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Abstract

This paper proposes a flexible approach for punctuation prediction that can be used to produce state-of-the-art results
in a multilingual scenario. We have performed experiments using transcripts of TED Talks from the IWSLT 2017 and
IWSLT 2011 evaluation campaigns. Our experiments show that the recognition errors of the ASR output degrade the
performance of our models, in line with related literature. Our monolingual models perform consistently in Human-
edited transcripts of German, Dutch, Portuguese and Romanian, suggesting that commas may be more difficult to
predict than periods, using pre-trained contextual models. We have trained a single multilingual model that predicts
punctuation in multiple languages that achieves results comparable with the ones achieved by monolingual models,
revealing evidence of the potential of using a single multilingual model to solve the task for multiple languages. Then,
we argue that usage of current punctuation systems in the literature are implicitly dependent on correct segmentation
of ASR outputs for they rely on positional information to solve the punctuation task. This is too big of a requirement
for use in a real life application. Through several experiments, we show that our method to train and test models is
more robust to different segmentation. These contributions are of particular importance in our multilingual pipeline,
since they avoid training a different model for each of the involved languages, and they guarantee that the model will
be more robust to incorrect segmentation of the ASR outputs in comparison with other methods in the literature. To the
best of our knowledge, we report the first experiments using a single multilingual model for punctuation restoration
in multiple languages.

Keywords: Punctuation marks, Intelligent Subtitles, Pre-trained embeddings, Speech transcripts, Sentence
boundaries, Multilingual embeddings

1. Introduction

Most of the existing ASR systems focus on mini-
mizing the Word Error Rate (WER), making few at-
tempts to detect the structural information that is avail-
able in spoken texts. The text produced by a standard
speech recognition system often consists of raw single-
case words, without punctuation marks. Such text is
difficult to read and sometimes even hard to under-
stand because of the missing information. Moreover,
the missing information, specifically punctuation, sen-
tence boundaries, and capitalization, is also important

∗ Corresponding author.
Email addresses: miguelguerreironuno@gmail.com (Nuno
Miguel Guerreiro), ricardo.rei@unbabel.com (Ricardo
Rei), fernando.batista@inesc-id.pt (Fernando Batista)

for many types of automatic downstream processing,
such as parsing, information extraction, dialog act mod-
eling, Named Entity Recognition (NER), summariza-
tion, and translation (Zechner, 2002; Huang and Zweig,
2002; Kim and Woodland, 2003; Ostendorf et al., 2005;
Jones et al., 2005; Makhoul et al., 2005; Shriberg, 2005;
Matusov et al., 2006; Cattoni et al., 2007; Ostendorf
et al., 2008; Liao et al., 2020). Several studies have also
shown that the punctuation marks, or at least sentence
boundaries, are important for machine translation (Ma-
tusov et al., 2006; Cattoni et al., 2007; Peitz et al., 2011).

Spoken language is typically less organized than tex-
tual material, which makes it a challenge to bridge the
gap between spoken and written material. Despite being
originally used mostly for marking breaths, punctuation
is nowadays used for marking structural units, thereby

Preprint submitted to Expert Systems with Applications April 19, 2021



Figure 1: Unbabel Video Pipeline - Step a) consists of processing each video with an ASR system to create captions, in b) a human editor performs
post-edition of the ASR texts and aligns the text with the audio. Finally, in step c), the captions are translated to other languages, first by using a
customized MT system, and then by using humans to improve the resulting subtitles.

used to disambiguate meaning and to provide cues to
coherence of the written text (Kowal and O’Connell,
2008). Inserting punctuation marks into spoken texts
is a way of approximating such texts to written texts,
keeping in mind that speech data is linguistically struc-
tured. Despite that, a punctuation mark may assume dif-
ferent behavior in speech, where the concept Sentence-
like Unit (SU) is often used instead of sentence. Sev-
eral punctuation marks can be considered for spoken
texts, including: comma; period or full stop; exclama-
tion mark; question mark; colon; semicolon; and quota-
tion marks. However, most of these marks rarely occur
and are quite difficult to insert or evaluate. Quotations
and semicolons, for example, are often used inconse-
quently and in a highly variable way. Hence, most of the
available studies focus on full stop and comma, which
have higher corpus frequencies. A number of more re-
stricted studies also consider the question mark.

This paper proposes a model for punctuation predic-
tion based on pre-trained contextual embeddings. Our
architecture is composed of three main building blocks:
a pre-trained Transformer-based encoder model, an at-
tention mechanism over the encoder layers, and a multi-
nomial logistic regression classifier. We conduct evalu-
ation experiments both in the transcripts of TED Talks
from the IWSLT 2017 evaluation campaign, and in the
English transcripts of TED Talks from IWSLT 2011, al-
lowing to further compare our results with related work
reported in the literature. We start by creating individual
monolingual models, not only for English transcripts,
but also for German, Dutch, Portuguese and Romanian
transcripts. Then, we train a single and more flexi-
ble multilingual model for predicting punctuation across
multiple languages, which is able to achieve fairly com-
petitive results in a multi-language scenario, even sur-
passing the existing results for some of the languages.
Using a single multilingual model to solve the task for
multiple languages is of particular importance for our
application, since training a different model for each
language is a cumbersome and time-consuming process.

The selected languages are based on the set of languages
used in the scope of the IWSLT 2017 evaluation cam-
paign, where the Italian language was replaced by Por-
tuguese, a language that apart from being particularly
relevant for our application, it is also the native lan-
guage of the authors, a morphologically rich and low-
resource language (in terms of available tools), and the
sixth most widely spoken language worldwide. All the
experiments reported in this work are based on lexical
features only.

The rest of the paper is organized as follows: Section
2 introduces our video pipeline and presents our moti-
vation. Section 3 presents an overview of the related
literature. Section 4 describes our corpora, and the pro-
cess of transferring the reference punctuation into to the
ASR transcripts. Section 5 describes how the text data
is transformed into labelled sequences and presents the
building blocks of the model architecture. Section 6 de-
scribes the training setup, the evaluation metrics, and
the conducted experiments. Section 7 reports the cor-
responding results achieved. Finally, Section 8 presents
our most relevant conclusions, and pinpoints possible
future directions.

