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Abstract. Let G be an abelian group and suppose that X is a non-Archimedean Banach space. We study
Hyers-Ulam-Rassias stability for the functional equation of quadratic type

f (x + y + z) + f (x) + f (y) + f (z) = f (x + y) + f (y + z) + f (z + x)

where f : G→ X is a map.

1. Introduction

Groups are among the most studied objects in mathematics and a source of many problems and con-
jectures. An example is the stability problem for a group homomorphism, raised by Ulam [26] in 1940.
It can be stated as follows. Suppose f (x) satisfies only approximately the Cauchy functional equation
h(x + y) = h(x) + h(y). Does there exist a solution ϕ of the Cauchy functional equation which approximates
f (x)? To make the statement more general and precise, let G1 be a group and let G2 be a group endowed
with a metric d. Given ε > 0, we ask if there exist a δ > 0 such that, if a map f : G1 → G2 verifies
d( f (xy), f (x) f (y)) < δ for all x, y ∈ G1 then a homomorphism ϕ : G1 → G2 exists, with d( f (x), ϕ(x)) < ε for all
x ∈ G1.

The solution of Ulam’s problem was given a year later by Hyers [7] for the case when G1 = E and G2 = F
are Banach spaces. Let f : E→ F be a map such that t ∈ R→ f (tx) is continuous in R for each fixed x ∈ E.
Suppose there exists constants ε > 0 and p ∈ [0, 1) such that

‖ f (x + y) − f (x) − f (y)‖ ≤ ε(‖x‖p + ‖y‖p), (1)

for all x, y ∈ E. Rassias [19] proved that there exists a unique linear map T : E→ F such that

‖ f (x) − T(x)‖ ≤
ε

1 − 2p−1 ‖x‖
p,
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for all x ∈ E. In [5], Gǎvruta generalized further Rassias’ result by replacing the bound ε(‖x‖p + ‖y‖p) in (1)
by a control function ϕ(x, y), which guaranties the existence of the unique linear map T : E→ F.

Since then, many stability problems, concerning not only homomorphisms but rather general functional
equations, have been formulated and solved by several mathematicians, see for instance the articles in [20]
and the bibliography therein. Recently, the stability of rational functional equations has been studied by
Senthil Kumar and Dutta [11, 12] in the non-Archimedean setting using direct and fixed points methods.
And in [13], the same authors tackled the stability problem in the setting of fuzzy Banach spaces with an
application to systems design. In the same vein, Senthil Kumar, Dutta and Sabarinathan [14] considered
stability of rational functional equations over the hyperreals and applications to physics were presented.
There are several recent papers focusing on the stability of functional equations and fractional differential
equations, see for example [15, 21, 22].

Let G1, G2 be abelian groups. Let f : G1 → G2 be a map. In this article we are concerned with the
functional equation

f (x + y + z) + f (x) + f (y) + f (z) = f (x + y) + f (y + z) + f (z + x) (2)

with x, y, z ∈ G1. Another functional equation related with equation (2) is the following. A map 1 : G1 → G2
is said to verify the quadratic functional equation provided that

1(x + y) + 1(x − y) = 21(x) + 21(y) (3)

holds for all x, y ∈ G1, in which case 1 is called quadratic. The name comes from the fact that 1(x) = cx2 is a
solution of (3) (and also of (2)) when G1 = G2 = R or any commutative ring.

The functional equation (2) has received different names in the literature. In [24, p. 194], the author
refers to it as the functional equation of Deeba. See also the discussion in [9, p. 368]. However in [25, p.
247] the author calls equation (2) Fréchet’s functional equation. In any case, its origins seems to be rooted
in inner product spaces. In fact, among the many characterizations of inner product spaces [17], Fréchet
[4] proved in 1935 that a normed space (X, ‖ . ‖) is an inner product space if and only if f (x) = ‖x‖ verifies
equation (2). Later on, Jordan and von Neumann [8] gave a simpler characterization by showing that
(X, ‖ . ‖) is an inner product space if and only if the map 1(x) = ‖x‖2 is a solution of the quadratic equation
(3). This is the classical parallelogram law.

