, L, U, T ;φ, τL, τU)

=EDUI0
T (VT , D, L, U, T ;φ, τL, τU) + EDUIDT (VT , D, L, U, T ;φ, τL, τU)

= (φK − φST )+ 11{τL<τU≤τ0≤T} + (φK)+11{τL<τU≤T,τ0>T}, (133)

where φ = 1 for a put option and φ = −1 for a call option. Hence, τL activates a

European-style up-and-in barrier option with barrier level U . We note that there is no

recovery component for the first-down-then-up-and-in call and, therefore,

EDUIDT (VT , D, L, U, T ;−1, τL, τU) = 0.

Definition 22 First-up-then-down-and-in options. The time-T price of a unit face

value and zero rebate European-style first-up-then-down-and-in barrier option on the asset

price V , with strike D, barrier levels L : T → R+ (with L < Vt0), U : T → R+ (with

U > Vt0), and maturity at time T (≥ t0) is equal to

EUDIT (VT , D, L, U, T ;φ, τL, τU)

=EUDI0
T (VT , D, L, U, T ;φ, τL, τU) + EUDIDT (VT , D, L, U, T ;φ, τL, τU)

= (φD − φVT )+ 11{τU<τL≤T,τ0>T} + (φD)+11{τU<τL≤τ0≤T}, (134)

where φ = 1 for a put option and φ = −1 for a call option. Hence, τU activates a
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European-style down-and-in barrier option with barrier level L. We note that there is no

recovery component for first-up-then-down-and-in the call and, therefore,

EUDIDT (VT , D, L, U, T ;−1, τL, τU) = 0.

Definition 23 First-down-in-then-up-and-out options. The time-T price of a unit

face value and zero rebate European-style first-down-in-then-up-and-out barrier option on

the asset price V, with strike D, barrier levels L : T → R+ (with L < Vt0), U : T → R+

(with U > Vt0), and maturity at time T (≥ t0) is equal to

EDI, UOT (VT , D, L, U, T ;φ, τL, τU)

=EDI, UO0
T (VT , D, L, U, T ;φ, τL, τU) + EDI, UOD

T (VT , D, L, U, T ;φ, τL, τU)

=(φD − φVT )+11{τL≤T<τU ,τ0>T} + (φD)+11{τL≤τ0≤T∧τU} (135)

where φ = 1 for a put option and φ = −1 for a call option. Hence, τL activates a

European-style up-and-out barrier option with barrier level U . We note that there is no

recovery component for the first-down-in-then-up-and-out call,

EDI, UOT (VT , D, L, U, T ;−1, τU , τL) = 0.

Definition 24 First-up-in-then-down-and-out-options. The time-T price of a unit

face value and zero rebate European-style first-up-in-then-down-and-out barrier option on

the asset price S, with strike K, barrier levels L : T → R+ (with L < Vt0), U : T → R+

(with U(t0) > Vt0), and maturity at time T (≥ t0) is equal to

EUI,DOT (VT , D, L, U, T ;φ, τL, τU)

=EUI,DO0
T (VT , D, L, U, T ;φ, τL, τU) + EUI,DOD

T (VT , D, L, U, T ;φ, τL, τU)

=(φD − φVT )+11{τU≤T<τL,τ0>T} + (φD)+11{τU<τ0≤T∧τL}, (136)

where φ = 1 for a put option and φ = −1 for a call option. Hence, τU activates a

European-style down-and-out barrier option with barrier level L. We note that there is no

recovery component for the first-up-in-then-down-and-out call, and, therefore

EUI,DOT (ST , K, L, U, T ;−1, τU , τL) = 0.
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10 Modified discounts

10.1 The model of debt changes

In this section, we obtain the debt discount formulae for each of the dynamic debt cases.

In Das and Kim (2015), the dynamic debt model is presented in seven cases, the original

Merton (1974) model, plus six combinations of barrier options.

Following the results of Roberts and Sufi (2009), Nini et al. (2012) and Flannery et al.

(2012), the model tries to capture the mechanisms of changes in debt. By following the

basic idea that as the leverage decreases (with increases in the firm value), the nominal

debt is exposed to the increases, as the additional collateral allows to do so. On the

other side leverage increases (with decreases in the firm value), the nominal debt becomes

subject to debt write downs in order to counterweight the increased risk of default.

So, the models sets the parameters for the debt increases and decreases, both the

amounts by how much the debt changes and the levels at which the firm value, V , triggers

those debt changes. For the amount of the changes, δ(> 0) represents the proportion by

how much debt increases, d ∈ (0, 1) by how much it decreases. These debt changes occur

when the firm value, D/V crosses certain barriers which are set in terms of leverage.

K(< 1) is the level which triggers the debt ratchet in nominal debt, while M is the value

when the debt write down occurs.

There is also the possibility of not recovering the full value upon default, recovering

only the recovery value, φdwl(≤ 1), supporting a dead-weight cost, thus receiving VTφdwl,

which is incorporated into the put option formulae. The face value of debt is represented

by D.

As in Das and Kim (2015), in order to hold the firm value constant, the changes in

the face value of debt are assumed to be drawn from the equity value. Although debt

changes may not operate accordingly to this assumption, the direction of the effects is

the same (increases/decreases in debt increase/decrease the probability of default) and it

is analytically convenient.

Below, we present and adapt, under the possibility of debt changes, the value of the

debt, B, and the debt discount, G - the difference between the risky bond and risk-less

debt - under the dynamic debt cases to the CEV model, which takes into consideration
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the possibility of reaching zero by diffusion, the cases where τ0 < T .

The baseline cases of debt increase and decrease are presented first and then combined.

Then, the possibilities of having both an increase and decrease are developed and are also

combined.

Afterwards, we compute the credit spreads of the risky debt in relation to the risk-less

debt. These spreads, S, follow the standard formula of the structural models, that is,

S = − 1

T − t0
ln

(
B0

De−r(T−t0)

)
= − 1

T − t0
ln

(
De−r(T−t0) −G0

De−r(T−t0)

)
. (137)

10.2 Case 1: Original static debt

This is the standard well know Merton (1974) model, from where all the other cases

depart. This model sets that a given firm has a single liability with a terminal payoff at

T and a face value of D. At time T , this debt face value is redeemed from the total firm’s

total assets, V . Default can only occur at time T , and if VT < D, that is, the firm does

not have funds to repay the face value of debt. When such event occurs, the debt-holder

takes whatever value remains of the firm value, weighted by the recovery value, φdwl. If

there is a diffusion to zero before time-T , the firm no longer contains value, therefore, the

bondholders receive nothing. So, when τ0 > T , the bond value payoff, B1
T , can be written

as

B1
T (VT , D, T ;φdwl) = 11{τ0>T}

(
D11{D<VT } + φdwlVT11{D≥VT }

)
. (138)

As for the discount on debt, G1
T , it can be written by subtracting the risky debt value

from the risk-free debt with the same face value.

Definition 25 The time-T price of the debt discount on case 1 (the Merton Model) of a

firm with value V , nominal debt D and maturity time T (≥ t0), assuming that τ0 > t0, is

given by
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G1
T (VT , D, T ;φdwl)

=D − 11{τ0>T}
(
D11{D<VT } + φdwlVT11{D≥VT }

)
=D

(
11{τ0≤T} + 11{τ0>T}

)
− 11{τ0>T}

(
D11{D<VT } + φdwlVT11{D≥VT }

)
=D11{τ0>T} − 11{τ0>T}

(
D11{D<VT } + φdwlVT11{D≥VT }

)
+D11{τ0≤T}

=11{τ0>T}D(1− 11{D<VT })− 11{τ0>T}φdwlVT11{D≥VT } +D11{τ0≤T}

=11{τ0>T}
(
D11{D≥VT } − φdwlVT11{D≥VT }

)
+D

(
1− 11{τ0>T}

)
=v0

T (VT , D; 1, φdwl) + vDT (VT , D; 1, φdwl),

=vT (VT , D, T ;φdwl). (139)

that is, a put option with the conditional on no default value, v0
T (VT , D, T ; 1, φdwl) and the

recovery value vDT (VT , D, T ; 1, φdwl). These are given in Dias et al. (2020, equations (21)

and (22)), respectively.

10.3 Case 2: Discount with debt ratchet

Now, the possibility of an increase in the nominal debt held by the firm is contemplated.

As the firm value, V , evolves, if it rises to an exogenous level D/K, the increased debt

level to D(1 + δ), staying at that level until T .

For when the firm value does not diffuse to zero, the outcomes where the upper level

D/K is not crossed before maturity, τD/K > T , hold the same payoff as before

11{τ0>T}
(
D11{D<VT } + φdwlVT11{D≥VT }

)
, (140)

while those where the upper barrier is crossed before maturity, τD/K ≤ T , will be given

by

1

1 + δ
11{τ0>T}

(
D(1 + δ)11{D(1+δ)<VT } + φdwlVT11{D(1+δ)≥VT }

)
. (141)

Here, the default occurs when the firm value is below the (increased) face value of
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debt, D(1 + δ). The whole expression is weighted by the ratio between the old and new

face values of debt, D/D(1 + δ) = 1/(1 + δ), and this weighting serves two purposes.

First, in the case of no default, it guarantees that the original debt-holder receives the

original amount of nominal debt, not the increased amount. Second, in the case of default,

it reduces the amount of the remainder of the firm level to be received by the original

debt-holder, as he must share it with the new debt-holder(s).

Therefore, the bond value of the original debt-holder will be given by:

B2
T (Vt0 , D,K, δ, T ; τD/K , φdwl)

=11{τD/K>T}11{τ0>T}
(
D11{D<VT } + φdwlVT11{D≥VT }

)
+ 11{τD/K≤T}11{τ0>T}

1

1 + δ

(
D(1 + δ)11{D(1+δ)<VT } + φdwlVT11{D(1+δ)≥VT }

)
. (142)

As for the debt discount, again, we subtract the bond value to the price of the risk-less

debt.

Definition 26 The time-T price of the debt discount on case 2 (Discount with debt

ratchet) of a firm with the value V , face value of debt D, debt increase level D/K, debt

increase amount δ and maturity time T (≥ t0), assuming that τ0 > t0, is given by

G2
T (VT , D,K, δ, T ; τD/K , φdwl)

=D − 11{τD/K>T}11{τ0>T}(D11{D<VT } + φdwlVT11{D≥VT })

− 11{τD/K≤T}11{τ0>T}
1

1 + δ
(D(1 + δ)11{D(1+δ)<VT } + φdwlVT11{D(1+δ)≥VT })

=D11{τD/K>T}11{τ0≤T} +D11{τD/K≤T}11{τ0≤T}

+D11{τD/K>T}11{τ0>T} +D11{τD/K≤T}11{τ0>T}

− 11{τD/K>T}11{τ0>T}(D11{D<VT } + φdwlVT11{D≥VT })

− 11{τD/K≤T}11{τ0>T}
1

1 + δ
(D(1 + δ)11{D(1+δ)<VT } + φdwlVT11{D(1+δ)≥VT })

= 11{τD/K>T}11{τ0>T}
(
D11{D≥VT } − φdwlVT11{D≥VT }

)
+D11{τD/K>T}11{τ0≤T}

+
1

1 + δ
11{τD/K≤T}11{τ0>T}

(
D(1 + δ)11{D(1+δ)≥VT } − φdwlVT11{D(1+δ)≥VT }

)
+

1 + δ

1 + δ
D11{τD/K≤T}11{τ0≤T}

=EUO0
T (VT , D,D/K; 1, τD/K , φdwl) + EUOD

T (VT , D,D/K; 1, τD/K , φdwl)
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+
1

1 + δ
· EUI0

T (VT , D(1 + δ), D/K; 1, τD/K , φdwl)

+
1

1 + δ
· EUIDT (VT , D(1 + δ), D/K; 1, τD/K , φdwl)

=EUOT (VT , D,D/K; 1, τD/K , φdwl) +
1

1 + δ
· EUIT (VT , D(1 + δ), D/K; 1, τD/K , φdwl)

(143)

where

τD/K = inf {u > 0 : Vu = D/K} .

that is, a weighted sum of two puts: an up-and-out put — as presented in Definition 17,

while the conditional on no default component is solved as in Dias et al. (2021, Proposition

1) , through subtracting the value from a vanilla put, and the recovery component is solved

as in Dias et al. (2021, Proposition 3) (not considering the possibility of a jump to zero) —

and an up-and-in put — as presented in Definition 15, while the conditional on no default

component is solved as in Dias et al. (2021, Proposition 1) and the recovery component

is solved as in Dias et al. (2021, Proposition 2) (not considering the possibility of a jump

to zero).

The first option has the same parameters as the one in case 1, but carrying a knock-

out feature at the upper level, D/K, making it an up-and-out barrier option. So, the

options is deactivated once this threshold is crossed, translating into the firm no longer

holding the initial amount of debt, D, but a higher amount.

To transition to the higher amount of debt, a second element is added: an option

that departs from the initial firm value as the previous one, but has a knock-in feature at

the upper level D/K, the same level where the first option is deactivated. This knock-in

option has the strike price of D(1 + δ), the new debt level, increasing the original face

value of debt by 100 · δ%.

10.4 Case 3: Discount with a debt swap down

This case is similar to the previous one, with the debt increase replaced by a debt decrease.

If V hits the value D/M , the liabilities drop to the level D(1− d).
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Now, the cases where the firm’s value does not cross the lower threshold before ma-

turity, τD/M > T , will hold the same payoff as before

11{τ0>T}
(
D11{D<VT } + φdwlVT11{D≥VT }

)
, (144)

while the cases where the lower barrier is crossed, τD/M ≤ T , it will be given by

11{τ0>T}
1

1− d
(
D(1− d)11{D(1−d)<VT } + φdwlVT11{D(1−d)≥VT }

)
. (145)

Now, default only occurs when the firm level is below the reduced amount of debt.

The change in the debt level from the initial value is taken into account. So again, we

weight the payoff of when the debt changes by the ratio between the old and the new face

values of debt: 1/(1− d).

Therefore, the payoff of the bond at maturity is

B3
T (VT , D,M, d, T ; τD/M , φdwl)

=11{τD/M>T}11{τ0>T}
(
D11{D<VT } + φdwlVT11{D≥VT }

)
+ 11{τD/M≤T}11{τ0>T}

1

1− d
(
D(1− d)11{D(1−d)<VT } + φdwlVT11{D(1−d)≥VT }

)
. (146)

As for the debt discount, again, we subtract from the price of the risk-less debt.

