

Malware detection methods for Android mobile applications

João Pedro Lapa da Silva Lopes

Master in Telecommunications and Computer Engeneering

Supervisors:
Professor Carlos Serrão, Professor Auxiliar,
ISCTE-IUL

Professor Luís Nunes, Professor Auxiliar,
ISCTE-IUL

September, 2020

Malware detection methods for Android mobile applications

Acknowledgements

This thesis would not have been possible without the manifested support throughout its writing

and my academic journey as a whole.

Firstly, I would like to thank my supervisors Carlos Serrão and Luís Nunes, for their

availability to help whenever I had any doubts and for the knowledge they transmitted to me.

Their dedication and support were paramount to the conclusion of this stage of my academic

journey.

I would also like to thank my family for all the love, support, and most importantly, for

allowing me to pursue this academic career. I would also like give a special thanks to my sister

Sílvia, for always wanting the best for me and encouraging me through all the tough times.

A very special thanks to my girlfriend, Inês Sousa, for teaching me that I should always

aim higher and give my best effort in everything that I do. I will be forever grateful for her

constant love, care, and support because I think I could not have finished this journey without

it.

Lastly, I would like to thank my friends for their friendship and support.

This work is part of the AppSentinel project, co-funded by Lisboa2020/Portugal2020/EU

in the context of the Portuguese Sistema de Incentivos à I&DT - Projetos em Copromoção

(project 33953). The authors also would like to acknowledge the FCT Project

UIDB/MULTI/04466/2020 (ISTAR-IUL) and UIBD/EEA/50008/2020 (Instituto de

oviding support

and data that was used in this study.

Malware detection methods for Android mobile applications

i

Abstract

Advancements in mobile computing are attracting traditional device users to transition

toward mobile platforms to fulfil their data processing needs. Among these, the Android

platform is the most popular, holding the majority of the market share due to its open-source

policy and ability to install applications from different application stores. This fact, coupled

with the amount of sensitive data these devices now store, makes it attractive for malware

authors to attack the Android platform, causing a large influx of malicious applications in the

ecosystem. Traditional malware detection methods cannot effectively control and prevent this

influx, demanding an automatic and intelligent approach such as machine learning. In this

thesis, three machine learning algorithms, XGBoost, SVM and K-NN were trained with several

features, with a focus on Android permissions , to measure the

effectiveness of applying machine learning techniques to combat the proliferation of malware.

Given goodware to malware ratio of 99/1, four experiments with an under-sampled

version of the dataset with a ratio of 70/30 were conducted to test different subsets of the feature

space as well as feature elimination and aggregation before training the algorithms with the full

set of features using feature normalization across two distinct scenarios. This approach showed

promising results, with XGBoost, SVM and K-NN distinguishing between malware and

goodware with a score of 90 % (Area Under the Receiver Operating Curve values).

Keywords: malware detection, machine learning, Android, security, mobile

Malware detection methods for Android mobile applications

ii

Malware detection methods for Android mobile applications

iii

Resumo

Os avanços na computação móvel estão a atrair utilizadores de dispositivos tradicionais a

transitar para as plataformas móveis para atender às suas necessidades de processamento de

dados. Entre estas, a plataforma Android é a mais popular, detendo a maioria da quota de

mercado devido à sua política open-source e capacidade de instalar aplicações através de várias

lojas de aplicações. Este facto, conjuntamente com a quantidade de dados sensíveis que estes

dispositivos agora armazenam, torna o ataque à plataforma Android atraente para os autores de

malware, causando um grande fluxo de aplicações maliciosas no ecossistema. Os métodos

tradicionais de deteção de malware não conseguem controlar e prevenir este fluxo eficazmente,

exigindo uma abordagem automática e inteligente, como a aprendizagem automática. Nesta

tese, três algoritmos de aprendizagem automática, XGBoost, SVM e K-NN, foram treinados

com diversas características, focando-se nas permissões Android e características estáticas das

aplicações, para medir a eficácia da aplicação de técnicas de aprendizagem automática no

combate à proliferação de malware. Dado o rácio de goodware para malware de 99/1 do

conjunto de dados, realizaram-se quatro experiências com uma versão subamostrada do mesmo

com um rácio de 70/30 para testar diferentes subconjuntos do espaço de características bem

como eliminação e agregação de características antes de treinar os algoritmos com o conjunto

completo de características usando normalização de características em dois cenários. Esta

abordagem apresentou resultados promissores, com XGBoost, SVM e K-NN distinguindo entre

malware e goodware com um score de 90 % (valores Area Under the Receiver Operating

Curve).

Palavras-chave: deteção de malware, aprendizagem automática, Android, segurança,

móvel

Malware detection methods for Android mobile applications

iv

Malware detection methods for Android mobile applications

v

Table of Contents

Acknowledgements .. i

Abstract .. i

Resumo ... iii

Table of Contents ... v

List of Figures ... vii

List of Tables .. ix

List of Abbreviations ... xi

1. Introduction .. 1

1.1. Motivation .. 1

1.2. Research Questions .. 3

1.3. Objectives ... 3

1.4. Structure ... 3

1.5. Contributions .. 4

2. Literature Review ... 5

2.1. Android platform application components and security .. 5

2.2. Static analysis-based malware detection .. 8

2.3. Dynamic analysis-based malware detection ... 14

2.4. Hybrid-analysis-based malware detection .. 16

3. Experimental Methodology ... 21

3.1. Business Understanding ... 22

3.2. Data Understanding .. 22

3.2.1. Labels .. 29

3.3. Data Preparation ... 29

3.3.1. Data cleaning .. 30

3.3.2. Undersampling .. 30

3.4. Modelling ... 33

3.5. Evaluation ... 36

3.6. Deployment .. 36

4. Tests and Validation... 39

4.1. Baseline Scenario ... 39

 .. 41

4.3. Experiment applying feature elimination and aggregation .. 43

4.4. Initial exploration with all features and a small dataset ... 47

5. Conclusions and future work .. 55

6. References ... 59

Malware detection methods for Android mobile applications

vi

7. Web References .. 63

Appendixes .. 67

Malware detection methods for Android mobile applications

vii

List of Figures

Figure 2.1 Android platform main components (source: [13]) ... 7

Figure 2.2 Android application package contents (adapted from [24]) 7

Figure 3.1 - CRISP-DM reference model [53] ... 21

Figure 3.2 Proportion of goodware and malware samples per day in the dataset 24

Figure 3.3 First 2 PCA principal components, (A) goodware and malware, (B) malware. The

outliers are circled in black .. 26

Figure 3.4 First 3 PCA principal components, (A) goodware and malware, (B) malware. The

outliers are circled in black .. 27

Figure 3.5 2-dimensional t-SNE projection of the dataset with a perplexity of 20 and a learning

rate of 50, (A) goodware and malware, (B) malware ... 27

Figure 3.6 3-dimensional t-SNE projection of the dataset with a perplexity of 20 and a learning

rate of 50, (A) goodware and malware, (B) malware ... 28

Figure 3.7 Example ROC curve (adapted from [69]) .. 35

Malware detection methods for Android mobile applications

viii

Malware detection methods for Android mobile applications

ix

List of Tables

Table 2.1 Performance of malware detection methods based on static analysis-obtained

features that use AUC as its performance metric ... 13

Table 2.2 Performance of malware detection methods based on static analysis-obtained

features that use Accuracy as its performance metric .. 13

Table 2.3 Performance of malware detection methods based on dynamic analysis-obtained

features ... 15

Table 2.4 Performance of malware detection methods based on hybrid analysis-obtained

features ... 18

Table 3.1 - General statistics of the dataset .. 22

Table 3.2 Daily goodware and malware distribution .. 23

Table 3.3 Unrequested permissions in the dataset .. 24

Table 3.4 Feature pairs that achieved a correlation equal or higher than 0.85 25

Table 3.5 Distribution of learning rate and perplexity values used to create t-SNE 2D and 3D

projections .. 26

Table 3.6 .. 28

Table 3.7 Dataset sizes before and after data cleaning ... 30

Table 3.8 Total number of samples before and after the under-sampling process 32

Table 4.1 -parameter value distribution in the first experiment 39

Table 4.2 -parameter value distribution in the first experiment 39

Table 4.3 K- -parameter value distribution in the first experiment 40

Table 4.4 Algorithm performance of the first experiment .. 40

Table 4.5 Time taken to train each algorithm in the first experiment (XGBoost and SVM) and

for K-NN to store the training instances .. 40

Table 4.6 -parameters in the second experiment 41

Table 4.7 odel hyper-parameters in the second experiment 41

Table 4.8 K- -parameters in the second experiment 42

Table 4.9 Algorithm performance for the second experiment .. 42

Table 4.10 Time taken to train each algorithm in the second experiment (XGBoost and SVM)

and for K-NN to store the training samples ... 42

Table 4.11 Feature pairs chosen for aggregation and the corresponding aggregated feature 44

Table 4.12 -parameters in the third experiment 45

Table 4.13 -parameters in the third experiment 45

Malware detection methods for Android mobile applications

x

Table 4.14 K- -parameters in the third experiment 45

Table 4.15 Algorithm performance for the third experiment .. 46

Table 4.16 Time taken to train each algorithm in the third experiment (XGBoost and SVM)

and for K-NN to store the training instances .. 46

Table 4.17 Algorithm performance per feature normalization technique of the fourth

experiment without feature elimination and aggregation ... 50

Table 4.18 Algorithm performance per feature normalization technique of the fourth

experiment after feature elimination and aggregation .. 51

Table 4.19 Average time taken to train each algorithm (XGBoost and SVM) and for K-NN to

store the training instances across five 750 iteration-grid search runs using 10-fold cross-

validation per feature normalization technique without feature elimination and aggregation . 52

Table 4.20 Average time taken to train each algorithm (XGBoost and SVM) and for K-NN to

store the training instances across five 750 iteration-grid search runs using 10-fold cross-

validation per feature normalization technique with feature elimination and aggregation 53

Malware detection methods for Android mobile applications

xi

List of Abbreviations

AAPT Android Asset Packaging Tool

ANN Artificial Neural Networks

API Application Programming Interface

APK Application Package

ART Android Runtime

AUC Area Under the ROC Curve

BN Bayesian Network

CFG Control Flow Graph

CRISP-DM Cross-Industry Standard Process for Data Mining

DL Deep Learning

DT Decision Tree

FPR False Positive Rate

GBT Gradient Boosted Trees

IDE Integrated Development Environment

IG Information Gain

K-NN K-Nearest Neighbours

LD Linear Discriminant

LR Logistic Regression

NB Naïve Bayes

NFC Near Field Communication

OS Operating System

OWASP Open Web Application Security Project

PC Principal Component

PCA Principal Component Analysis

RF Random Forest

ROC Receiver Operating Characteristic

RT Random Tree

SMO Sequential Minimal Optimization

SVM Support Vector Machine

TPR True Positive Rate

t-SNE - t-distributed Stochastic Neighbour Embedding

UI User Interface

Malware detection methods for Android mobile applications

xii

UID Unique User ID

URL Uniform Resource Locator

VM Virtual Machine

XGBoost eXtreme Gradient Boosting

XML Extensible Markup Language

Malware detection methods for Android mobile applications

1

1. Introduction

1.1. Motivation

Malicious software, or malware, has been a part of computing ever since the first ever

documented computer virus, albeit experimental, in 1970. From this point forward, malware

has not only grown from a diversity standpoint having the need to categorize malware

applications based on their proliferation method and/or how it affects its victim such as viruses,

worms, trojans, spyware, ransomware, etc but also from a volume standpoint, with AV-TEST

registering 1081.61 million total malware as of August 13th 2020 [1]. The former is due to the

never-ending battle between security professionals which are constantly creating new forms of

malware protection and prevention, and malware developers which in turn innovate through the

discovery of new attack vectors and proliferation methods, whereas the latter is due to

technological advances such as the Internet, the emergence of smartphones, etc. As the Internet

became more accessible to the general public [2], it also became an important tool to perform

a variety of tasks remotely such as home banking, communication via e-mail/social media, etc.

These tasks involve sensitive information that is very attractive to attackers. The Internet is also

a very effective vehicle for malware developers to disseminate malicious software to obtain

such information [3].

Although the majority of attacks target desktop computers, the emergence of smartphones

and their subsequent rise in popularity quickly turned these mobile devices into an appealing

attack vector for malware developers [3]. They are so popular in fact, that Statista forecasts the

number of mobile and smartphone users worldwide will reach 7.33 billion in 2023 and 3.8

billion in 2021 [4] [5]. This is due to their portability, high computational power, ability to

connect ubiquitously to the Internet and to acquire additional functionality through the

installation of applications provided by application stores.

Among the most used mobile platforms (Android and iOS), Android is the most popular,

holding 74.6% of the mobile Operating System (OS) market share due to its open-source

approach, providing a free Integrated Development Environment (IDE), without any hardware

restrictions as well as an application approval policy that is more lenient than its main

competitor iOS, which in turn is very strict and extensive [6]. Furthermore, to publish iOS

applications, it is necessary to pay a yearly subscription fee, creating an additional barrier of

entry which also contributes to Android . The Android OS also allows the

installation of applications from third-party application stores and unverified sources.

Malware detection methods for Android mobile applications

2

These factors make Android an appealing platform for malware authors to instrument their

attacks, resulting in the rapid growth of Android malware, both in quantity and sophistication

[7]. This lowers the effectiveness of Android application stores malware detection methods

because they cannot cope with the volume of malware that is being developed.

These stores usually have an application review process in order to determine if a submitted

application is accepted into the store. For example, the Google Play Store

process consists of reviewing if it achieves Android base-level security, followed up by an

automated review and a manual review in addition to having developer policies that application

developers must adhere to if they want their application to be distributed. If these policies are

violated, the application is not published, and the developer is notified with information about

the violation and after it addresses these issues it can be resubmitted for review. The application

can also be suspended due to violations of the developer policies. Repeated violations, such as

malware, can also lead to the termination of the accounts that are owned by the developer. Once

the review process is completed and the application is published into the Google Play Store, it

is verified continuously through Google Play Protect, which uses machine learning techniques

to detect malicious applications and activities such as impersonation and fraud while also

protecting Android devices [8] [9].

Given that malware detection is an important deciding factor of Android application

application approval process, it is important to research methods that could enable the

development of intelligent and automated Android malware detection methods, namely using

machine learning techniques, in order to combat the rampant proliferation of malware.