An interesting fact is that any solution of (2) is necessarily quadratic, i.e. verifies the quadratic functional
equation (3). This is a matter of simple calculation, taking first x = y = z = 0 to see that f (0) = 0 and then
taking z = −x. A solution of functional equation (2) when G1 is an abelian group and G2 is a normed space
over a field with characteristic different from 2 was given by Kannappan [9], who showed that f has the
form f (x) = B(x, x) + A(x), where B : G1 ×G1 → G2 is a biadditive map and A : G1 → G2 is an additive map.

The stability of the functional equations (2) and (3) was studied by Jung [23] when G1 is a real normed
space and G2 is a real Banach space. In [10], Kim investigated the stability of equation (2) in the sense
of Gǎvruta. Hyers-Ulam stability in the non-Archimedean setting was initiated with the work of Arriola
and Beyer [3] on the Cauchy functional equation for G1 = Qp and G2 = R. In [16], Moslehian and Rassias
studied the stability of the Cauchy functional equation and quadratic equation for G1 respectively, an
abelian semigroup and an abelian group, and G2 a non-Archimedean Banach space. Another functional
equation related to the characterization of inner product spaces was studied, from the point of view of
stability, by Gordji et al [6] also in the non-Archimedean setting.

In this article we study Hyers-Ulam-Rassias stability of functional equation (2) for the case where
G1 = G is an abelian group and G2 = X is a non-Archimedean Banach space. We will use the direct method
introduced by Hyers, that is, an additive map A : G→ X and a quadratic map Q : G→ X will be explicitly
constructed from certain solutions f : G→ X of equation (2). Quite specific, we have:

A(x) = lim
n→+∞

f (2nx)
2n and Q(x) = lim

n→+∞

f (2nx)
4n ,

where the first map f is odd and the latter is even. For the upper bound, following the original idea of
Gǎvruta, we consider a certain control function which will be made explicit. The article is organized as
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follows. In section 2 we introduce some notation and review briefly non-Archimedean normed spaces.
In section 3 we study Hyers-Ulam-Rassias stability of equation (2). The first case, in §3.1, deals with
the stability under an approximate odd solution, see Theorem 3.1. Then, along the lines of [16], we
establish a concrete realization of the control function ψ : G3

→ [0,+∞) by considering a suitable real
map ρ : [0,+∞) → [0,+∞). In §3.2, the stability of equation (2) under an approximate even solution is
proved, with the additional condition that the function f : G→ X vanishes at x = 0. This is the contents of
Theorem 3.3. A concrete realization of the control function is obtained, similarly to the odd case. Section
4 is dedicated to establish the main result. We prove in Theorem 4.1 Hyers-Ulam-Rassias stability for the
functional equation (2), that is, C2 f (x, y, z) = 0, where C2 f (x, y, z) is the second Cauchy difference of the map
f : G→ X. In the proof, we take advantage of the canonical decomposition of f into an odd and even part,
which allows us to apply the previous results of section 3.

2. Background

The real numbers verify the Archimedean property: given a, b > 0, there exist an integer n such that
a < nb. Hensel introduced the field of p-adics which does not have the Archimedean property. The
topological fields which do not satisfy the Archimedean property are called non-Archimedean fields.

Definition 2.1. A non-Archimedean field is a field K endowed with a function | · | : K → R, such that, for every
a, b ∈ K, verifies:

(i) |a| ≥ 0 and |a| = 0 if and only if a = 0;

(ii) |ab| = |a||b|;

(iii) |a + b| ≤ max {|a|, |b|}.

The function | · | : K → R is called a non-Archimedean valuation over K. Property (iii) is called the
strong triangle inequality. From (iii) we conclude that, for every integer n ∈ Z,

|n| = |1 + 1 + · · · + 1| ≤ max {|1|, · · · , |1|} = 1.

Through the article we always denote the non-Archimedean valuation of the ground field by | · |.

Definition 2.2. Let X be a vector space over a non-Archimedean field K with a nontrivial valuation. A non-
Archimedean norm over X is a function ‖ · ‖ : X→ R such that, for every x, y ∈ X, and a ∈ K,

(i) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0;

(ii) ‖ax‖ = |a|‖x‖;

(iii) ‖x + y‖ ≤ max {‖x‖, ‖y‖}.

A space with a non-Archimedean norm (X, ‖ · ‖) is called a non-Archimedean normed space.