Definition 27 The time-T price of the debt discount on case 3 (Discount with a debt

swap down) of a firm with value V , face value of debt D, debt decrease level D/M , debt

decrease amount d and maturity time T (≥ t0), assuming that τ0 > t0, is given by

G3(VT , D,M, d, T ; τL, φdwl)

=D − 11{τD/M>T}11{τ0>T}(D11{D<VT } + φdwlVT11{D≥VT })

− 11{τD/M≤T}11{τ0>T}
1

1− d
(D(1− d)11{D(1−d)<VT } + φdwlVT11{D(1−d)≥VT })

=D11{τD/M>T}11{τ0≤T} +D11{τD/M≤T}11{τ0≤T}
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+D11{τD/M>T}11{τ0>T} +D11{τD/M≤T}11{τ0>T}

− 11{τD/M>T}11{τ0>T}(D11{D>VT } + φdwlVT11{D≤VT })

− 1

1− d
11{τD/M≤T}11{τ0>T}(D(1− d)11{D(1−d)<VT } + φdwlVT11{D(1−d)≥VT })

=EDOT (VT , D,D/M ; 1, τD/M , φdwl) +
1

1− d
· EDIT (VT , D(1− d), D/M ; 1, τD/M , φdwl)

(147)

where

τD/M = inf {u > 0 : Vu = D/M} .

that is, a weighted sum of two puts: a down-and-out put — as presented in Definition 18,

while the conditional on no default component is solved as in Dias et al. (2021, Proposition

1), through subtracting the value from a vanilla put (not considering the possibility of a

jump to zero), and the recovery component is always equal to zero — and a down-and-in

put — as presented in Definition 16, while the conditional on no default component is

solved as in Dias et al. (2021, Proposition 1) (not considering the possibility of a jump to

zero) and the recovery component (the same as in a vanilla put) is solved by Dias et al.

(2020, equation (22)).

Therefore, first, we have an option starting at the level V and the strike price that

corresponds to the initial face value of debt level, D, and this option is knocked-out when

V crosses the lower level D/M , a knock-out barrier option.

To complete the debt value transition, upon the knock-out event of the first option, a

down-and-in option is knocked-in, holding the strike price that represents the lower debt

level, D(1− d), decreasing it by 100 · d%.

10.5 Case 4: Discount with the option to either ratchet or swap

down debt

Here, the two previous cases are combined, with one, and only one, of the adjustments on

the debt level occurring. In the cases where the upper barrier, D/K, is crossed first, the

debt level is ratcheted to D(1 + δ). If the lower barrier, D/M , is crossed first, the debt
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level is swapped-down to D(1− d).

Assuming the default does not occur before maturity, in the cases where the firm level

touches neither the upper barrier, τD/K > T , nor the lower barrier, τD/M > T , that is,

τD/K,D/M > T , the face value of debt remains at the initial level

11{τ0>T}
(
D11{D<VT } + φdwlVT11{D≥VT }

)
. (148)

If the upper barrier was touched, and so before the upper barrier being, τ̄D/K ≤ T , the

payoff of the debt-holder will take into account the increase in debt, while being multiplied

by the appropriate weight

1

1 + δ
11{τ0>T}

(
D(1 + δ)11{D(1+δ)<VT } + φdwlVT11{D(1+δ)≥VT }

)
, (149)

whereas, in the cases where the lower barrier is touched before the upper barrier, τ̄D/M ≤

T , the payoff with the proper weight is

1

1− d
11{τ0>T}

(
D(1− d)11{D(1−d)<VT } + φdwlVT11{D(1−d)≥VT }

)
. (150)

Here, the use of the two trigger clauses is crucial, as we need the first passage time of

one barrier without touching the other one.

Thus, the bond value of the original debt-holder will be given by

B4
T (VT , D,K,M, δ, d, T ; τ̄D/K , τ̄D/M , φdwl)

=11{τD/K,D/M>T}11{τ0>T}
(
D11{D<VT } + φdwlVT11{D≥VT }

)
+ 11{τ̄D/K≤T}

1

1 + δ
11{τ0>T}

(
D(1 + δ)11{D(1+δ)<VT } + φdwlVT11{D(1+δ)≥VT }

)
+ 11{τ̄D/M≤T}

1

1− d
11{τ0>T}

(
D(1− d)11{D(1−d)<VT } + φdwlVT11{D(1−d)≥VT }

)
. (151)

The debt discount, once again, is obtained by subtracting the price of debt from the

risk-less debt.
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Definition 28 The time-T price of the debt discount on case 4 (Discount with the option

to either ratchet or swap down debt) of a firm with V , nominal debt D, debt increase

level D/K, debt increase amount δ, debt decrease level D/M , debt decrease amount d and

maturity time T (≥ t0), assuming that τ0 > t0, is given by

G4
T (VT , D,K,M, δ, d, T ; τ̄D/K , τ̄D/M , φdwl)

=D − 11{τD/K,D/M>T}11{τ0>T}
(
D11{D<VT } + φdwlVT11{D≥VT }

)
− 11{τ̄D/K≤T}

1

1 + δ
11{τ0>T}

(
D(1 + δ)11{D(1+δ)<VT } + φdwlVT11{D(1+δ)≥VT }

)
− 11{τ̄D/M≤T}

1

1− d
11{τ0>T}

(
D(1− d)11{D(1−d)<VT } + φdwlVT11{D(1−d)≥VT }

)
=D11{τ0≤T}11{τD/K,D/M>T} +D11{τ0≤T}11{τ̄D/K<T} +D11{τ0≤T}11{τ̄D/M<T}

+D11{τ0>T}11{τD/K,D/M>T} +D11{τ0>T}11{τ̄D/K<T} +D11{τ0>T}11{τ̄D/M<T}

− 11{τD/K,D/M>T}11{τ0>T}
(
D11{D<VT } + φdwlVT11{D≥VT }

)
− 11{τ̄D/K≤T}

1

1 + δ
11{τ0>T}

(
D(1 + δ)11{D(1+δ)<VT } + φdwlVT11{D(1+δ)≥VT }

)
− 11{τ̄D/M≤T}

1

1− d
11{τ0>T}

(
D(1− d)11{D(1−d)<VT } + φdwlVT11{D(1−d)≥VT }

)
=EDBKOT (VT , D,D/M,D/K; 1, τD/K,D/M , φdwl)

+
1

1 + δ
· EUIT (VT , D(1 + δ), D/K; 1, τ̄D/K , φdwl)

+
1

1− d
· EDIT (VT , D(1− d), D/M ; 1, τ̄D/M , φdwl) (152)

where

τ̄D/M := inf

{
u > t0 : Vu = D/M, sup

t0≤v≤u
(Vv −D/K) < 0

}
,

τ̄D/K := inf

{
u > t0 : Vu = D/K, inf

t0≤v≤u
(Vv −D/M) > 0

}

and
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τD/K,D/M = τ̄D/M ∧ τ̄D/K .

that is, a weighted sum of three puts: a double barrier knock-out put — as presented in

Definition 20, while the conditional on no default component is solved as in (Dias et al.,

2015, Proposition 3.2) (not considering the possibility of a jump to zero) and the recovery

component is always zero — an up-and-in put - as presented in Definition 15, while the

conditional on no default component is solved by Dias et al. (2021, Proposition 1) and

the recovery component is solved by Dias et al. (2021, Proposition 2) (not considering the

possibility of a jump to zero) — and a down-and-in put — as presented in Definition 16,

while the conditional on no default component is solved as in Dias et al. (2021, Proposition

1) (not considering the possibility of a jump to zero) and the recovery component (the same

as in a vanilla put) is solved by equation 3.10 with the survival probability from in Dias

et al. (2020, equation 22).

Therefore, first, there is a double barrier knock-out option, which is knocked-out when

one of its two barriers is reached. It has the original debt level, D, as the strike price,

and the knock-out barriers are D/K and D/M .

For the debt ratch-up branch, there is an up-and-in barrier option with strike at the

ratch-up level of debt, D(1 + δ). The barrier is at D/K, but with a two trigger clause,

and consequently the knock-in event only occurs if D/M is not crossed first.

As for the debt write down branch, there is a down-and-in barrier option, with the

strike at the write down level of debt, D(1 − d). The barrier which activates the option

is at D/M , provided that D/K is not crossed.

The setting of the knock-in options with a two trigger clause ensures that only one

of the options is knocked-in. This allows only either the debt ratch-up or the debt write

down to occur once the double barrier option is knocked-out, never both.

10.6 Case 5: Discount with the option to swap down after ratch-

eting

In this case, there is a possible sequence of two events, each with a debt change.

First, a debt ratchet after the asset price crosses the barrier D/K, increasing the debt
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to the ratch-up level, D(1 + δ). After that, a swap down is possible if D(1 + δ)/M is

crossed, decreasing the debt level by d · 100% to the final level, D(1 + δ)(1− d).

As in case 2, in the case the upper barrier is not crossed, τD/K > T , the payoff will

consider the initial face value of debt

11{τ0>T}
(
D11{D<VT } + φdwlVT11{D≥VT }

)
. (153)

Also, as in case 2, if the upper barrier, D/K, is crossed by the firm value, the face

value of debt will be increased by δ. Although, as an additional condition, after crossing

D/K, the firm level cannot cross D(1 + δ)/M without triggering another debt change.

Therefore, at τD/K ≤ T < τD(1+δ)/M :

1

1 + δ
11{τ0>T}

(
D(1 + δ)11{D(1+δ)<VT } + φdwlVT11{D(1+δ)≥VT }

)
. (154)

Finally, if the firm value has crossed the upper level, D/K, and afterwards crosses

the lower level, D(1 + δ)/M , the face value of debt suffers a decrease of d, thus, it is set

at D(1 + δ)(1− d). So, when τD/K < τD(1+δ)/M ≤ T the payoff on the debt is

1

(1 + δ)(1− d)
11{τ0>T}

(
D(1 + δ)(1− d)11{D(1+δ)(1−d)<VT } + φdwlVT11{D(1+δ)(1−d)≥VT }

)
,

(155)

and the bond value of the original debt-holder is:

B5
T (VT , D,K,M, δ, d, T ; τD(1+δ)/M , τD/K , φdwl)

=11{τD/K>T}11{τ0>T}
(
D11{D<VT } + φdwlVT11{D≥VT }

)
+ 11{τD/K≤T<τD(1+δ)/M}

1

1 + δ
11{τ0>T}

(
D(1 + δ)11{D(1+δ)<VT } + φdwlVT11{D(1+δ)≥VT }

)
+ 11{τD/K<τD(1+δ)/M≤T}

1

(1 + δ)(1− d)

× 11{τ0>T}
(
D(1 + δ)(1− d)11{D(1+δ)(1−d)<VT } + φdwlVT11{D(1+δ)(1−d)≥VT }

)
(156)
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And once again, to obtain the debt discount, we subtract the expression above from

the risk-less debt.

Definition 29 The time-T price of the debt discount on Case 5 (Discount with the option

to swap down after ratcheting) of a firm with value V , nominal debt D, debt increase level

D/K, debt increase amount δ, debt decrease level D(1 + δ)/M , debt decrease amount d

and maturity time T (≥ t0), assuming that τ0 > t0, is given by

G5
T (VT , D,K,M, δ, d, T ; τD(1+δ)/M , τD/K , φdwl)

=D − 11{τD/K>T}11{τ0>T}
(
D11{D<VT } + φdwlVT11{D≥VT }

)
− 11{τD/K≤T<τD(1+δ)/M}

1

1 + δ
11{τ0>T}

(
D(1 + δ)11{D(1+δ)<VT } + φdwlVT11{D(1+δ)≥VT }

)
− 11{τD/K<τD(1+δ)/M≤T}

1

(1 + δ)(1− d)

× 11{τ0>T}
(
D(1 + δ)(1− d)11{D(1+δ)(1−d)<VT } + φdwlVT11{D(1+δ)(1−d)≥VT }

)
=D11{τ0≤T}11{τD/K>T} +D11{τ0≤T}11{τD/K≤T<τD(1+δ)/M} +D11{τ0≤T}11{τD/K<τD(1+δ)/M≤T}

+D11{τ0>T}11{τD/K>T} +D11{τ0>T}11{τD/K≤T<τD(1+δ)/M} +D11{τ0>T}11{τD/K<τD(1+δ)/M≤T}

− 11{τD/K>T}11{τ0>T}
(
D11{D<VT } + φdwlVT11{D≥VT }

)
− 11{τD/K≤T<τD(1+δ)/M}

1

1 + δ
11{τ0>T}

(
D(1 + δ)11{D(1+δ)<VT } + φdwlVT11{D(1+δ)≥VT }

)
− 11{τD/K<τD(1+δ)/M≤T}

1

(1 + δ)(1− d)

× 11{τ0>T}
(
D(1 + δ)(1− d)11{D(1+δ)(1−d)<VT } + φdwlVT11{D(1+δ)(1−d)≥VT }

)
=EUOT (VT , D,D/K; 1, τD/K , φdwl)

+
1

1 + δ
· EUI,DOT (VT , D(1 + δ), D(1 + δ)/M,D/K; 1, τD(1+δ)/M , τD/K , φdwl)

+
1

(1 + δ)(1− d)

× EUDIT (VT , D(1 + δ)(1− d), D(1 + δ)/M,D/K; 1, τD(1+δ)/M , τD/K , φdwl) (157)

with

τD/K = inf {u > 0 : Vu = D/K} ,
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and

τD(1+δ)/M = inf
{
u > τD/K : Vu = D(1 + δ)/M

}
,

that is, a weighted sum of three puts: an up-and-out put — as presented in Definition 17,

while the conditional on no default component is solved as in Dias et al. (2021, Proposition

1), through subtracting from a vanilla put, and the recovery component is solved as in Dias

et al. (2021, Proposition 3) (not considering the possibility of a jump to zero) — a first-

up-in-then-down-and-out put — as presented in Definition 24, while the conditional on no

default component is solved by Proposition 9 from Part II (not considering the possibility

of a jump to zero) and the recovery value is always zero given the result of Proposition

11 — and a first-up-then-down-and-in put — as presented in Definition 22, while the

conditional on no default is also solved as in Proposition 5 from Part II and the recovery

value is solved by Proposition 7 from Part II (not considering the possibility of a jump to

zero).

This case starts as case 2, with an up-and-out put with the initial debt value, D, as

the strike price.

As for the second option, it is also knocked-in when the firm value crosses the upper

barrier D/K, but it is knocked out at the lower barrier D(1 + δ)/M , therefore, it is a

first-up-in-then-down-and-out put option. As for the strike price, it has the second face

value of debt, D(1 + δ).

As for the third option, it is knocked-in when the firm value crosses the D(1 + δ)/M

barrier, provided it has crossed D/K before. Thus, we have a first-up-then-down-and-

in put option with the strike price being the third possible level of face value of debt,

D(1 + δ)(1− d).

