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We clarify a number of issues that arise when extending the analysis of Strong Cosmic Censorship
(SCC) to perturbations of highly charged Reissner-Nordström de Sitter (RNdS) spacetimes. The
linear stability of the Cauchy horizon can be determined from the spectral gap of quasinormal
modes, thus giving a clear idea of the ranges of parameters that are likely to lead to SCC violations
for infinitesimally small perturbations. However, the situation becomes much more subtle once
nonlinear backreaction is taken into account. These subtleties have created a considerable amount
of confusion in the literature regarding the conclusions one is able to derive about SCC from the
available numerical simulations. Here we present new numerical results concerning charged self-
gravitating scalar fields in spherical symmetry, correct some previous claims concerning the neutral
case, and argue that the existing numerical codes are insufficient to draw conclusions about the
potential failure of SCC for near extremal RNdS black hole spacetimes.

I. INTRODUCTION

Strong Cosmic Censorship (SCC) conjectures that
Cauchy Horizons (CHs) – the boundaries of the maximal
evolution of initial data via the Einstein field equations –
are unstable and give rise, upon perturbation, to singu-
lar boundaries where the Einstein field equations break
down.

It is important to clarify how strong these singular
boundaries must become in order to correspond to termi-
nal boundaries for the validity of the field equations. In
this respect, it is well known that the blow up of curva-
ture is not enough to imply neither the breakdown of the
field equations [1] nor, in fact, the destruction of macro-
scopic observers [2]. So, in order to guarantee the forma-
tion of a terminal boundary one needs a stronger type
of singularity. In the context of the Einstein-scalar-field
system in spherical symmetry, the natural candidate is a
mass inflation singularity, where the Misner-Sharp mass
diverges. In this scenario, not only the Kretschmann
curvature scalar necessarily blows up1, but moreover the
field equations are expected to break down completely [4].

In the context of linear scalar field perturbations, as
studied in [5], mass inflation (and the breakdown of
the field equations) cannot be studied directly, since the
spacetime geometry is fixed. We can however study, as
a proxy for this phenomenon, the blow up of the H1

norm of the scalar field perturbation. The numerical
results in [5] suggest that this blow up does not occur

1 Note that the converse is not necessarily true, since it is possi-
ble to construct solutions with bounded Misner-Sharp mass and
diverging Kretschmann scalar [3].

for highly charged/near extremal Reissner-Nordström de
Sitter (RNdS) black holes (BHs), i.e. the CHs in these
spacetimes are expected to be linearly stable. This sug-
gests a potential failure of SCC! But the confirmation of
this disturbing suggestion demands an understanding of
nonlinear effects.

The authors of this note recently discussed a nonlin-
ear numerical analysis of the CH of RNdS spacetimes [6].
The main purpose of that study was to confirm whether
the aforementioned linear results of Ref. [5] would also
hold in the full nonlinear setting. More precisely, the au-
thors wished to confirm if nonlinear perturbations of the
RNdS BHs identified in [5] as possessing linearly stable
CHs give rise to spacetimes where the Misner-Sharp mass
remains bounded.

To ascertain the nonlinear stability of the CH we stud-
ied the interaction of a neutral scalar field pulse with the
BH (as determined by the Einstein-scalar field system
with a positive cosmological constant in spherical sym-
metry), and checked whether this pulse triggered mass
inflation in the BH interior. The corresponding simula-
tions seemed to show, fairly convincingly, that mass infla-
tion completely disappeared above a certain BH charge
threshold. We thus concluded from this evidence that
nonlinear effects were apparently insufficient to preserve
SCC. Naturally, we were aware that no irrefutable proof
regarding the asymptotic behavior of the Misner-Sharp
mass could be obtained from our numerical evolution:
any numerical code has a necessarily finite maximal evo-
lution time, and, in principle, mass inflation could always
emerge after such a time. Nonetheless, our claim con-
cerning the inexistence of mass inflation was supported
by the fact that our evolution showed a nearly constant
Misner-Sharp mass well within the instability (blue-shift)
region [7], i.e., the Misner-Sharp mass remained small
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while the Kretschmann scalar was already diverging.