Example 2.3. Let p be a prime number. For every nonzero rational number x, there exists a unique integer ν(x) ∈ Z

such that x =
a
b

pν(x), with a, b not divisible by p. Then, |x|p = p−ν(x) is a norm over Q. The p-adic field Qp is the
completion of Q with respect to | . |p. Now, (Qn

p , ‖ . ‖), with ‖ x ‖ = max {|xi|p : 1 ≤ i ≤ n} is a non-Archimedean
normed space over Qp. More generally, ifK is a non-Archimedean field, then (K, ‖ . ‖) is a non-Archimedean normed
space overK.

Example 2.4. Let X be a set and let K be a non-Archimedean field. The set B(X,K) of all bounded functions on X
with values inK is a vector space overK, with pointwise addition and scalar multiplication. Equipped with the norm

‖ f ‖∞ = sup {| f (x)| : x ∈ X},

the space B(X,K) is a non-Archimedean normed space overK.
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A non-Archimedean Banach space is a complete non-Archimedean space, i.e. where each Cauchy
sequence is convergent. Kn and B(X,K) are examples of non-Archimedean Banach spaces. An important
feature of non-Archimedean spaces is the following. Let {xn} be sequence in a non-Archimedean space
(X, ‖ · ‖) and let n > m. Since

‖xn − xm‖ ≤ max {‖xi+1 − xi‖ : m ≤ i ≤ n − 1}

we conclude that, in striking difference with real analysis, {xn} is a Cauchy sequence if, and only if,
‖xn+1 − xn‖ → 0 as n→ +∞.

Throughout this article, G is an abelian group and (X, ‖ · ‖) is a non-Archimedean Banach space. We will
adopt the following notation. Given a map f : G→ X, we define the Cauchy difference C f : G × G→ X to
be

C f (x, y) = f (x + y) − f (x) − f (y).

The second Cauchy difference C2 f : G × G × G→ X is given by

C2 f (x, y, z) = C f (x + y, z) − C f (x, z) − C f (y, z).

We easily see that equation (2) is equivalent to the vanishing of the second Cauchy difference

C2 f (x, y, z) = 0.

Note that if we take x = y = z = 0 in (2) we conclude that f (0) = 0. On the other hand, if f is an even map,
taking z = −y we see that f is quadratic.

3. Stability of the functional equation

In this section we study the stability of functional equation (2) for two cases: firstly, when the solution
is an odd map and secondly when the solution is an even map, with the additional condition that f (0) = 0.
We begin by recalling the definition of stability in the sense of Hyers-Ulam-Rassias for our setting. Let G
be a group and ψ,Φ : G3

→ [0,+∞) be functions satisfying certain conditions. Let X be a non-Archimedean
Banach space. If for every function f : G→ X satisfying the inequality

‖C2 f (x, y, z)‖ ≤ ψ(x, y, z) , ∀x, y, z ∈ G

there exists a function ϕ : G→ X such that

C2ϕ(x, y, z) = 0 , ∀x, y, z ∈ G,

and

‖ f (x) − ϕ(x)‖ ≤ Φ(x, x, x) , ∀x ∈ G

then the functional equation (2) is stable in the sense of Hyers-Ulam-Rassias on (G,X).

3.1. The odd case

The first result establishes Hyers-Ulam-Rassias stability for an approximate odd solution of equation
(2).

Theorem 3.1. Let ψ : G × G × G→ [0,+∞) be a function such that

lim
n→+∞

ψ(2nx, 2ny, 2nz)
|2|n

= 0 (4)
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for all x, y, z ∈ G. Let for each x ∈ G the limit

lim
n→+∞

max
{

Ψ(2 jx)
|2| j

: 0 ≤ j < n
}

:= ψ̃A(x) (5)

exist, where
Ψ(x) = max {ψ((−1)ε1 x, (−1)ε2 x, (−1)ε3 x) :

εi = 0, 1, ε1 + ε2 + ε3 ≡ 1, 2 (mod 3)}

for all x ∈ G.
Suppose f : G→ X is an odd map satisfying

‖C2 f (x, y, z)‖ ≤ ψ(x, y, z) , (6)

for all x, y, z ∈ G. Then, there exist an additive map A : G→ X such that

‖ f (x) − A(x)‖ ≤
1
|2|
ψ̃A(x), (7)

for all x ∈ G. Moreover, if

lim
k→+∞

lim
n→+∞

max
{

Ψ(2 jx)
|2| j

: k ≤ j < n + k
}

= 0 (8)

then the additive map A is unique.