10.7 Case 6: Discount with the option to ratchet after swap

down

This case is analogous to case 5, now extending from case 3. We have a possible sequence

of two debt change events.

First, when the firm value, V , hits D/M , the debt level is reduced to D(1 − d), but
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now, in addition, if the firm value hits D(1 + δ)/K afterwards, the debt value ratchets to

D(1 + δ)(1− d).

As in case 3, when the lower barrier is not crossed, τD/M > T , the debt-holder will

receive a payoff corresponding the original face value of debt

11{τ0>T}
(
D11{D<VT } + φdwlVT11{D≥VT }

)
. (158)

Also, as case 3, if the lower barrier, D/M , is crossed by the firm value, the face value

of debt will be decreased by d. Now, as an additional condition, after crossing D/M , if the

firm level crosses D(1− d)/K there is another debt change. So, at τD/M ≤ T < τD(1−d)/K

the payoff is

1

1− d
11{τ0>T}

(
D(1− d)11{D(1−d)<VT } + φdwlVT11{D(1−d)≥VT }

)
. (159)

In the last scenario, if after crossing the lower level D/M , the option crosses the upper

level D(1− d)/K, the face value of debt suffers an increase, and is set at D(1 + δ)(1− d).

Thus, when τD/M < τD(1−d)/K ≤ T , the payoff on the debt is

1

(1 + δ)(1− d)
11{τ0>T}

(
D(1 + δ)(1− d)11{D(1+δ)(1−d)<VT } + φdwlVT11{D(1+δ)(1−d)≥VT }

)
.

(160)

Thus, the bond value of the original debt-holder is given by:

B6
T (VT , D,K,M, δ, d, T ; τD/M , τD(1−d)/K , φdwl)

=11{τD/M<T}11{τ0>T}
(
D11{D<VT } + φdwlVT11{D≥VT }

)
+ 11{τD/M≤T<τD(1−d)/K}

1

1 + δ
11{τ0>T}

(
D(1 + δ)11{D(1+δ)<VT } + φdwlVT11{D(1+δ)≥VT }

)
+ 11{τD/M<τD(1−d)/K≤T}

1

(1 + δ)(1− d)

× 11{τ0>T}
(
D(1 + δ)(1− d)11{D(1+δ)(1−d)<VT } + φdwlVT11{D(1+δ)(1−d)≥VT }

)
. (161)
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And the debt discount, subtracted from the risk-less debt value, is defined as follows.

Definition 30 The time-T price of the debt discount on case 6 (Discount with the option

to ratchet after swap down) of a firm with value V , nominal debt D, debt increase level

D(1 − d)/K, debt increase amount δ, debt decrease level D/M , debt decrease amount d

and maturity time T (≥ t0), assuming that τ0 > t0, is given by

G6
T (VT , D,K,M, δ, d, T ; τD/M , τD(1−d)/K , φdwl)

=D − 11{τD/M>T}11{τ0>T}
(
D11{D<VT } + φdwlVT11{D≥VT }

)
− 11{τD/M≤T<τD(1−d)/K}

1

1− d
11{τ0>T}

(
D(1− d)11{D(1−d)<VT } + φdwlVT11{D(1−d)≥VT }

)
− 11{τD/M<τD(1−d)/K≤T}

1

(1 + δ)(1− d)

× 11{τ0>T}
(
D(1 + δ)(1− d)11{D(1+δ)(1−d)<VT } + φdwlVT11{D(1+δ)(1−d)≥VT }

)
=D11{τ0≤T}11{τD/M>T} +D11{τ0≤T}11{τD/M≤T<τD(1−d)/K} +D11{τ0≤T}11{τD/M<τD(1−d)/K≤T}

+D11{τ0>T}11{τD/M>T} +D11{τ0>T}11{τD/M≤T<τD(1−d)/K} +D11{τ0>T}11{τD/K<τD(1−d)/K≤T}

− 11{τD/M>T}11{τ0>T}
(
D11{D<VT } + φdwlVT11{D≥VT }

)
− 11{τD/M≤T<τD(1−d)/K}

1

1− d
11{τ0>T}

(
D(1− d)11{D(1−d)<VT } + φdwlVT11{D(1−d)≥VT }

)
− 11{τD/M<τD(1−d)/K≤T}

1

(1 + δ)(1− d)

× 11{τ0>T}
(
D(1 + δ)(1− d)11{D(1+δ)(1−d)<VT } + φdwlVT11{D(1+δ)(1−d)≥VT }

)
=EDOT (VT , D,D/M ; 1, τD/M , φdwl)

+
1

1− d
· EDI, UOT (VT , D(1− d), D/M,D(1− d)/K; 1, τD/M , τD(1−d)/K , φdwl)

+
1

(1 + δ)(1− d)

× EDUIT (VT , D(1 + δ)(1− d), D/M,D(1− d)/K; 1, τD/M , τD(1−d)/K , φdwl) (162)

with

τD(1−d)/K = inf
{
u > τD/M : Vu = D(1− d)/K

}
,

and
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τD/M = inf {u > 0 : Vu = D/M} ,

that is, a weighted sum of three puts: a down-and-out put — as presented in Definition

18, while the conditional on no default component is solved by from Dias et al. (2021,

Proposition 1) (not considering the possibility of a jump to zero), through subtracting the

value from a vanilla put, and the recovery component is always equal to zero — a first-

down-in-then-up-and-out put — as presented in Definition 23, while the conditional on no

default component is solved by Proposition 8 from Part II and the recovery value is solved

by by Proposition 10 from Part II — and a first-down-then-up-and-in put - as presented

in Definition 21, while the conditional on no default is solved by Proposition 4 from Part

II and the recovery value is solved as in Proposition 6 from Part II (not considering the

possibility of a jump to zero).

This case starts as case 3, with an up-and-out put with the initial debt value as the

strike price, D.

As for the second option, it is also knocked-in when the firm value crosses the lower

barrier D/M , but it is knocked-out at the upper barrier D(1 − d)/K, therefore, it is a

first-down-in-then-up-and-out put option. Its strike price is the second possibility for the

value of debt, D(1− d).

As for the third option, it is knocked-in after the firm value crosses D(1 − d)/K,

provided it has crossed the D/M before. Thus, it is a first-down-then-up-and-in put option

with the strike price being the third possible level of face value of debt, D(1 + δ)(1− d).

10.8 Case 7: Discount allowing ratchet after swap down or vice

versa

Alike case 4, this is a combination of the previous two cases.

In the firm’s value path, if the upper barrier, D/K, is crossed first, the debt is ratch-

eted to D(1 + δ) and has the possibility of being swapped down if the lower barrier,

D(1 + δ)/M , is reached afterwards. If the lower barrier, D/M , is crossed first, the debt

is swapped-down to D(1− d), and a possibility is open for a debt ratchet once the upper

barrier, D(1−d)/K, is crossed. In both cases the final face value of debt is D(1+δ)(1−d).
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The fist payoff is the same as in case 4: if the firm level touches neither the upper

barrier, τ̄D/K > T , nor the lower barrier, τ̄D/M > T , that is, if τD/K,D/M > T , the initial

value for the face value of debt remains,

11{τ0>T}
(
D11{D<VT } + φdwlVT11{D≥VT }

)
. (163)

Again, as in case 4, if the upper barrier was touched before the lower barrier being

so, the debt level is increased to D(1 + δ). As in case 5, this is not the final possible level

of debt, it is only so if the lower barrier, D(1 + δ)/M , was not touched. Therefore the

payoff in the case τ̄D/K ≤ T < τD(1+δ)/M will be

1

1 + δ
11{τ0>T}

(
D(1 + δ)11{D(1+δ)<VT } + φdwlVT11{D(1+δ)≥VT }

)
. (164)

Afterwards, if the firm level crosses the lower barrier, D(1 + δ)/M , the debt level will

be decreased to D(1 + δ)(1− d). So when τ̄D/K < τD(1+δ)/M ≤ T the payoff is

1

(1 + δ)(1− d)
11{τ0>T}

(
D(1 + δ)(1− d)11{D(1+δ)(1−d)<VT } + φdwlVT11{D(1+δ)(1−d)≥VT }

)
.

(165)

As for the the cases where the lower barrier, D/M , is the first touched barrier, the

debt level is decreased to D(1− d), and as in case 6, this is not the final possible level of

debt. If the upper barrier, D(1− d)/K, is crossed afterwards, the debt level is changed.

Therefore, for τ̄D/M ≤ T < τD(1−d)/K the payoff is

1

1− d
11{τ0>T}

(
D(1− d)11{D(1−d)<VT } + φdwlVT11{D(1−d)≥VT }

)
. (166)

If after crossing D/M , the firm value crosses the upper barrier, D(1− d)/K, the debt

level is increased to D(1 + δ)(1− d). Thus, at τ̄D/M < τD(1−d)/K ≤ T , the payoff is given

by
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1

(1 + δ)(1− d)
11{τ0>T}

(
D(1 + δ)(1− d)11{D(1+δ)(1−d)<VT } + φdwlVT11{D(1+δ)(1−d)≥VT }

)
.

(167)

Therefore, the value of the bond in case 7 is going to be

B7
T (VT , D,K,M, δ, d, T ; τ̄D/M , τD(1+δ)/M , τ̄D/K , τD(1−d)/K , φdwl)

=11{τD/K,D/M>T}11{τ0>T}
(
D11{D<VT } + φdwlVT11{D≥VT }

)
+ 11{τ̄D/K≤T<τD(1+δ)/M}

1

1 + δ
11{τ0>T}

(
D(1 + δ)11{D(1+δ)<VT } + φdwlVT11{D(1+δ)≥VT }

)
+ 11{τ̄D/K<τD(1+δ)/M≤T}

1

(1 + δ)(1− d)
11{τ0>T}

×
(
D(1 + δ)(1− d)11{D(1+δ)(1−d)<VT } + φdwlVT11{D(1+δ)(1−d)≥VT }

)
+ 11{τ̄D/M≤T<τD(1−d)/K}

1

1− d
11{τ0>T}

(
D(1− d)11{D(1−d)<VT } + φdwlVT11{D(1−d)≥VT }

)
+ 11{τ̄D/M<τD(1−d)/K≤T}

1

(1 + δ)(1− d)
11{τ0>T}

×
(
D(1 + δ)(1− d)11{D(1+δ)(1−d)<VT } + φdwlVT11{D(1+δ)(1−d)≥VT }

)
(168)

Once again, subtracting the bond value from the risk-free bond, we obtain the debt

discount.

Definition 31 The time-T price of the debt discount on case 7 (Discount allowing ratchet

after swap down or vice versa) of a firm with value V , nominal debt D, debt increase levels

D/K and D(1−d)/K, debt increase amount δ, debt decrease levels D/M and D(1+δ)/M ,

debt decrease amount d and maturity time T (≥ t0), assuming that τ0 > t0, is given by

G7(VT , D,K,M, δ, d, T ; τ̄D/M , τD(1+δ)/M , τ̄D/K , τD(1−d)/K , φdwl)

=EDBKOT (VT , D,D/M,D/K; 1, τ̄D/K,D/M , φdwl)

+
1

1 + δ
· EUI,DOT (VT , D(1 + δ), D(1 + δ)/M,D/K; 1, τD(1+δ)/M , τ̄D/K , φdwl)

+
1

(1 + δ)(1− d)

× EUDIT (VT , D(1 + δ)(1− d), D(1 + δ)/M,D/K; 1, τD(1+δ)/M , τ̄D/K , φdwl)
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+
1

1− d
· EDI, UOT (VT , D(1− d), D/M,D(1− d)/K; 1, τ̄D/M , τD(1−d)/K , φdwl)

+
1

(1 + δ)(1− d)

× EDUIT (VT , D(1 + δ)(1− d), D/M,D(1− d)/K; 1, τ̄D/M , τD(1−d)/K , φdwl)

(169)

with

τ̄D/M := inf

{
u > t0 : Su = D/M, sup

t0≤v≤u
(Vv −D/K) < 0

}
,

τ̄D/K := inf

{
u > t0 : Su = D/K, inf

t0≤v≤u
(Vv −D/M) > 0

}
,

τD(1+δ)/M = inf
{
u > τ̄D/K : Vu = D(1 + δ)/M

}
,

τD(1−d)/K = inf
{
u > τ̄D/M : Vu = D(1− d)/K

}
,

and

τD/K,D/M = τ̄D/M ∧ τ̄D/K ,

that is, a sum weighted of five puts: a double barrier knock-out put — as presented in

Definition 20, while the conditional on no default component is solved as in Dias et al.

(2015, Proposition 3.2) (not considering the possibility of a jump to zero) and the recovery

component is always zero — a first-up-in-then-down-and-out put — as presented in Defi-

nition 24, while the conditional on no default component is solved by Proposition 9 from

Part II (not considering the possibility of a jump to zero) and the recovery value is always
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zero given the result of Proposition 11 — a first-up-then-down-and-in put — as presented

in Definition 22, while the conditional on no default is also solved as in Proposition 5 from

Part II and the recovery value is solved by Proposition 7 from Part II (not considering

the possibility of a jump to zero) — a first-down-in-then-up-and-out put — as presented

in Definition 23, while the conditional on no default component is solved by Proposition 8

from Part II and the recovery value is solved by by Proposition 10 from Part II — and a

first-down-then-up-and-in put — as presented in Definition 21, while the conditional on

no default is solved by Proposition 4 from Part II and the recovery value is solved as in

Proposition 6 from Part II (not considering the possibility of a jump to zero).

As V evolves, it can go up through the D/K barrier and trigger case 5, have its

debt ratched-up to D(1 + d) and then have the possibility of being swapped-down to

D(1 + d)(1− d) if D(1 + d)/M is crossed by V . Or, in alternative, V goes down through

D/M and triggers case 6, with the debt being swapped down to D(1 − d), and having

the possibility of being ratched-up to the level D(1 + δ)(1 − d) if V crosses D(1 − d)/K

afterwards.

As in case 4, we start with a double knock-out option, which has D for the strike value

and the knock-out barriers of D/K and D/M . Once one of the barriers is crossed by V and

the option is knocked-out, the trigger clause corresponding to the crossed barrier activates

one of the two branches - either the one that first increases debt and then decreases it, or

vice-versa.

For the first branch, when the first barrier to be crossed is the upper one, D/K, a

knock-out barrier option with strike D(1 + δ) is activated, representing the debt increase.

Then, if V crosses D(1 + δ)/M the knock-out barrier is deactivated and a new option

with strike D(1 + δ)(1− d) is knocked-in, enabling the decrease in debt.