To address this problem, Aptoide a reputable and popular open-source third-party

Android application store without geo-restrictions which provides an user-generated content

platform where every user can create their own application stores in partnership with ISCTE-

IUL proposed the AppSentinel project which this thesis is integrated on with the aim of

researching and developing a cloud-based malware detection system using machine learning

techniques that will be implemented in its current security system [10]. Using both static and

dynamic analysis, this system will use applications from multiple sources to discover their

patterns and test future applications that are introduced to its store. Additionally, the extraction

of static and dynamic characteristics will be used to aid the comprehension of a

mobile top 10 mobile risks [11]. Afterwards, the combination of these two components are used

to create a profile for each application and together with user feedback a threat level will be

Malware detection methods for Android mobile applications

3

determined. The system also aids the developer by sending good software practices according

to the vulnerabilities found during the analysis.

In this thesis, several machine learning algorithms that are fed with features that are

extracted through the employment of static analysis to a large quantity of Android applications

provided by Aptoide will be tested, in order to conclude if this approach can help mitigate

Android malware proliferation in application stores. Additionally, Aptoide shared valuable

insights and knowledge about the malware detection and machine learning domains throughout

this thesis.

1.2. Research Questions

This work aims to answer the following research question:

 How effective can machine learning techniques be, using only static data, when applied

to malware detection in a real-world scenario?

1.3. Objectives

The main objective of this thesis is to determine if the usage of machine learning techniques

can be an effective approach for Android malware detection, contributing to the improvement

of Android malware detection. In contrast to the majority of the machine learning-based

Android malware detection methods found in the literature, this research is conducted using

real, current data on a large scale.

Another important objective is the development of a malware detection software prototype,

which implements the most effective malware detection methods in an automated manner found

by researching the literature. Additionally, the prototype will be used to provide experimental

proof regarding the effectiveness of the chosen malware detection methods and to compare the

obtained results against the ones found in the literature.

1.4. Structure

The remainder of this thesis is structured as follows: Chapter 2 will present an overview of the

mobile malware detection landscape with a focus on the Android platform, followed by an

overview of the Android platform application components and security, and finally, the

literature review of static, dynamic and hybrid-analysis-based machine learning detection

approaches. Chapter 3 will explain the CRISP-DM standard the methodology chosen to

conduct the experimental procedures in this thesis , the reason behind its adoption and present

the outputs of each phase that are applicable to all four experimental procedures. Chapter 4 will

Malware detection methods for Android mobile applications

4

focus on the presentation and discussion of the results of each experimental procedure. Chapter

5 concludes this thesis and proposes ideas for future work.

1.5. Contributions

machine learning algorithms fed with features obtained through static analysis with a focus on

Android permissions using real data; (ii) a systematic study on the adequacy of classification

techniques in the field of Android malware detection and (iii) an analysis on the importance of

Android permissions to Android malware detection as well as a proposal for feature

engineering.

Malware detection methods for Android mobile applications

5

2. Literature Review

Mobile computing technology has been advancing rapidly, and with the emergence of

smartphones, due to their ability to not only perform data processing tasks that are employed

by desktop computers, but also provide a mobile platform to do so, their adoption does not show

signs of stopping, given how attractive these features are for end-users [4]. These tasks

messaging, health and fitness, productivity, home banking, payments, etc are provided in the

form of mobile applications, pieces of software that are mainly distributed through application

stores. Thus, mobile devices store a wide variety of data, most of which contain personal and

sensitive information, becoming an attractive target for malware authors to instrument their

attacks on [12]. The Android platform in particular suffers the majority of these attacks in the

form of premium-rate SMS trojans, spyware, botnets, aggressive adware, ransomware, etc, due

to the fact that is it the most popular out of the two most used mobile platforms (Android and

iOS), making up 74.6 % of the mobile OS market share given that its open-source policy enables

mobile device manufacturers to use it as the base of their respective OS versions [6] [7]. In

addition, the only location from

where users can download applications. Users can download applications from third-party

stores or directly from the web, giving malware authors multiple paths to distribute malicious

applications, especially those which are disguised as benign applications [12]. The combination

of these factors contributed to the exponential increase of Android malware, and traditional

signature-based detection methods lose their effectiveness when faced with this increase in

volume. Therefore, is it imperative to develop automatic and intelligent malware detection

methods to prevent the proliferation of Android malware, and machine learning techniques

could be leveraged to achieve this objective.

2.1. Android platform application components and security

Android is an open-source platform providing a Linux-based operative system for mobile

devices, and its major platform architecture components are shown in Figure 2.1 [13].

Additionally, it provides an application environment in order to install developer-made

applications which are composed of four main components: the AndroidManifest.xml file,

activities, services and broadcast receivers [14]. These applications are then compiled into a file

called the Android application package (APK), which contains in the

form of files with a .dex extension, resources, assets and the AndroidManifest.xml file, as

shown in Figure 2.2 [15].

Malware detection methods for Android mobile applications

6

The AndroidManifest.xml file describes essential information about a given application to

the Android build tools, Google Play, but most importantly, to the Android OS [16]. This file

instructs the system about how to use activities, services, services and content

providers, and describes which permissions are required to execute it [14].

Activities can be thought of as a single screen within an application, providing it with a

window where it can draw its User Interface (UI) on. An application can have as many activities

as it needs. Therefore, activities enable user interaction with an application [17] [18].

Services are application components that can perform background tasks (such as network

operations) that are transparent to the user and can run indefinitely. Services can also perform

foreground tasks (such as playing music while the user interacts with another application), but

they must notify the user whenever it is being executed [17] [19].

Receivers are messages that an application is interested in receiving in order to perform an

operation afterwards. When a specific event occurs (such as the completion of the download of

a file), the application that triggered it sends a broadcast message that notifies every application

that specified that it desires to receive such message [17] [20].

Security-wise, the Android platform provides user-based protection by assigning a Unique

User ID (UID) to each application and forcing them to run in their own separate process. An

application is also unable to interact with others and has limited access to the OS by running it

within an application sandbox [21]. The purpose of this security mechanism is twofold: protect

applications and OS from malicious applications [21]. Because of this characteristic,

applications need to share resources and data with each other in a deliberate manner. This is

achieved using the concept of permissions, where an application declares the need of a given

permission to access resources and device features that are outside its sandbox [22]. In addition,

it also uses a secure inter-process communication feature to allow applications which are

executed in different processes to communicate with each other [23].

Permissions are an integral element to the security of an Android user, more specifically,

its privacy. Permissions control which user data (such as contacts and emails) and system

features (such as the camera and Near Field Communication (NFC)) a given Android

application can access and use. They are so important to the security of the Android platform

that no application has permission to perform actions that could impact a user (such as reading

and writing its private data), other applications or the operating system negatively by default

[22].

Malware detection methods for Android mobile applications

7

Figure 2.1 Android platform main components (source: [13])

Figure 2.2 Android application package contents (adapted from [24])

The following sub-chapters encompass the study of the state of the art of machine learning-

based Android malware detection. These methods can fall into one of three categories,

depending on how it analyses software to extract features in order to train the machine learning

algorithms: static analysis-based, dynamic analysis-based and hybrid analysis-based.

Malware detection methods for Android mobile applications

8

2.2. Static analysis-based malware detection

Static analysis, which is the focus of this thesis, consists of analysing an

code without having to execute it [25]. In the Android platform, this implies the analysis of the

contents of the APK file [26]. The advantage of this type of analysis is that it is fast and low on

resource consumption. However, it is vulnerable to both code obfuscation techniques and

dynamically loaded code [26] [27].

Sanz et al. [28] developed a static malware detection method that leverages the contents of

the AndroidManifest.xml file. To extract this file from the APK, it uses a tool named Android

Asset Packaging Tool (AAPT) [29]. Two specific fields from this file were used as features:

uses-permission, which lists every permission that the application needs to operate correctly

and uses-feature, which declares hardware and software features the application needs (for

instance, the compass sensor) [16]. These features were used to train the following algorithms:

Logistic Regression (LR), Naive Bayes (NB), Bayesian Network (BN), Sequential Minimal

Optimization (SMO), an implementation of K-Nearest Neighbours (K-NN) named IBk,

Decision Tree (J48), Random Tree (RT) and Random Forest (RF). To train these algorithms, it

was used a dataset comprised of 249 malware samples and 357 benign samples achieving the

best performance (Area Under the Curve (AUC)) of 0.920 with the RF algorithm.

Peiravian and Zhu [30] developed a malware detection framework using permissions and

Application Programming Interface (API) calls as features. This information is obtained using

the tool Apktool [31] to reverse engineer a given APK, extracting its AndroidManifest.xml file

and class files. For a given application, the permissions are extracted from the

AndroidManifest.xml file and are embedded in a binary vector , where if the ith

permission is requested in its AndroidManifest.xml file, otherwise, . The API calls are

extracted from the class files, and as a result, every application is represented by a single binary

vector of permissions and API calls in addition to a benign or malicious class label. These

features were used to train the following algorithms: Support Vector Machine (SVM), Decision

Tree (DT) and Bagging [32]. The used dataset is comprised of 610 malware samples and 1250

benign samples. Three experiments were conducted using different feature combinations. Using

permissions, the best performing algorithm was Bagging with an AUC (defined in Chapter 3.4)

of 0.956. Using API calls, SVM achieved the best performance with an AUC of 0.957. Using

both permissions and API calls, the best performing algorithm achieved an AUC of 0.991.

D.Arp, M. Spreitzenbarth, M. Hübner et al. [33] developed a malware detection method in

the form of an application that is installed on an Android smartphone .Given that the malware

detection process occurs in the device itself, it needs to be lightweight. Therefore, the static

Malware detection methods for Android mobile applications

9

features that are used to train the machine learning algorithms need to be extracted efficiently.

To achieve this, these features are extracted from two specific locations: the

AndroidManifest.xml file using the tool AAPT [29] Dalvik bytecode

using a self-developed disassembler to minimize the feature extraction time, resulting in eight

sets of features. Four of those sets were extracted from the AndroidManifest.xml file, namely:

requested hardware components (e.g. GPS, camera access etc), requested permissions,

application components (activities, services, content providers and broadcast receivers) and

filtered intents. The remaining four sets were extracted from the disassembled Dalvik bytecode,

namely: restricted API calls, used permissions, suspicious API calls and network addresses.

Restricted API calls are, as the name implies, a set of sensitive API calls that the Android

permission system restricts access to. These API calls are useful as features because using them

without requesting the corresponding permission could mean that a given application is using

privilege escalation exploits. The used permissions set is created by matching the restricted API

call set with the requested permissions in order to determine which permissions are requested

and used. The suspicious API call set contains API calls that allow access to sensitive data or

resources given that in most cases, they can lead to malicious behaviour. Finally, the net address

set in . These feature

sets are merged into a single feature set containing approximately 545,000 features, which

are then embedded in a binary -dimensional vector where each dimension has a value of 1

if a given application contains that feature or 0 otherwise. This process is employed for every

sample in the dataset. The dataset contains 131,611 samples comprising applications from

various Android application markets, including every sample from the Android Malware

Genome Project [34]. In order to determine if a given sample is malicious or benign, every

sample is scanned using the VirusTotal service, using ten anti-virus scanners (AntiVir, AVG,

Bit- Defender, ClamAV, ESET, F-Secure, Kaspersky, McAfee, Panda and Sophos) [35]. Every

sample that is classified as malicious by at least two scanners is declared as malicious in the

dataset, otherwise, it is declared as benign. Furthermore, every sample that is classified as

adware is removed from the dataset since this type of application is in a grey area between

malicious and benign. After this labelling process, the final dataset is comprised of 123,453

benign samples and 5,560 malicious applications, that are fed to an SVM algorithm for training,

achieving an AUC of 0.939. Another feature of Drebin is the explanation of the detection results

it yields. When an application is scanned, Drebin presents a screen with a detecting score

representing how confident the classification is as well as the top features indexed by their

Malware detection methods for Android mobile applications

10

weights, which are the features that contributed the most in classifying it as malicious or benign

along with a description of the functionality of each top feature.

C. Zhao, W. Zheng, L. Gong et al. [36] used a subset of API calls as features to train an

ensemble of DT and K-NN as the base classifiers to detect Android malware. This subset is

generated by extracting the API calls of a given application using the tool Androguard [37] to

decompile the class.dex file and applying a regular expression pattern to get all the methods

from it. Afterwards, a sensitivity score is computed for each extracted API call representing the

correlation between each API call and its appearance in malicious applications. Given that there

exists numerous API calls, tests were conducted using the true positive rate as the metric to

narrow down the number of API calls to use as features to train the algorithms. Observing the

results of those tests illustrated in pp. 145, figure 5, [36], the optimal number of API calls to

use is 20, therefore the top 20 most sensitive API calls were chosen. The name of the chosen

 pp. 145, table 1, [36]. To

determine the number of neighbours k to use when training the K-NN classifier, the algorithm

was trained using a dataset of 450 benign samples and 450 malicious samples and tested with

100 samples using various values for k. Based on the results, which are illustrated in pp. 147,

figure 4, [36], the optimal number for k is 5. Finally, the ensemble was trained using a dataset

comprised of 516 benign samples and 528 malicious samples. This paper also explored the

impact of using an ensemble model rather than standalone classifiers, the effect of different

classifiers and the effects of different weights of the classifiers within the ensemble module. In

the first experiment, it concluded that using an ensemble improves both the accuracy as well as

the false positive rate (FPR), achieving an average accuracy above 90 %, as shown in pp. 147,

figure 6, [36]. The second experiment concluded that using the accuracy and the true positive

rate (TPR) as performance metrics, using K-NN and DT as the classifiers of the ensemble

yielded the best results, as shown in pp. 148, figure 8, [36]. The final experiment concluded that

the ensemble performs the best when K-NN and DT have a weight of 0.4 and 0.6 respectively,

achieving an accuracy of approximately 90 % as shown in pp. 148, figure 9, [36].

M. Kumaran and W. Li [38] developed a lightweight malware detection method using the

information provided by the AndroidManifest.xml file, namely permissions and intent-filters,

in order to learn if it proves to be enough in order to classify applications as benign or malicious.

To extract these features, each application is decompiled using the tool Apktool [31] to gain

access to AndroidManifest.xml file. Afterwards, this file is fed to a Python Extensible Markup

Language (XML) API named ElementTree to extract both intents and permissions. This process

results in 183 features that can belong in three categories: requested permissions (permissions

Malware detection methods for Android mobile applications

11

to access phone functionality like location, camera, etc.), declared permissions (permissions

that are created by a given application in order to protect itself from others that try to access

data in it) and intent filters, which are used to tell which intents an application can use. These

features are used to train the following algorithms using a dataset comprised of 500 malicious

applications and 500 benign applications, using 10-fold cross-validation: Linear Discriminant

(LD), Cubic SVM, Weighted K-NN, Complex Tree (DT), Linear SVM and Course K-NN.

Cubic SVM proved to be the best performing algorithm with an accuracy of 91.7 %, as shown

in pp. 2, figure 2, [38]. Additionally, this paper concluded that solely using intent-filters as

features yields poor classification results and that using both permissions and intent-filters leads

to the best performance, as shown in pp. 2, figure 1, [38].