In the meantime, we have improved our numerical code
by, in particular, extending its scope to charged scalar
fields; we will present some of the corresponding new nu-
merical results here. As part of this effort, we have also
revisited the neutral case and gained new insights into
the problem. In view of these, we feel obliged to retract
the claim – made in Ref. [6] – regarding the construction
of numerical solutions with no mass inflation, and discuss
some possible sources of confusion that can arise in the
interpretation of the nonlinear effects. We will also argue
that, despite the aforementioned improvements, the ex-
isting numerical codes are insufficient to draw conclusions
regarding the potential failure of SCC for near extremal
RNdS BH spacetimes.

II. NEW NUMERICAL RESULTS.

In Ref. [6] we discussed two sets of simulations, where
we considered charged BHs of (initial) mass M0 = 1, cos-
mological constant M2

0 Λ = 0.06, and two different values
for the BH charge, Q = 0.9 and Q = 1.0068. The first
one, Q = 0.9, corresponding to Q = 0.890Qmax, is below
the stability threshold Qth = 0.992Qmax predicted by [5],
where Qmax is the maximal (extremal) charge of the
RNdS solutions with parameters M and Λ. In this case,
the CH is linearly unstable, and, as expected, mass in-
flation occurred in the numerical simulations. The other
value of the charge was Q = 1.0068, corresponding to
Q = 0.996Qmax, which, according to the linear results in
Ref. [5], is expected to lead to violations of SCC, in the
sense that small enough perturbations of these solutions
are expected to have bounded Misner-Sharp mass up to
the CH. Indeed, in the results shown in Ref. [6] no mass
inflation was observed.

However, when sending in a scalar field pulse in a non-
linear evolution, accretion by the BH will necessarily in-
crease its mass, which tends to make it less extremal, i.e.,
less likely to experience mass inflation according to the
linear analysis [5]. This effect is key, since a large enough
scalar field pulse will drive the BH outside the region of
expected SCC violation (given by Qth ∼ (1− 10−3)Qmax

for neutral scalar fields, and Qth ∼ (1 − 10−5)Qmax for
charged scalar fields, where Qmax should be computed us-
ing the final BH mass and charge). If this happens, mass
inflation will probably reappear, whether we are able to
see it during the course of the numerical evolution or not.

Accretion effects were noted in Ref. [8], where it was
argued that they would make SCC violations impossible.
We cannot agree with this argument: as a matter of prin-
ciple, one can always use arbitrarily small perturbations,
sufficiently small as to keep the BH in the near extremal
regime where potential failures of SCC are expected.

For the simulation in our previous work [6], it is easy
to check that the final BH ends up with Q = 0.97Qmax,
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FIG. 1. Misner-Sharp mass and Kretschmann scalar profiles
in the BH interior, as functions of the Eddington-Finkelstein
coordinate v̊ along outgoing null geodesics, for a charged (q =
0.45) massless scalar field. Parameters: Λ = 0.06, Q0/Qmax =
1 − 10−5.

well below the threshold for SCC violations!2 At the
time of publication this was not recognized as a prob-
lem, since Qth was mistakenly identified to be around
0.95Qmax. This erroneous value is also included in the
paper’s discussion. Why, then, were we not seeing mass
inflation in all cases? The answer is that as the charge
of the BH approaches Qth, so does the timescale for the
onset of mass inflation (see Eq. (1)). Therefore, for a
finite evolution time, one may be tempted to conclude
in favor of SCC violation even for sub-critical spacetimes
with Q < Qth, where mass inflation is expected to exist,
especially if in that (short) evolution we observe an al-
most constant small Misner-Sharp mass accompanied by
diverging curvature. That was exactly what happened
with the evolutions that were erroneously associated with
no mass inflation solutions in Ref. [6]; in fact, we now
expect that in those evolutions mass inflation was “just
around the corner”, i.e., just after v̊ = 50, where unfortu-
nately numerical noise becomes dominant and does not
allow further conclusions.