As for the second branch, in the case where the first barrier to be crossed is D/M ,

a knock-out barrier option with strike corresponding to the lower debt level D(1 − d) is

activated. Afterwards, if V crosses D(1− d)/K, the former option is deactivated and the

option corresponding to the debt level D(1 + δ)(1− d) becomes active.
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11 Double barrier first-then-options and results mis-

match

In Das and Kim (2015), the results that arrive from first-then-barrier options are based on

a result presented in Haug (2006), which departs from standard barrier options’ formulae

and option symmetry. Although, as mentioned in Haug (2006), this result is only valid

when the cost-of-carry is zero, that is r = q. Despite this, the results presented in Das and

Kim (2015) take on the parameters, r = 2% and q = 0%, which leads to the belief that

the results display incorrectness. This is explored in Table 7, where the results using the

Das and Kim (2015) methodology are compared to the ones based on Dias et al. (2015)

(the one presented in this part of the thesis, adapted for the GBM) and to the closed

formulae reached by successive measure changes from Jun and Ku (2012). For the case

of a first-up-then-down-and-in call option, the comparison is as follows.

Table 7: First-up-then-down-and-in call option, with the spot price S = 100, strike 100,
upper barrier U = 105, lower barrier L = 95, T = 1 year and volatility σ = 0.20.

Contract number r q Jun and Ku (2012) Dias et al. (2015) Das and Kim (2015)

1 1% 1% 1.642 1.642 1.642

2 1.5% 1% 1.675 1.675 1.620

3 2% 1% 1.708 1.708 1.599

4 2.5% 1% 1.741 1.741 1.576

5 3% 1% 1.773 1.773 1.553

6 3% 1.5% 1.732 1.732 1.568

7 3% 2% 1.691 1.691 1.583

8 3% 2.5% 1.650 1.650 1.596

9 3% 3% 1.609 1.609 1.609

As it can be observed, in contracts number 1 and number 9, when the cost-of-carry is

null, all the three results match. However, the Das and Kim (2015) results which rely on

Haug (2006) are not aligned with the other two when r 6= q. So, it is confirmed that there

is a result mismatch, which implies the results where this kind of option are used (cases 5

and 6) will not have an exact match for the same parameters. In addition, we also confirm

that the Dias et al. (2015) methodology extended to first-then options is accurate when
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compared to the closed formulae of Jun and Ku (2012).

12 Numerical Analysis

In this section, the debt discount values are studied alongside the credit spreads under

the CEV model, in order to allow to see the impact of the β parameter over the results.

The impact of β over some of the debt change parameters are also studied.

In Table 8, the results for the debt discounts, G, are presented in the seven debt cases

along various initial β, initial leverage, D/V , and debt recovery value, φdwl, parameters.

As for the remaining parameters, the values are the same as in Das and Kim (2015): the

firm value Vt0 = 1, time to maturity T = 15 (for t0 = 0), initial volatility σ = 0.2, interest

rate r = 2%, total payout to debt q = 0%, debt ratchet amount δ = 30%, debt ratchet

threshold K = 0.4, debt write down amount d = 30% and debt write down threshold

M = 1.

Several observations arise from Table 8. First, there is a trend for the increase of the

debt discount as the β parameter is increased. This is as expected, given that the put

options that are summed to obtain the debt discounts increase in value as the β decreases.

This will coincide with the increased spreads, a reflection of the additional volatility of

the asset value, and thus the increased risk of default.

Another trend is the convergence of various cases’ debt discounts, that is, as β is

decreased, the values become more alike, converging to the same values in some cases.

This is explained by the increased probability of V reaching very low values, making the

default of the firm more frequent, withering the possibility of debt increases when these

are possible.

Afterwards, the analysis is presented for the credit spreads curve for three cases in

Figures 1 - 3: case 1 - the Merton (1974) model; case 4 - the case where the debt, can

increase or decreases; and case 7 - the case where the debt, can increase and then decrease

or vice-versa. This holds the same parameters as before, through various maturity dates.

As expected, the debt spreads are increased when β is decreased and for instance in case

4, the credit spread curve gains the typical hump shape.

An analysis on the effects of the β parameter comes in Figures 4 and 5. Here, analogous

cases are studied, with the difference between the spreads being highlighted.
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Figure 1: Case 1: Original static debt

Figure 2: Case 4: Spread with the option to either ratchet or swap down debt
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Table 8: The discount pricing for loan principle

D/V0 = 0.75 D/V0 = 0.5 D/V0 = 0.75 D/V0 = 0.5

Gφdwl=1 Gφdwl=0.7 Gφdwl=1 Gφdwl=0.7 Gφdwl=1 Gφdwl=0.7 Gφdwl=1 Gφdwl=0.7

β = 1 β = 0

Case 1 0.0843 0.1109 0.0373 0.0481 0.1000 0.1141 0.0579 0.0622

Case 2 0.0860 0.1140 0.0426 0.0560 0.1005 0.1152 0.0607 0.0669

Case 3 0.0587 0.0759 0.0271 0.0339 0.0879 0.0950 0.0542 0.0563

Case 4 0.0609 0.0799 0.0375 0.0489 0.0887 0.0964 0.0716 0.0765

Case 5 0.0813 0.1066 0.0357 0.0439 0.0976 0.1104 0.0681 0.0593

Case 6 0.0596 0.0777 0.0274 0.0344 0.0869 0.0944 0.0559 0.0581

Case 7 0.0587 0.0766 0.0329 0.0407 0.0968 0.1036 0.0912 0.0898

β = −1 β = −2

Case 1 0.1111 0.1172 0.0708 0.0720 0.1146 0.1173 0.0752 0.0756

Case 2 0.1112 0.1175 0.0720 0.0743 0.1146 0.1173 0.0757 0.0766

Case 3 0.1065 0.1087 0.0699 0.0703 0.1129 0.1135 0.0750 0.0751

Case 4 0.1067 0.1090 0.0902 0.0921 0.1129 0.1136 0.0948 0.0955

Case 5 0.1099 0.1151 0.0877 0.0593 0.1151 0.1162 0.0933 0.0623

Case 6 0.1046 0.1069 0.0726 0.0731 0.1110 0.1148 0.0781 0.0782

Case 7 0.1242 0.1258 0.1248 0.1198 0.1347 0.1348 0.1369 0.1316

This table considers the cases where β = {1, 0,−1,−2}. As in Das and Kim (2015)
D = {0.75, 0.5}, the firm value is V = 1, T = 15 years, σ = 0.20, r = 2%, q = 0% δ = 30%,
K = 0.4, d = 30%, M = 1 and the recovery value is presented for φdwl = {1, 0.7}.

Again, these hold the same parameters as before, but the values of debt increase and

decrease (δ and d respectively) for β ∈ [1,−1].

Firstly, case 1 is compared to case 2 in Figure 4. These are identical except the

latter includes the possibility of increasing debt once the leverage, D/V , is low enough.

The values reveal a widening of the spreads as δ increases, an expected result given the

higher increases in debt of case 2. As β decreases, the CEV model volatility increases,

V is steered towards smaller values, reducing the probability of the debt to increase and

reducing the possible outcomes that make case 2 spreads higher. Overall, the increasingly

resemblance between the two cases is confirmed, as the possible debt increase of case 2

becomes less likely.

99



Figure 3: Case 7: Spread allowing ratchet after swap down or vice versa

Figure 4: Spread difference between case 2 and case 1

Figure 5 compares case 1 to case 3. Case 3 is the addition to case 1 of the possibility

of decreasing debt once V crosses lower a barrier. The parameter d represents by how

much, and as it can be observed, it widens the spread between the cases, as they are

decreased for case 3. The second observation is more ambiguous. As β is decreased and

the volatility at lower levels increases, one could expect two ways the debt write down
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Figure 5: Spread difference between case 1 and case 3

possibility to be impacted. The first, as the firm value tends towards lower levels, the

write down mechanism to reduce debt becomes more likely to occur and to impact the

values, widening the spreads. The second, given V tends towards lower values more often,

the reduced amount of debt tends to be of less relevance, converging the spreads. As it is

observed, the second effect is more powerful, as the spreads become more alike.

A last analysis is performed on the impact of the M and K parameters, the param-

eters that indicate the leverage levels at which the debt is written-down and ratcheted,

respectively.

As it can be seen in Figure 6, the increase in K leads to an increase between the

spreads of case 1 and case 2, as the probability of the debt ratchet occurring in case 2

increases. In Figure 7 the impact of the increases of M in the difference between case 2

and case 5 is explored, displaying a decrease as the debt write down becomes less likely.

In both cases, as before, the increases in β reduce the impact of the model parameters.

13 Conclusions

This part of the thesis applies many of the formulae option presented in Jun and Ku (2012)

to obtain the dynamic debt model Das and Kim (2015) under CEV model. To to so, Part
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Figure 6: Spread difference between case 2 and case 1

Figure 7: Spread difference between case 5 and case 2

II, that uses the work of Dias et al. (2015) and Dias et al. (2021), is instrumental, providing

both the conditional on no default and recovery values of those contracts. Although Part

II is under the JDCEV model, given the CEV model is nested in it, the results are a
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particular case.

First, the option contracts used to build dynamic debt model are presented. After-

wards, through the payoff structure of each of the possible case of the debt model, the

options’ combinations used in each of the cases are identified. Afterwards, the debt dis-

counts are obtained, and studied with the same base parameterization as Das and Kim

(2015), while studying different cases of the CEV model β parameter. Finally, various

analysis on the impact of the model parameters on the dynamic of debt are provided,

while also studying how β affects that impact.

Overall, increases in β increase the spreads as expected, while the resulting lower V

values tend to make the dynamic debt cases more alike.
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Part IV

Dynamic debt with intensity-ruled

jumps

14 Introduction

The pricing of risky debt claims and corresponding credit spreads constitutes a rich field

of research. The structural models begin with Black and Scholes (1973) and Merton

(1974), where a fixed debt level is held and at the maturity date, the total value of the

firm determines if there is a default event.

In order to deal with the limitations that arise from its assumptions, various extensions

to the baseline model have occurred. Here, the challenged assumption is that of firms

holding fixed amounts of debt. Contrary to what is assumed by the baseline model, firms

tend to adjust it over time. One can expect more debt to be accrued when the value of

the firm increases and less (or even reductions) when it decreases.

As examples of studies that point to the value of analyzing adjustments in the debt

levels we highlight Roberts and Sufi (2009), that mention that most of long-term debt

contracts suffer renegotiations over the amount, maturity, and pricing of the contract;

Nini et al. (2012) find that creditors, through informal channels, play an active role in the

governance of firms, even when default is a far scenario; and Flannery et al. (2012) who

show that expected future leverage affects bond yields, above and beyond the effects of

the observed leverage.

Among the attempts to introduce a dynamic behavior on the level of debt, there is

for instance Collin-Dufresne and Goldstein (2001) setting that debt changes continuously,

with a process for the debt level which is linked to the firm value and is steered towards

a defined leverage. Notably, Das and Kim (2015) set a model where the debt level can

increase or decrease when certain barriers are crossed by the firm value. By setting

the knock-in and knock-out values for the barrier options — to indicate the firm values

at which the debt amounts are changed — and adjusting the strike prices properly —

to indicate how much debt changes — Das and Kim (2015) are able to simulate debt
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ratchets and write downs. They study a total of six cases of possible debt changes which

are compared to the baseline Merton (1974) model. Although, the setup only allows

for debt increases when the firm value increases and debt decreases when the firm value

decreases.

Eisenthal-Berkovitz et al. (2020) explore the dynamics of the leveraged buyout (LBO)

events and explore a structural model case where the firm can suffer a LBO which triggers

an increase in the debt level. To do so, a Cox process attributes a probability to the event

of the LBO, which is defined exogenously and is independent in relation to variations of

the firm value.

This part of the thesis aims to emulate the dynamic debt concept of Das and Kim

(2015), but with a hazard process triggering the debt events. It uses an intensity process

that can be exogenous, although with the possibility of including correlation between this

process and the firm’s value, thus allowing variations in the firm value to influence the

direction of the debt changes. By avoiding the barrier option setup, this method allows

for greater flexibility - while the firm value increases (decreases) increase the probability

of a debt increase (decrease), debt increases (decreases) can still occur when the firm value

decreases (increases).

By using a Vasicek (1977) intensity process, this model allows to calibrate the debt

changes under its own process, while keeping the possibility of correlation between the

debt change process and the firm value. Therefore, one does not need to set beforehand

values for the firm value to trigger the increase or decrease events. The debt increase and

decrease events can be approach as random events, as, for instance, the default of a firm

can be approached in the vulnerable options literature.

This kind of intensity processes is not a novelty in the credit risk literature, as various

credit risk models use intensity processes. Often, these are used to allow exogenous

factors beyond the firm-value to predict the default event, allowing the use of econometric

specifications from term-structure modeling. Both Jarrow and Turnbull (1995) and Madan

and Unal (1998) provide early examples of this approach when modeling two sources of

risk simultaneously. In addition, the pricing of vulnerable options — contracts where in

addition to the usual risk of the asset price, the issuers’ default risk is also taken into

consideration — often rely on intensity processes. Klein (1996) and Klein and Inglis

(2001) provide early examples of this approach. More recently, Fard (2015) and Koo and
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Kim (2017) provide studies where intensity based models are used in vulnerable options

to simulate the default event.

Here, at maturity date, one checks the face value of debt which will depend on the

debt increase and/or decrease events having occurred or not and the size of the debt

variations. This amount of standing debt is what determines if the firm defaults. For

instance, in the case of the debt increase, the value of the debt is not only influenced by

the higher possibility of default, but also by the presence of the new debt, which, in the

case of default, is entitled to receive a share of the recovered value.

The framework presented in this part of the thesis is flexible and adaptable to other

existing models. Besides studying the spreads on increases over the baseline Merton

(1974) model, the possibility of a debt increase is also studied in the case of the presence

of subordinated debt. Gorton and Santomero (1990) present a model where debt is

separated between senior debt and junior debt, with the latter being impacted by the

amount of the former. They reach a formula that can be interpreted as the difference

between two call options and which can be adapted to the possibility of debt changes.

Here, we set the possibility of increasing the senior debt, and study how it impacts the

credit spreads of the senior debt and the junior debt.

The remainder of the work is organized as follows. In Section 15, we present the

extensions to the Merton (1974) model with the possibilities of increasing and decreasing

the debt. In Section 16, we develop the extension to the particular case of the subordinated

debt of Gorton and Santomero (1990). In Section 17, we obtain the closed formulae

solutions for the bonds. In Section 18, we explore some numerical results. Finally, in

Section 19, we present the conclusions.