K. Allix, T. Bissyandé, Q. Jérome et al. [39] developed a malware detection method based

, using SVM, RF, the RIPPER rule-

learning algorithm and the tree-based C4.5 algorithm as classifiers. The feature extraction

process begins with using the tool Androguard [37] to perform static analysis on a given

Android applicatio The CFG is then

represented as character strings using a method developed by Pouik et al. [40] , which holds

useful such as variable names or register numbers. This representation allows it to be protected

against obfuscation given that two malware variants can have the same CFG while having

different bytecode.

 sequences of instructions of the CFG with only an entry point and an exit point are extracted

from it. An important property of these basic blocks is that they represent the smallest piece of

the application that is always executed collectively. If a basic block is noted as then

can be defined as the set of the basic blocks found in at least one application, as seen in (1):

 (1)

And thus, every application is represented by a list of binary values that encode all the

blocks in , where if a basic block is present the corresponding element has a value of 1,

otherwise it has the value 0. This paper establishes two scenarios of malware detection: in the

lab and in the wild. The in-the-lab scenario is characterized by using a dataset comprised of

a few thousand samples at most, as well as employing 10-fold cross validation to test the

machine learning algorithms. An in-the-wild" scenario is a real-world malware detection

scenario. Using a dataset comprised of over 50 000 applications, two sets are created: ,

containing

Malware detection methods for Android mobile applications

12

dataset, which are labelled as goodware, and a second set, , which is comprised of the

 is always used for testing and

 can be used as a training set in an in the wild scenario or as a combined training and testing

dataset. With the datasets for each scenario created, the next step is feature evaluation and

selection, where the InfoGain feature evaluation implemented by the Weka software [41] is

computed for every feature. In the feature selection step, every feature that had a null InfoGain

score is discarded, which comprised of over 99% of the features (over 2.5 million). The steps

of the overall system are illustrated in pp. 9, figure 1, [39]. In the in-the-lab scenario , various

experiments were conducted in order to assess the performance of the developed malware

detection method, the impact of class imbalance, the sensitivity to the number of used features

and the performance of each classifier. In the performance assessment experiment, which was

comprised of 960 10-fold cross-validation experiments with all combinations of possible

parameter values (10 repetitions per algorithm × 4 goodware to malware ratios × 6 values for

number of features × 4 algorithms), the distribution of performance was as follows: the majority

of the classifiers achieved very high precision rates with a median of 0.94, as well as high recall

and F1-scores (defined in Chapter 3.4) with a median of 0.91. The class imbalance experiment

consisted of using various goodware to malware ratios: 1/2, 1, 2 and 3, corresponding to 620,

1257, 2500 and 3500 goodware applications. This experiment showed that the classifiers

perform the best when the goodware to malware ratio is in favour of goodware, as shown in pp.

13, figure 3, [39]. The feature number experiment showed that with a range of 50, 250, 500,

1000, 1500 and 5000 features, the classifier performs better as the number of features increase,

as shown in pp. 14, figure 4, [39]. Regarding the performance of the different classifiers, RF,

the RIPPER rule-learning algorithm and C4.5 showed high F1-scores while SVM had an overall

lower F1-score, as shown in pp. 14, figure 5, [39]. In the in-the-wild scenario , the classifiers

drop abruptly in performance, achieving a distribution of precision values with a median of

0.11, as well as recall and F1-score values of approximately 0 as shown in pp. 16, figure 7, [39].

The variation of goodware to malware ratio yielded the same trend as the in the lab experiment.

However, as the number of features increase, the performance drops in contrast to the in the lab

scenario, as shown in pp. 18, figure 11, [39]. This paper also highlights the importance of using

datasets that are large and of good quality (that contain goodware samples that a in fact

unknown malware applications) in order to improve the performance of classifiers in a real

world scenario, as shown in pp. 19, figure 12, [39].

Table 2.1 displays the performance of the previously mentioned static analysis-based

Android malware detection methods that used the AUC as their performance measure.

Malware detection methods for Android mobile applications

13

Table 2.1 Performance of malware detection methods based on static analysis-obtained features that use AUC as its
performance metric

References Features AUC (Technique used)

[28]
Permissions and Used

Features

0.890 (LR)
0.780 (NB)
0.790 (BN)

0.860 (SMO)
0.900 (IBK)
0.860 (J48)
0.850 (RT)
0.920 (RF)

[30]

Permissions
0.917 (J48)

0.920 (SVM)
0.956 (Bagging)

API Calls
0.918 (J48)

0.957 (SVM)
0.956 (Bagging)

Permissions and API Calls
0.936 (J48)

0.963 (SMV)
0.991 (Bagging)

[33]

Hardware Components,
Requested Permissions,

Application Components,
Filtered Intents, Restricted

API Calls, Used
Permissions and

Suspicious API Calls

0.939 (SVM)

Table 2.2 displays the performance of the static analysis-based Android malware detection

methods previously mentioned that used only Accuracy as their performance metric.

Table 2.2 Performance of malware detection methods based on static analysis-obtained features that use Accuracy as its
performance metric

References Features Accuracy (%) (Technique Used)

[14] Sensitive API calls ~90 (K-NN and DT Ensemble)

[16]
Permissions and Intent

filters
91.7 (Cubic SVM)

Malware detection methods for Android mobile applications

14

2.3. Dynamic analysis-based malware detection

Dynamic analysis, in contrast to static analysis, consists of executing a given application in a

sandbox environment to monitor its behaviour. However, it is more time consuming than static

analysis methods [7].

Singh and Hofmann [25] developed a malware detection method using the frequency of

system calls as features. The first stage of this process consists of executing each application of

the sample set, which is comprised of 216 malicious samples and 278 benign samples in an

emulator using the tool Monkey [42]. This tool generates pseudorandom user actions (clicks,

touches, gestures and system-level events) [16]. As every application is being executed, a total

of 337 Linux system calls are monitored, resulting in a feature vector of 337 elements, where

each element represents how many times that specific system call was invoked during runtime.

In the next stage, every system call that has zero variance is removed from the feature set,

resulting in a final feature vector of 43 attributes, excluding the class label. These features are

used to train the following algorithms: DT, RF, Gradient Boosted Trees (GBT), K-NN, SVM,

Artificial Neural Networks (ANN) and Deep Learning (DL). In order to improve the

performance of the algorithms, three feature weighing techniques were also applied before

training and testing the algorithms once more, namely, Information Gain (IG), Chi-square

statistic and correlation.

Bhatia and Kaushal [43] also used frequency of invoked system calls at runtime as features.

Using a dataset comprised of 50 malicious samples and 50 benign samples, every application

is executed in an Android Virtual Machine (VM) using the Monkey tool for one minute,

generating 500 gestures with a 500 millisecond delay between each event, while the Linux

command strace is executed in parallel to extract the frequencies of every invoked system call

during that period [42]. This information is aggregated in a single matrix where each row

represents the frequency of the system calls of a given application and each column represents

the frequency of a given system call for every application. The algorithms that were chosen

were J48 and RF.

Afonso, de Amorim, Grégio, Junquera, and de Geus [44] developed a malware detection

system using the frequency of both API and system calls that are invoked at runtime. In order

to extract the API calls, the tool APIMonitor [45] is executed for five minutes while it is being

executed on an emulator using the tool MonkeyRunner [46]. Furthermore, the file that handles

the collection of API calls contained in this tool was modified in order to monitor additional

API calls related to network access, process execution, string and file manipulation and

information reading. The Linux command strace is also used during this period in order to

Malware detection methods for Android mobile applications

15

extract the system calls. This information is aggregated into a vector of 74 API calls and 90

system calls, amounting to a total of 164 features, each one representing how many times that

particular API or system call was invoked. Using a dataset of 2295 malicious samples and 1485

benign samples, the following algorithms were trained in order to determine which one will be

used by the proposed method: RF, J48, LR, NB, BN, SMO, and IBk. RF achieved the best

performance with an F1-score of 0.96 using the dataset mentioned above, therefore it was tested

afterwards using a dataset comprised of 2257 malware samples and 1483 benign samples.

Table 2.3 displays the performance of the Android malware detection methods mentioned

above, using F1-Score as the performance metric considering that it is the one that is shared

among every study.

Table 2.3 Performance of malware detection methods based on dynamic analysis-obtained features

References Features F1-score (Technique used)

[25]

System Calls, no feature
weighing

0.946 (RF)
0.943 (SVM)
0.973 (DT)

0.976 (GBT)
0.901 (K-NN)
0.912 (ANN)
0.937 (DL)

System Calls, using IG

0.939 (RF)
0.966 (SVM)
0.972 (DT)

0.981 (GBT)
0.961 (K-NN)
0.952 (ANN)
0.977 (DL)

System Calls, using Chi-
square statistic

0.946 (RF)
0.966 (SVM)
0.967 (DT)

0.981 (GBT)
0.960 (K-NN)
0.946 (ANN)
0.965 (DL)

System Calls, using
correlation

0.961 (RF)
0.969 (SVM)
0.972 (DT)

0.991 (GBT)
0.986 (K-NN)
0.920 (ANN)

0.968 (DL

Malware detection methods for Android mobile applications

16

[43] System Calls
0.850 (J48)
0.885 (RF)

[44] System Calls and API Calls 0.968 (RF)

2.4. Hybrid-analysis-based malware detection

Hybrid analysis methods consist of using both static and dynamic analysis methods in order to

overcome their respective limitations [27].

Zhao, Xu and Zhang [47] developed a system that extracts permissions and API calls as

static features and runtime behaviour as dynamic features in order to classify applications. In

the static analysis process, the tool Androguard [37] is used to extract the permissions from the

AndroidManifest.xml file, resulting in a permission feature set that is further optimized in order

to remove features that are rarely present. This results in a binary permission feature vector of

45 dimensions, representing the presence of each permission in each application. Additionally,

the API calls of applications from various sample sets are extracted through the analysis of their

respective classes.dex files, using both Androguard and the reverse-engineering tool baksmali

[48]. In order to optimize the obtained API feature vector, the filter feature selection algorithm

Relief [49] is used, resulting in a final API call feature set of 22 dimensions where each

dimension represents an API call. In the dynamic analysis process, every application is installed

and executed on an emulator. In order to extract runtime behaviours as features, the tool

Monkey [42] is executed while the tool DroidBox [50] monitors the runtime behaviour to

determine whether a given application exhibits malicious behaviour such as automatic network

connection, malicious SMS sending, private information logging, among others. Additionally,

the number of occurrences of each behaviour is registered and the Relief algorithm is used to

remove irrelevant features, resulting in a final feature vector of 20 dimensions such as battery

usage, user activity, network features, among others. Afterwards, this information is aggregated

into a single feature vector with 87 dimensions. Using a dataset comprised of 359 malware

samples and 500 benign samples, 150 malicious samples and 150 benign samples were chosen

randomly to form training and testing datasets, which were used by the following algorithms:

SVM, K-NN, NB, DT and RF. Using features that were extracted from static analysis, the best

performing algorithm was RF with an accuracy of 92.07 %. Using both static and dynamic

analysis derived features, the best performing algorithm was RF with an accuracy of 94.89 %.

Liu, Zhang, Li and Chen [51] developed a method that employs static analysis or dynamic

analysis depending on the result of the APK extraction process. Using the tool Apktool [31], if

it can successfully decompile a given application, it proceeds to the static analysis stage.

However, if it does not produce useful information (for instance, if code obfuscation techniques

Malware detection methods for Android mobile applications

17

were used) it employs dynamic analysis. In the static analysis stage, the AndroidManifest.xml

file is extracted from each application and every permission is mapped to a feature vector of

151 dimensions. Additionally, every API call is extracted using the tool baksmali [48] and is

mapped to a feature vector of 3262 dimensions. Afterwards, both feature vectors are merged,

resulting in a final feature vector of 3413 dimensions. In the dynamic analysis phase, a system

call feature vector of 345 dimensions is created where each dimension represents the frequency

of the invoked system calls. To extract these features, the ADB (Android Debug Bridge) tool

[52] is used. Afterwards, the application is executed using the Monkey [42] tool and the invoked

system calls are monitored using the Linux command strace. Using a dataset comprised of 500

malicious samples and 500 benign samples, the following algorithms were trained: K-NN, SVM

and NB. Using permissions as the feature set, the best performing algorithm was SVM with an

accuracy of 96.53 %. Using API calls, the best performing algorithm was also SVM with an

accuracy of 99.07 %. Using both permissions and API calls, SVM performed the best with an

accuracy of 99.28 %. Finally, using system calls as features, the best performing algorithm was

NB with an accuracy of 90 %.

Arshad et al. [27] developed a hybrid malware detection model where the static analysis

phase is carried out on a remote server and the dynamic analysis phase is employed on the

device. This model is composed of two major components: a client application in which the

dynamic analysis process occurs, and a remote server that handles the static analysis process as

well as the training and testing of the machine learning algorithms. The client application is

developed in order to let the user dynamically analyse an application of his/her choice. Once it

does, the client application hooks the Linux command strace with that application which

monitors its invoked system calls. The client application was programmed to monitor the

frequency of 10 specific system calls related to file operations and network access. Afterwards,

a system call log file is generated and sent to the remote server. In the static analysis phase, the

remote server receives the application identifier through the client application, and the server

queries its database to check if it was not previously classified. If so, a report is sent back to the

user, otherwise the server downloads the application and employs static analysis. This process

consists of the extraction of several features such as requested hardware components, requested

permissions, application components (services, broadcast receivers and content providers),

intent filters, suspicious API calls and restricted API calls. The first four are extracted from the

 AndroidManifest.xml file using the AAPT tool [29]. The last two are extracted

from disassembling the application code from the classes.dex file using the baksmali [48] tool.

Afterwards, the remote server generates both static and dynamic binary feature vectors to train

Malware detection methods for Android mobile applications

18

the following algorithms: SVM, RF, DT and NB. The mentioned algorithms were evaluated

using the Drebin dataset [33], which is comprised of 5,560 malware samples and 123,453

benign samples. Using only the features extracted from static analysis, the best performing

algorithm was RF with an accuracy of 99.07 %. Using dynamic analysis-derived features, the

best performing algorithms were both RF and SVM with an accuracy of 82.76 %.

Table 2.4 displays the performance of the Android malware detection methods previously

mentioned, using Accuracy as the performance metric.