Proof. Put x = y = −z in (6). We have

‖3 f (x) − f (2x) + f (−x) − 2 f (0)‖ ≤ ψ(x, x,−x)

Since f is odd,

‖ f (2x) − 2 f (x)‖ ≤ ψ(x, x,−x), (9)

Replacing x by −x in (9) gives

‖ f (2x) − 2 f (x)‖ ≤ ψ(−x,−x, x). (10)

It follows that

‖ f (2x) − 2 f (x)‖ ≤ Ψ(x). (11)

Replacing x by 2n−1x in (11), we obtain∥∥∥∥∥∥ f (2nx)
2n −

f (2n−1x)
2n−1

∥∥∥∥∥∥ ≤ Ψ(2n−1x)
|2|n

. (12)

By (4) and (12), the sequence
{

f (2nx)
2n

}
is a Cauchy sequence. Since X is complete it follows that

{
f (2nx)

2n

}
is convergent. Define a map A : G→ X by

A(x) = lim
n→+∞

f (2nx)
2n , for all x ∈ G. (13)
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By induction we have∥∥∥∥∥∥ f (2nx)
2n − f (x)

∥∥∥∥∥∥ ≤ 1
|2|

max
{

Ψ(2 jx)
|2| j

: 0 ≤ j < n
}
, (14)

for all n ∈N and x ∈ G.
In fact, the case n = 1 follows from (11). By hypothesis and from (12), we have∥∥∥∥∥∥ f (2n+1x)

2n+1 − f (x)

∥∥∥∥∥∥ =

∥∥∥∥∥∥ f (2n+1x)
2n+1 −

f (2nx)
2n +

f (2nx)
2n − f (x)

∥∥∥∥∥∥
≤ max

{∥∥∥∥∥∥ f (2n+1x)
2n+1 −

f (2nx)
2n

∥∥∥∥∥∥,
∥∥∥∥∥∥ f (2nx)

2n − f (x)

∥∥∥∥∥∥
}

≤ max
{

Ψ(2nx)
|2|n+1 ,

Ψ(2 jx)
|2| j+1

: 0 ≤ j < n
}

=
1
|2|

max
{

Ψ(2 jx)
|2| j

: 0 ≤ j < n + 1
}
.

Now, taking the limit as n→ +∞ in (14) and using (5) we obtain (7). Replacing (x, y, z) by (2nx, 2ny, 2nz)
in (6) we obtain ∥∥∥∥∥∥C2 f (2nx, 2ny, 2nz)

2n

∥∥∥∥∥∥ ≤ ψ(2nx, 2ny, 2nz)
|2|n

.

Therefore, taking the limit as n → +∞ it follows from (4) that A satisfies equation (2) and is odd since f is
odd.

We will now show that A is additive. Set z = −y in (2). Since A is odd, we have

A(x + y) + A(x − y) = 2A(x). (15)

Interchanging x and y in (15):

A(y + x) + A(y − x) = 2A(y). (16)

Now, add (15) and (16)

2A(x + y) + A(x − y) + A(−(x − y)) = 2A(x) + 2A(y) ,

and since A is odd we conclude that
A(x + y) = A(x) + A(y).

Finally, suppose Ã : G→ X is another additive map which satisfies (7). We have

‖A(x) − Ã(x)‖ = lim
k→+∞

∥∥∥∥∥∥A(2kx)
2k

−
Ã(2kx)

2k

∥∥∥∥∥∥
= lim

k→+∞
|2|−k
‖A(2kx) − Ã(2kx)‖

≤ lim
k→+∞

|2|−k
‖A(2kx) − f (2kx) + f (2kx) − Ã(2kx)‖

≤ lim
k→+∞

|2|−k max {‖A(2kx) − f (2kx)‖, ‖ f (2kx) − Ã(2kx)‖}

≤
1
|2|

lim
k→+∞

lim
n→+∞

max
{

Ψ(2 jx)
|2| j

: k ≤ j < n + k
}

= 0.
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Recall that a pseudo length function on an abelian group G is a function ` : G → R that verifies, for
every x, y ∈ G, the following properties:

(i) `(0) = 0;

(ii) `(x + y) ≤ `(x) + `(y);

(iii) `(−x) = `(x).