15 The random dynamic debt model

15.1 The baseline Merton model

We begin by introducing the Merton (1974) model which is the baseline for all of the

study. For a given firm, the face value of debt is represented by D and the maturity of

the zero-coupon bond is T . The risk-free rate is represented by r, q stands for the firm’s

total payout to debt and equity holders and the firm value is V - the sum of the equity

and the market value of debt. V will follow the usual (risk-neutral) geometric Brownian
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motion, therefore, the dynamics of V are given by

dVt
Vt

= (r − q)dt+ σV dWV (t), (170)

which is solved by

Vt = V0 exp

[(
r − q − 1

2
σ2
V

)
t+ σVWV (t)

]
, (171)

where σV represents the standard deviation of the firm value and WV (t) being a stan-

dard Brownian motion defined under the measure Q and generating the filtration F :=

{Ft, t ≥ t0}.

In this model, the firm issues a zero coupon bond. The default can only occur at

maturity and does so when the firm value is below the face value of debt, VT < D. When

default occurs, the debt-holder obtains a fraction of the firm’s value VTφdwl. The inclusion

of φdwl ≤ 1 contemplates the possibility of a dead-weight loss, that is, not recovering the

full firm’s value upon default, only the fraction φdwl.

Following the known solution, the bond value at time zero will be given by

Bt0(V,D, T ) = e−r(T−t0)E
[
D11{VT>D} + φdwlVT11{VT≤D}|Ft0

]
= De−r(T−t0)N (d2) + φdwlVt0e

−q(T−t0)N (−d1) , (172)

where

d1 =
ln(Vt0/D) + (r − q + σ2

V /2) (T − t0)

σ
√
T − t0

, d2 = d1 − σ
√
T . (173)

15.2 Debt with the possibility of increase - debt ratchet

Now, after time-zero and before maturity, there is the possibility of occurring only once

a debt increase event — a debt ratchet. The debt ratchet event is assumed to follow

a Vasicek (1977) process with intensity λut , that is, for a small ∆, the probability of a
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ratchet event occurring between t and t + ∆ is approximately λut ∆. We also have θu,

the risk adjusted long term average of the process, and κu, the speed of the reversion

of the process. The correlation between the debt increase and the firm value is defined

as dWu(t)WV (t) = ρuV dt. By selecting ρuV > 0, the firm value and the likelihood of

increasing the debt level become positively correlated.

As in Lando (1998) it will be assumed that P (τu > T ) = E[e
−

∫ T
tt0

λut dt] and the Vasicek

process is given by

dλut = κu (θu − λut ) dt+ σudWu(t), (174)

and the known unique solution to the SDE given by 1

λut = λut0e
−κu(t−t0) + θu

(
1− e−κu(t−t0)

)
+ σu

∫ t

t0

e−κu(t−s)dWu(s). (175)

The total firm debt level starts at Dt0 , and if no ratchet occurs, τU > T , it remains

at that level. Thus, we have same payoff as in the basic Merton (1974) model:

Dt011{VT>DT } + φdwlVT11{VT≤DT } = Dt011{VT>Dt0} + φdwlVT11{VT≤Dt0}. (176)

When such distinction is opportune, we will use DT to signal that, at maturity, the

total value of the firm’s debt can differ from Dt0 .

If the ratchet event occurs, the debt level is increased to DT = Dt0e
U , where U > 0.

As assumed in Das and Kim (2015), the potential increases in debt are assumed to come

from the equity, thus preserving the total firm value.

Now, with the debt increase, in the case of default, VT < DT , there is more debt

with the right to receive the remainder of the firm value, therefore the share the that

debt-holder obtains must be adjusted. Assuming the same maturity date and the same

seniority among the new and the old debt, the amount to be received is weighted by

Dt0
Dt0e

U = e−U , that is, the original debt-holder will receive a percentage of the recovered Vt

1For details on the solution, see, for instance, Musiela and Rutkowski (2005, Chapter 10).
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equal to his share of the whole debt.

So when τU ≤ T ,

DT e
−U11{VT>Dt0eU} + φdwle

−UVT11{VT≤Dt0eU},

which given, in this case, DT = Dt0e
U , the above can be written as

Dt011{VT>Dt0eU} + φdwle
−UVT11{VT≤Dt0eU}.

The event of debt increase is assumed to be able to occur only after t0, and D :=

{Dt, t ≥ t0} denotes the filtration generated by the indicator process Dt := 11{t>τU}. In

addition, G := {Gt : t ≥ t0} will denote the enlarged filtration obtained as Gt = Ft ∨ Dt.

Therefore, debt value at t0 will be given by

BU
t0

(V,Dt0 , T, λu, U)

=e−r(T−t0)E
[
(Dt011{VT>Dt0} + φdwlVT11{VT≤Dt0})11{τU>T}

+
(
Dt011{VT>Dt0eU} + φdwle

−UVT11{VT≤Dt0eU}
)
11{τU≤T}|Gt0

]
. (177)

The equation above can be written as

BU
t0

(V,D, T, λu) = e−r(T−t0)
(
AU1 + AU2 +BU

1 −BU
2 +BU

3 −BU
4

)
. (178)

The first set of terms is

E
[
(Dt011{VT>Dt0} + φdwlVT11{VT≤Dt0})11{τU>T}|Gt0

]
=E
[
(Dt011{VT>Dt0} + φdwlVT11{VT≤Dt0})e

−
∫ T
t0
λut dt|Ft0

]
=E

[
Dt011{VT>Dt0}e

−
∫ T
t0
λut dt|Ft0

]
︸ ︷︷ ︸

AU1

+E
[
φdwlVT11{VT≤Dt0}e

−
∫ T
t0
λut dt|Ft0

]
︸ ︷︷ ︸

AU2

, (179)
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and the second set is

E
[(
Dt011{VT>Dt0eU} + φdwle

−UVT11{VT≤Dt0eU}
)
11{τU≤T}|Ft0

]
=E
[(
Dt011{VT>Dt0eU} + φdwle

−UVT11{VT≤Dt0eU}
)
(1− e−

∫ T
t0
λut dt)|Ft0

]
=E

[
Dt011{VT>Dt0eU}|Ft0

]
︸ ︷︷ ︸

BU1

−E
[
Dt011{VT>Dt0eU}e

−
∫ T
t0
λut dt|Ft0

]
︸ ︷︷ ︸

BU2

+ E
[
φdwle

−UVT11{VT≤Dt0eU}|Ft0
]

︸ ︷︷ ︸
BU3

−E
[
φdwle

−UVT11{VT≤Dt0eU}e
−

∫ T
t0
λut dt|Ft0

]
︸ ︷︷ ︸

BU4

. (180)

This way, one can have the possibility of a debt increase which is more likely when

the firm value increases, but nevertheless possible when the firm value decreases.

15.3 Debt with the possibility of decrease - debt write down

In the previous subsection, we considered the possibility of a debt increase. Now, there

can be a debt decrease event — a debt write down. Again, we use a Vasicek (1977)

process, now with intensity λlt. We also have θl, the risk adjusted long term average of

the process, and κl, the speed of the reversion of the process. The correlation with the

firm value is again present and defined as dWl(t)WV (t) = ρlV dt. Now, with ρlV < 0, the

correlation between the firm value and the likelihood of debt decreasing is negative.

The process will follow the same kind of dynamic, that is

dλlt = κl
(
θl − λlt

)
dt+ σldWl(t), (181)

again with the known unique solution to the SDE given by

λlt = λlt0e
−κl(t−t0) + θl

(
1− e−κl(t−t0)

)
+ σl

∫ t

t0

e−κl(t−s)dWl(s). (182)

In the debt decrease case, the debt level is changed to DT = Dt0e
L, with L < 0

ensuring a decrease in the amount of debt. As in the ratch-up event, the firm value is
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preserved. The debt is exchanged for equity, increasing the latter.

Once again, when no debt write down occurs, τL > T , the result is DT = Dt0 and

thus

Dt011{VT>Dt0} + φdwlVT11{VT≤Dt0}.

When the debt write down occurs, the debt level becomes DT = DeL, while the

assumptions on debt maturity again imply that, in case of default, the value received

must be weighted by
Dt0
Dt0e

L = e−L.

Thus, in the cases where τL ≤ T :

Dt0e
Le−L11{VT>Dt0eL} + φdwle

−LVT11{VT≤Dt0eL}

=Dt011{VT>Dt0eL} + φdwle
−LVT11{VT≤Dt0eL}.

Therefore, with the possibility of a debt decrease, the debt value will be:

BL
t0

(V,Dt0 , T, λl, L)

=e−r(T−t0)E
[(
Dt011{VT>Dt0} + φdwlVT11{VT≤Dt0}

)
11{τL>T}

+
(
Dt011{VT>Dt0eL} + φdwle

−LVT11{VT≤Dt0eL}
)
11{τL≤T}|Gt0

]
. (183)

It can be written in similar terms to those of the debt increase, that is

BL
T (V,Dt0 , T, λl, L) = e−r(T−t0)

(
AL1 + AL2 +BL

1 −BL
2 +BL

3 −BL
4

)
, (184)

with

AL1 = E
[
Dt011{VT>Dt0}e

−
∫ T
t0
λltdt|Ft0

]
, AL2 = E

[
φdwlVT11{VT≤Dt0}e

−
∫ T
t0
λltdt|Ft0

]
,

and
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BL
1 = E

[
Dt011{VT>Dt0eL}|Ft0

]
, BL

2 = E
[
Dt011{VT>Dt0eL}e

−
∫ T
t0
λltdt|Ft0

]
,

BL
3 = E

[
φdwle

−LVT11{VT≤Dt0eL}|Ft0
]
, BL

4 = E
[
φdwle

−LVT11{VT≤Dt0eL}e
−

∫ T
t0
λltdt|Ft0

]
.

15.4 Debt with the possibility of increase and decrease

Now, the two previous cases are combined. The firm can have its value increased, de-

creased or both. Any of the events can occur, with the probability being ruled by equations

(174) and (181) plus the respective solutions. The order of the changes in debt is not

relevant, as the decisive factor is if by the maturity date the face value of debt has in-

creased and/or decreased, how much of it is standing, and if the firm value can match it.

There are four possible debt events: no debt changes, DT = Dt0 ; debt increase, but no

debt decrease, DT = Dt0e
U ; debt decrease, but no debt increase, DT = Dt0e

L; both debt

increase and debt decrease DT = Dt0e
UeL.

Alongside the previous correlations, one can also include the correlation between the

debt increase and decrease processes: dWu(t)dWl(t) = ρuldt. So the debt value will be

given by

BUL
t0

(V,Dt0 , λu, U, λl, L)

=e−r(T−t0)E
[(
Dt011{VT>Dt0} + φdwlVT11{VT≤Dt0}

)
11{τU>T}11{τL>T}

+ (Dt011{VT>Dt0eL} + φdwle
−LVT11{VT≤Dt0eL}

)
11{τU>T}11{τL≤T}

+ (Dt011{VT>Dt0eU} + φdwle
−UVT11{VT≤Dt0eU}

)
11{τU≤T}11{τL>T}

+ (Dt011{VT>Dt0eUeL} + φdwle
−Ue−LVT11{VT≤Dt0eUeL}

)
11{τU≤T}11{τL≤T}|Gt0

]
,

which can be written as

BUL
t0

(V,Dt0 , λu, U, λl, L)

=e−r(T−t0)E
[(
Dt011{VT>Dt0} + φdwlVT11{VT≤Dt0}

)
e
−

∫ T
t0
λut dte

−
∫ T
t0
λltdt|Ft0

]
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+ e−r(T−t0)E
[(
Dt011{VT>Dt0eL} + φdwle

−LVT11{VT≤Dt0eL}
)

× e−
∫ T
t0
λut dt(1− e−

∫ T
t0
λltdt)|Ft0

]
+ e−r(T−t0)E

[(
Dt011{VT>Dt0eU} + φdwle

−UVT11{VT≤Dt0eU}
)

× (1− e−
∫ T
t0
λut dt)e

−
∫ T
t0
λltdt|Ft0

]
+ e−r(T−t0)E

[(
Dt011{VT>Dt0eUeL} + φdwle

−Ue−LVT11{VT≤Dt0eUeL}
)

× (1− e−
∫ T
t0
λut dt)(1− e−

∫ T
t0
λltdt)|Ft0

]
(185)

and

BUL
t0

(V,Dt0 , λu, U, λl, L) =e−r(T−t0)
[
AUL1 + AUL2 +BUL

1 −BUL
2 +BUL

3 −BUL
4

+ CUL
1 − CUL

2 + CUL
3 − CUL

4

+DUL
1 −DUL

2 −DUL
3 +DUL

4 +DUL
5 −DUL

6 −DUL
7 +DUL

8

]
,

(186)

with the terms

AUL1 = E
[
Dt011{VT>Dt0}e

−
∫ T
t0

(λut +λlt)dt|Ft0
]
,

AUL2 = E
[
φdwlVT11{VT≤Dt0}e

−
∫ T
t0

(λut +λlt)dt|Ft0
]
,

BUL
1 = E

[
Dt011{VT>Dt0eL}e

−
∫ T
t0
λut dt|Ft0

]
,

BUL
2 = E

[
Dt011{VT>Dt0eL}e

−
∫ T
t0

(λut +λlt)dt|Ft0
]
,

BUL
3 = E

[
φdwle

−LVT11{VT≤Dt0eL}e
−

∫ T
t0
λut dt|Ft0

]
,

BUL
4 = E

[
φdwle

−LVT11{VT≤Dt0eL}e
−

∫ T
t0

(λut +λlt)dt|Ft0
]
,

CUL
1 = E

[
Dt011{VT>Dt0eU}e

−
∫ T
t0
λltdt|Ft0

]
,

CUL
2 = E

[
Dt011{VT>Dt0eU}e

−
∫ T
t0

(λut +λlt)dt|Ft0
]
,
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CUL
3 = E

[
φdwle

−UVT11{VT≤Dt0eU}e
−

∫ T
t0
λltdt|Ft0

]
,

CUL
4 = E

[
φdwle

−UVT11{VT≤Dt0eU}e
−

∫ T
t0

(λut +λlt)dt|Ft0
]
,

DUL
1 = E

[
Dt011{VT>Dt0eUeL}|Ft0

]
,

DUL
2 = E

[
Dt011{VT>Dt0eUeL}e

−
∫ T
t0
λltdt|Ft0

]
,

DUL
3 = E

[
Dt011{VT>Dt0eUeL}e

−
∫ T
t0
λut dt|Ft0

]
,

DUL
4 = E

[
Dt011{VT>Dt0eUeL}e

−
∫ T
t0

(λut +λlt)dt|Ft0
]
,

DUL
5 = E

[
φdwle

−Ue−LVT11{VT≤Dt0eUeL}|Ft0
]
,

DUL
6 = E

[
φdwle

−Ue−LVT11{VT≤Dt0eUeL}e
−

∫ T
t0
λltdt|Ft0

]
,

DUL
7 = E

[
φdwle

−Ue−LVT11{VT≤Dt0eUeL}e
−

∫ T
t0
λut dt|Ft0

]
and

DUL
8 = E

[
φdwle

−Ue−LVT11{VT≤Dt0eUeL}e
−

∫ T
t0

(λut +λlt)dt|Ft0
]
.