Table 2.4 Performance of malware detection methods based on hybrid analysis-obtained features

References Features Accuracy (%)

[47]

Static

85.74 (NB)
88.19 (J48)
92.07 (RF)

91.27 (SVM)
84.56 (K-NN)

Hybrid

84.52 (NB)
89.34 (J48)
94.89 (RF)

93.66 (SVM)
86.71 (K-NN)

[51]

Permissions
93.33 (NB)

96.52 (SVM)
95.58 (K-NN)

API Calls
94.23 (NB)

99.07 (SVM)
98.42 (K-NN)

Permissions and API
Calls

94.41 (NB)
99.28 (SVM)
98.66 (K-NN)

System Calls
90.00 (NB)

85.75 (SVM)
87.92 (K-NN)

[27]

Static

91.60 (NB)
99.07 (RF)

98.97 (SVM)
98.56 (DT)

Dynamic

62.07 (NB)
82.76 (RF)

82.76 (SVM)
72.41 (DT)

Malware detection methods for Android mobile applications

19

Observing Table 2.1, Table 2.2, Table 2.3 and Table 2.4, and, although the majority of the

malware detection methods deliver high accuracy rates, there are some concerns regarding how

they would perform in a realistic scenario due to: i) using datasets with goodware to malware

ratios above 90 % [27] [33] and ii) using controlled datasets with a low number of total samples,

the lowest being 100 total samples [25] [28] [36] [38] [43] [47] [51]. The latter is particularly

highlighted in [39], where using small controlled datasets and using 10-fold cross-validation

lead to high performances. However, when those classifiers were used in a realistic scenario,

their performances plummeted [39].

In this thesis, a large dataset with 55378 samples provided by Aptoide, a well-known third-

party Android application market will be used, therefore the trained algorithms will produce

results that we have a high degree of confidence on regarding their performance given that it

represents a realistic malware detection scenario.

Malware detection methods for Android mobile applications

20

Malware detection methods for Android mobile applications

21

3. Experimental Methodology

To answer the research question defined in Chapter 1, we need to employ machine learning

techniques to address a classification problem. In other words, given a set of Android

applications, we want to be able to distinguish between benign and malicious applications. To

achieve this, the CRISP-DM reference model [53] will be adopted to train and test several

machine learning classifiers that can distinguish goodware from malware. Given that the

AppSentinel project follows this standard since it is a widely approved blueprint for data mining

and machine learning projects in a business context, it is appropriate to adopt this methodology

in this thesis, given that it is integrated in the project.

Figure 3.1 illustrates the phases of the CRISP-DM reference model. This model represents

the lifecycle of a data mining/machine learning project, which is composed of a set of phases

and their respective tasks as well as how these tasks relate to each other, albeit it cannot capture

every possible relationship because they change based on which project they are integrated in

[53].

Figure 3.1 - CRISP-DM reference model [53]

There is a total of 6 phases in the CRISP-DM reference model, and there is not a pre-defined

order at which a given phase is performed. More specifically, the result of a given phase will

dictate which phase or task of a given phase should be performed next. The inner arrows

indicate the major dependencies between phases. The outer circle represents the idea that the

Malware detection methods for Android mobile applications

22

data mining process (and in this case, the machine learning process) is cyclical. This means that

the deployment of a solution does not end the process. Instead, what is learned from a given

cycle can be used to improve the solution in the consequent cycle [53].

3.1. Business Understanding

The main purpose of this phase ls and requirements from a

business perspective and derive a machine learning problem definition from them as well as a

 [53]. The output of this phase can be found in

Chapter 1 section 1.

3.2. Data Understanding

This phase is characterised by an initial data collection process, followed by data exploration

tasks in order to become

properties of the data such as the number of records, attributes and attribute data types (nominal,

ordinal or continuous) and the existence of missing values or irregularities in order to analyse

the quality of the data [53].

Observing Table 3.1, the dataset is composed provided by Aptoide across

29 days of the month of July of 2019, with a peak in number of samples at 2266 on the 8th of

July. In contrast to the majority of papers that were studied in the Chapter 2, this dataset has the

advantage of having a substantially larger sample size.

Table 3.1 - General statistics of the dataset

Number of samples 55378
Number of days 29

Day with the most samples 2019-07-08

Minimum number of
samples per day

1371

Maximum number of
samples per day

2266

Observing Table 3.2 and Figure 3.2, the dataset is heavily unbalanced, containing much

more goodware samples. More specifically, this dataset has a goodware to malware sample

ratio of approximately 99/1. Furthermore, this discrepancy between the number of goodware

samples versus malware samples is maintained throughout the days. Given that the dataset was

provided by Aptoide, a reputable Android application market, it is natural for it to have such a

low ratio of malware samples to goodware samples given that it is a store with the purpose of

Malware detection methods for Android mobile applications

23

distributing applications worldwide. Most importantly, this dataset represents a realistic

scenario, meaning that the results will be more reliable in contrast to the majority of papers that

try to tackle this problem [39].

Table 3.2 Daily goodware and malware distribution

Date Goodware Malware Total
2019-07-01 1734 16 1750
2019-07-02 1759 20 1779
2019-07-03 1920 25 1945
2019-07-04 1903 17 1920
2019-07-05 2148 24 2172
2019-07-06 1673 22 1695
2019-07-07 1560 20 1580
2019-07-08 2241 25 2266
2019-07-09 2040 24 2064
2019-07-10 2232 15 2247
2019-07-11 1968 9 1978
2019-07-12 2075 11 2086
2019-07-13 1825 19 1844
2019-07-14 1607 28 1635
2019-07-15 1542 11 1553
2019-07-16 2014 37 2051
2019-07-17 2100 55 2155
2019-07-18 2234 15 2249
2019-07-19 2136 28 2164
2019-07-20 1971 27 1998
2019-07-21 1371 10 1381
2019-07-22 1824 11 1835
2019-07-23 1775 14 1789
2019-07-24 2113 11 2124
2019-07-25 1766 15 1781
2019-07-26 2091 16 2107
2019-07-27 1752 6 1758
2019-07-28 1651 5 1656
2019-07-29 1814 1 1816

Total 54839 537 55376

Malware detection methods for Android mobile applications

24

Figure 3.2 Proportion of goodware and malware samples per day in the dataset

Given that the feature space is reasonably large (162 dimensions), the pair-wise correlation

between features was computed and plotted into a heatmap for better visualization in order to

investigate the heatmap it can be shortened in later experiments. However, this large feature

space means that the heatmap will be too large to be readable; therefore, the features that

achieved pair-wise correlations above 0.80 are shown in a smaller heatmap in Appendix A. The

full heatmap also revealed permissions that are not requested by any application, as shown in

Table 3.3. Table 3.4 shows feature pairs that achieved a correlation equal or higher than 0.85.

Table 3.3 Unrequested permissions in the dataset

Feature
ACCEPT_HANDOVER

BIND_AUTOFILL_SERVICE
BIND_CALL_REDIRECTION_SERVICE

BIND_CARRIER_MESSAGING_CLIENT_SERVICE
CALL_COMPANION_APP

READ_VOICEMAIL
SMS_FINANCIAL_TRANSACTIONS

START_VIEW_PERMISSION_USAGE
WRITE_VOICEMAIL

Malware detection methods for Android mobile applications

25

Table 3.4 Feature pairs that achieved a correlation equal or higher than 0.85

Feature pair Correlation
READ_CALENDAR WRITE_CALENDAR 0.85

READ_SYNC_SETTINGS WRITE_SYNC_SETTINGS 0.90
BIND_CARRIER_MESSAGI

NG_SERVICE
BIND_CARRIER_SERVICE

S
0.91

REQUEST_COMPANION_R
UN_IN_BACKGROUND

REQUEST_COMPANION_U
SE_DATA_IN_BACKGROU

ND
0.97

BIND_CONDITION_PROVI
DER_SERVICE

BIND_TV_INPUT 1

BIND_CONDITION_PROVI
DER_SERVICE

BIND_VR_LISTENER_SER
VICE

1

BIND_VR_LISTENER_SER
VICE

BIND_TV_INPUT 1

 SET_ALWAYS_FINISH
BIND_VOICE_INTERACTI

ON
1

In the first experiment, the entirety of the feature space will be used to train the machine

learning algorithms to establish a baseline scenario. In the third experiment, the features shown

in Table 3.3 and Table 3.4 will be explored further in order to make an educated decision

regarding their possible elimination and aggregation and its impact on algorithm performance.

The final step was to visualize the dataset to examine the distribution of its data points and

investigate the existence of obvious groups of goodware or malware applications and other

interesting findings. Given the high dimensionality of the dataset, two dimensionality reduction

techniques were employed to generate 2D and 3D scatter plots of the dataset: Principal

Component Analysis (PCA) and t-distributed Stochastic Neighbour Embedding (t-SNE).

PCA is a multivariate analysis technique with the aim of reducing the dimensionality of a

dataset by computing new, uncorrelated variables, that are linear combinations of the original

variables while retaining as much variance as possible in

such a way that the first PC holds the highest possible variance, the second PC the second

highest possible variance while also being orthogonal to the first PC etc, depending on how

many dimensions the user wants to reduce a given dataset to [54] [55].

Similarly, t-SNE is also a dimensionality reduction technique with a focus on representing

highly dimensional datasets accurately in 2D and 3D space. A particularity of this algorithm is

a tuneable parameter named perplexity, which can be interpreted as an approximate measure of

how many close neighbours each data point has. It also has a learning rate parameter, which

can be used to speed up the algorithm. When using this algorithm, it is common to use a

perplexity value between 5 and 50 [56] [57]. To produce the best graphical representation

Malware detection methods for Android mobile applications

26

possible, several t-SNE projections were created using various learning rate and perplexity

value pairs, with the best pair highlighted in bold, as shown in Table 3.5.

Table 3.5 Distribution of learning rate and perplexity values used to create t-SNE 2D and 3D projections

Learning rate [50, 150, 250, 500]

Perplexity [10, 20, 50]

Observing Figures Figure 3.3 and Figure 3.4, 2D and 3D PCA projections do not give

information about underlying structure besides the existence of seven outliers, two

being goodware samples and five being malware samples, illustrated by a black circle.

Additionally, there is not a clear separation between malware and goodware samples in these

dimensions, and within those classes the data points are concentrated into one large group.

There is also a large quantity of lost information when reducing to two and three dimensions,

given that the cumulative explained variance of two and three principal components is 15.48 %

and 19.42 % respectively.

Observing Figures Figure 3.5 and Figure 3.6, t-SNE projections show that goodware

samples are compressed together forming a ball-like shape. Furthermore, and similarly to PCA

projections, there does not exist a clear separation between goodware and malware samples in

these dimensions. Therefore, conclusions about the structure of these data points cannot be

drawn. On the other hand, there exists a small number of malware sample groups.

Figure 3.3 First 2 PCA principal components, (A) goodware and malware, (B) malware. The outliers are circled in
black

B A

Malware detection methods for Android mobile applications

27

Figure 3.4 First 3 PCA principal components, (A) goodware and malware, (B) malware. The outliers are circled in
black

Figure 3.5 2-dimensional t-SNE projection of the dataset with a perplexity of 20 and a learning rate of 50, (A)
goodware and malware, (B) malware

A B

A B

Malware detection methods for Android mobile applications

28

Figure 3.6 3-dimensional t-SNE projection of the dataset with a perplexity of 20 and a learning rate of 50, (A)
goodware and malware, (B) malware

Across all experiments, the following features were used: Android permissions up to API

level 29 (Android version 10.0) [58], application size, number of activities, number of services

and the number of receivers.

Regarding Android permissions, it was used the official list developed by Android [58].

Each permission has the value of 1 if a given application requests it, otherwise it is NaN.

T feature represents the size of each sample in bytes, with a range of values of

. Observing Table 3.6

the third quartile has a value of 39.51892 MB and the maximum size is 1668.079 MB, these

values along with the standard deviation indicates that the dataset might contain outliers. A total

of 1521 samples have a size of NaN.

Table 3.6

 Size (MB)
Count 53857
Mean 27.96009

Minimum 0.009746
First quartile 6.395092

Second quartile 16.84694
Third quartile 39.51892

Maximum 1668.079367

A B

Malware detection methods for Android mobile applications

29

feature represents the number of activities of each sample, with a range of

values of .

The feature represents the number of services of each sample, with a range of

values of .

Lastly, th feature represents the number of receivers of each sample, with a

range of values of .

present NaN values.

xity. This

notion of complexity is important, because malware applications usually have a small number

of these components, in contrast to benign applications such as games or productivity

applications. The reason behind the usage of these features in particular is twofold: they are

features that are easily extractable given that they are present in the AndroidManifest.xml file,

be lightweight on resource consumption. In total, the feature space is composed of 162 features.

3.2.1. Labels

Each application in the dataset can have one of six labels: GOODWARE, UNKNOWN, MDUAL,

MFAKE, MVIRUS and WHITELIST. Although this field is not a feature, there is a need to

explain the meaning of each label.

A GOODWARE application is, as the name implies, a benign application. An UNKNOWN

systems, but it is

s logic and other internal aspects. A

MDUAL -virus and

static rule systems. A MVIRUS application is a malware application that was detected by

-virus system. An MFAKE application was detected as an application that is

 A WHITELIST application has some type

of detection i -virus system. However, because it comes from its partners and

placed in their respective stores, it is part of a whitelist.

3.3. Data Preparation

The data preparation phase encompasses every task that is related with the transformation of

the raw initial data into a new dataset in order to become usable by the chosen models. Tasks

Malware detection methods for Android mobile applications

30

such as selection or exclusion of specific sections of data, data cleaning, data reformation and

data merging belong to this phase [53].

3.3.1. Data cleaning

The first data cleaning step was to replace every NaN value with the value 0. This means that

the permissions will be represented by a binary value of 1 if it is requested by a given

application. However, if it is not requested it will have a value of 0.

Additionally, comparing the total number of samples in Table 3.1 and Table 3.2, there are

two samples that do

samples were removed, given that without a label, they will not prove useful in the classification

process.

Furthermore, given that the provided dataset had 1521 samples with the Size feature

having a NaN value, and it could not be determined if it was a data collection problem, these

samples were removed from the dataset.

Lastly, the labels GOODWARE, UNKNOWN, MDUAL, MFAKE, MVIRUS and

WHITELIST were merged into MALWARE and GOODWARE. This process is necessary given

that the objective of this thesis is solely to train algorithms that can classify applications as

malware or goodware. The labels MDUAL, MFAKE, MVIRUS and WHITELIST will be merged

into MALWARE, because they are samples that were detected by malware detection

systems. The labels UNKNOWN and GOODWARE will be merged into GOODWARE given

that UNKNOWN applications passed Aptoide malware detection systems successfully. After

merging, the label field will be a binary value, where GOODWARE is represented by the value

0 and MALWARE is represented by the value 1.

After the cleaning process, the sample size of the dataset decreased from 55378 samples to

53855 samples as shown in Table 3.7.