2. System motivation: The Unbabel video pipeline

Unbabel is an AI augmented translation company that
combines the speed and low cost of machine transla-
tion with a layer of human expertise powered by a com-
munity of human translators. Along with other trans-
lation services, Unbabel provides a very unique video
subtitling solution that consists of a) processing each
video with an ASR system adapted to the source lan-
guage, b) manual post-edition of the ASR output by
human editors, and c) perform the translation for other
languages, first by using a customized machine transla-
tion system, and then by using humans to improve the
resulting translations (Figure 1). Since the ASR tran-
scripts, as they are generated, contain recognition errors,
disfluencies, and missing information such as punctua-
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tion and sentence boundaries, step b) is the most time-
consuming and expensive step throughout our video
subtitling pipeline, especially, when the source lan-
guage of the video is not English and the ASR system
has worse quality. Hence, the enrichment of ASR text
is of utmost importance to improve the edit-time and
quality of the final subtitling pipeline especially for lan-
guages other than English.

3. Literature review

The sentence boundary detection problem is deeply
connected to the punctuation recovery problem, es-
pecially when predicting punctuation like full stops,
question marks, and exclamation marks (Shieber and
Tao, 2003), which corresponds to sentence boundaries.
These tasks provide a basis for further Natural Lan-
guage Processing (NLP) tasks, and its impact on subse-
quent tasks has been analyzed in many speech process-
ing studies (Harper et al., 2005; Mrozinsk et al., 2006;
Ostendorf et al., 2008).

Recovering structural information in speech, and spe-
cially the detection of sentence boundaries, became
the goal of an increasing number of studies in com-
putational speech processing soon after developing the
first Large Vocabulary Continuous Speech Recognition
(LVCSR) systems. Early computational models for
detecting punctuation marks and sentence boundaries
typically involved a combination of n-gram language
models and prosodic classifiers. The general Hidden
Markov Model (HMM) framework, allowing the com-
bination of lexical and prosodic cues, has been reported
by a number of early studies on this task (Beeferman
et al., 1998; Christensen et al., 2001; Kim and Wood-
land, 2001). A few years later, the detection of sen-
tence boundaries was one of the main focus of the
DARPA EARS rich transcription program (Liu et al.,
2006). Discriminative models, such as Maximum En-
tropy (ME), and Conditional Random Field (CRF) have
also been successfully used for this task (Huang and
Zweig, 2002; Liu et al., 2006; Batista et al., 2007, 2008,
2009; Lu and Ng, 2010; Batista et al., 2010, 2012; Ueff-
ing et al., 2013). Liu et al. (2005, 2006) and Batista
et al. (2008) performed experiments comparing the pre-
dominant HMM approach with ME and CRF models,
concluding that discriminative models generally outper-
form generative models.

Concerning machine translation, Stüker et al. (2006)
describes the ISL machine translation system used in the
TC-STAR 2006 evaluation. In this system, the output is
enriched with punctuation marks by means of a case-
sensitive, 4-gram language model and hard-coded rules

based on pause duration. In this system, the punctuation
is performed after the capitalization. Also concerning
machine translation, Cattoni et al. (2007) report a sys-
tem that recovers punctuation directly over confusion
networks. This paper compares three different ways of
inserting punctuation and concludes that the best results
are achieved when the training corpus include punctu-
ation marks in both languages, which means that the
translation is performed from punctuated input to punc-
tuated output. Peitz et al. (2011) compares different ap-
proaches for predicting punctuation in a speech trans-
lation setting, and show that punctuation prediction im-
proves the quality of the final translation output.

Most of the recent approaches for punctuation
restoration are based on embeddings and deep learn-
ing, either by solely using Recurrent Neural Networks
(RNN), such as Long Short-Term Memory (LSTM) and
Bidirectional Long Short-Term Memory (BLSTM), or
by combining them with attention mechanisms. These
approaches generally tackle the problem as a sequence-
to-sequence or as a sequence labeling task (Tilk and
Alumäe, 2015, 2016; Che et al., 2016; Klejch et al.,
2017; Yi and Tao, 2019; Kim, 2019). Zelasko et al.
(2018) use a BLSTM and a Convolutional Neural Net-
work (CNN) to predict punctuation for conversational
speech, using the Fisher corpus (Cieri et al., 2004).
They use pre-trained GloVe embeddings, and conclude
that embeddings play an important role in punctuation
prediction. Nanchen and Garner (2019) combine sev-
eral punctuation prediction models that use a range of
features, from low level acoustics to high level seman-
tics, and empirically show that features from different
semantic levels are complementary.

The TED talks within IWSLT 2011 dataset (Federico
et al., 2011) were used by a vast number of studies on
punctuation prediction (Ueffing et al., 2013; Che et al.,
2016; Yi et al., 2017; Kim, 2019; Yi and Tao, 2019;
Yi et al., 2020). Ueffing et al. (2013) use Conditional
Random Fields to combine a variety of different tex-
tual features to predict punctuation in spoken text. Che
et al. (2016) proposes a purely lexical approach to pre-
dict punctuation in a 5-words window, using pre-trained
word embeddings. Their experiments with the TED
talks within IWSLT 2011 dataset surpass the results re-
ported by Ueffing et al. (2013), when using lexical cues
only. The authors combine all the speech segments into
a single segment, taking into account that there will al-
ways be a punctuation mark at the end of each utter-
ance. Yi et al. (2017) combines three models, a DNN
model, a bidirectional RNN with attention mechanism,
and a bidirectional LSTM with a CRF layer, for punctu-
ation prediction. Their experimental results on the En-
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glish IWSLT 2011 dataset achieved an overall 64.2%
F-score on the reference data, outperforming previous
state-of-the-art results. The authors conclude that the
prediction of comma is more challenging when com-
pared with the prediction of period and question mark in
English. Kim (2019) proposes a deep recurrent neural
network architecture with layer-wise multi-head atten-
tions. Their experimental results on the IWSLT 2011
dataset achieve an overall 68.9% F-score, and 46.1%
Slot Error Rate (SER) (Makhoul et al., 2005). Yi and
Tao (2019) improves the approach described in Yi et al.
(2017), by using self-attention and word and speech fea-
tures, from the pre-trained Word2Vec and Speech2Vec
embeddings. Their results on the English IWSLT 2011
dataset show that the self-attention model trained using
word and speech embedding features outperforms the
previous state-of-the-art, where word embeddings alone
achieve an overall 69.4% F-score and the combination
of word and speech features allow to reach 72.9% F-
score on the reference data. Yi et al. (2020) outper-
form their previous results on the English IWSLT 2011
dataset, using a pre-trained BERT model, and only word
embedding features, achieving an overall 77.8% F-score
on the reference data.