16 Debt increase and subordinated debt

In this section, the possibility of the debt increase is expanded for a particular case, the

study of subordinated debt. The framework used will be that of Gorton and Santomero

(1990), which is based on the work of Black and Cox (1976). It departs from the Merton

(1974) base case and contemplates the presence of two kinds of debt: junior, DJ , and

senior, DS. In this study, the possibility of only increasing the senior debt and its impact

over the junior debt value is contemplated.

The senior debt has the priority in the cases where the firm defaults, and this difference

is highlighted in the payoffs at the different scenarios. At time T , if the firm value, VT , is

greater than the sum of both debts, VT ≥ DS
T +DJ

T the two kinds of debt are paid in full.

If DS
T + DJ

T > VT ≥ DS
T , the senior debt-holder gets paid in full, while the junior debt-

holder receives VT −DS
T , that is, the senior debt-holder has the priority to be paid in full,

while the junior debt-holder receives the remainder of the firm value. When DS
T > VT , the

senior debt-holder receives VT while the junior debt-holder receives zero, as once again the

senior debt-holder has the priority to be paid as much as possible, although not enough
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to be fully reimbursed, and the junior debt-holder finds no value to compensate his loan.

As for the equity holders, they receive VT − DS
T − DJ

T when the value is positive, zero

otherwise.

The cases above are summarized in the following table.

Table 9: Realized asset values at maturity

VT ≥ DS
T +DJ

T DS
T +DJ

T > VT ≥ DS
T DS

T > VT

DS
T (Senior Debt) DS

T DS
T VT

DJ
T (Junior Debt) DJ

T VT −DS
T 0

ET (Equity) VT −DS
T −DJ

T 0 0

This table summarizes the payoffs for the Senior Debt, the Junior Debt and the equity
when we admit the two possible types of debt seniority

Recalling the model presented in Gorton and Santomero (1990), the value of the junior

debt at time-zero is presented as

JBt0(V,D
J
t0
, DS

t0
)

=e−q(T−t0)Vt0(N(d1)−N(d̂1))− e−r(T−t0)DS
TN(d2) + e−r(T−t0)(DS

T +DJ
T )N(d̂2), (187)

where d1 and d2 are as in (173), including the firm’s total payout to debt, q as part of the

drift and there are also the terms

d̂1 =
log(Vt0/(D

S
T +DJ

T )) + (r − q + σ2

2
)(T − t0)

σ
√

(T − t0)
and d̂2 = d̂1 − σ

√
(T − t0).

The value can also be noted to be the difference between two call options:

JBt0(V,D
J
t0
, DS

t0
) = e−q(T−t0)Vt0N(d1)− e−r(T−t0)DS

TN(d2)︸ ︷︷ ︸
Call with Strike DST

− (e−q(T−t0)Vt0N(d̂1)− e−r(T−t0)(DS
T +DJ

T )N(d̂2))︸ ︷︷ ︸
Call with Strike DST+DJT

. (188)

The expression above can be obtained from the payoffs and respective scenarios for
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the subordinated debt in Table 9. Below, the payoff is adapted to include the dead-weight

default loss parameter, φdwl. Using the payoffs from Table 9, the junior debtor will receive

DJ
T11{VT≥DST+DJT} + (φdwlVT −DS

T )11{DST+DJT>VT≥D
S
T}, (189)

and the expression at t0 can be written as:

JBt0(V,D
J
t0
, DS

t0
)

=e−r(T−t0)E
[
DJ
T11{VT≥DST+DJT} + (φdwlVT −DS

T )11{DST+DJT>VT≥D
S
T }
|Ft0

]
=e−r(T−t0)E

[
DJ
T11{VT≥DST+DJT }

+ (φdwlVT −DS
T )(11{VT<DST+DJT }

− 11{VT≤DST })|Ft0
]

=e−r(T−t0)E
[
DS
T11{VT≤DST } − φdwlVT11{VT≤DST } +DJ

T11{VT≥DST+DJT }

+ φdwlVT11{VT<DST+DJT }
−DS

T11{VT<DST+DJT }
|Ft0

]
=e−r(T−t0)E

[
DS
T (1− 11{VT>DST })− φdwlVT (1− 11{VT>DST }) +DJ

T11{VT≥DST+DJT }

+ φdwlVT (1− 11{VT≥DST+DJT }
)−DS

T (1− 11{VT≥DST+DJT }
)|Ft0

]
=e−r(T−t0)E

[
φdwlVT11{VT>DST } −D

S
T11{VT>DST }

− (φdwlVT11{VT≥DST+DJT }
− (DJ

T +DS
T )11{VT≥DST+DJT }

)|Ft0
]

=e−q(T−t0)φdwlVt0N(d1)− e−r(T−t0)DS
TN(d2)

− (e−q(T−t0)φdwlVt0N(d̂1)− e−r(T−t0)(DS
T +DJ

T )N(d̂2)). (190)

Now, the possibility of a senior debt increase is contemplated. Between t0 and T , there

is the possibility of an increase only in the senior debt through a process dλut as defined in

equation (174) which has the solution in equation (175). Again, to set a positive relation

between the debt increase and the firm value, the correlation between the drifts of the

firm value and the debt increases must be positive, ρuV > 0. When this event occurs, the

senior debt to be reimbursed will be DS
t0
eU , where once again U > 0 represents a debt

increase.

To reach the payoff of the junior debt under the possibility of a senior debt increase,
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JBU
t0

, when there is the possibility of the debt increase, the expression in equation (189)

suffers two adaptations in the senior debt components:

DJ
T11{VT≥DSt0eU+DJT} + (φdwlVT −DS

t0
eU)11{DSt0eU+DJT>VT≥D

S
t0
eU}, (191)

First, represented by the change in the indicator functions, the VT values at which

there are defaults are impacted by the increased value of the senior debt at maturity.

Second, in the case where the senior debt is paid in full while the junior debt is only

partially reimbursed, the increased amount of the former reduces the amount received by

the latter.

Again, there are two possible cases. In the case where the debt is not increased,

τU > T , equation (190) yields the payoff. In the case where there is the debt increase, the

value is deduced from (191) with the same steps as in (190). Thus

JBU
t0

(V,DJ
t0
, DS

t0
, λu, U)

=e−r(T−t0)E
[(
φdwlVT11{VT>DSt0} −D

S
t0

11{VT>DSt0}

− φdwlVT11{VT≥DSt0+DJt0} + (DS
t0

+DJ
t0

)11{VT≥DSt0+DJt0}
)

11{τU>T}

+
(
φdwlVT11{VT>DSt0eU} −D

S
t0
eU11{VT>DSt0eU}

− φdwlVT11{VT≥DSt0eU+DJt0} + (DS
t0
eU +DJ

t0
)11{VT≥DSt0eU+DJt0}

)
11{τU≤T}|Gt0

]
,

(192)

which can be written as

JBU
t0

(V,DJ
t0
, DS

t0
, λu, U)

=e−r(T−t0)

[
JAU1 − JAU2 − JAU3 + JAU4

+ JBU
1 − JBU

2 − JBU
3 + JBU

4 − JBU
5 + JBU

6 + JBU
7 − JBU

8

]
(193)

where
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JAU1 = E
[
φdwlVT11{VT>DSt0}e

−
∫ T
t0
λut ds|Ft0

]
,

JAU2 = E
[
DS
t0

11{VT>DSt0}e
−

∫ T
t0
λut ds|Ft0

]
,

JAU3 = E
[
φdwlVT11{VT≥DSt0+DJt0}e

−
∫ T
t0
λut ds|Ft0

]
,

JAU4 = E
[
(DS

t0
+DJ

t0
)11{VT≥DSt0+DJt0}e

−
∫ T
t0
λut ds|Ft0

]
,

JBU
1 = E

[
φdwlVT11{VT>DSt0eU}|Ft0

]
,

JBU
2 = E

[
φdwlVT11{VT>DSt0eU}e

−
∫ T
t0
λut ds|Ft0

]
,

JBU
3 = E

[
DS
t0
eU11{VT>DSt0eU}|Ft0

]
,

JBU
4 = E

[
DS
t0
eU11{VT>DSt0eU}e

−
∫ T
t0
λut ds)|Ft0

]
,

JBU
5 = E

[
φdwlVT11{VT≥DSt0eU+DJt0}|Ft0

]
,

JBU
6 = E

[
φdwlVT11{VT≥DSt0eU+DJt0}e

−
∫ T
t0
λut ds|Ft0

]
,

JBU
7 = E

[
(DS

t0
eU +DJ

t0
)11{VT≥DSt0eU+DJt0}|Ft0

]
,

JBU
8 = E

[
(DS

t0
eU +DJ

t0
)11{VT≥DSt0eU+DJt0}e

−
∫ T
t0
λut ds|Ft0

]
.

17 Solutions to the cases

In this section, the solutions to the debt discount cases are solved. The following two

Propositions will be instrumental for the solutions.

Proposition 21 Under the financial model presented by equation (170), with equations

(174) and (181), assuming that τU > t0 and τL > t0, the following expected value has the

solution

E
[
φdwlVT11{VT≤Dt0eUeL}e

−
∫ T
t0

(λut αu+λltαl)dt|Ft0
]

=φdwlVt0e
(r−q)(T−t0)H(αu, αl)F (αu, αl) (1−G(αu, αl, a1(X))) ,
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where

G(αu, αl, a1(X)) = N

(
a1(X)− αu σV σuρuVκu

∫ T
t0
nu(s, T )ds− αl σV σlρlVκl

∫ T
t0
nl(s, T )ds

σV
√

(T − t0)

)
,

a1(X) = log(Vt0/X) + (r − q +
1

2
σ2
V )(T − t0),

X = Dt0e
UeL,

F (αu, αl) = exp
[
αu

(
−
λut0
κu
nu(t0, T )− θu

∫ T

t0

nu(s, T )ds+
σ2
u

2κ2
u

∫ T

t0

n2
u(s, T )du

)
+ αl

(
−
λlt0
κl
nl(t0, T )− θl

∫ T

t0

nl(s, T )ds+
σ2
l

2κ2
l

∫ T

t0

n2
l (s, T )du

)
+ αuαlρul

σu
κu

σl
κl

∫ T

t0

nu(s, T )nl(s, T )ds
]
,

H(αu, αl) = exp
[
− αu

σV σuρuV
κu

∫ T

t0

nu(s, T )ds− αl
σV σlρlV
κl

∫ T

t0

nl(s, T )ds
]
,

and

nx(t, T ) = 1− eκx(T−t).

Proof.

With

nu(t0, T ) := 1− e−κu(T−t0)
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We have equation (175)

λut = λut0e
−κu(t−t0) + θu

(
1− e−κu(t−t0)

)
+ σu

∫ t

t0

e−κu(t−s)dWu(s)

and following steps similar to those of Proposition 10.1.2 in Musiela and Rutkowski (2005),

we start by integrating

∫ T

t0

λut dt

=

∫ T

t0

λut0e
−κu(t−t0)dt+

∫ T

t0

θu
(
1− e−κu(t−t0)

)
dt+ σu

∫ T

t0

∫ t

t0

e−κu(t−s)dWu(t)dt. (194)

We have

∫ T

t0

e−κu(t−t0)dt =
1

κu
(1− e−κu(T−t0)) =

1

κu
nu(t0, T ), (195)

plus

∫ T

t0

θu
(
1− e−κu(t−t0)

)
dt

=θu

(∫ T

t0

dt−
∫ T

t0

e−κu(t−t0)dt

)
= θu

(
(T − t0)− 1

κu
nu(t0, T )

)
,

while noting that

∫ T

t0

n(s, T )ds = (T − t0)− e−κuT
∫ T

t0

eκusds

= (T − t0)− e−κuT 1

κu
(eκuT − eκut0) = (T − t0)− 1

κu
(1− e−κu(T−t0)),

comparing the two former expressions, we get

∫ T

t0

θu
(
1− e−κu(t−t0)

)
dt = θu

∫ T

t0

nu(s, T )ds, (196)
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and using the stochastic Fubini theorem2,

∫ T

t0

∫ t

t0

e−κu(t−s)dWu(s)dt =

∫ T

t0

∫ T

s

e−κu(T−t0)eκusdtdWu(s)

=

∫ T

t0

eκus
∫ T

s

e−κu(T−t0)dtdWu(s) =
1

κu

∫ T

t0

(1− e−κu(T−s))dWu(s)

=
1

κu

∫ T

t0

n(s, T )dWu(s) (197)

Combining equations (194), (195), (196) and (197):

∫ T

t0

λut dt =
λut0
κu
nu(t0, T ) + θu

∫ T

t0

nu(s, T )ds+
σu
κu

∫ T

t0

nu(s, T )dWu(s).

With similar steps for equation (182), with nl(t0, T ) = (1− e−κl(T−t0)), we get

∫ T

t0

λltdt =
λlt0
κl
nl(t0, T ) + θl

∫ T

t0

nl(s, T )ds+
σl
κl

∫ T

t0

nl(s, T )dWl(s).

Now, we define

ξT
def
= −

∫ T

t0

(λut + λlt)dt.

The variable ξT has the expected value:

E
[
ξT |Ft0

]
= −

λut0
κu
nu(t0, T )− θu

∫ T

t0

nu(s, T )ds−
λlt0
κl
nl(t0, T )− θl

∫ T

t0

nl(s, T )ds,

and given the variance of the two separate processes is

σ2
u

κ2
u

∫ T

t0

n2
u(s, T )ds

2Presented, for instance, in Protter (1992, see Theorem IV.64).

122



and

σ2
l

κ2
l

∫ T

t0

n2
l (s, T )ds,

the variance of their sum, ξT , will be given by

σ2
u

κ2
u

∫ T

t0

n2
u(s, T )ds+

σ2
l

κ2
l

∫ T

t0

n2
l (s, T )ds+ 2ρul

σu
κu

σl
κl

∫ T

t0

nu(s, T )nl(s, T )ds.