Table 3.7 Dataset sizes before and after data cleaning

Before data cleaning After data cleaning

55378 53855

3.3.2. Undersampling

Given that the number of malware and goodware is so discrepant, it is impossible to achieve

the intended goodware to malware ratio of 70/30. The reason for choosing this ratio is to retain

the notion that the original dataset has a much higher number of goodware samples than

Malware detection methods for Android mobile applications

31

malware samples. To achieve this ratio, it is necessary to under-sample the dataset. The under-

sampling algorithm was developed with the constraint that we will extract 1000 samples per

day with a goodware to malware ratio of 70/30, meaning that it would be required that each day

has 700 goodware samples and 300 malware samples. This algorithm also needs to contemplate

four different scenarios:

 The number of goodware (Ng) is the limiting factor in a given day, meaning that

there is not enough goodware samples to make up the 70% ratio, in this case

700 samples: Although this situation never happens in this dataset, fictitious sample

numbers will be used to exemplify this scenario. Because the number of goodware is

the limiting factor, it is necessary to compute the total number of samples (malware

and goodware) to satisfy the proportion of goodware to malware given the shortage

of goodware samples (Tg), as shown in (2). Afterwards, computing the number of

malware samples (Nm) is trivial, as shown in (3). Once the number of goodware and

malware samples are computed, they are extracted randomly using the method

sample() from the Python library Pandas. Equations (4) and (5) shows that after

under-sampling, the ratio of goodware to malware ratio is preserved to approximately

70/30 as intended.

 (2)

 (3)

 (4)

 (5)

 The number of malware (Nm) is the limiting factor in a given day, meaning that

there is not enough malware samples to make up the 30% ratio, in this case 300

samples: this is the only scenario that is present in the dataset, therefore it will be

exemplified using the number of samples of 01/07/2019 shown in Table 3.2. In this

scenario, there is a shortage of malware samples to make up the necessary 300,

therefore we need to apply a similar principle as the previous scenario. Firstly, the

Malware detection methods for Android mobile applications

32

total number of samples in proportion to the shortage of malware samples is

computed (Tm), as shown in (6). Afterwards, Ng is computed, as shown in (7).

Equations (8) and (9) show that the desired proportion of goodware to malware is

preserved successfully.

 (6)

 (7)

 (8)

 (9)

 There is a shortage of goodware and malware samples in a given day to

accommodate the goodware to malware ratio of 70/30 (700 goodware samples

and 300 malware samples): because there is a shortage of both goodware and

malware, we need to verify which of those is more limiting. If the number of

goodware samples is the most limiting of the two, we use the procedure of the first

scenario. Otherwise, we use the procedure of the second scenario. Because this

scenario is not present in the dataset and the procedure is identical to the first two

scenarios depending on which class has less samples, it will not be exemplified.

 There are no shortages of goodware and malware samples in a given day: given

that there are no shortages, the number of goodware (700) and malware (300) is

extracted using the sample() method from the Python library Pandas.

Observing Table 3.8, while the dataset is drastically smaller after under-sampling, it is a

compromise that was taken in order to have enough data given the low quantity of malware

present in the original dataset. In addition, having a dataset with a goodware to malware ratio

of 70/30 after under-sampling is significantly more adequate to train the algorithms than the

original dataset, given that it had a goodware to malware ratio of approximately 99/1.

Table 3.8 Total number of samples before and after the under-sampling process

Before under-sampling After under-sampling

53855 1713

Malware detection methods for Android mobile applications

33

3.4. Modelling

The modelling phase consists of defining which algorithms will be used, to train the models in

order to determine their optimal hyper-parameter configurations and the metrics that will be

used to assess their performance and validity, depending on the type of problem it is trying to

be solved. It is also necessary to define how the final dataset will be split into training and

testing sets [53].

This sub-section will provide insight into the modelling setup that was used in every

experiment. However, additional modelling steps were taken in the fourth experiment and are

detailed in its respective chapter. The algorithms that are going to be trained are: eXtreme

Gradient Boosting (XGBoost), K-NN and SVM.

XGBoost is an implementation of gradient boosted trees with a focus on computation speed,

efficiency, and scalability [59]. Using decision trees as an example, boosting is an approach

where weak decision tree models are created in a sequential manner, with each subsequent tree

being fitted using the previous tree and added to the overall model, improving its

performance [60]. It is important to note that the first learner is trained using a weighted version

of the original dataset, so that the next iterations can modify the weights on the examples in

order to focus on correcting the examples that were misclassified by the majority of the earlier

weak learners. This is done by increasing the weights of the incorrect decisions and decreasing

the weights of the correct decisions of the weak learner in the current boosting iteration [61].

Gradient boosting expands on the boosting approach by representing the residual as a gradient,

where the goal is to add the tree that has the maximum negative gradient, which is the one that

will minimize the loss function the most [62]. XGBoost improves regular gradient boosted tree

algorithms by improving the regularized objective to further prevent overfitting and making the

learning algorithm easier to parallelize. Additionally, rather than using an exact greedy

algorithm to find the best split, which is impossible to use when the data is too large to store in

memory and when using in a distributed computing context, XGBoost uses an approximate

algorithm that not only is modified to be able to handle weighted datasets but can also be used

in this context. Lastly, it implements sparsity-aware split finding to be able to handle real-word

datasets which in most scenarios has either missing values, zero entries or products of feature

engineering, and cache aware access to optimize split finding speed [59].

SVM belongs to the family of discriminant-based models and is heavily inspired by the

maximum margin classifier [63]. This algorithm is based on distributing the data in space and

computing hyperplanes subspaces that have one less dimension than the original space, that

perfectly separate the data and selecting the optimal separating hyperplane afterwards [60].

Malware detection methods for Android mobile applications

34

To select the most optimal hyperplane, the margin the perpendicular distance from the

hyperplane to the closest observations on either side is computed for each of the found

separating hyperplanes and the one which has the largest margin is the optimal separating

hyperplane [60] [63]. The reason behind this choice is to maximize model generalization, to

prevent misclassification due to noise [63]. The margin also contains the support vectors,

training observations that are alongside the optimal separating hyperplane and equidistant from

it [60]. It is also important to note that only the support vectors carry information, given that

they are the only points that if shifted would cause the optimal separating hyperplane to shift

accordingly unless it is a point that surpasses the margin hyperplane [60] [63]. Using a two

class classification example where the targets values are {-1,1}, in order for SVM to classify a

observations feature measurements and depending on the sign of the result, it will appear on

one of the sides of the optimal separating hyperplane, and the farthest it is from a given side the

more confidence we have that it was correctly classified [60].

K-NN belongs to the family of instance-based learners, storing instances of training data

rather than creating an internal model [64]. This algorithm works by assigning a test observation

 to the class that has the most observations among its K nearest neighbours [63]. This

value rises the model becomes stiffer, sacrificing variance for bias given that it uses a larger

number of training data points to make predictions [60].

Random search will be used to find the best hyper-parameter configuration for each

algorithm as opposed to grid search and manual search, because it is more effective than testing

each configuration individually, given that it is a technique where, given a set of hyper-

parameters and their value distribution, it chooses a random hyper-parameter value combination

rather than testing them one by one as grid search does [65] [66]. For each algorithm, the

number of random search iterations is set to 750. It is important to note that given K- lower

hyper-parameter space, it is only possible to do 120 iterations of Random Search, instead of the

intended 750. Additionally, the dataset will be divided into two sets: 80 % will be used to train

and validate the algorithms using 10-fold cross-validation, and 20 % to create the testing set.

This division is stratified, meaning that it preserves the goodware and malware ratios [67].

K-fold cross-validation is an evaluation technique where the data is divided into k equal or

partially equal parts (folds). Afterwards, k iterations of training and validation are done where

k-1 parts are used for training and the remaining part is used for validation. The process stops

Malware detection methods for Android mobile applications

35

when every fold has been used for validation [68]. This process is also stratified. It is important

to note that 10-fold cross-validation was used across all experiments.

The evaluation metrics that will be used are the AUC of the ROC curve, F1-score, FNR

and FPR given that the algorithms are being trained to solve a binary classification problem.

The ROC curve is a graphical representation of the TPR (true positive rate) versus FPR

(false positive rate) for different TPR thresholds, and for each threshold a (TPR, FPR) pair is

obtained. The best-case scenario is a classifier that has a (1,0) pair. Additionally, given that the

TPR is on the y axis and the FPR is on the x axis, the closer a classifier curve is to the upper-

left corner, the better it is [63] [69]. Figure 3.7 shows an example ROC curve.

Figure 3.7 Example ROC curve (adapted from [69])

The AUC of the ROC curve is a numerical value that summarizes the ROC curve over all

thresholds. This value has a range of [0,1], where an AUC of 1 corresponds to the best-case

scenario mentioned earlier for the ROC curve, and an AUC of 0 represents a classifier that is

completely inaccurate. An AUC of 0.5 represents a classifier that cannot distinguish between

positive and negative samples [60] [63] [69].

The F1-score (F1) represents the harmonic mean of the precision (P) and recall (R), as

shown in (10). The precision is given by (11) and recall is given by (12), where TP is the number

of true positives, FP is the number of false positives and FN is the number of false negatives

[70].

 (10)

T
P

R

FPR

Malware detection methods for Android mobile applications

36

 (11)

 (12)

The FPR is given by (13) and represents the proportion of negative samples that are wrongly

classified as positive samples, where FP is the number of false positives and N is the number

of negative samples [63].

 (13)

The FNR is given by (14) and represents the proportion of positive samples that are wrongly

classified as negative samples, where FN is the number of false negatives and P is the number

of positive samples.

 (14)

Given that the dataset does not have an equal ratio of goodware samples to malware samples

(70 % to 30 % respectively), the accuracy is not a good metric to ascertain which algorithm

performs the best. This is true for every experiment given that this ratio does not change. The

modelling setup is identical across the first, second and third experiments, the only aspects that

change are the hyper-parameters chosen by random search. Therefore, the modelling phase of

the fourth experiment is detailed in Chapter 4.4.

3.5. Evaluation

The evaluation phase consists of assessing whether the selected models in the previous phase

achieved the business objectives that were set in the business understanding phase and

reviewing the process thoroughly in order to check for disregarded tasks. Depending on the

result of the assessment, a decision about whether to perform a new iteration, create a new

project or proceed to the deployment phase should be made [53]

3.6. Deployment

When a project moves forward to the deployment phase, it usually means integrating the models

-making processes in this case, the permission or prohibition

of an Android application in an application marketplace. This can be as straightforward as

solely elaborating a final report or as complex as implementing a cyclical data mining/machine

Malware detection methods for Android mobile applications

37

learning process pipeline. Regardless of the purpose of the models, it is necessary to elaborate

a plan which describes the steps required to deploy the models and how to perform them.

Additionally, it should be outlined how the models should be maintained and analysed during

their operation. Another output of this phase is a final report, which could be in the form of a

written report that integrates the deliverables of the previous phases and summarizes the

empirical results, or in the form of a comprehensive presentation in order to exhibit the obtained

results. Lastly, the project should be reviewed in order to report which aspects went wrong,

which aspects need to be improved in future projects of similar nature and which aspects were

employed well [53].

Malware detection methods for Android mobile applications

38

Malware detection methods for Android mobile applications

39

4. Tests and Validation

This chapter will focus on presenting and discussing the results of the four experiments

conducted, in addition to the specification of the hyper-parameters of the models in each

experiment. Any additional data understanding, data preparation and modelling tasks that are

employed in a particular experiment are also detailed in this chapter.

4.1. Baseline Scenario

The objective of the first experiment is to establish a baseline scenario from which additional

data preparation and modelling tasks can be performed in further experiments in order to

explore their impact on model performance. This experiment will use all the 162 features, and

only 3.18 % of all the data (1713 samples with a ratio of 70 % goodware to 30 % malware).

Modelling

Table 4.1, Table 4.2 and Table 4.3 show the value distribution of hyper-parameters for each

algorithm. The hyper-parameter combination that yielded the best performance is shown in

bold.

Table 4.1 XG -parameter value distribution in the first experiment

Hyper-parameter Values
min-child-weight 1, 5, 10

gamma 0.1, 0.3, 0.5, 0.7, 1, 1.3, 1.5, 1.7, 2, 5
subsample 0.1, 0.3, 0.6, 0.8, 1.0

colsample_bytree 0.1, 0.3, 0.6, 0.8, 1.0
max_depth 3, 5, 6, 10, 13, 15, 17, 20, 25, 30

learning_rate 0.01, 0.05, 0.1, 0.3, 0.5
n_estimators 100, 250, 500, 750, 1000

early_stopping_rounds=50 20, 30, 50, 70

Table 4.2 -parameter value distribution in the first experiment

Hyper-parameter Values
kernel rbf
gamma [60 values from 0.01 to 2] (0.01)

C [20 values from 0.1 to 2] (0.5)

Malware detection methods for Android mobile applications

40

Table 4.3 K- -parameter value distribution in the first experiment

Hyper-parameter Values
algorithm ball_tree, kd_tree

n_neighbors
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
weights uniform, distance

Evaluation

Observing Table 4.4, XGBoost is the highest performing algorithm, given that it outmatches

the remaining algorithms in every metric, with a F1-score of 0.89 and an AUC ROC of 0.911.

Additionally, it has the lowest FPR and FNR rates of 0.038 and 0.279 respectively, which are

very important factors in a malware detection context. The SVM algorithm yielded anomalous

results, given that it achieved a FPR of 0 and a FNR of 0.952.

has a different value range than the remaining features coupled with the fact that it is in Bytes

and the mean size is approximately 28 MB. This hinders its ability to compute the optimal

separating hyperplane and consequently, to classify the samples. This issue will be investigated

in the second experiment by removing this feature from the feature space. Lastly, K-

performance makes it unfeasible for classification, especially with a FNR of 40.4 %.

Table 4.4 Algorithm performance of the first experiment

Algorithm F1-score AUC ROC FPR FNR
XGBoost 0.890 0.911 0.038 0.279

SVM 0.610 0.588 0 0.952
K-NN 0.770 0.772 0.155 0.404

Observing Table 4.5, XGBoost and SVM took two hours, 19 minutes, and 54 seconds and

two hours, 19 minutes and 23 seconds to train respectively. K-NN took 35 seconds to store the

training instances.

Table 4.5 Time taken to train each algorithm in the first experiment (XGBoost and SVM) and for K-NN to store the training
instances

Algorithm Time taken

XGBoost 2 hours, 19 minutes, and 54 seconds

SVM 2 hours, 19 minutes, and 23 seconds

K-NN 35 seconds

Malware detection methods for Android mobile applications

41

Using 10-fold cross validation, the first experiment demonstrates how superior XGBoost is

in comparison to the remaining machine learning algorithms, having a 91.1 % change of

distinguishing between goodware and malware correctly. However, having a 27.9 % probability

of classifying a malware application as goodware is problematic

abnormal results and the next experiment will focus on correcting this issue in order to better

compare these three algorithms.