Nowadays, transfer from pre-trained models such as
BERT (Devlin et al., 2018) yields strong results on a
wide variety of token-level tasks, both in monolingual
and multilingual scenarios (Pires et al., 2019). These
models consist of Transformer encoders which attend
to bidirectional contexts during pre-training with a
Masked Language Modelling (MLM) objective. MLM
consists of corrupting the input sequence by randomly
masking some tokens and asking the model to restore
the original text in those positions. As a result of this
training objective these models learn to represent words
in a highly contextualized feature space that is infor-
mative for downstream tasks. Recently, RoBERTa (Liu
et al., 2019) an iteration study of BERT, led to improve-
ments over the previous model by: (i) training the model
longer, on longer sequences, on larger batches and more
data; (ii) removing the next-sentence prediction task,
and; (iii) dynamically change the masked positions for
a given sample during pre-training. XLM-R trains a
masked language model on one hundred languages, us-
ing more than two terabytes of filtered CommonCrawl
data, leading to significant performance gains for a
wide range of cross-lingual transfer tasks. BERT and
RoBERTa were recently used by Liao et al. (2020) to
successfully perform a ASR post-processing task, aim-
ing a producing readable texts from ASR transcripts.

Recent work in punctuation recovery using BERT
have been reported by Cai and Wang (2019); Makhija

et al. (2019). In both works, the problem of punctua-
tion restoration is treated as a sequence labeling prob-
lem where BERT is used to encode the input sequence.
In Cai and Wang (2019) the authors, for each position,
sequentially add a mask token and try to decode a punc-
tuation mark. As such for an input sequence with n to-
kens the model as to encode n + 1 tokens n times. In Cai
and Wang (2019) a more traditional approach is used,
namely a BLSTM with a CRF. As such, BERT is only
used as embeddings layer to extract word-level features
that will be passed to the top models. We argue that
pre-trained models such as BERT are powerful enough
to solve the punctuation task with only a simple regres-
sion on top.

Concerning the punctuation of video video subti-
tles, Batista et al. (2007, 2010) describe a punctuation
module for automatic subtitles of Portuguese Broad-
cast News. Their approach uses lexical, acoustic
and prosodic information, and their results show that
prosody is relevant for the detection of full-stops, com-
mas and question marks. Klejch et al. (2016) presents
a most recent study that tests three punctuation models
using lexical features, and one that uses acoustic fea-
tures. Their experiments using the English Language
MGB Challenge data Bell et al. (2015), consisting of
about 1.600 hours of BBC TV recordings, show that a
lexical-based neural machine translation performs sig-
nificantly better than the other systems. Klejch et al.
(2017) extends this previous work, and concludes that
combining acoustic features with lexical features leads
to a significant improvement over lexical features only.
Ákos Tündik et al. (2020) propose a RNN-based model
suitable for on-the-fly close captioning of Hungarian
and English broadcast data. Their subjective tests con-
firmed that punctuation significantly contributes to the
quality of the subtitles.

4. Corpora

Our models were trained on data from the IWSLT
2017 evaluation campaign1, consisting of human-edited
transcripts of TED Talks. We used the English (EN),
German (DE), Dutch (NL), Portuguese (PT) and Roma-
nian (RO) subsets to train different monolingual models
for each of these languages. The training sizes for EN,
DE, NL, PT and RO consist of 1705, 1399, 1902, 1474
and 1812 different TED talks, respectively. The devel-
opment and test sets for each of the languages consist of
11 and 8 talks, respectively.

1 http://workshop2017.iwslt.org/59.php
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Moreover, we have defined a training, development
and test multilingual corpus by concatenating the train-
ing, development and test sets for each one of the lan-
guages.

In order to compare our results in English with results
in the literature, we also use the test data of IWSLT 2011
(Federico et al., 2011), both the automatic transcripts of
English TED Talks, produced by 4 different ASR sys-
tems, and the corresponding human-edited transcripts.
In particular, we constructed the test set for the ASR
track by concatenating the outputs of all 4 different sys-
tems. Both the human-edited and ASR transcripts are
organized into 818 segments of words, each of which
ends either with a full stop or a question mark. At
the moment, we do not have information on how these
segments were produced: they may have been manu-
ally created, automatically produced based on silence
thresholds, or produced by an ASR system.

We also have transferred the punctuation marks from
the reference (human-edited) transcripts into the ASR
transcripts, in order to be able to perform the evaluation
on the ASR transcripts. The two datasets were aligned
using a variant of Minimum Edit Distance, adapted for
punctuation marks. The ASR transcripts contain errors
that prevent a perfect alignment, and may pose prob-
lems to the location of the candidate punctuation mark
on the ASR data. Therefore, we have decided to trans-
fer a punctuation mark, if at least the left or the right
context word have been recognized correctly, including
the beginning or the end of a segment. Figure 2 presents
examples of the alignment results (RES), taking into ac-
count the reference (REF) and the ASR data. The sec-
ond punctuation mark in the second example is an ex-
ample of a punctuation mark that was not transferred
because both left and right context words differ.