In Fig. 1 we present new results concerning charged
scalar fields (where numerical noise is smaller) by per-
turbing a scenario where the linear analysis also sug-
gested a potential failure of SCC [9] (compare with [10,
11]). In this case accretion again drives the black hole
away from the region of expected SCC violation, and
mass inflation does occur. Notice that the Misner-Sharp
mass is almost constant well into the region where the

2 The charge Q of the BH, of course, does not change; what changes
is Qmax, since it depends on the BH’s final mass.
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FIG. 2. Timescale for the onset of mass inflation – given by
the value v̊ = v̊on of the Eddington-Finkelstein coordinate
where the Misner-Sharp mass increases above a threshold of
M = 1.025 M0 – as a function of the final charge. The scalar
field charge is q = 0.45.

curvature is already diverging.
It is quite clear that the onset of mass inflation (by

which we mean the value v̊ = v̊on of the Eddington-
Finkelstein coordinate along the outgoing null geodesics
where the Misner-Sharp mass increases above a threshold
of M = 1.025 M0) is delayed as one gets closer and closer
to maximally charged BHs. In fact, for the neutral case
we can use the results in [3] to prove the lower bound

v̊on(u) ≥ C log

(
1

u− ueh

)
1

1 −Q/Qmax
, (1)

for all sufficiently small values of the ingoing null coor-
dinate u > ueh, where u = ueh is the event horizon and
C > 0 is a constant that depends on the final black hole
parameters, but is bounded away from zero (see the Ap-
pendix for more details).

The question then reduces to determining the time re-
quired for the onset of mass inflation as a function of the
final BH charge. More precisely, does this timescale be-
come infinite before extremality? If it does, this would
imply a violation of SCC, since it would leave a range of
final charges where no mass inflation occurs; if it does
not, SCC is preserved. Note that an estimate of the
form (1) does not suffice to reach such a conclusion.

Figure 2 depicts the (approximate) time for the on-
set of mass inflation as a function of the final charge.
The different values of the final charge are achieved by
performing simulations with different initial black hole
charges Q0. In this case we are using a charged scalar
field with q = 0.45 (compare with Fig. 1 and Ref. [9]),
and the code is only able to follow the evolution until
v̊ ∼ 70. We have fitted the numerical data with two dif-
ferent functions, a power-law f (̊von) = b1 − k1

v̊αon
and an

exponential g(̊von) = b2 − k2e
−βv̊on − k3e

−γv̊2on . These

two curves, even though they both agree very well with
the numerical data, have very different asymptotic be-
haviors. Quite obviously, then, the given data is not
nearly enough to extrapolate the asymptotic behavior of
the curve without knowing its specific form.

This takes us to the next problem: The smaller the
perturbation, the longer it takes for the onset of mass
inflation to occur. If the scalar field pulse is small enough
to keep the BH in the right extremality range then we
would need an extremely long evolution to rule out mass
inflation. Such a long evolution seems to be well beyond
the capabilities of our numerical scheme (and of any other
double-null code that we have seen so far).
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Appendix A: Derivation of Eq. (1).

In this appendix we provide the necessary details to de-
rive Eq. (1) from the results in [3]. In that paper a curve
γ, parameterized by (u, vγ(u)), is constructed to probe
the CH. It turns out, see the proof of Lemma 8.1, that
in the past of that curve the Misner-Sharp mass (renor-
malized Hawking mass in the terminology of [3]) can be
made arbitrarily close to the final black hole mass, by
choosing u− ueh > 0 sufficiently close to zero. From this
we immediately see that v̊on(u) ≥ vγ(u). It then follows,
from the unnumbered equation following Eq. (171) of [3],
that

v̊on(u) ≥ vγ(u) ≥ C log

(
1

u− ueh

)
1

k+
, (A1)
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where k+ > 0 is the surface gravity of the event horizon of
the reference RNdS solution with parameters prescribed
by the final parameters of the dynamic solution under
analysis. To derive the last estimate one needs to note
that we are allowed to rescale the smallness parameter δ
appearing in [3] by δk+ and that the constant c > 0 of [3]
approaches unity as δk+ goes to zero.

To finish the derivation of (1) we just need to recall the
following simple identities given in terms of the horizon

radii of the reference RNdS solution:

k+ =
Λ

6

(rc + 2r+ + r−)(r+ − r−)(rc − r+)

r2
+

, (A2)

Q/Qmax =
r−
r+

. (A3)
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