4.2. Experiment with the

T test if the removal of feature from the feature space

will improve without interfering with other algorithms. This experiment will use

161 features, and only 3.18 % of all the data (1713 samples with a ratio of 70 % goodware to

30 % malware).

Data Preparation

In addition to the data preparation steps of the first experiment, the ize feature was removed

from the dataset.

Modelling

Table 4.6, Table 4.7 and Table 4.8, show the hyper-parameters that yielded the best

performance for the XGBoost, SVM and K-NN algorithms respectively.

Table 4.6 -parameters in the second experiment

Hyper-parameter Values
min-child-weight 1

gamma 0.1
subsample 1.0

colsample_bytree 0.6
max_depth 10

learning_rate 0.01
n_estimators 500

early_stopping_rounds=50 50

Table 4.7 -parameters in the second experiment

Hyper-parameter Values
kernel rbf
gamma 0.01

C 1.9

Malware detection methods for Android mobile applications

42

Table 4.8 K- -parameters in the second experiment

Hyper-parameter Values
algorithm kd_tree

n_neighbors 30
weights distance

Evaluation

Observing Table 4.9, removing the ize feature solved SVM

experiment and improved K- . Given that K-NN is a

distance-based algorithm and the feature has a value range that is extremely different

than the remaining features, this performance improvement is expected after its removal from

the feature space. However, XGBoost is still the best performing algorithm with a F1-Score of

0.890, a FNR of 0.017, an FPR of 0.298 and an AUC ROC of 0.911, corresponding to a FPR

and FNR improvement of 0.021 and 0.019 respectively in comparison to the first experiment.

Observing Table 4.10, XGBoost and SVM took two hours, 33 minutes and 44 seconds, and

one hour, 41 minutes and 18 seconds to train respectively. Comparing to the first experiment,

SVM took less time to train with the removal of the Size feature, while XGBoost had its

training time increased. K-NN took more time to store the instances than the previous

experiment, specifically, one minute and 21 seconds.

Table 4.9 Algorithm performance for the second experiment

Algorithm F1-score AUC ROC FPR FNR
XGBoost 0.890 0.911 0.017 0.298

SVM 0.850 0.835 0.042 0.385
K-NN 0.860 0.856 0.063 0.298

Table 4.10 Time taken to train each algorithm in the second experiment (XGBoost and SVM) and for K-NN to store the
training samples

Algorithm Time taken

XGBoost 2 hours, 33 minutes, and 44 seconds

SVM 1 hours, 41 minutes, and 18 seconds

K-NN 1 minute and 21 seconds

Malware detection methods for Android mobile applications

43

abnormal results and improving K-

to the first experiment, XGBoost remains the best performing algorithm. However, it also

increased XGBoost FNR by 1.9 %.

4.3. Experiment applying feature elimination and aggregation

This experiment will explore how eliminating and aggregating certain features will affect the

performance. Feature reduction is also important to evaluate the possibility of

reducing training times without sacrificing performance. It is important to note that similarly to

the second experiment, the ize feature will not be used in order to maintain normal SVM

results. This experiment will use 132 features, and only 3.18 % of all the data (1713 samples

with a ratio of 70 % goodware to 30 % malware).

Data Understanding

Feature aggregation and elimination may lead to information loss, and consequently lower the

performance of the algorithms. Therefore, these operations need to be considered carefully

before they are employed. The data preparation phase will discuss which features were

eliminated and aggregated and the reasoning behind such decisions. It is important to note that

the only features that underwent this process were the Android permissions, given that they

represent the largest portion of the feature space.

Three factors were considered to determine which features (permissions) will be

eliminated: its requested percentage, XGBoost , and if Android

classifies it as a dangerous permission.

The requested percentage of a given permission Pi represents the percentage of applications

which requested it, and is given by dividing the number of samples, Np, that request that

permission (meaning it has a value of 1), by the total number of samples, Nt, as shown in (15).

To obtain XGBoost s importance of each feature it is necessary to train a model first, therefore

the feature importance values of the best model from the second experiment will be used. This

value is computed using the average gain of splits of a given feature and represents its

contribution to the increase of [71] [72]. Lastly, according to Android,

dangerous permissions cover areas where the app wants data or resources that involve the

user's private information, or could potentially affect the user's stored data or the operation of

other apps [73].

For a permission to be eliminated, it must have a requested percentage equal or lower than

0.009 % (which translates to a permission being requested by 5 applications or less in this

dataset), a feature importance of 0 or NaN and it cannot be a dangerous permission. This

Malware detection methods for Android mobile applications

44

requested percentage threshold was chosen to minimize the possibility of removing permissions

that could be useful to detect a specific malware/goodware application while optimizing the

feature space by removing permissions that might not carry useful information.

Appendix A shows the permissions that are going to be removed, and their respective values

in the metrics mentioned above.

 (15)

Although Table 3.4 contains feature pairs with correlations of 0.85 and higher, pair-wise

correlations alone should not be used to decide whether to aggregate those features or not, due

to the possibility of losing valuable information. Therefore, the function of both features will

be considered, meaning that if a pair of features has both a high correlation value and are similar

in their function or allow operations that affect the same resource, that feature pair will be

aggregated.

Permissions READ_CALENDAR and WRITE_CALENDAR have a correlation of 0.85

and are related to manipulating the Android calendar by reading and writing calendar data

respectively [74] [75]. Similarly, READ_SYNC_SETTINGS and WRITE_SYNC_SETTINGS

have a correlation of 0.90 and are related to reading and writing sync settings [76] [77].

REQUEST_COMPANION_RUN_IN_BACKGROUND and

REQUEST_COMPANION_USE_DATA_IN_BACKGROUND have a correlation of 0.97 and

are related to companion applications, more specifically, executing companion applications in

the background and allowing them to use data in the background [78] [79]. Lastly, permissions

BIND_CARRIER_MESSAGING_SERVICE and BIND_CARRIER_SERVICES have a

correlation of 0.91, and Android advises the usage of the latter instead of the former given that

it is deprecated since Android API level 23 [80] [81]. For these reasons, these permission pairs

will be aggregated, creating a new feature as shown in Table 4.11. The aggregated feature will

be assigned a value of 1 if any of the original features has a value of 1, and a value of 0 if both

original features have a value of 0.

Table 4.11 Feature pairs chosen for aggregation and the corresponding aggregated feature

Feature pair Aggregated Feature

READ_CALENDAR WRITE_CALENDAR CALENDAR
READ_SYNC_SETTINGS WRITE_SYNC_SETTINGS SYNC_SETTINGS

BIND_CARRIER_MESSAGI
NG_SERVICE

BIND_CARRIER_SERVICE
S

BIND_CARRIER_SERVI
CES

REQUEST_COMPANION_R
UN_IN_BACKGROUND

REQUEST_COMPANION_U
SE_DATA_IN_BACKGROU

ND
REQUEST_COMPANION

Malware detection methods for Android mobile applications

45

Data Preparation

Similarly to the second experiment, the features listed in Appendix A were eliminated by

removing their respective columns from the dataset. The feature aggregation process was

employed as follows: for every permission pair that was chosen for aggregation, if any of those

permissions are present in a given application (meaning that it has a value of 1), the aggregated

feature will have a value of 1, otherwise it will have a value of 0. Afterwards, the columns of

the feature pairs are removed from the dataset and the column of the aggregated feature is

inserted into the dataset.

Modelling

Table 4.12, Table 4.13 and Table 4.14 show the hyper-parameters that yielded the best

performance in this experiment for the XGBoost, SVM and K-NN algorithms respectively.

Table 4.12 -parameters in the third experiment

Hyper-parameter Values
min-child-weight 1

gamma 1.3
subsample 1.0

colsample_bytree 0.8
max_depth 15

learning_rate 0.01
n_estimators 750

early_stopping_rounds=50 70

Table 4.13 hyper-parameters in the third experiment

Hyper-parameter Values
kernel rbf
gamma 0.04372881355932204

C 1.2

Table 4.14 K- -parameters in the third experiment

Hyper-parameter Values
algorithm ball_tree

n_neighbors 28
weights distance

Malware detection methods for Android mobile applications

46

Evaluation

Observing Table 4.15, and comparing to the previous experiment, although eliminating and

aggregating features did not impact F1-Scores, it increased the AUC ROC of every algorithm.

Additionally, it decreased XGBoost FNR to 0.260 and increased its FPR to 0.042

performance improved marginally, achieving an AUC ROC of 0.836, just 0.001 higher than the

previous experiment. Likewise, K-NN achieved an AUC ROC score of 0.858, corresponding

to a marginal increase of 0.002.

Observing Table 4.16, feature elimination and aggregation lowered XGBoost

training times in comparison to the previous experiment, slightly improving training efficiency.

More specifically, it reduced XGBoost by 23 minutes and three seconds, and

training time by 12 minutes and 52 seconds. It also reduced K-NN time to store

training instances by seven seconds.

Table 4.15 Algorithm performance for the third experiment

Algorithm F1-score AUC ROC FPR FNR
XGBoost 0.890 0.917 0.042 0.260

SVM 0.850 0.836 0.042 0.385
K-NN 0.860 0.858 0.063 0.298

Table 4.16 Time taken to train each algorithm in the third experiment (XGBoost and SVM) and for K-NN to store the training
instances

Algorithm Time taken

XGBoost 2 hours, 10 minutes, and 41 seconds

SVM 1 hours, 28 minutes, and 26 seconds

K-NN 1 minute and 14 seconds

first and second experiments:

XGBoost is the best algorithm. Additionally, the combination of highly correlated features and

the elimination of features that were deemed unimportant improved XGBoost false negative

rate to its lowest value yet, 26 %.

Malware detection methods for Android mobile applications

47

4.4. Initial exploration with all features and a small dataset

In this experiment composed of two scenarios, six new features were introduced to the dataset:

operation codes, resource strings, smali strings, API packages, system commands and intents.

Additionally, several feature normalization techniques will be employed to investigate how it

will impact the results. Lastly, the ill be reintroduced to the feature space given

that using feature normalization will compress its large value range, which was the cause of

 In the first scenario, all features will be used

and in the second scenario feature aggregation and elimination will be applied. The first

scenario will use 168 features, and only 3.18 % of all the data (1713 samples with a ratio of 70

% goodware to 30 % malware). The second scenario will use 139 features, and only 3.18 % of

all the data (1713 samples with a ratio of 70 % goodware to 30 % malware).

Data Understanding

The new features were provided by Aptoide and were extracted using a mixture of AndroGuard

[37] as the base tool with additional logic by AndroPyTool [82] [84]. Androguard is a tool that

employs Android file manipulation such as disassembling DEX/ODEX bytecodes, decompiling

DEX/ODEX files, etc [37]. AndroPyTool is a tool designed to employ static and dynamic

feature extraction, integrating various current analysis tools such as DroidBox, FlowDroid,

AndroGuard, Strace, VirusTotal and AVClass [82] [84].

Operation codes represent the number of Dalvik bytecode operation codes from [85] in

each application. Dalvik is the discontinued runtime that Android used to execute Android

applications, replaced by Android Runtime (ART) [86]. This feature has a possible range of

values of .

Resource strings represent the number of string resources in each application. Resource

strings are XML text resources that can be optionally stylized and formatted [87]. This feature

has a possible range of values of .

Smali strings represent the number of unique smali strings. Smali code originates from the

assembler/disassembler tool named baksmali, which transforms Dalvik bytecode into a more

readable syntax [48]. This feature has a possible range of values of .

API packages represent the number of unique Java packages that are called in an

application. This feature has a possible range of values of .

System commands represent the number of Unix system commands found within the smali

code of an application. This feature has a possible range of values of .

Malware detection methods for Android mobile applications

48

Intents are messaging objects that describe an action to be performed in a distinct

application component or application altogether [88] [89]. This feature has a possible range of

values of values of .

The dataset contained Smali strings

 , it was found that these values

belong to 144 samples, meaning that these values are not spread randomly. This could be due

to an error during the feature extraction process (e.g. due to code obfuscation).

Data Preparation

In this phase, the new features mentioned in the data understanding phase were introduced to

the dataset by inserting their respective columns.

Additionally, the 144 samples that had

are goodware applications. Therefore, these values were

replaced with the value 0. If these samples were a mixture of goodware and malware or solely

malware, it could indicate that there could exist malware families that are characterized by

having these values in these specific features and it would be necessary to adopt a different

strategy.

Modelling

In comparison to the previous experiments, additional steps were introduced to the modelling

approach in this experiment. Before training the algorithms, given that the range of values are

not uniform across the feature space, four different feature normalization techniques are going

to be employed: Z-Score, Min-Max, Quantiles Information and Unit norm. They are going to

be trained without using feature normalization techniques as well in order to function as a

control group to compare their impact on algorithm performance.

Additionally, each algorithm will be trained five times per feature normalization technique

to obtain more confidence about the results, and 10-fold cross-validation will use a random seed

in K-NN and a fixed seed in XGBoost and SVM. This way, for a given algorithm, their results

will be comparable per feature normalization technique but also between different algorithms

and prevent K-NN from outputting the same results each run by randomizing the partitioning

of the testing sets.

The hyper-parameters per algorithm per feature normalization technique for each run can

be found in Appendixes B-G. These tables are in a backslash separated format, meaning that

for each normalization technique, the hyper-parameter values of each model are separated by

backslashes, where the first value of a given hyper-parameter corresponds to the first run, the

Malware detection methods for Android mobile applications

49

second value to the second run, etc, up to the fifth run (e.g. 1.0/1.1/1.2/1.3/1.4/1.5). If there is

only one value in a given table cell, it means that hyper-parameter was equal on all five runs.

Evaluation

Observing Table 4.17, without employing feature elimination and aggregation, XGBoost

achieves an overall better performance than both SVM and K-NN regarding F1-score and AUC

ROC. Additionally, it achieved the best FPR using every feature normalization technique except

Quantiles Information, where SVM achieved a value that is 0.006 lower. Regarding FNR,

XGBoost always performs better than SVM, although it never achieves better results than K-

NN. This is not alarming, given than XGBoost outperforms K-NN in the rest of the metrics

regardless of the feature normalization technique that is used. Taking every metric into account,

the version of XGBoost that achieved the best performance was using Quantiles Information

normalization with an F1-score of 0.908, an accuracy of 0.912, a FPR of 0.020, a FNR of 0.244,

and an AUC ROC of 0.918, outperforming the remaining XGBoost models in every metric

except AUC ROC. Similarly to XGBoost

overall performance using Quantiles Information as well, with a F1-Score of 0.890, an accuracy

of 0.896, a FPR of 0.014, a FNR of 0.310, and an AUC of 0.897. This model is an improvement

in every metric in relation to the first and second experiments. In addition, there does not exist

a clear best performing K-NN model. However, it yielded the lowest results when the features

were not normalized as well as when using Min-Max normalization.