With Musiela and Rutkowski (2005, Lemma10.1.1), we have that

E
[
eξT |Ft0

]
= exp

[
−
λut0
κu
nu(t0, T )− θu

∫ T

t0

nu(s, T )ds−
λlt0
κl
nl(t0, T )− θl

∫ T

t0

nl(s, T )ds

+
σ2
u

2κ2
u

∫ T

t0

n2
u(s, T )ds+

σ2
l

2κ2
l

∫ T

t0

n2
l (s, T )ds+ ρul

σu
κu

σl
κl

∫ T

t0

nu(s, T )nl(s, T )ds
]

(198)

With this, we define a new measure, Q, such that

dQ

dP
=

e
−

∫ T
t0

(λut +λlt)dt

E
[
e
−

∫ T
t0

(λut +λlt)dt|Ft0
] =

eξT

E
[
eξT |Ft0

] .
After suppressing the common terms in the division,

dQ

dP
=

exp
[
−σu
κu

∫ T
t0
nu(s, T )dWu(s)− σl

κl

∫ T
t0
nl(s, T )dWl(s)

]
exp

[
σ2
u

2κ2u

∫ T
t0
n2
u(s, T )ds+

σ2
l

2κ2l

∫ T
t0
n2
l (s, T )ds+ ρul

σu
κu

σl
κl

∫ T
t0
nu(s, T )nl(s, T )ds

] ,
that is

dQ

dP
= exp

[
− σu
κu

∫ T

t0

nu(s, T )dWu(s)−
σl
κl

∫ T

t0

nl(s, T )dWl(s)

− σ2
u

2κ2
u

∫ T

t0

n2
u(s, T )du− σ2

l

2κ2
l

∫ T

t0

n2
l (s, T )du− ρul

σu
κu

σl
κl

∫ T

t0

nu(s, T )nl(s, T )ds

]
.
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By the multidimensional Girsanov theorem 3

WQ
V (t) = WV (t) +

σuρuV
κu

∫ t

t0

nu(s, T )ds+
σlρlV
κl

∫ t

t0

nl(s, T )ds.

Thus, in measure Q, the value of Vt will be

Vt =Vt0 exp
[
(r − q − 1

2
σ2
V )(t− t0)− σV σuρuV

κu

∫ t

t0

nu(s, T )ds

− σV σlρlV
κl

∫ t

t0

nl(s, T )ds+ σVW
Q
V (t)

]
. (199)

So, the initial expression can be written as

E
[
φdwlVT11{VT≤Dt0}e

−
∫ T
t0

(λut +λlt)dt|Ft0
]

=φdwlE
[
VT11{VT≤Dt0}e

−
∫ T
t0

(λut +λlt)dt|Ft0
]

=φdwlE
[
e
−

∫ T
t0

(λut +λlt)dt|Ft0
]
E
[
VT11{VT≤Dt0}

e
−

∫ T
t0

(λut +λlt)dt

E
[
e
−

∫ T
t0

(λut +λlt)dt|Ft0
] |Ft0]. (200)

The solution of E
[
e
−

∫ T
t0

(λut +λlt)dt|Ft0
]
is given in equation (198), and the remaining

expected value will be under the equivalent measure Q:

E
[
VT11{VT≤Dt0}

e
−

∫ T
t0

(λut +λlt)dt

E
[
e
−

∫ T
t0

(λut +λlt)dt|Ft0
] |Ft0] = EQ

[
VT11{VT≤Dt0}|Ft0

]
. (201)

Then, we define the new equivalent measure, Q̃, such that

dQ

dQ̃
= e−

1
2
σ2
V (T−t0)+σVW

Q
V (T ).

With Vt as in equation (199), equation (201) can be written as

3as presented, for instance, in Jeanblanc et al. (2009, see 1.7.4)
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EQ
[
Vt0 exp

[
(r − q − 1

2
σ2
V )(T − t0)

− σV σuρuV
κu

∫ T

t0

nu(s, T )ds− σV σlρlV
κl

∫ T

t0

nl(s, T )ds+ σVW
Q
V (T )

]
11{VT≤Dt0}|Ft0

]
=Vt0 exp

[
(r − q)(T − t0)

]
exp

[
− σV σuρuV

κu

∫ T

t0

nu(s, T )ds− σV σlρlV
κl

∫ T

t0

nl(s, T )ds
]

× EQ
[

exp
[
− 1

2
σ2
V (T − t0) + σVW

Q
V (T )

]
11{VT≤Dt0}|Ft0

]
.

Changing to the measure Q̃, the expression above is written as

Vt0 exp
[
(r − q)(T − t0)

]
exp

[
− σV σuρuV

κu

∫ T

t0

nu(s, T )ds− σV σlρlV
κl

∫ T

t0

nl(s, T )ds
]

× EQ̃
[
11{VT≤Dt0}|Ft0

]
=Vt0 exp

[
(r − q)(T − t0)

]
exp

[
− σV σuρuV

κu

∫ T

t0

nu(s, T )ds− σV σlρlV
κl

∫ T

t0

nl(s, T )ds
]

×
(

1− EQ̃
[
11{VT>Dt0}|Ft0

])
, (202)

and by the Girsanov theorem W Q̃
V (t) = WQ

V (t)− σV (t− t0), and under measure Q̃, Vt is

Vt =Vt0 exp
[
(r − q +

1

2
σ2
V )(t− t0)

− σV σuρuV
κu

∫ t

t0

nu(s, T )ds− σV σlρlV
κl

∫ t

t0

nl(s, T )ds+ σVW
Q̃
V (t)

]
.

Therefore, log(VT ) is normally distributed with expected value

(r − q +
1

2
σ2
V )(T − t0)− σV σuρuV

κu

∫ t

t0

nu(s, T )ds− σV σlρlV
κl

∫ t

t0

nl(s, T )ds

and variance

σ2
V (T − t0).
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Thus, we get

EQ̃
[
11{VT>Dt0}|Ft0

]
= PQ̃

[
VT > Dt0

]
=N

(
a1(Dt0)− σV σuρuV

κu

∫ t
t0
nu(s, T )ds− σV σlρlV

κl

∫ t
t0
nl(s, T )ds

σV
√

(T − t0)

)
. (203)

Therefore, combining equations (200), (201), (202) and (203):

E
[
φdwlVT11{VT≤Dt0}e

−
∫ T
t0

(λut +λlt)dt|Ft0
]

=φdwlVt0 exp
[
(r − q)(T − t0)

]
× exp

[
− σV σuρuV

κu

∫ T

t0

nu(s, T )ds− σV σlρlV
κl

∫ T

t0

nl(s, T )ds
]

× exp
[
−
λut0
κu
nu(t0, T )− θu

∫ T

t0

nu(s, T )ds−
λlt0
κl
nl(t0, T )− θl

∫ T

t0

nl(s, T )ds

+
σ2
u

2κ2
u

∫ T

t0

n2
u(s, T )du+

σ2
l

2κ2
l

∫ T

t0

n2
l (s, T )du+ ρul

σu
κu

σl
κl

∫ T

t0

nu(s, T )nl(s, T )ds
]

×

(
1−N

(
a1(Dt0)− σV σuρuV

κu

∫ T
t0
nu(s, T )ds− σV σlρlV

κl

∫ T
t0
nl(s, T )ds

σV
√

(T − t0)

))
,

where N represents the standard normal distribution.

Then, if we set αu ∈ {0, 1}, αl ∈ {0, 1} and include the debt change parameters, U

and L, such that the initial expression is

E
[
φdwlVT11{VT≤Dt0eUeL}e

−
∫ T
t0

(λut αu+λltαl)dt|Ft0
]
,

with the previous deduction, it is straightforward to see that the solution will be

E
[
φdwlVT11{VT≤Dt0eUeL}e

−
∫ T
t0

(λut αu+λltαl)dt|Ft0
]

=φdwlVt0e
(r−q)(T−t0)H(αu, αl)F (αu, αl) (1−G(αu, αl, a1(X))) .

�
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Proposition 22 Under the financial model presented by equation (170), with equations

(174) and (181), assuming that τU > t0 and τl > t0, the following expected value has the

solution

E
[
Dt011{VT>Dt0eUeL}e

−
∫ T
t0

(λut αu+λltαl)dt|Ft0
]

= Dt0F (αu, αl)G(αu, αl, a2(X)),

with

a2(X) = (r − q − 1

2
σ2
V )(T − t0) + log(Vt0/X),

X = Dt0e
UeJ ,

and functions G(αu, αl, x) and F (αu, αl) as defined in Proposition 21.

Proof This proof is similar to that of Proposition 21. The key difference is not

needing to use the measure Q̃.

The steps until equation (201) are identical. Thus, we have

E
[
Dt011{VT>Dt0eUeJ}e

−
∫ T
t0

(λut αu+λltαl)dt|Ft0
]

=Dt0E
[
e
−

∫ T
t0

(λut αu+λltαl)dt|Ft0
]
EQ
[
11{VT>Dt0eUeJ}|Ft0

]

where the solution of E
[
e
−

∫ T
t0

(λut αu+λltαl)dt|Ft0
]
is given in equation (198), by taking into

consideration αu and αl, we obtain F (αu, αl).

As for the remaining expected value, given now log(VT ) having the expected value of

(r − q − 1

2
σ2
V )(T − t0)− σV σuρuV

κu

∫ t

t0

nu(s, T )ds− σV σlρlV
κl

∫ t

t0

nl(s, T )ds,

and the variance, σV (T − t0), we obtain
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EQ
[
11{VT>Dt0eUeJ}|Ft0

]
= PQ̃

[
VT > Dt0e

UeJ
]

=N

(
a2(Dt0e

UeJ)− αu σV σuρuVκu

∫ t
t0
nu(s, T )ds− αl σV σlρlVκl

∫ t
t0
nl(s, T )ds

σV
√

(T − t0)

)
:=G(αu, αl, a2(Dt0e

UeJ)).

�

Remark 2 The following integrated results, needed to obtain the debt cases payoffs, are

presented.

Where, nx(t, T ) = 1− eκx(T−t), we have:

∫ T

t0

nx(s, T )ds =

∫ T

t0

(
1− e−κx(T−s)) ds = (T − t0)− 1

κx
(1− e−κx(T−t0)),

∫ T

t0

n2
x(s, T )ds

=

∫ T

t0

(
1− e−κx(T−s))2

ds =
−3− e−2κx(T−t0) + 4e−κxT (T−t0) + 2κx(T − t0)

2κx

and

∫ T

t0

nu(s, T )nl(s, T )ds

=T +
1

κu
(e−κu(T−t0) − 1) +

1

κl
(e−κl(T−t0) − 1) +

1

κu + κl
(1− e−(T−t0)(κu+κl)).

The formula on the possibility of debt increase and or decrease is the first one to be

solved. The remaining formulae follow similar steps.

Proposition 23 (Debt increase and or decrease) Under the financial model presented

by equation (170) and with the debt changes being ruled by equations, (174) and (181),

assuming that τU > t0 and τL > t0, the value of a bond at t0 on a firm under the possibility

of suffering a debt increase and/or decrease is equal to equation (186), where
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AUL1 = Dt0F (1, 1)G(1, 1, a2(Dt0))

AUL2 = φdwle
−(r−q)(T−t0)Vt0F (1, 1)H(1, 1)

(
1−G(1, 1, a1(Dt0e

UeJ)
)

BUL
1 = Dt0F (1, 0)G(1, 0, a2(Dt0e

L))

BUL
2 = Dt0F (1, 1)G(1, 1, a2(Dt0e

L))

BUL
3 = φdwle

−Le−(r−q)(T−t0)Vt0F (1, 0)H(1, 0)
(
1−G(1, 0, a1(Dt0e

L))
)

BUL
4 = φdwle

−Le−(r−q)(T−t0)Vt0F (1, 1)H(1, 1)
(
1−G(1, 1, a1(Dt0e

L))
)

CUL
1 = Dt0F (0, 1)G(0, 1, a2(Dt0e

U))

CUL
2 = Dt0F (1, 1)G(1, 1, a2(Dt0e

U))

CUL
3 = φdwle

−UVt0e
−(r−q)(T−t0)F (0, 1)H(0, 1)

(
1−G(0, 1, a1(Dt0e

U))
)

CUL
4 = φdwle

−UVt0e
−(r−q)(T−t0)F (1, 1)H(1, 1)

(
1−G(1, 1, a1(Dt0e

U))
)

DUL
1 = Dt0G(0, 0, a2(Dt0e

UeJ))

DUL
2 = Dt0F (0, 1)G(0, 1, a2(Dt0e

UeJ))

DUL
3 = Dt0F (1, 0)G(1, 0, a2(Dt0e

UeJ))

DUL
4 = Dt0F (1, 1)G(1, 1, a2(Dt0e

UeJ))

DUL
5 = φdwle

−Ue−Le−(r−q)(T−t0)Vt0
(
1−G(0, 0, a1(Dt0e

UeJ))
)

DUL
6 = φdwle

−Ue−Le−(r−q)(T−t0)Vt0F (0, 1)H(0, 1)
(
1−G(0, 1, a1(Dt0e

UeJ))
)

DUL
7 = φdwle

−Ue−Le−(r−q)(T−t0)Vt0F (1, 0)H(1, 0)
(
1−G(1, 0, a1(Dt0e

UeJ))
)

DUL
8 = φdwle

−Ue−Le−(r−q)(T−t0)Vt0F (1, 1)H(1, 1)
(
1−G(1, 1, a1(Dt0e

UeJ))
)
.

and functions F (αu, αl), G(αu, αl, x) and H(αu, αl) are defined in Propositions 21 and 22.

Proof.

For AUL1 , it can be observed that the expected value matches Proposition 22 if αu = 1,

αl = 1, U = 0 and L = 0. Therefore, the solution is

AUL1 = Dt0F (1, 1)G(1, 1, d2(Dt0)).

In the case of AUL2 , the expected value can be matched to Proposition 21 if αu = 1,
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αl = 1. Therefore, the solution is

AUL2 = φdwle
(r−q)(T−t0)Vt0H(1, 1)F (1, 1)

(
1−G(1, 1, a1(Dt0e

UeL))
)
.

As for BUL
1 , the expected value is matched by Proposition 22 if αu = 1, αl = 0 and

U = 0. And therefore, the solution is

BUL
1 = Dt0F (1, 0)G(1, 0, a2(Dt0e

L)).

The remainder of the elements follow the same rationale. �

Proposition 24 (Debt increase) Under the financial model presented by equation (170)

and with the debt changes being ruled by equation (174), assuming that τU > t0, the value

of a bond at t0 on a firm under the possibility of suffering a debt increase is equal to

equation (178), where

AU1 = Dt0F (1, 0)G(1, 0, a2(Dt0))

AU2 = φdwle
−(r−q)(T−t0)Vt0F (1, 0)H(1, 0) (1−G(1, 0, a1(Dt0)))

BU
1 = Dt0G(0, 0, a2(Dt0e

U))

BU
2 = Dt0F (1, 0)G(1, 0, a2(Dt0e

U)

BU
3 = φdwle

−Ue−(r−q)(T−t0)Vt0
(
1−G(0, 0, a1(Dt0e

U))
)

BU
4 = φdwle

−Ue−(r−q)(T−t0)F (1, 0)H(1, 0)Vt0
(
1−G(1, 0, a1(Dt0e

U))
)

and functions F (αu, αl), G(αu, αl, x) and H(αu, αl) are defined in Propositions 21 and 22.