Our approach for aligning the data is different from
the one described in Ueffing et al. (2013), and proba-
bly adopted by subsequent studies (Che et al., 2016; Yi
et al., 2017; Yi and Tao, 2019; Yi et al., 2020), that re-
strict the evaluation to those punctuation marks whose
context words to the left and the right have been rec-
ognized correctly. Such restriction prevents the authors
from assigning punctuation marks to locations contain-
ing recognition errors, which leads to better punctua-
tion performance, since recognition errors are known
to have a significant impact on the punctuation per-
formance (Liu et al., 2006; Batista et al., 2012; Tilk
and Alumäe, 2015, 2016; Che et al., 2016; Yi et al.,
2017; Ákos Tündik et al., 2020). For example, such an
approach would prevent from transferring most of the
punctuation marks in the examples of Figure 2.

The reference transcripts may contain abbreviations

REF: <And that’s my cousin and my sister’s dog , Gabby .>
ASR: <and that’s my cousin and my sister’s dog every>
RES: <And that’s my cousin and my sister’s dog , every .>

REF: <As Juan said , it’s the condition that scientists call synes-
thesia , an unusual cross-talk between the senses .>

ASR: <as kwan said it’s a condition that scientists call soonest
easier when usual course talk between the fences>

RES: <As kwan said , it’s a condition that scientists call soonest
easier when usual course talk between the fences .>

REF: <Well you can’t get much bigger than Pi , the mathemat-
ical constant .>

ASR: <well you can’t get much bigger than empowering the
mathematical constant>

RES: <Well you can’t get much bigger than empowering , the
mathematical constant .>

REF: <is it a happy word , or a sad word ?>
ASR: <is it a happy word was sad word>
RES: <is it a happy word , was sad word ?>

REF: <Well if 100 , if we think of 100 as being like a square ,
75 would look like this .>

ASR: <well it’s a hundred we think of a hundred as of being a
like a square seventy five would look like this>

RES: <Well it’s a hundred , we think of a hundred as of being
a like a square , seventy five would look like this .>

Figure 2: Examples of alignments between the reference and the ASR
transcripts, and the resulting punctuation of the ASR transcripts.

and numeric values, while the ASR transcripts do not
include abbreviations, and numbers are usually written
as text. Therefore, in order to be performed correctly,
the alignment process must also include a normaliza-
tion step. In order to account for these differences, we
have manually corrected the automatic alignment re-
sults. The last example of Figure 2 illustrates that sit-
uation, where the number 100 is aligned with the word
hundred. All the corpora described above, including the
manually corrected references, are publicly available for
download2.

5. Model Overview

We treat the problem of punctuation restoration as a
sequence labeling problem such that we want to classify

2 https://unbabel-experimental-data-sets.

s3-eu-west-1.amazonaws.com/video-pt2020/

IWSLT-punkt.tar.gz
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whether a word in the sequence is followed by a punctu-
ation mark. In this section, we start by describing how
we transform the text data into labelled sequences, and
then by presenting the building blocks of the model ar-
chitecture.

5.1. Data Preprocessing

We define two different sets of classes: a set with 3
labels (O, C, P) and a set with 4 labels (O, C, P, Q). Fol-
lowing the punctuation settings of Che et al. (2016) and
Tilk and Alumäe (2016), O means no punctuation mark
followed; periods, exclamation marks or semicolons are
classified as P, while commas, colons or dashes are clas-
sified as C. Question marks are classified as P for the
3-labels set and as Q for the 4-labels set.

It is also central that the model does not rely on po-
sitional information to solve the task. As such, we do
not input a single segment sequence but a chunk of seg-
ments up to 300 tokens. This value was set taking into
consideration the maximum sequence length that our
encoder model can process plus a safety margin to take
into account sub-word token splits. As Che et al. (2016)
reports, the performance of punctuation prediction is
largely influenced by the average number of punctuation
marks per sequence in the corpus. Notice that it is ex-
pectable that there will always be a period or a question
mark at the end of a single segment. Thus, if we were to
train the models at the segment-level, and if we took into
consideration these very same punctuation marks at the
end of each segment during evaluation, the metrics for
the PERIOD/QUESTION labels would likely be over-
estimated. The results that will be presented in Section
7 further support this notion.

To create the source sentence, we strip all punctuation
and capitalization from the target sentence. An example
of this procedure can be seen in Table 5.1.

Target He is, according to the critics, an amaz-
ing player. What do you think?

Source he is according to the critics an amazing
player what do you think

Labels 3-labels O C O O O C O O P O O O P
4-labels O C O O O C O O P O O O Q

Table 1: Source sentence and target labels construction – for the two
sets of labels – for a given sentence. Note that apart from removing
punctuation from the target, lowercasing was also applied to create
the source sentence, and the source sequence consists of two differ-
ent sentences. Here O stands for no punctuation, and C, P and Q are
respective to the COMMA, PERIOD and QUESTION labels, respec-
tively.

5.2. Model Architecture
Figure 3 presents our proposed model architec-

ture, composed by three main building blocks: a
Transformer-based encoder model (Vaswani et al.,
2017), an attention mechanism over the encoder layers,
and a multinomial logistic regression classifier.

5.2.1. Encoder Model
The main building block of the proposed architec-

ture, the encoder model, consists of either RoBERTa or
XLM-RoBERTa. While the latter can be used on a mul-
tilingual setting – it has been trained on 100 languages
– the former can only be used on a monolingual English
setting.

Both versions of RoBERTa and XLM-RoBERTa used
in this work consist of 12 Transformer encoder lay-
ers with hidden size of 768. RoBERTa divides texts
into bytes and uses Byte-Pair Encoding (BPE) (Sen-
nrich et al., 2016) to build up its 50k–token vocabulary,
whereas XLM-R increases the vocabulary size to 250k
tokens in order encompass different languages across
different scripts.