Malware detection methods for Android mobile applications

50

Table 4.17 Algorithm performance per feature normalization technique of the fourth experiment without feature elimination
and aggregation

Algorithm F1-score AUC ROC FPR FNR
Without Normalization

XGBoost 0.904 0.919 0.025 0.246
SVM 0.588 0.583 0 0.973
K-NN 0.832 0.825 0.105 0.308

With Z-score Normalization
XGBoost 0.906 0.919 0.023 0.248

SVM 0.890 0.891 0.028 0.283
K-NN 0.870 0.897 0.086 0.240

With Min-Max Normalization
XGBoost 0.902 0.918 0.023 0.250

SVM 0.870 0.877 0.042 0.327
K-NN 0.852 0.897 0.106 0.244

With Quantiles Information Normalization
XGBoost 0.908 0.918 0.020 0.244

SVM 0.890 0.897 0.014 0.310
K-NN 0.866 0.909 0.089 0.237

With Unit Norm Normalization
XGBoost 0.892 0.907 0.024 0.287

SVM 0.870 0.869 0.038 0.329
K-NN 0.870 0.887 0.077 0.248

Observing Table 4.18, feature aggregation and elimination achieved mixed results. For each

algorithm, both F1-Scores and AUC ROC values either decreased or increased so marginally,

that the deciding factor between which algorithm to choose is a matter of which metrics between

FNR, FPR and training time are more important to who is going to implement it. However, it

should be noted that feature aggregation and elimination increased AUC ROC values of every

K-NN model.

Malware detection methods for Android mobile applications

51

Table 4.18 Algorithm performance per feature normalization technique of the fourth experiment after feature elimination
and aggregation

Algorithm F1-score AUC ROC FPR FNR
Without Normalization

XGBoost 0.904 0.918 0.026 0.248
SVM 0.618 0.583 0 0.933
K-NN 0.834 0.826 0.095 0.313

With Z-score Normalization
XGBoost 0.904 0.918 0.024 0.244

SVM 0.886 0.890 0.027 0.294
K-NN 0.868 0.898 0.089 0.238

With Min-Max Normalization
XGBoost 0.908 0.917 0.023 0.240

SVM 0.870 0.877 0.040 0.327
K-NN 0.860 0.902 0.098 0.231

With Quantiles Information Normalization
XGBoost 0.900 0.917 0.021 0.264

SVM 0.890 0.896 0.013 0.310
K-NN 0.872 0.915 0.075 0.244

With Unit Norm Normalization
XGBoost 0.890 0.911 0.028 0.283

SVM 0.868 0.867 0.039 0.329
K-NN 0.866 0.888 0.083 0.244

Observing Table 4.19, XGBoost best performing version took the least time to train,

namely two hours, 14 minutes, and 56 seconds. Given that SVM gives abnormal results without

the use of feature normalization, t considered. With this in

mind, the only model to achieve faster training times than in the previous experiment was when

using Unit Norm normalization, taking one hour, 22 minutes and 41 seconds to train. K-NN

stored the training samples slower when using feature normalization and faster without

normalization in comparison to the previous experiment.

Malware detection methods for Android mobile applications

52

Table 4.19 Average time taken to train each algorithm (XGBoost and SVM) and for K-NN to store the training instances
across five 750 iteration-grid search runs using 10-fold cross-validation per feature normalization technique without feature
elimination and aggregation

XGBoost SVM K-NN

Without Normalization

2 hours, 15 minutes, 15 seconds
2 hours, 9 minutes, and 49

seconds
50 seconds

With Z-score Normalization

2 hours 29 minutes and 20

seconds
1 hour 39 minutes 11 seconds

4 minutes and 43

seconds

With Min-Max Normalization

2 hours, 21 minutes, and 25

seconds

1 hour, 45 minutes, and 39

seconds

5 minutes and 14

seconds

With Quantiles Information Normalization

2 hours, 14 minutes, and 56

seconds

1 hour, 48 minutes, and 25

seconds

4 minutes and 16

seconds

With Unit-Norm Normalization

2 hours, 36 minutes, and 13

seconds

1 hour, 22 minutes, and 41

seconds

5 minutes and 18

seconds

Observing Table 4.20, employing feature elimination and aggregation reduces training

times across every algorithm, just as it occurred from the second experiment to the third.

XGBoost took the least time to train when using Z-Score normalization, namely one hour and

57 minutes. SVM achieved its fastest training time of one hour, two minutes and 36 seconds

when using Min-Max normalization. Lastly, K-NN achieves its fastest training instance storing

time of 51 seconds when feature normalization techniques are not employed, being 1 second

slower than without feature elimination and aggregation.

Malware detection methods for Android mobile applications

53

Table 4.20 Average time taken to train each algorithm (XGBoost and SVM) and for K-NN to store the training instances
across five 750 iteration-grid search runs using 10-fold cross-validation per feature normalization technique with feature
elimination and aggregation

XGBoost SVM K-NN

Without Normalization

2 hours, 5 minutes, and 1 second 1 hour, 53 minutes and 33 seconds 51 seconds

With Z-score Normalization

1 hour and 57 minutes
1 hour, 13 minutes, and 49

seconds

3 minutes and 28

seconds

With Min-Max Normalization

1 hour, 59 minutes, and 42

seconds
1 hour, 2 minutes, and 36 seconds

3 minutes and 58

seconds

With Quantiles Information Normalization

2 hours and 37 seconds 1 hour, 16 minutes and 10 seconds 3 minutes and 4 seconds

With Unit-Norm Normalization

2 hours, 5 minutes, and 19

seconds
1 hour, 4 minutes, and 6 seconds

3 minutes and 35

seconds

In summary, the addition of new features and the usage of feature normalization techniques

improved the overall performance of every algorithm in comparison to the third experiment.

However, when all metrics are considered, XGBoost proves to be the best performing algorithm

when using Quantiles Information normalization.

In addition, aggregating highly correlated features and eliminating non-important features

did not produce significant changes in order to conclude whether it improves or lowers the

overall performance of the trained algorithms. Therefore, more experiments with an increasing

number of eliminated and aggregated features would have to be conducted to determine whether

it is beneficial or detrimental to the performance of the algorithms, or if there is an ideal set of

features that boost their performance.

Malware detection methods for Android mobile applications

54

Malware detection methods for Android mobile applications

55

5. Conclusions and future work

In this thesis, several machine learning algorithms were trained to measure the effectiveness of

using machine learning in Android malware detection with the goal of countering the current

state of rampant malware proliferation. To explore this matter, three machine learning

algorithms, namely XGBoost, SVM and K-NN were trained using Android permissions,

application size, activities, services, receivers, intents, operation codes, resource strings, smali

strings, API packages and system commands as features across four experiments using the

CRISP-DM methodology.

In the first experiment, using permissions and the number of activities, receivers, and

services, XGBoost proved to be the best performing algorithm. Additionally, it was discovered

that SVM yielded abnormal results therefore its performance could not be assessed.

 test if the removal of the Size feature would

correct the problem that led to abnormal results. This change solved

improved K- e; however, XGBoost is still the best performing algorithm

across every metric. Regarding training times, XGBoost was slower than the first experiment

and SVM was faster. K-NN was slower at storing the training instances.

In the third experiment, several features were eliminated and aggregated to measure the

impact of reducing the feature space on algorithm performance as well as the possible gains in

training-time of using less features. XGBoost remains the best performing algorithm, although

its FPR increased after feature aggregation and elimination. SVM and KNN showed marginal

improvements over the second experiment. In comparison to the second experiment, XGBoost

and SVM achieved faster training times and K-NN achieved faster training instance storage

times.

The fourth and final experiment was characterized by the usage of feature normalization

techniques, the reintroduction of a normalized version of the Size feature and the introduction

of six new features, which motivated the employment of two tests: a) using feature

normalization techniques, and b) using both feature normalization techniques and feature

aggregation and elimination. In the first test, XGBoost showed an improvement in F1-score,

AUC ROC and FNR in comparison to the first and second experiments; however, it has a 0.003

higher FPR than the model of the second experiment. SVM also improved in every metric in

comparison to its first and second model counterparts. On the other hand, none of the K-NN

models performs clearly better than the ones in the first and second experiments. The second

Malware detection methods for Android mobile applications

56

test achieved mixed results; therefore, it is not clear which algorithm performed the best.

However, every K-NN model showed an improvement in their AUC ROC values.

In the first test, all XGBoost models achieved slower training times than the third

experiment. SVM models also achieved slower training times except when using Unit Norm

normalization. K-NN training instance storage times were slower except when normalization

techniques were not used.

In the second test, all XGBoost and SVM model training times improved in comparison to

the first test. K-NN training instance storage times improved except when feature normalization

was employed.

In summary, the application of machine learning using static analysis-extracted features in

the detection of Android malware proved to be promising by providing an automatic method

that could be used in the protection of application stores in a real-word scenario. However, the

fact that false negative rates never lowered past 23.1 % is a big concern, given that if this method

was being applied in an application store, more than one fifth of applications would be classified

as goodware when in reality they are malware, which is not acceptable. This might be due to

the fact that the dataset has a small sample size of over 1700 samples after under-sampling

coupled with a goodware to malware ratio of 70/30. If the dataset was larger, even with this

ratio, the number of malware would be higher which would make it easier for the model to

distinguish between malware and goodware given that it would have more information, leading

to better classification decisions.

The fact that the models were trained using a realistic dataset provided by a reputable

Android application store also give these results a higher degree of confidence, even though

they achieved slightly lower performances than the best static-analysis-based malware

detection methods present in the reviewed literature.

This thesis also originated a paper providing an overview of machine learning-based

Android malware detection methods, which was presented in the 7th International Symposium

on Digital Forensics and Security (ISDFS) in June 2019 and was published on IEEE Xplore in

July 2019 [12].

Possible routes for future work include increasing the number of features to be eliminated and

aggregated by increasing the permission requested and correlation thresholds chosen in this

thesis (0.009 % and 85 % respectively), training the algorithms with different malware to

goodware ratios to investigate its impact on their performance, exploring new features to

include in the dataset, using a dataset with a larger sample size in order to increase the size of

the resulting dataset after under-sampling if the goodware to malware ratio of the original

Malware detection methods for Android mobile applications

57

dataset follows the same trend as the one used in this thesis (99/1), and dividing numerical

features into sets of boolean features (e.g. discrete boolean

features, e.g.).

Malware detection methods for Android mobile applications

58

Malware detection methods for Android mobile applications

59

6. References

[3]
Journal of

Network and Computer Applications, vol. 153, no. November 2019, p. 102526, Mar.
2020, doi: 10.1016/j.jnca.2019.102526.

[7] P. Faruki et al.
IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp. 998 1022,

2015, doi: 10.1109/COMST.2014.2386139.

[8] Google, pp. 1 49, 2019.

[12]
2019 7th International

Symposium on Digital Forensics and Security (ISDFS), Jun. 2019, pp. 1 6, doi:
10.1109/ISDFS.2019.8757523.

[24]
International Journal of Technology and Engeneering

Science, vol. 3, no. March 2015, pp. 3217 3223, 2016.

[25] L. Singh and M.
2017 International Conference on Intelligent Communication

and Computational Techniques (ICCT), Dec. 2017, no. 2013, pp. 1 7, doi:
10.1109/INTELCCT.2017.8324010.

[26] B. International Journal
of Mobile Network Communications & Telematics, vol. 7, no. 4/5/6, pp. 01 10, Dec.
2017, doi: 10.5121/ijmnct.2017.7601.

[27] S. Arshad, M. A. Shah, A. Wahid, A. Mehmood, H. Song
Novel 3- IEEE
Access, vol. 6, pp. 4321 4339, 2018, doi: 10.1109/ACCESS.2018.2792941.

[28] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. G. Bringas, and G. Álvarez,
Advances in Intelligent

Systems and Computing, vol. 189 AISC, 2013, pp. 289 298.

[30]
Permission and API Call 2013 IEEE 25th International Conference on Tools with
Artificial Intelligence, Nov. 2013, pp. 300 305, doi: 10.1109/ICTAI.2013.53.

[32] Machine Learning, vol. 24, no. 2, pp. 123 140, Aug.
1996, doi: 10.1007/BF00058655.

[33]
Proceedings 2014

Network and Distributed System Security Symposium, 2014, no. August, doi:
10.14722/ndss.2014.23247.

[34]
2012.

[36]
2018 IEEE International Conference

on Smart Internet of Things (SmartIoT), Aug. 2018, pp. 143 148, doi:
10.1109/SmartIoT.2018.00034.

Malware detection methods for Android mobile applications

60

[38]
2016 IEEE MIT Undergraduate Research

Technology Conference (URTC), Nov. 2016, vol. 2018-Janua, pp. 1 3, doi:
10.1109/URTC.2016.8284090.

[39]
assessment of machine learning-base Empirical
Software Engineering, vol. 21, no. 1, pp. 183 211, Feb. 2016, doi: 10.1007/s10664-014-
9352-6.

[43]
2017 International Conference on Cyber Security And Protection Of Digital Services,
Cyber Security 2017, 2017, doi: 10.1109/CyberSecPODS.2017.8074847.

[44] V. M. Afonso, M. F. de Amorim, A. R. A. Grégio, G. B. Junquera, and P. L. de Geus,
 Journal of

Computer Virology and Hacking Techniques, vol. 11, no. 1, pp. 9 17, 2015, doi:
10.1007/s11416-014-0226-7.

[47] Y. Zhao, G. Xu, and Y. Zhang, Quality, Reliability, Security and Robustness in
Heterogeneous Systems, vol. 234. Springer International Publishing, 2018.

[49] Computers
and Electrical Engineering, vol. 40, no. 1, pp. 16 28, 2014, doi:
10.1016/j.compeleceng.2013.11.024.

[51]
2016 IEEE International Conference on Consumer Electronics,

ICCE 2016, pp. 155 156, 2016, doi: 10.1109/ICCE.2016.7430561.

[53] C. Pete et al. - CRISP-DM Consortium, p. 76, 2000.

[54] Wiley Interdisciplinary
Reviews: Computational Statistics, vol. 2, no. 4, pp. 433 459, Jul. 2010, doi:
10.1002/wics.101.

[55]
Philosophical Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences, vol. 374, no. 2065, p. 20150202, Apr. 2016, doi:
10.1098/rsta.2015.0202.

[56] - Distill, vol.
1, no. 10, Oct. 2016, doi: 10.23915/distill.00002.

[57] - Journal of Machine
Learning Research, 2008.

[59] Proceedings of
the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
vol. 13-17-Augu, pp. 785 794, Mar. 2016, doi: 10.1145/2939672.2939785.

