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Abstract— The importance of wind power energy for energy and 

environmental policies has been growing in past recent years. 

However, because of its random nature over time, the wind 

generation cannot be reliable dispatched and perfectly 

forecasted, becoming a challenge when integrating this 

production in power systems. In addition the wind energy has to 

cope with the diversity of production resulting from alternative 

wind power profiles located in different regions.  In 2012, 

Portugal presented a cumulative installed capacity distributed 

over 223 wind farms [1].  

In this work the circular data statistical methods are used to 

analyze and compare alternative spatial wind generation 

profiles. Variables indicating extreme situations are analyzed. 

The hour(s) of the day where the farm production attains its 

maximum daily production is considered. This variable was 

converted into circular variable, and the use of circular statistics 

enables to identify the daily hour distribution for different wind 

production profiles.  

This methodology was applied to a real case, considering data 

from the Portuguese power system regarding the year 2012 with 

a 15-minutes interval. Six geographical locations were 

considered, representing different wind generation profiles in 

the Portuguese system. 

Index Terms-- Renewable generation, wind power generation, 

circular statistics. 

I. INTRODUCTION 

 
Due to the increasing importance of wind power 

generation, many attention has been paid to the study of the 
wind characteristics – wind speed and wind direction. In 
addition, to make more profitable the performance of wind 
turbines, is important to understand the behavior of wind 
power generation. In particular the characterization of the 
daily extreme values is very relevant. In [2] the extreme power 
generation events are characterized and estimated using 
meteorological records.  

In this work we propose to use the methods of circular 
statistics to study the daily temporal patterns of extreme wind 

generation events. The maximum daily production is 
considered, taking into account the spatial diversity of wind 
generation. This proposed a novel approach to wind power 
analysis that enables to identify times of day when important 
events occur, which may be of special interest for the system 
operator in order to better prepare the maintenance and 
operation of the grid.   

Circular statistics is a set of techniques for dealing with 

directional data ([3], [4], [5], [6]). Typically, these data are 

expressed angular measurements, such as wind direction. The 

tools of circulars statistics have been used for modeling the 

random nature of this variable ([7], [8]).  

Circular statistics can also be used to analyze any kind of 
data that are cyclic in nature, like time-of-day data measured 
on a 24h clock, with   0:00 corresponding to 0

o
, 6:00 to 90

o
, 

18:00 to 180
o
, and 24:00 to 360

o 
[3].    

Due to the circular geometry of the sample space, standard 
statistical techniques cannot be used to model circular data. 
Consider a simple example: consider the times 23:30 and 
00:30, using the usual mean between these two values we 
obtain after covert to decimal hours, (23.5+0.5)/2=12, which 
corresponds to 12:00, right opposite the circular mean which 
is 00:00.  

This paper begins with an introduction of the circular 
statistics.  Following this, a real case application is presented 
as well as the corresponding results. In the last section of the 
paper, final conclusions are presented. 

 

II. CIRCULAR STATISTICS 

A circular observation can be seen as a point on an unit 
ratio circumference or as a unit vector. Once the initial 
direction and an orientation has been chosen, the circular 
observation, θ, represents the angle from the initial direction 
and it can be specified using polar coordinates (1,θ) or 
Cartesian coordinates (cos  θ, sin θ). The observation θ can be 
either measured in degrees or radians.    



A. Descriptives Measures 

Let 𝜃1, 𝜃2, … , 𝜃𝑛 be a sample of circular data. The center of 

gravity in two-dimensional space has coordinates (𝐶̅, 𝑆̅) where 

𝐶̅ and 𝑆̅  are the mean of X and Y coordinates, respectively, 
that is: 

              𝐶̅ =
1

𝑛
∑cos𝜃𝑖

𝑛

𝑖=1

         𝑆̅ =
1

𝑛
 ∑sin𝜃𝑖

𝑛

𝑖=1

                      (1) 

  

The mean direction, 𝜃̅ , is defined  as the angle of the 

vector (𝐶̅, 𝑆̅): 

           𝜃̅ =

{
 
 
 

 
 