5.2.2. Layer Attention
Given an input sequence x = [x0, x1, . . . , xn], the en-

coder will produce an embedding e(`)
x j for each token x j

and each layer ` ∈ {0, 1, ..., 12}.
The final hidden state, e(12)

x j , of each token is com-
monly used for token-level tasks. However, as re-
ported in Tenney et al. (2019), the BERT model cap-
tures, within the network, linguistic information that is
relevant for downstream tasks. Thus, in this work, we
used the approach in (Peters et al., 2018; Kondratyuk
and Straka, 2019) to encapsulate information from all
encoder layers into a single embedding, ex j , for each to-
ken by using a layer-wise attention mechanism.

This embedding will then be computed as:

ex j = γE>x j
Λ (1)

where γ is a trainable scaling factor, Ex j =

[e(0)
x j , e

(1)
x j , . . . e(12)

x j ] corresponds to the vec-
tor of layer embeddings for token x j, and
Λ = softmax([λ(1), λ(2), . . . , λ(12)]) is a vector con-
stituted by the layer scalar trainable parameters which
are shared for every token. Intuitively, higher λ(`)

values will be assigned to layers that hold more relevant
information to solve the task. In order to redistribute
the importance through all the model layers and avoid
overfitting of the model to the information contained
in any single layer, we used layer dropout, devised
by Kondratyuk and Straka (2019), in which each the
weight λ(`) is set to −∞ with probability 0.1.
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Figure 3: The architecture of our solution. The output of the encoder model passes through the Layer Attention (the scalar weights respective
to each layer are trained simultaneously with the rest of the model) block respective to Equation (1). The representations of consecutive tokens
are then concatenated and fed into a Multinomial Logistic Regression classifier that will predict whether a word should be followed or not by a
punctuation mark. In this picture, the set of labels corresponds to the 3-labels set (O,P,C).

5.2.3. Classification Head

The final block of our architecture is a classification
head that consists of a Multinomial Logistic Regres-
sion. As we want to classify whether a gap between two
words should be filled with a punctuation mark, we start
by concatenating the embeddings respective to consecu-
tive tokens in the input sequence and then feed this joint
representation to a multinomial logistic regression clas-
sifier that will output the predicted label.

6. Experiments

We apply our architecture on two different settings: a
monolingual setting and a multilingual one. In this sec-
tion, we will introduce the training setup and the evalu-
ation metrics for our experiments.

6.1. Training Setup

We start training by loading the pre-trained encoder
model and initializing both the layer attention and the
linear projection in the classification head. Following
the approach in (Howard and Ruder, 2018), we used
gradual unfreezing and discriminative fine-tuning by di-
viding the set of parameters into two groups: the en-
coder parameters, that correspond to the parameters in
the encoder model and the layer attention; and the clas-
sification parameters, which are respective to the param-
eters in the classification head. The encoder parame-
ters are frozen during the first epoch and subsequently
trained with a learning rate of 3 × 10−5. The classifi-
cation parameters are trained with a constant 5 × 10−5

learning rate and dropout probability of 0.1. Evaluation
is performed at the end of each epoch and training stops
when the validation SER does not improve for 3 con-
secutive epochs. At test time, the model with the best
validation SER is selected.
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6.2. Evaluation Metrics
All the evaluation presented in this paper uses the per-

formance metrics: F1-score and SER (Makhoul et al.,
2005). Only punctuated gaps between two words are
considered as slots and used by these metrics. Hence,
the punctuation SER is computed by dividing the num-
ber of punctuation errors (misses and false alarms) by
the number of punctuated gaps in the reference.

6.3. Conducted Experiments
We start by showing the results for the models trained

on the monolingual datasets and multilingual datasets.
After that, we make some remarks regarding the training
samples preparation, either for human-edited transcripts
or ASR transcripts, and how it affects the results. By
doing so, we establish a comprehensive comparison be-
tween our results and the results in the literature. Then,
we analyze how a single multilingual model compares
with the monolingual models to investigate whether the
former is competitive with the latter ones and if insights
gained through training with one language are trans-
ferred to another language.

7. Results

This section reports the results and provides an anal-
ysis of the experiments mentioned in Section 6.3.

7.1. Monolingual Models
We start by analyzing the results for models trained

on a single language. It is important to recall that, due
to the pre-training of the encoder models, RoBERTa can
only be used as the encoder model of our architecture
to solve the task for English whereas XLM-R can be
used to solve the task for any of the 100 languages that
it supports. Additionally, as most studies in the litera-
ture regarding punctuation restoration are based solely
on solving the problem in English, we separate this sec-
tion into two parts: one part that is entirely dedicated to
English, and another that is dedicated to the other lan-
guages (German, Dutch, Portuguese and Romanian).

7.1.1. English Language
We report the results in Table 2. We can observe that

RoBERTa slightly outperforms XLM-R as the encoder
model of our architecture in all the tests. That is pre-
dictable, since RoBERTa was pre-trained only on En-
glish data and XLM-R was pre-trained with multilin-
gual data. It is clear that the performance of our models
is degraded for the ASR track. We argue that this is pos-
sibly due to the recognition errors of the ASR outputs

and subsequent punctuation transfer (see Figure 2). We
also note that as the proportion of QUESTION labels in
the datasets is very small comparing with the proportion
of PERIOD and COMMA labels, it was expected that
the results when testing the models that were trained on
3 labels and those that were trained on 4 labels would be
very similar. Finally, for the human-edited transcripts,
we observe that the models are able to consistently clas-
sify the QUESTION label better than the PERIOD tag.
This is not the case for the ASR transcripts. This can
also be due to the alignment/recognition errors in the
ASR – as questions in English are usually formulated
with an auxiliary verb and subject inversion (e.g. Is
it...?, Do you...?), if an error occurs in the alignmen-
t/recognition and those words do not feature in the ref-
erence, they will not act as a cue to predict the question
mark, and the model, consequently, will not be able to
predict it correctly. Figure 4 shows one example of such
event. Nevertheless, the most frequent errors are due to
situations where commas and periods can be used in-
terchangeably. As our models do not rely in positional
information to predict PERIOD and COMMA labels,
the most frequent errors are predicting a COMMA for a
given gap whose target reference is PERIOD, and vice-
versa. Figure 5 depicts such a case. This issue will be
discussed later on in Section 7.3.