Proof. This proof is similar to the one used in Proposition 23 and is therefore omitted.

Proposition 25 (Debt decrease) Under the financial model presented by equation (170)

and with the debt changes being ruled by equation (174), assuming that τL > t0 , the value

of a bond at t0 on a firm under the possibility of suffering a debt decrease is equal to

equation (184), where
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AL1 = Dt0F (0, 1)G(0, 1, a2(Dt0))

AL2 = φdwle
−(r−q)(T−t0)Vt0F (0, 1)H(0, 1) (1−G(0, 1, a1(Dt0)))

BL
1 = Dt0G(0, 0, a2(Dt0e

L))

BL
2 = Dt0F (0, 1)G(0, 1, a2(Dt0e

L)

BL
3 = φdwle

−Le−(r−q)(T−t0)Vt0
(
1−G(0, 0, a1(Dt0e

L))
)

BU
4 = φdwle

−Le−(r−q)(T−t0)F (0, 1)H(0, 1)Vt0
(
1−G(0, 1, a1(Dt0e

L))
)

and functions F (αu, αl), G(αu, αl, x) and H(αu, αl) are defined as in Proposition 21.

Proof. This proof is similar to the one used in Proposition 23 and is therefore omitted.

Proposition 26 (Junior debt under senior debt increase) Under the financial model

presented by equation (170) and with the debt changes being ruled by equation (181), as-

suming that τL > t0 , the value at t0 of a junior bond on a firm under the possibility of

suffering a debt decrease on the senior debt is equal to equation (184), where

JAU1 = φdwle
(r−q)(T−t0)Vt0F (1, 0)H(1, 0)G(1, 0, a1(DS

t0
))

JAU2 = DS
t0
F (1, 0)G(1, 0, a2(DS

t0
))

JAU3 = φdwlVt0e
(r−q)(T−t0)F (1, 0)H(1, 0)G(1, 0, a1(DS

t0
+DJ

t0
))

JAU4 = (DS
t0

+DJ
t0

)F (1, 0)G(1, 0, a2(DS
t0

+DJ
t0

))

JBU
1 = φdwle

(r−q)(T−t0)Vt0G(0, 0, a1(DS
t0
eU))

JBU
2 = φdwle

(r−q)(T−t0)Vt0F (1, 0)H(1, 0)G(1, 0, a1(DS
t0
eU))

JBU
3 = DS

t0
eUG(0, 0, a2(DS

t0
eU))

JBU
4 = DS

t0
eUF (1, 0)G(1, 0, a2(DS

t0
eU))

JBU
5 = φdwle

(r−q)(T−t0)Vt0G(0, 0, a1(DS
t0
eU +DJ

t0
))

JBU
6 = φdwle

(r−q)(T−t0)Vt0F (1, 0)H(1, 0)G(1, 0, a1(DS
t0
eU +DJ

t0
))

JBU
7 = (DS

t0
eU +DJ

t0
)G(0, 0, a2(DS

t0
eU +DJ

t0
))

JBU
8 = (DS

t0
eU +DJ

t0
)F (1, 0)G(1, 0, a2(DS

t0
eU +DJ

t0
)),
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and functions F (αu, αl), G(αu, αl, x) and H(αu, αl) are defined in Propositions 21 and 22.

Proof. This proof is similar to the one used in Proposition 23 and is therefore omitted.

18 Numerical Analysis

The parameters used in this section are based on those used in Das and Kim (2015). The

firm value is normalized to Vt0 = 1, while the two explored debt levels are D = {0.75, 0.5}.

The firm value volatility is assumed to be σV = 20%, the risk-free rate is r = 2%, the total

payout on debt and equity holders is set at zero, and the studied levels of the recovery

values are φdwl = {1, 0.7}. The debt increase is U = log(1.3), which corresponds to an

increase of 30% over the initial amount of debt and the debt decrease is L = log(1/1.3),

which corresponds to a decrease of approximately 23.1%. As for the increase and decrease

events, the volatility of both processes is given by σu = σl = 0.3. The initial and mean

reverting value of the processes is the same in both cases λu = λl = θu = θl = 0.4.

Thus, both the initial and the long term average imply that in a short time interval ∆,

the possibility of either an increase or a decrease occurring on the debt is approximately

0.4∆. The speed of reversion of both processes is κu = κl = 1. Perfect correlations

are assumed between the firm value and the debt increase and debt decrease processes,

positive in the debt increase ρuV = 1, and negative in the debt decrease ρlV = −1. As

for the correlation between both processes, it is assumed to be zero, ρul = 0. In the

subordinated debt case, the total debt is equally distributed among the junior debt and

the senior debt, such that DJ = DS = 0.3750 in one case and DS = DJ = 0.25 in the

other.

First, in Table 10 the various values of the bonds and the corresponding spreads are

presented. The spreads in all these cases are computed as S = − 1
T−t0 log(

Bt0
De−r(T−t0)

).

In the base case, Bt0 , it is possible to observe that without the possibility of debt

changes, the bond values are smaller and the spreads are higher for greater amounts of

initial debt and lower recovery values. This pattern holds when the debt can change.

Comparing with the base case, the possibility of increasing debt, BU
t0

, translates into

a spread increment of 54 basis points to 146 and the possibility of decreasing debt, BL
t0

,

into a decline of 38 basis points to 54. These results are expected, given increases in debt

lead to an increased probability of default, and when those defaults occur, the amount to
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Table 10: Bond Values and Spreads for the studied cases at T = 15

D/V = 0.75 D/V = 0.5

Gφ=1 Gφ=0.7 Gφ=1 Gφ=0.7

Bond Value Spread Bond Value Spread Bond Value Spread Bond Value Spread

Bt0 0.4842 92 0.4464 146 0.3492 39 0.3350 67

BU
t0

0.4466 146 0.3982 222 0.3340 69 0.3129 113

BL
t0

0.5124 54 0.4855 90 0.3592 21 0.3504 37

BUL
t0

0.4844 91 0.4466 146 0.3494 39 0.3351 67

JBL
t0

0.1934 241 0.1566 382 0.1570 110 0.1405 184

This table presents the bond values and the spreads for the baseline Merton model, the
debt under a possibility of increase, the debt under the possibility of decrease, the debt
under the possibility of increase and/or decrease and the junior debt under the
possibility of a senior debt increase. The parameters are Vt0 = 1, D = {0.75, 0.5},
σV = 20%, r = 2%, q = 0, φdwl = {1, 0.7}, U = log(1.3), L = log(1/1.3), σu = σl = 0.3,
λu = λl = θu = θl = 0.4, κu = κl = 1, ρuV = 1, ρlV = −1, ρul = 0. In the subordinated
debt case, the debt levels are different with DJ = DS = 0.3750 and DS = DJ = 0.25.

be received from the original debt must be shared with the new debt-holder(s).

As for how the debt value reacts under the presence of the possibility of both the

increase and the decrease in debt, the change is close to null, with the spread decreasing

by one point. Given the studied time period is 15 years, by then, this is expected, as with

high likelihood, the increases and decreases in the debt have returned it to its original

value. In the subordinated debt case, although the bond values have a difficult comparison

given the face value of debt being different, the high spreads highlight the increased risk

of the junior debt in relation to the base case.

Figure 8 plots the credit spreads over the span of 20 years for the first four cases.

It is confirmed that the possibility of debt increases augments the spreads, while the

possibility of decreases reduces them. As for the shape of the curves, the possibility of

debt increases leads to a greater magnitude of the hump-shaped curve that comes from

the Merton (1974) base case, while in the case where there is the possibility of a debt

decrease, a close to flat curve is produced.

As for the comparison between the baseline Merton (1974) case and the increase

and/or decrease possibilities for the debt, we note that over the short term, the uncertainty
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Figure 8: Credit Spreads of the baseline Merton (1974) model, the possibility to increase
debt, the possibility to decrease debt and the possibility to increase and/or decrease debt
with the standard parameters.

over the debt level leads to an increased spread. Over the medium term, the spreads are

lower, with the impact of the possibility of the debt decrease having a greater impact than

the possibility of the debt increase. Over the long term, the spreads tend to converge, as

the possibility of both the increase and the decrease having occurred is very high.

In Figure 9, the impact of the magnitude of the debt increase is explored over different

starting debt levels. As expected, and as observed before, higher debt increases lead

to higher spreads, given the higher debt levels increasing the possibility of default and

reducing the share of the original debt-holder when default occurs. As for the different

debt levels, the impact of the (proportional) debt increase is bigger at the greater initial

debt levels, which is expected, given it departs from higher absolute values. The same

analysis for the debt decrease is also explored in the figure, again with the two expected

results of bigger debt reductions always reducing the debt spreads and the impact being

greater for higher debt levels given the proportionality of the debt decrease.

In Figure 10, the effect of the correlation between the firm value and possibility of debt

decrease is studied. This is done trough the spread difference between the cases where

the correlation is null, ρlV = 0, and perfectly negative, ρul = −1. In the latter case, as the

firm decreases in value, the likelihood of a debt decrease is increased, counterbalancing
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Figure 9: Credit spreads on the possibility of debt increase and on the possibility of debt
decrease. The standard parameters with T = 15 are used while D = {0.5, 0.6, 0.75}. U
spans between 1.1 and 2, that is, between an increase of 10% and 100% and L spans
between 0.9 and 0.5, that is, a decrease of 10% and 50%.

the greater possibility of default and thus reducing the spreads. This is confirmed by the

figure, as the spreads for the ρlV = 0 cases is always higher. The impact is greater in the

short term than in the long term and when the initial leverage is higher than when it is

lower.

The last two figures study the subordinated debt case under the possibility of a debt

increase. Following what is presented in equation (1) of Gorton and Santomero (1990),

where the senior debt value is calculated as regular debt, the values for the senior debt

are calculated as in the BU case.

Figure 11 presents three curves, the spread for the junior debt with the possibility
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Figure 10: Difference between spreads on the possibility of debt decrease. Standard
parameters with are assumed with ρlV = {0,−1}, with the zero correlation taking the
plus sign in the difference and the correlation of minus one with the minus sign.

Figure 11: Junior debt spreads and its difference to the spread on the senior debt with
DS = DJ = 0.25. All the remaining parameters are the standard values presented in this
section

of a senior debt increase, the junior debt spread without the possibility of increasing the

debt and the difference between the junior debt and the senior debt spreads. As it can

be noted, the possibility of the debt ratchet increases the spreads with more intensity

over the lower maturities, reinforcing the hump-shape of the spread curve. The curve
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that represents the spreads difference shows that the spread on the senior debt with the

possibility of being increased is significantly smaller than the one on the junior debt.

Therefore, it is observed that the impact of the possibility of a debt increase of the senior

debt is greater on the junior debt.

Figure 12: Difference between the spreads on the junior debt and the senior debt with
DS = DJ = {0.25, 0.375}, T = 15, U represents and increase of the debt between 10% and
100%, while the remaining parameters are the standard values presented in this section

.

Finally, Figure 12 explores the difference on the junior debt and the senior debt

spreads, with the latter under possibility of being increased. As it is observed, as the size

of the debt increase is augmented, the spread difference becomes greater, and the impact

is greater in the higher leverage case.

19 Conclusions

In this part of the thesis, a model where the concept from Das and Kim (2015) — debt

changing in discrete jumps — was explored in a different fashion. Instead of relying on the

firm value crossing certain barriers, the changes in debt have their own process, although

it can still be linked to the firm value through correlation of the processes.

Through changes of measure, we obtain the formulae for various cases that depart from

the baseline Merton model: for the possibility of an increase, the possibility of a decrease
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and a combination of both. We observe that the possibility of increasing magnifies the

credit spreads, while the possibility of decreasing reduces them. The case where debt can

increase and or decrease is ambiguous, with the spreads being increased over the short

term, reduced on the medium term and close to equal over the long term. We also find

that the inclusion of correlations influences the impact of the debt changes.

Finally, given the flexibility of this dynamic debt framework, we extend it to the sub-

ordinated debt case of Gorton and Santomero (1990), and observe the impact of increasing

the senior over itself and the junior debt. We notice that the impact over the junior debt

is greater.
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Part V

Conclusions

Part I gives a literature overview that motives the topics studied in this thesis. The

remaining three parts of this thesis explore dynamic credit risk models, with a special

emphasis on those based on barrier options as the in Das and Kim (2015) but also going

beyond that setting, exploring the dynamic debt idea but through intensity process instead

of first passage times.

In Part II, we expanded the two barrier and three barrier first-then-options presented

by Jun and Ku (2012) to the JDCEV model of Carr and Linetsky (2006). We obtained

formulae using the stopping time (ST) approach that was first developed for barrier

options in Dias et al. (2015) and in Dias et al. (2021). The results were obtained for

the various contracts, including the puts’ recovery values. With the results, one is able

to obtain the option’s prices with the variance being a function of the underlying asset

value and the possibility of a jump to default ruled by an affine function. These results

also highlight the impact of the increased amount of barriers, by in general, reducing the

value of the options, as more barriers must be crossed in order to activate the options’

payoffs.

In part III, several of the barrier option formulae from the first part are used to obtain

the Das and Kim (2015) dynamic debt model. This is done in the well known CEV model,

which is nested in the JDCEV model where many of the formulae were obtained. The debt

discounts formulae were obtained, and the corresponding spreads were computed. This

allowed to observe how the dynamic debt model cases behave, when the CEV volatility

for cases where it increases for decreasing underlying asset values.

In part IV, the debt increasing and decreasing features of the dynamic debt model

of Das and Kim (2015) are explored in a different style. Instead of setting that debt

changes when certain barriers are crossed by the leverage value, the changes are ruled

by hazard processes which can be correlated to the firm value. After obtained closed

formulae through measure changes, the credit spreads are obtained, allowing to see how

these are affected by the possibility of debt changes through an intensity process. The

possibility of debt increases augments spreads, the possibility of debt decreases reduces
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spreads, and the possibility of both events has mixed effects over time. In addition, the

framework is extended to the case of the presence of subordinated debt, as presented in

Gorton and Santomero (1990). It is shown that the possibility of debt increases in the

senior debt has a bigger impact on the spreads of the junior debt.
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