A length function is a pseudo length function such that `(x) = 0 implies x = 0. A pseudo length function
is called homogeneous if `(2x) = 2`(x). If ` is homogeneous, then `(2nx) = 2n`(x), for every nonnegative
integer n and every x ∈ G.

The next result gives a more concrete function ψ : G × G × G→ [0,+∞).

Corollary 3.2. Let ρ : [0,+∞)→ [0,+∞) be a function such that

(i) ρ(2t) ≤ ρ(2)ρ(t) (t ≥ 0);

(ii) ρ(2) < |2|.

Let G be an abelian group with a homogeneous pseudo length function ` : G→ R and let δ > 0. Suppose f : G→ X
is an odd map verifying

‖C2 f (x, y, z)‖ ≤ δρ(`(x))ρ(`(y))ρ(`(z)),

for all x, y, z ∈ G. Then, there exist a unique additive map A : G→ X such that

‖ f (x) − A(x)‖ ≤
δ
|2|
ρ(`(x))3,

for all x ∈ G.

Proof. Define ψ : G × G × G→ [0,+∞) by

ψ(x, y, z) = δρ(`(x))ρ(`(y))ρ(`(z)).

We have

ψ(2nx, 2ny, 2nz) = δρ(`(2nx))ρ(`(2ny))ρ(`(2nz))
= δρ(2n`(x))ρ(2n`(y))ρ(2n`(z))

≤ ρ(2n)3δρ(`(x))ρ(`(y))ρ(`(z))

= ρ(2n)3ψ(x, y, z).

Dividing by |2|n and taking the limit as n→ +∞,

lim
n→+∞

ψ(2nx, 2ny, 2nz)
|2|n

≤ lim
n→+∞

ρ(2)3n

|2|n
ψ(x, y, z)

= lim
n→+∞

(
ρ(2)
|2|

)3n

|2|2nψ(x, y, z)

= 0.

By definition,

ψ̃A(x) = lim
n→+∞

max
{

Ψ(2 jx)
|2| j

: 0 ≤ j < n
}
.
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And since `(−x) = `(x) we have
Ψ(2 jx)
|2| j

= δ
ρ(`(2 jx))3

|2| j
.

The inequality

ρ(`(2k+1x))
|2|k+1

=
ρ(2`(2kx))
|2||2|k

≤
ρ(2)
|2|

ρ(`(2kx))
|2|k

≤
ρ(`(2kx))
|2|k

allows one to conclude that

lim
k→+∞

lim
n→+∞

max
{

Ψ(2 jx)
|2| j

: k ≤ j < n + k
}

= lim
k→+∞

Ψ(2kx)
|2|k

= 0.

Applying Theorem 3.1, the result follows.

3.2. The even case
We proceed to establish Hyers-Ulam-Rassias stability for an approximate even solution of equation (2).

We need to require that such approximate solution vanishes at zero, i.e. f (0) = 0.

Theorem 3.3. Let ψ : G × G × G→ [0,+∞) be a function such that

lim
n→+∞

ψ(2nx, 2ny, 2nz)
|4|n

= 0 (17)

for all x, y, z ∈ G. Let for each x ∈ G the limit

lim
n→+∞

max
{

Ψ(2 jx)
|4| j

: 0 ≤ j < n
}

:= ψ̃Q(x) (18)

exist, where Ψ is defined as in Theorem 3.1:

Ψ(x) = max {ψ((−1)ε1 x, (−1)ε2 x, (−1)ε3 x) :

εi = 0, 1, ε1 + ε2 + ε3 ≡ 1, 2 (mod 3)}

for all x ∈ G.
Suppose f : G→ X is an even map with f (0) = 0 satisfying

‖C2 f (x, y, z)‖ ≤ ψ(x, y, z), (19)

for all x, y, z ∈ G. Then, there exist a quadratic map Q : G→ X such that

‖ f (x) −Q(x)‖ ≤
1
|4|
ψ̃Q(x), (20)

for all x ∈ G. Moreover, if

lim
k→+∞

lim
n→+∞

max
{

Ψ(2 jx)
|4| j

: k ≤ j < n + k
}

= 0 (21)

then the quadratic map Q is unique.
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Proof. Put x = y = −z in (19). Since f is even and f (0) = 0, we have