Human-Edited Transcripts
REF: (...) is it a happy word, or a sad word ? (...)
PRED: (...) is it a happy word or a sad word ? (...)

Aligned ASR Transcripts
REF: (...) he said that happy word , was sad work ? (...)
PRED: (...) he said that happy word was sad. work (...)

Figure 4: Example of an excerpt of a test sample in which the ASR
recognition errors led to a prediction error. Note that, for this particu-
lar example, the SER for the reference sample is 2/3, and for the ASR
sample is 1/4.

7.1.2. Other Languages
We trained monolingual models using the 3 labels

setting and XLM-R as the encoder model for the other
languages considered in this study. Table 4 reports the
corresponding results. We observe that the results are
consistent across all languages. It is important to re-
mark that comparisons across all languages are not ex-
actly fair, since each language has its own set of fea-
tures. Moreover, the transcripts for each of the talks in
the datasets are obtained via translation, and these are
not necessarily created by the same translators nor re-

8



Test Track Encoder
Model

3 labels 4 labels
F1 Score

SER
F1 Score

SER
PERIOD COMMA Overall PERIOD QUESTION COMMA Overall

IWSLT
2011

Human
Edited

RoBERTa 83.0 73.3 78.1 30.0 82.2 83.2 73.5 79.6 29.7
XLM-R 81.1 72.2 76.7 31.9 80.9 76.5 72.3 76.6 32.5

ASR
RoBERTa 77.3 60.5 68.9 53.5 76.6 64.8 60.4 67.3 54.2
XLM-R 74.8 58.7 66.8 55.3 74.9 61.5 58.9 65.1 56.8

IWSLT
2017

Human
Edited

RoBERTa 84.5 75.2 79.8 28.7 84.0 86.1 75.5 81.7 28.5
XLM-R 81.9 73.4 77.7 31.3 81.9 82.9 73.5 79.4 31.5

Table 2: Metrics, in percentage, on the English test sets of IWSLT 2011 (Human Edited and ASR tracks), and IWSLT 2017 (Human Edited track)
for the four different trained models (2 encoder models: XLM-R or RoBERTa; and 2 sets of labels: 3 labels or 4 labels setting).

Fail to predict PERIOD by predicting COMMA
REF: (...) today the average American spends about a week

a year stuck in traffic jams . and that’s a huge waste
of time and resources . (...)

PRED: (...) today the average American spends about a week
a year stuck in traffic jams , and that’s a huge waste of
time and resources . (...)

Fail to predict COMMA by predicting PERIOD
REF: (...) i’m going to do an international biennial , i need

artists from all around the world . (...)

PRED: (...) i’m going to do an international biennial . i need
artists from all around the world . (...)

Figure 5: Example of excerpts of two test samples in which the model
fails in its predictions: in the first excerpt, it introduces a comma in
a gap whose reference label was a period; in the second excerpt, it
introduces a period in a gap whose reference label was a comma.

viewed by the same reviewers. In Table 3, we observe
that, comparing a parallel excerpt transcript in English
and Portuguese, the way the punctuation is introduced is
different. Specifically, the transcript in Portuguese con-
tains two more commas and one more period. Note that
the period is introduced in a gap for which a colon was
assigned in English. Actually, a colon was introduced
in this very same gap in Dutch and English, whereas
the others introduced a period. This reveals some in-
consistency between translators on what is the correct
punctuation mark to use in that case.

7.2. A Single Model for Multiple Languages

To the best of our knowledge, there is not a study
in the literature for punctuation restoration for multiple
languages making use of a single model. We tackle that
by making use of the multilingual dataset, previously
mentioned in Section 4, to train our model with XLM-R
as the encoder model. Note that this pre-trained encoder
model already encapsulates information for more than

EN

Several years ago here at TED , Peter Skillman in-
troduced a design challenge called the marshmallow
challenge . And the idea’s pretty simple : Teams of
four have to build the tallest free-standing structure
out of 20 sticks of spaghetti , one yard of tape , one
yard of string and a marshmallow .

PT

Há uns anos , aqui no TED , Peter Skillman apresen-
tou um desafio de projecto chamado ”O desafio do
marshmallow” . A ideia é muito simples . Equipas de
quatro têm que construir a estrutura mais alta e estável
, a partir de 20 barras de esparguete , um metro de fita
cola , um metro de cordel e um ”marshmallow” .

Table 3: Human edited transcriptions of an excerpt of a TED Talk
in English and Portuguese. The punctuation for the two languages
is introduced differently, leading to variance in the results across lan-
guages. Blue is used to represent inserted punctuation, green is used
when the punctuation across the two languages is aligned, and red is
used to represent a gap where a different punctuation mark was used
across the two languages.