 𝑎𝑡𝑎𝑛(𝑆 𝐶⁄ ),             𝑖𝑓 𝐶 > 0, 𝑆 ≥ 0

𝑎𝑡𝑎𝑛(𝑆 𝐶⁄ ) +  2𝜋,    𝑖𝑓 𝐶 > 0, 𝑆 < 0 

𝑎𝑡𝑎𝑛(𝑆 𝐶⁄ ) +  𝜋,             𝑖𝑓 𝐶 < 0
𝜋
2⁄ ,                   𝑖𝑓 𝐶 = 0, 𝑆 > 0

3𝜋
2⁄ ,                𝑖𝑓 𝐶 = 0, 𝑆 < 0

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑖𝑓 𝐶 = 0, 𝑆 = 0
  

           (2) 

 

where the function 𝑎𝑡𝑎𝑛 is the inverse tangent function.  

The mean resultant length, 𝑅̅, is the length of the vector 
(𝐶̅, 𝑆̅) which value lies in [0,1]. Higher values of 𝑅̅ are 
associated with less spread of the data and when  𝑅̅ = 1, all 
the data points are coincident [3].  

The sample circular variance can be defined as [3]:   

       𝑉 = 1 − 𝑅̅                  (0 ≤ 𝑉 ≤ 1)                               (3)  

The greater the values of V, the more dispersed is the 
distribution.  

Furthermore, the sample circular standard deviation is 
given by: 

         𝜗 = √−2𝑙𝑜𝑔𝑅̅                                                                    (4) 

Similarly to linear case, circular standard deviation takes 
only positive values and has no upper bound. Further details 
on this definition can be seen in [3] or [5].   

The circular range is the length of the shortest arc on the 
circle containing all the sample data. 

Another central location measure is the median, 𝜃̃. A 
median axis divides the circle in two slices in a way that the 
data is divided in two equal length groups. Then the median is 
the end of the median axis with more nearer data points. For a 
formal definition, see [3]. For quantiles determination the 
sample is treated as linear [3]. 

   

B. The Circular Uniforme and Von Mises Distributions 

 

When dealing with circular statistics two fundamental 
distributions should be considered.  

The first distribution is the circular uniform that reflects 
the case where all directions are equally spread all over the 
circle. The total probability is spread out uniformly and we get 
the circular uniform distribution: 

                    𝑓(𝜃) =
1

2𝜋
,        0 ≤ 𝜃 < 2𝜋                             (6) 

When the distribution is not uniform, it is often to think on 
a distribution with some concentration on one (unimodal) or 
more (multimodal) preferred directions. The most common 
unimodal distribution is the circular normal distribution, also 
known as the von Mises distribution: 

   𝑓(𝜃; 𝜇, 𝜗) =
1

2𝜋𝐼0(𝜗)
𝑒𝜗cos (𝜃−𝜇),    0 ≤ 𝜃 < 2𝜋,             (7) 

where 0 ≤ 𝜇 < 2𝜋 and 𝜗 ≥ 0 are parameters and  

      𝐼0(𝜗) =
1

2𝜋
∫ 𝑒𝜗 cos 𝜃𝑑𝜃
2𝜋

0
= ∑ (

𝜗

2
)
2𝑟

(
1

𝑟!
)
2

.                (8)∞
𝑟=0   

In circular statistics the Von Mises distribution takes the 
role of the normal distribution in standard linear statistics. In 
fact, it is shaped like the normal distribution, except that its 
tails are truncated. 

 

C. Non-Parametric goodness-of-fit testes 

When analyzing circular data it is important to check if the 
data follow a uniform distribution, which means that there is 
no modal region (or regions) in the distribution of the data. In 
addition, many parametric procedures in circular statistics 
require von Mises distribution. Thus, it is also important to 
check if the data follow this distribution. 

In assessing whether von Mises or circular uniform 
distributions are suited to a data-set, the Watson test can be 
applied [4]. Like usual goodness of fit tests, it compares the 
empirical and a reference distribution, and the null hypothesis 
states that the data distribution is equal to the reference 
distribution. The alternative hypothesis is that the sample data 
distribution is not the stated reference distribution. 