‖ f (2x) − 4 f (x)‖ ≤ ψ(x, x,−x), (22)

Replacing x by −x in (22) gives

‖ f (2x) − 4 f (x)‖ ≤ ψ(−x,−x, x). (23)

Hence,

‖ f (2x) − 4 f (x)‖ ≤ Ψ(x). (24)

Replacing x by 2n−1x in (24), we get∥∥∥∥∥∥ f (2nx)
4n −

f (2n−1x)
4n−1

∥∥∥∥∥∥ ≤ Ψ(2n−1x)
|4|n

. (25)

It follows from (17) and (25) that
{

f (2nx)
4n

}
is a Cauchy sequence and, since X is complete,

{
f (2nx)

4n

}
is

convergent. Define, for each x ∈ G, a map Q : G→ X by

Q(x) = lim
n→+∞

f (2nx)
4n . (26)

By induction, similar to Theorem 3.1, we conclude that∥∥∥∥∥∥ f (2nx)
4n − f (x)

∥∥∥∥∥∥ ≤ 1
|4|

max
{

Ψ(2 jx)
|4| j

: 0 ≤ j < n
}
, (27)

for all n ∈N and x ∈ G.
Taking the limit as n→ +∞ in (27) and using (18) we obtain (20). Replacing (x, y, z) by (2nx, 2ny, 2nz) in

(19) we obtain ∥∥∥∥∥∥C2 f (2nx, 2ny, 2nz)
4n

∥∥∥∥∥∥ ≤ ψ(2nx, 2ny, 2nz)
|4|n

.

Taking the limit as n→ +∞ it follows from (17) that Q satisfies equation (2).
To show that Q is quadratic simply substitute z = −y in equation (2) and take into consideration that

Q(0) = 0 and Q is even since f is even. We have

Q(x) + Q(x) + Q(y) + Q(−y) = Q(x + y) + Q(0) + Q(x − y),

and so
Q(x + y) + Q(x − y) = 2Q(x) + 2Q(y).

Finally, admitting condition (21), the proof that Q is the unique quadratic map verifying (20) is similar to
Theorem 3.1.

In analogy with corollary 3.2 we have the following result.

Corollary 3.4. Let ρ : [0,+∞)→ [0,+∞) be a function such that

(i) ρ(2t) ≤ ρ(2)ρ(t) (t ≥ 0);

(ii) ρ(2) < |2|2.
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Let G be an abelian group with a homogeneous pseudo length function ` : G → R and let δ > 0. Suppose that
f : G→ X is an even map verifying f (0) = 0 and

‖C2 f (x, y, z)‖ ≤ δρ(`(x))ρ(`(y))ρ(`(z)),

for all x, y, z ∈ G. Then, there exist a unique quadratic map Q : G→ X such that

‖ f (x) −Q(x)‖ ≤
δ
|4|
ρ(`(x))3,

for all x ∈ G.

The proof is analogous to that of Corollary 3.2.

4. Main result

Using Theorems 3.1 and 3.3 we may now prove Hyers-Ulam-Rassias stability for equation (2). This is
accomplished by using the canonical decomposition of f into the sum of the odd and even parts.

Theorem 4.1. Let ψ : G × G × G→ [0,+∞) be a function such that

lim
n→+∞

ψ(2nx, 2ny, 2nz)
|4|n

= 0

for all x, y, z ∈ G. Let, for each x ∈ G, ψ̃A(x) and ψ̃Q(x) exist as defined in Theorems 3.1 and 3.3.
Let f : G→ X be a map such that f (0) = 0 satisfying

‖C2 f (x, y, z)‖ ≤ ψ(x, y, z), (28)

for all x, y, z ∈ G. Then, there exist an additive map A : G→ X and a quadratic map Q : G→ X such that

‖ f (x) − A(x) −Q(x)‖ ≤
1
|4|

max
{
ψ̃A(x), ψ̃A(−x),

ψ̃Q(x)
|2|

,
ψ̃Q(−x)
|2|

}
, (29)

for all x ∈ G. Moreover, if

lim
k→+∞

lim
n→+∞

max
{

Ψ(2 jx)
|4| j

: k ≤ j < n + k
}

= 0 (30)

then the additive map A and the quadratic map Q are unique.