100 languages. Thus, by training our architecture, we
will end up finetuning the encoder’s weights to solve the
punctuation restoration task for five different languages.
The right side of Table 4 shows the results of the sin-
gle multilingual model for each one of the language’s
human-edited transcripts in the IWSLT 2017 test sets.
The result for English is respective to the monolingual
trained with XLM-RoBERTa as the encoder model. We
can see that the single multilingual is very competitive
with the monolingual models, even outperforming some
of them in what comes to SER. Training a single model
with data from five different languages had a bigger im-
pact on the PERIOD label, for which the results are con-
sistently better than those respective to the monolingual
models. This might be due to a structural similarity in
the way this type of punctuation is introduced across
the different languages. From a semantic standpoint, it
is expected that the COMMA label requires more un-
derstanding of the language when compared to the PE-
RIOD label. These results evidence the potential of
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IWSLT 2017 Test Set: Human-Edited Transcripts

Language
Monolingual Models Single Multilingual Model

F1 Score
SER

F1 Score
SER

PERIOD COMMA Overall PERIOD COMMA Overall

EN 81.9 73.4 77.7 31.3 83.0 73.0 78.0 31.4
DE 86.3 82.7 84.5 22.8 86.7 77.7 82.2 27.1
NL 84.8 68.2 76.5 32.5 84.9 69.2 77.1 32.0
PT 83.5 69.0 76.2 36.0 84.0 69.4 76.6 34.2
RO 83.1 69.2 76.0 35.6 83.7 70.8 77.2 34.2

Table 4: Metrics, in percentage, on the human-edited transcripts test set of IWSLT 2017 respective to each of the five different monolingual models
and the single multilingual model. All the models were trained with XLM-R as the encoder model.

IWSLT 2011 Test Set: Human-Edited and ASR Transcripts

Track
F1 Score

SER
PERIOD QUESTION COMMA Overall

Human
Edited 82.6 78.8 73.1 78.2 31.2

ASR 76.4 63.0 59.9 66.4 54.2

Table 5: F1-Score, in percentage, on the human-edited and ASR
transcripts test set of IWSLT 2011 respective to the single multilingual
model.

using a single multilingual model to solve the task for
multiple languages. This is of particular importance for
our application, since training a different model for each
language is a cumbersome and time-consuming process.

We also report in Table 5 results from evaluation of
the single multilingual model in the IWSLT 2011 test
sets for both human-edited and ASR tracks. By ex-
amining the results and comparing with those in Table
2, we can see that the single multilingual model per-
formance is competitive with that of RoBERTa in both
tracks, even being able to match it on the ASR track in
what comes to SER.

7.3. Comparison with the Literature

In this section, we will compare our methods and re-
sults with those reported in Yi et al. (2020) as it stands
as the current state of the art for this task. There are two
main differences between our studies:

• we train and evaluate our models on chunks of seg-
ments (chunk-level), i.e., a training/testing sample
consists of multiple segments, whereas Yi et al.
(2020) train and test their models considering each
segment as a training/test sample (segment-level);

• we consider alignment and recognition errors in
our evaluation of the ASR outputs, whereas Yi
et al. (2020), following the procedure in Ueffing

et al. (2013), restrict the evaluation to those punc-
tuation marks whose context words to the left and
the right have been recognized correctly.

The models in Yi et al. (2020) were tested in the
IWSLT 2011 test set, both for the human-edited tran-
scripts and the ASR outputs. We will be using the 4
tags setting in our comparisons, as that is the setting
that is used in their work. The model developed in that
study is a monolingual English language, so we will be
using our best monolingual English language model to
draw the comparisons, i.e, the one with RoBERTa as the
encoder model.

7.3.1. Training on Chunks of Segments
We observed that by training on chunks of segments,

the model would not be able to entirely rely on posi-
tional information to solve the punctuation task. This
is not the case for the models that are trained at the
segment-level. The latter models develop an heuristic
to assign the correct sequence of labels: i) label the last
gap of a sample with a PERIOD label, and ii) do not
label any gap that is not the last with a PERIOD/QUES-
TION label. This is mainly due to the fact that all the
training samples for a sentence-level training contain a
PERIOD/QUESTION in the last gap and, as they con-
sist of a single sentence, it is highly likely that there
are no other PERIOD/QUESTION in the segment. By
training and evaluating at the segment-level, the PERI-
OD/QUESTION are easily predicted and there will be
little to no conflict between the PERIODs and COM-
MAs. That is not the case for training and evaluation
on chunks of segments, since the model cannot rely
on heuristics to solve the task. Note that as the seg-
ments are concatenated, there will be multiple PERI-
ODs/QUESTIONs and COMMAs in the sample.

To draw qualitative comparisons, we conducted three
additional experiments: i) train a model with RoBERTa
as the encoder model at the segment-level, ii) evaluate
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IWSLT 2011 Test Set: Human-Edited and ASR Transcripts

Track Model
F1 Score

PERIOD QUESTION COMMA Overall

Human
Edited

Yi et al. (2020) best model 84.1 75.8 73.6 77.8
Our best model 98.1 88.2 84.0 90.0

ASR
Yi et al. (2020) best model 79.5 69.6 70.8 73.3

Our best model 97.8 75.7 67.8 80.4

Table 6: F1-Score, in percentage, on the human-edited transcripts test set of IWSLT 2011 respective to the best model of Yi et al. (2020) and our
best model trained at the segment-level. The test set is such that each sample corresponds to a single segment.

IWSLT 2011 Test Set: Human-Edited Transcripts

Train Level Test Level
F1 Score

PERIOD QUESTION COMMA Overall

segment-level
segment-level 98.1 88.2 84.0 90.0
chunk-level 14.0 4.17 57.9 25.3

chunk-level
segment-level 89.3 78.4 79.7 82.5
chunk-level 82.2 83.2 73.5 79.6

Table 7: F1-Score, in percentage, on the human-edited transcripts and ASR test sets of IWSLT 2011 respective to the models trained at the
segment-level and at the chunk-level. Evaluation was also performed at the sentence-level and at the chunk-level.

the model trained at the chunk-level in the IWSLT 2017
test set at the segment-level, i.e., each test sample corre-
sponds to a single segment, and iii) evaluate the model
trained at the segment-level in the IWSLT 2017 test set
at the chunk-level, i.e, each test sample corresponds to
chunks of segments.

To train the model at the segment-level, we used the
same training setting described in Section 6.1. The only
difference resides in the data itself. In Table 6, we report
the results of our best model trained and evaluated at
the segment-level and the best model reported in Yi
et al. (2020). Our model clearly outperforms the pre-
vious state-of-the-art model. By analysis of our results,
we observed that the last gap’s prediction was PERIOD
or QUESTION for all samples but one. Moreover, most
of the errors are due to predicting a COMMA for a gap
whose reference does not attribute any punctuation to,
and vice-versa. This supports the notion of an under-
lying heuristic to solve the punctuation task for models
trained at the sentence-level.