Furthermore when dealing with more than one sample, a 
keynote is the comparison of the empirical distributions. The 
Mardia-Watson-Wheeler (or uniform score) test is also a 
non-parametric test that enables to compare several samples 
concluding whether its populations´ distributions are identical 
or not. The null hypothesis is that the distributions of several 
populations are identical, against the alternative that the 
distributions are not the same. For further remarks on this test 
see [3] or [5].  

 

III. CASE STUDY 

The previously described methodology was applied to a 
real case, considering data from the Portuguese power system 
of the year 2012 with a 15-minute interval [9]. Six 
geographical locations were considered, representing different 
wind generation profiles in the Portuguese system, as shown 
in Fig. 1. Although there are some missing values, for each 



location, the datasets are the farm production, corresponding 
to a time series with 33696 observations. 

 
 

Figure 1. Location of wind farms under analysis. 
 

A. Variables 

In order to understand the different wind production 
profiles, the characterization of extreme conditions is very 
important.  

Since the main goal of this work is to compare different 
wind generation profiles in the Portuguese system, a 
standardization procedure was performed by considering the 
production of farm i divided by the maximum production 
observed in all data set for that farm.      

The hour(s) of the day where the farm attain its daily 
maximum production were analyzed. For this purpose, the 
study was developed using the variable (HMaxDi,PMaxDi), 
where HMaxDi is the hour of the day where there was the 
value of the maximum daily power and PMaxDi is the 

corresponding power in MW, i{A,B,C,D,E,F} (see Fig. 1).  

 

B. Circular data 

The variables HMaxDi were converted into circular 
variables, enabling to identify the daily hour distribution of 
extreme values for different wind production profiles.  

The hours of the day were the maximum occurs can be any 
hour from 00:00 to 23:45 (Fig. 2) with a 15-minute interval. 
Thus, the circle was divided into 96 equal portions and the 
circular value, in radians, is obtained by: 

96

2
)1(HMaxDri


 k  (1) 

For example, consider a situation where the farm 
production attains its maximum capacity at 00:45; this hour 
corresponds to the 4

th
 position (k=4) and HMaxDi = 0.19365.  

 
 

 Figure 2. Histogram and Rose diagram of HMaxDA. 

 
The frequency distribution of the hours of the day where 

the maximum occurs can be seen in Fig. 2 (histogram on the 
left and rose diagram on the right). Usually, it is better to plot 
a circular variable as HMaxDA in a rose diagram, which is a 
circular histogram that displays directional data and the 
frequency of each class. In this case, it is possible to see a 
concentration around the preferred direction that corresponds 
to midnight.  

 

IV. RESULTS 

 
Meteorologists usually use wind rose diagrams to give a 

succinct view of how wind speed (linear variable) and 
direction (circular variable) are typically distributed at a 
particular location. Making the analogy with our data, the hour 
were the maximum was obtained is the circular variable and 
the corresponding power is the linear variable.   

In Fig. 3 one can see the wind rose of the pair 
(HMaxDi,PMaxDni). For each location, one can see a different 
distribution of the hours of the day were the maximum occurs. 
Also, comparing the intensity - the value of the maximum 
power, is possible to see very different wind production 
profiles. 

This information might be of special interest to the system 
operator since the load flow in the power grid will be 
influenced by the random generation of the several wind 
farms. In this regard, knowing the most likely hours of high 
generation of each wind location will enable the system 
operator to anticipate any constraints that the grid may face 
and prepare the maintenance and operational plans 
accordingly.   
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Figure 3. Histogram of HMaxDi, i{A,B,C,D,E,F}. 

 
 

 
For the six wind production profiles data sets, several 

descriptive statistics were computed, the results are presented 
in tables I and II. The data analysis results were obtained using 
the R software and “Circular” and “CircStats” packages. 

The sample sizes are very different (Table I) reflecting the 
fact that the farm production attains its daily maximum 
production for several times in a single day. The mean 
direction is always obtained in night hours, mostly between 
23:45 and 01:30. The profile D is the only one who presented 
a more distant mean value (04:00). The median values keep up 
with these results which are depictured in Fig. 4. In this figure 
a new proposal data representation is presented by considering 
circular boxplot representation. The comparison of multiple 
samples through boxplots is very usual with linear data. This 
new representation enables the circular comparison.  