Proof. Notice that, since the ground field is non-Archimedean we have

|4| = |2||2| ≤ |2|.

So, |4|n ≤ |2|n and condition (17) implies condition (4).
Write f (x) = fo(x) + fe(x), where

fo(x) =
f (x) − f (−x)

2
and fe(x) =

f (x) + f (−x)
2

are the odd and even part of f , respectively. We have

‖C2 fo(x, y, z)‖ =
1
|2|
‖C2 f (x, y, z) − C2 f (−x,−y,−z)‖

≤
1
|2|

max {‖ψ(x, y, z)‖, ‖ψ(−x,−y,−z)‖}
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and

‖C2 fe(x, y, z)‖ =
1
|2|
‖C2 f (x, y, z) + C2 f (−x,−y,−z)‖

≤
1
|2|

max {‖ψ(x, y, z)‖, ‖ψ(−x,−y,−z)‖}

By Theorem 3.1 there exist an additive map A : G→ X such that

‖ fo(x) − A(x)‖ ≤
1
|2|2

max {ψ̃A(x), ψ̃A(−x)}

for every x ∈ G. By Theorem 3.3 there exist a quadratic map Q : G→ X such that

‖ fe(x) −Q(x)‖ ≤
1
|2|3

max {ψ̃Q(x), ψ̃Q(−x)}.

for every x ∈ G. It follows that

‖ f (x) − A(x) −Q(x)‖ = ‖ fo(x) − A(x) + fe(x) −Q(x)‖
≤ max {‖ fo(x) − A(x)‖, ‖ fe(x) −Q(x)‖}

≤
1
|4|

max
{
ψ̃A(x), ψ̃A(−x),

ψ̃Q(x)
|2|

,
ψ̃Q(−x)
|2|

}
.

The proofs of the uniqueness of A and Q, admitting condition (30), are similar to the one in Theorem 3.1.

Corollary 4.2. Let ρ : [0,+∞)→ [0,+∞) be a function such that

(i) ρ(2t) ≤ ρ(2)ρ(t) (t ≥ 0);

(ii) ρ(2) < |2|2.

Let G be an abelian group with a homogeneous pseudo length function ` : G → R and let δ > 0. Suppose that
f : G→ X is a map verifying f (0) = 0 and

‖C2 f (x, y, z)‖ ≤ δρ(`(x))ρ(`(y))ρ(`(z)),

for all x, y, z ∈ G. Then, there exist a unique additive map A : G→ X and a unique quadratic map Q : G→ X such
that

‖ f (x) − A(x) −Q(x)‖ ≤
δ
|4|
ρ(`(x))3,

for all x ∈ G.

Proof. From Theorem 4.1, and Corollaries 3.2 and 3.4, we have

‖ f (x) − A(x) −Q(x)‖ = ‖ fo(x) − A(x) + fe(x) −Q(x)‖
≤ max {‖ fo(x) − A(x)‖, ‖ fe(x) −Q(x)‖}

≤
δ
|4|
ρ(`(x))3,

for all x ∈ G.

Example 4.3. The control function ψ : G3
→ [0,+∞) appearing in Theorems 3.1, 3.3, and 4.1 was made explicit in

Corollaries 3.2, 3.4 and 4.2, in terms of a homogeneous pseudo length function ` : G→ R and a certain real function
ρ : [0,+∞) → [0,+∞). We now give a simple example of this function ρ. Given p > 1, fix 0 < αp < 1 such that
αp < |2|22−p. Then we can take ρ(t) = αptp. Since |2|2 < |2| ≤ 1 such map ρ serve as an example for the above
mentioned Corollaries.
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According to [18, Theorem 1.2], given a homogeneous pseudo length function ` : G → [0,+∞[, there
exist a real Banach space (B, ‖ . ‖) and a group homomorphism φ : G → B such that `(x) = ‖φ(x)‖, for all
x ∈ G. Moreover, if ` is a length function, we can take φ to be an isometric embedding. This shows we could
work directly with a real Banach space in Corollaries 3.2, 3.4 and 4.2 instead of an abelian group endowed
with a homogeneous length function.
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