In our pipeline scenario, the main problem with this
type of training is the implicit dependency on correct
segmentation of the ASR outputs. If the text is not cor-
rectly segmented, the model will always predict a PE-
RIOD or QUESTION tag for the last gap of a segment,
either it makes sense linguistically or not. Moreover,
training the models at the segment-level make them in-
apt to restore punctuation for samples which consist of
multiple sentences. In Table 7, we report results that
support this notion. We notice that the model trained

at the sentence-level performs remarkably poorly when
evaluated on longer samples consisting of multiple seg-
ments. Notice that the biggest impact on performance
comes from the PERIOD and QUESTION labels, once
the model is biased to predict these labels only at the
end of each sample. In contrast, the model trained at the
chunk-level is able to perform very satisfactorily either
when it is evaluated at the segment-level or at the chunk-
level. As Ueffing et al. (2013) reports, if we were to
evaluate our model at the document-level, we would ob-
tain a lower bound for the performance, and if we were
to evaluate our model at the segment-level, we would
obtain a upper bound for the performance. The truth
lies in the middle – that is precisely our approach.

7.3.2. Error Propagation in the ASR Evaluation
We observed in Table 2 that the model’s performance

in the ASR track is considerably degraded when com-
pared to the performance in the human-edited tran-
scripts track. We briefly discussed these results in Sec-
tion 7.1.1. In Table 6, we compare our best model
trained at the segment-level with the best model re-
ported in Yi et al. (2020) for the ASR track. We re-
port the results for the evaluation at the segment-level
as well. The results for our best model trained at the
chunk-level and evaluated at the chunk-level can be
found in Table 2. Notice that our model outperforms
the model in Yi et al. (2020) for all labels except for the
COMMA. This might be due to how we are transfer-
ring punctuation from the reference to the ASR output.
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The work in Yi et al. (2020) cites back to Ueffing et al.
(2013) in what comes to the corpora processing. As al-
ready mentioned in Section 4, in Ueffing et al. (2013),
the authors opted to restrict the evaluation to those punc-
tuation marks whose context words to the left and the
right have been recognized correctly, as the transfer of
punctuation based on the Minimum Edit Distance did
not lead to satisfactory results because the utterances
contained many ASR errors. However, we think this
evaluation is not entirely suitable for our use-case, since
the authors opted to alleviate a problem that is likely to
actually occur in our pipeline. Note that this effect is
not felt as much for the PERIOD label, once it is very
likely that each sample contains a single PERIOD la-
bel located at the end of the sample. Thus, it will be
transferred precisely, and subsequently predicted cor-
rectly by making use of the positional information of
the model trained at the segment-level.

8. Conclusions

We have proposed an approach for punctuation pre-
diction that achieves state-of-the-art results. Our archi-
tecture is composed of three main building blocks: a
pre-trained Transformer-based encoder model that con-
sists of either RoBERTa or XLM-RoBERTa, an atten-
tion mechanism over the encoder layers, and a multi-
nomial logistic regression classifier. We have con-
ducted our evaluation experiments both in the tran-
scripts of TED Talks from the IWSLT 2017 evaluation
campaign, and in the English transcripts of TED Talks
from IWSLT 2011, allowing to further compare our re-
sults with related work reported in the literature.

We have applied our architecture first as a monolin-
gual setting, and later as a multilingual one. Concern-
ing the monolingual setting, we have created monolin-
gual models for English, revealing that RoBERTa out-
performs XLM-RoBERTa as the encoder model, a pre-
dictable result since RoBERTa was pre-trained only on
English data and XLM-RoBERTa was pre-trained with
multilingual data. We have also observed that the recog-
nition errors of the ASR output degrade the performance
of our models, in line with the related literature. The
most frequent errors are due to situations where com-
mas and periods can be used interchangeably. As our
models do not rely in positional information to predict
PERIOD and COMMA labels, the most frequent errors
are predicting a COMMA for a given gap whose target
reference is PERIOD, and vice-versa. We also have cre-
ated individual monolingual models for Human-edited
transcripts in German, Dutch, Portuguese and Roma-
nian. All the models consistently performed better in

the prediction of full-stop, revealing that COMMA may
be more difficult to predict using pre-trained contextual
models. Finally, we have trained a single multilingual
model that can be used for predicting punctuation across
multiple languages. The corresponding results are com-
parable with results achieved with monolingual models,
even surpassing the existing results for 3 of the 5 lan-
guages. Such results evidence the potential of using a
single multilingual model to solve the task for multiple
languages. This is of particular importance for our video
subtitling pipeline, since training a single model is more
efficient than training and selecting a different model for
each language. The achieved results also confirm that a
morphologically rich language, such as the Portuguese,
also fits into the concept of multilingual punctuation.
Finally, it is important to refer that, to the best of our
knowledge, there is not a study in the literature for punc-
tuation restoration for multiple languages with a single
model.

Finally, we have performed additional experiments to
provide, as much as possible, a fair comparison with the
existing state-of-the-art. We argue that usage of current
punctuation systems in the literature implicitly require
correct segmentation of ASR outputs for they rely on
heuristics to solve the punctuation task. This is a major
issue for incorporation of such models in a real life ap-
plication. Through several experiments, we show that
our method to train and test models is more robust to
different segmentation.

In the future we plan to extend this work to in-
clude other language families, besides Germanic and
Romance, such as Semitic and Slavic languages. That
will allow us to strengthen our multilingual approach
or, as punctuation for different languages may involve
different feature sets (Szaszák and Ákos Tündik, 2019;
Nanchen and Garner, 2019), help identifying possible
limitations.

For reproducibility purposes, the developed code and
respective hyperparameters are provided in the address:
https://github.com/Unbabel/caption.
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