 

 

 

 

 

 

 

TABLE I.  LOCATION MEASURES RESULTS 

 

 

TABLE II.  DISPERSION MEASURES RESULTS (IN RAD) 

 

 

 

 
Figure 4. Circular boxplots 

 

 

Regarding the dispersion of the data, several statistics 

results are presented in table II. The range of data is almost 

the entire circumference, meaning that the daily maximum 

production could be reached almost at any time of the day. 

 
Wind Profile 

A B C D E F 

Sample 

Size 

617 610 1376 1812 804 814 

Mean

 (𝜽̅) 
00:15 23:45 01:30 04:00 23:45 23:45 

Min 12:00 09:15 13:15 15:15 04:30 10:00 

Q0.25 04:00 00:30 05:45 08:00 23:45 03:00 

Median  

(𝜽̃) 
00:00 23:45 01:15 03:30 16:45 23:45 

Q0.75 23:45 17:30 23:45 23:45 13:45 17:45 

Max 12:15 09:30 13:30 15:30 04:45 10:15 

 
Wind Profile 

A B C D E F 

Range 6.09 6.02 6.22 6.22 6.22 6.15 

     (𝑹̅) 

Mean 

Resultant 

Length 0.39 0.38 0.25 0.16 0.30 0.20 

Variance

(𝑽) 
0.61 0.62 0.75 0.84 0.70 0.80 

Standart 

Deviation

(𝝑) 
1.37 1.40 1.67 1.91 1.56 1.79 



The farms A and B are the ones with less dispersed data. On 

the other hand the D profile data present the higher spread.  In 

fact, the A and B farms are the ones with fewer sample 

observation and profile D have the greater sample size.  

For testing if any of the six wind profiles follow a circular 
uniform distribution, the Watson test was performed. The 
results of the six performed tests indicate that the circular 
uniform distribution is not suitable to describe the empirical 
distributions (in all cases, p-value<0.01). This result underline 
that in this samples not all directions are equally spread all 
over the circle which is already been suggested by the 
analyses of the circular histograms presented in Fig 3. 

Furthermore, the Watson test was also performed using the 
von Mises distribution. The conclusion is that none of the six 
sample data sets have been drawn from a population with von 
Mises distribution (in all cases, p-value<0.01). 

For comparing the distributions of the six wind profiles, 
the Mardia-Watson-Wheeler was performed. The test enables 
to conclude that the six distributions are not equal 
(p-value < 2.2E-16). Also, in order to compare each pair of 
distributions, the Watson test for two samples was applied 
([3]). Fifteen tests were performed for comparing each pair of 
wind profiles. In all of them, the p-values were lower than 
0.001, indicating the rejection of the null hypotheses that the 
distributions are equal. In conclusion, all the six wind profiles 
have different empirical hourly distributions for the daily 
maximum productions. 

This is a useful result that reinforces the smoothing effect 
that is known from several studies about wind generation from 
aggregated wind farms located in different regions. 

 

 

V. CONCLUSIONS 

 

In this work a new approach based in circular statistics is 
used in order to characterize the daily occurrence of extreme 
wind power generation events. The hour(s) of the day where 
the farm production attains its maximum daily production is 
considered. In addition, the geographical diversity of wind 
production is taken into account. 

Considering data from the Portuguese power system of the 
year 2012 with a 15-minute interval, six geographical 
locations were considered, representing different wind 
generation profiles in the Portuguese system.  

For the six wind production profiles data sets, several 
descriptive statistics were computed. The results showed that 
the mean direction is always obtained in night hours, mostly 
between 23:45 and 01:30. A new proposal data representation 
is presented by considering circular boxplot representation, 
which enables the circular comparison. The range of data is 
almost the entire circumference, meaning that the daily 
maximum production could be reached almost at any time of 
the day. 

Several non-parametric tests enable to conclude that all the 
six wind profiles have different empirical hourly distributions 
for the daily maximum productions. These results step up the 
well known smoothing effect due to the aggregation of 
different wind production profiles.  

Finally, this work results bring same insight into the 
characterization of the occurrence of wind power generation 
events, which is important for system planning purposes.  
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