[60] R. James, G., Witten, D., Hastie, T., Tibshirani, An Introduction to Statistical Learning
- with Applications in R | Gareth James | Springer. 2013.

[61] Proceedings of
the eighth ACM SIGKDD international conference on Knowledge discovery and data
mining - , 2002, vol. 7, p. 297, doi: 10.1145/775047.775092.

[62] The

Malware detection methods for Android mobile applications

61

Annals of Statistics, vol. 29, no. 5, pp. 1189 1232, Oct. 2001, doi:
10.1214/aos/1013203451.

[63] E. Alpaydin, Introduction to Machine Learning, 2nd ed. MIT Press, 2010.

[65] - Journal
of Machine Learning Research, vol. 13, pp. 281 305, 2012.

[69]
Journal of Thoracic Oncology, vol. 5, no. 9, pp. 1315 1316, Sep. 2010,

doi: 10.1097/JTO.0b013e3181ec173d.

[70] Clinical Text Mining, Cham:
Springer International Publishing, 2018, pp. 45 53.

[82] A. Martín, R. Lara-
Data Science and Knowledge Engineering for Sensing

Decision Support, Sep. 2018, no. September, pp. 509 516, doi:
10.1142/9789813273238_0066.

[83] A. Martín, R. Lara-
hybrid features fusion and ensemble classifiers: The AndroPyTool framework and the

Information Fusion, vol. 52, no. December, pp. 128 142, Dec.
2019, doi: 10.1016/j.inffus.2018.12.006.

Malware detection methods for Android mobile applications

62

Malware detection methods for Android mobile applications

63

7. Web References

[1] AV- - https://www.av-
test.org/en/statistics/malware/ (accessed Aug. 13, 2020).

[2]
https://www.statista.com/statistics/273018/number-of-internet-users-worldwide/
(accessed Jul. 11, 2020).

[4] -
https://www.statista.com/statistics/218984/number-of-global-mobile-users-since-2010/
(accessed Sep. 24, 2019).

[5]
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
(accessed Feb. 08, 2020).

[6]
https://gs.statcounter.com/os-market-share/mobile/worldwide (accessed Aug. 02, 2020).

[9] - -
developer/answer/6334282?hl=en (accessed Sep. 02, 2020).

[10] Taking App Discovery to the Next Level
https://en.aptoide.com/company/about-us (accessed Oct. 25, 2020).

[11] -project-mobile-top-10/ (accessed
Oct. 04, 2019).

[13] | Android
https://developer.android.com/guide/platform (accessed Sep. 05, 2020).

[14] |
https://source.android.com/security/overview/app-security (accessed Sep. 02, 2020).

[15] sary |
https://source.android.com/setup/start/glossary (accessed Sep. 05, 2020).

[16] |
https://developer.android.com/guide/topics/manifest/manifest-intro (accessed Jan. 22,
2019).

[17] |
https://developer.android.com/guide/components/fundamentals (accessed Apr. 09,
2020).

[18]
https://developer.android.com/guide/components/activities/intro-activities (accessed
Jan. 09, 2020).

[19]
https://developer.android.com/guide/components/services (accessed Jan. 06, 2020).

[20]
https://developer.android.com/guide/components/broadcasts (accessed Apr. 09, 2020).

[21]
https://source.android.com/security/app-sandbox (accessed Feb. 24, 2020).

[22]

Malware detection methods for Android mobile applications

64

https://developer.android.com/guide/topics/permissions/overview (accessed Jan. 09,
2020).

[23] |
https://source.android.com/security/overview/kernel-security.html (accessed Sep. 02,
2020).

[29] -
line/aapt2 (accessed Jan. 22, 2019).

[31] -
https://ibotpeaches.github.io/Apktool/ (accessed Jan. 23, 2019).

[35]

[37] - androguard/androguard: Reverse engineering, Malware and goodware

https://github.com/androguard/androguard (accessed Dec. 12, 2019).

[40].
May 24, 2020).

[41] -
https://www.cs.waikato.ac.nz/ml/weka/ (accessed Apr. 06, 2020).

[42] |
https://developer.android.com/studio/test/monkey (accessed Dec. 23, 2018).

[45]
https://github.com/pjlantz/droidbox/tree/master/APIMonitor (accessed Feb. 07, 2019).

[46] |
https://developer.android.com/studio/test/monkeyrunner/ (accessed Feb. 07, 2019).

[48] - J
https://github.com/JesusFreke/smali (accessed Dec. 10, 2019).

[50] -
https://github.com/pjlantz/droidbox (accessed Dec. 10, 2019).

[52] b) |
https://developer.android.com/studio/command-line/adb (accessed Jan. 12, 2019).

[58]
https://developer.android.com/reference/android/Manifest.permission (accessed Oct.
01, 2019).

[64] scikit- -
learn.org/stable/modules/neighbors.html (accessed Feb. 07, 2020).

[66] scikit-
https://scikit-
learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.ht
ml (accessed Feb. 08, 2020).

[67] scikit-
https://scikit-
learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
(accessed Feb. 08, 2020).

Malware detection methods for Android mobile applications

65

[68] -
https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-39940-9_565
(accessed Feb. 08, 2020).

[71] st xgboost 1.2.0-
https://xgboost.readthedocs.io/en/latest/R-package/discoverYourData.html (accessed
Feb. 15, 2020).

[72] xgboost 1.2.0-
https://xgboost.readthedocs.io/en/latest/python/python_api.html#module-
xgboost.plotting (accessed Feb. 15, 2020).

[73] |
https://developer.android.com/guide/topics/permissions/overview#dangerous_permissi
ons (accessed Jun. 20, 2020).

[74]
https://developer.android.com/reference/android/Manifest.permission#READ_CALEN
DAR (accessed Oct. 09, 2019).

[75]
https://developer.android.com/reference/android/Manifest.permission#WRITE_CALE
NDAR (accessed Oct. 09, 2019).

[76]
https://developer.android.com/reference/android/Manifest.permission#READ_SYNC_
SETTINGS (accessed Oct. 09, 2019).

[77]
https://developer.android.com/reference/android/Manifest.permission#WRITE_SYNC_
SETTINGS (accessed Oct. 09, 2019).

[78]
https://developer.android.com/reference/android/Manifest.permission#REQUEST_CO
MPANION_RUN_IN_BACKGROUND (accessed Oct. 09, 2019).

[79]
https://developer.android.com/reference/android/Manifest.permission#REQUEST_CO
MPANION_USE_DATA_IN_BACKGROUND (accessed Oct. 09, 2019).

[80]
https://developer.android.com/reference/android/Manifest.permission#BIND_CARRIE
R_MESSAGING_SERVICE (accessed Oct. 09, 2019).

[81]
https://developer.android.com/reference/android/Manifest.permission#BIND_CARRIE
R_SERVICES (accessed Oct. 09, 2019).

[84] - alexMyG/AndroPyTool: A framework for automated extraction of static and

https://github.com/alexMyG/AndroPyTool (accessed Jul. 01, 2020).

[85]
https://developer.android.com/reference/dalvik/bytecode/Opcodes (accessed Jul. 02,
2020).

[86] |
https://source.android.com/devices/tech/dalvik (accessed Jul. 02, 2020).

Malware detection methods for Android mobile applications

66

[87]
https://developer.android.com/guide/topics/resources/string-resource (accessed Jul. 02,
2020).

[88]
https://developer.android.com/reference/android/content/Intent (accessed Jan. 06,
2020).

[89]
https://developer.android.com/guide/components/intents-filters (accessed Jan. 06,
2020).

Malware detection methods for Android mobile applications

67

Appendixes

Appendix A

Appendix A shows the smaller version of the heatmap mentioned in Chapter 3.2, which only

contains the pair-wise correlation of the permissions that achieved a value higher than 0.80.

These values range from 0 to 1, where the bluer the colour of a rectangle is, the lower the

correlation between a given pair of permissions is. In the same way, as the correlation increases

this colour changes from blue to red and the redder it is the higher the correlation. The diagonal

of the heatmap has a correlation of 1 (corresponding to the brightest red possible) given that it

is the self-correlation of a given permission.

Heatmap of the permissions that achieved a pair-wise correlation higher than 0.80

Malware detection methods for Android mobile applications

68

Appendix B

Appendix B shows the eliminated features (permissions) in third experiment and second test of

the fourth experiment and the respective values of the three conditions that had to be met for a

permission to be eliminated: having a XGBoost importance value in the second experiment 0

or NaN, the percentage of samples (applications) that requested such permission and not being

classified by Android as a dangerous permission.

Eliminated features (permissions) in the third experiment and second test of the fourth

experiment and their respective values of the conditions to be met for elimination

Permission
XGBoost Feature

Importance
Requested

Percentage (%)
Dangerous
Permission

BIND_AUTOFILL_SERVICE NaN 0 No
BIND_CALL_REDIRECTION_
SERVICE

NaN 0 No

BIND_CARRIER_MESSAGING
_CLIENT_SERVICE

NaN 0 No

BIND_CHOOSER_TARGET_S
ERVICE

NaN 0.005 No

BIND_CONDITION_PROVIDE
R_SERVICE

NaN 0.002 No

BIND_DREAM_SERVICE NaN 0.004 No
BIND_MIDI_DEVICE_SERVIC
E

NaN 0.004 No

BIND_PRINT_SERVICE NaN 0.007 No
BIND_SCREENING_SERVICE NaN 0.009 No
BIND_TELECOM_CONNECTI
ON_SERVICE

NaN 0.007 No

BIND_TEXT_SERVICE NaN 0.002 No
BIND_TV_INPUT NaN 0.002 No
BIND_VISUAL_VOICEMAIL_
SERVICE

NaN 0.005 No

BIND_VOICE_INTERACTION NaN 0.004 No
BIND_VPN_SERVICE NaN 0.002 No
BIND_VR_LISTENER_SERVIC
E

NaN 0.002 No

CALL_COMPANION_APP NaN 0 No
FACTORY_TEST NaN 0.004 No
READ_VOICEMAIL NaN 0 No
REQUEST_PASSWORD_COM
PLEXITY

NaN 0.002 No

SET_ALWAYS_FINISH NaN 0.004 No
SMS_FINANCIAL_TRANSAC
TIONS

NaN 0 No

Malware detection methods for Android mobile applications

69

START_VIEW_PERMISSION_
USAGE

NaN 0 No

WRITE_GSERVICES NaN 0.005 No
WRITE_VOICEMAIL NaN 0 No

Malware detection methods for Android mobile applications

70

Appendix C

Given that five models were trained per normalization technique in the fourth experiment,

Appendixes C-H are in a backslash separated format, meaning that for each normalization

technique, the hyper-parameter values of each model are separated by backslashes, where the

first value of a given hyper-parameter corresponds to the first run, the second value to the

second run, etc, up to the fifth run (e.g. 1.0/1.1/1.2/1.3/1.4/1.5). If there is only one value in a

given table cell, it means that hyper-parameter was equal on all models.

XGBoost hyper-parameter values of the first test of the fourth experiment for each feature

normalization technique

 Normalization
Hyper-
parameter

Without

Normalization
Z-score Min-Max

Quantiles

Information
Unit Norm

subsample 1.0 1.0 1.0 1.0
0.8/1.0
/1.0/0.8

/0.8

n_estimators
1000/750
/1000/250

/100

500/250
/500/750

/1000

1000/500
/500/250

/500

1000/1000
/100/100

/500

500/100
/500/250

/500

min_child_weight 1 1 1 1 1

max_depth 13/25/15/30
/20

17/20/17
/10/15

10/15/10
/25/17

15/30/30
/15/13

25/30/25
/15/17

learning_rate
0.05/0.01

/0.01
/0.05/0.05

0.01/0.1
/0.1/0.01

/0.1

0.05/0.01
/0.01/0.1

/0.01

0.01/0.1
/0.05/0.05

/0.01

0.01/0.05
/0.1/0.01

/0.01

gamma 1.7/0.3/1.3
/0.3

0.3/1/1/1
/1.7

1/0.7/0.1
/0.7/0.5

0.7/0.5/0.3
/1.5/1

1.7/2/1/0.1
/1.3

early_stopping_rou

nds=50
70/70/20/70

/20
20/20/70
/50/50

70/30/70
/20/50

50/70/20/70
/30

50/50/20
/30/70

colsample_bytree
0.6/0.3/0.6

/0.3/0.8

0.3/0.6

/0.6/0.3

/0.6

0.6/0.3

/0.3/0.3

/0.3

0.3/0.3/0.3

/0.6/0.3

1.0/0.6/1.0

/0.8/0.6

Malware detection methods for Android mobile applications

71

Appendix D

SVM hyper-parameter values of the first test of the fourth experiment for each feature

normalization technique

 Normalization
Hyper-
parameter

Without

Normalization
Z-score Min-Max

Quantiles

Information
Unit Norm

kernel rbf rbf rbf rbf rbf

gamma 0.01

0.145

/0.145

/0.179

/0.145

/0.145

0.179

0.111/0.077

/0.111/0.077

/0.077

0.280/0.212

/0.246/0.280

/0.212

C
1.3/0.4/0.1/0.2

/0.2

2.0/2.0

/1.9/2.0

/2.0

2.0/1.8

/2.0/1.8

/2.0

2.0/2.0/1.8

/2.0/2.0

1.9/1.8/1.4

/1.9/2.0

Malware detection methods for Android mobile applications

72

Appendix E

K-NN hyper-parameter values of the first test of the fourth experiment for each feature

normalization technique

 Normalization
Hyper-
parameter

Without

Normalization
Z-score Min-Max

Quantiles

Information
Unit Norm

weights distance distance distance distance distance

n_neighbors 9/6/10/6/7 7/8/8/7/7 6/5/5/7/11 6/10/5/7/7 8/8/9/6/6

algorithm

ball_tree/

ball_tree/

kd_tree/

ball_tree/

ball_tree/

ball_tree ball_tree ball_tree ball_tree

Malware detection methods for Android mobile applications

73

Appendix F

XGBoost hyper-parameter values of the second test of the fourth experiment for each feature

normalization technique

 Normalization
Hyper-
parameter

Without

Normalization
Z-score Min-Max

Quantiles

Information
Unit Norm

subsample 1.0 1.0
1.0/1.0
/0.8/1.0

/1.0
1.0

0.8/0.8
/0.8/0.8

/1.0

n_estimators
750/250

/500/1000
/100

1000/500
/1000/500

/500

750/500
/750/500

/1000

500/1000
/750/250

/250

100/500
/1000/750

/500

min_child_weight 1 1 1 1 1

max_depth 25/17/15
/13/17

15/17/20
/20/10

15/30/15
/15/30

15/30/20
/25/25

13/17/20
/17/13

learning_rate
0.01/0.1
/0.1/0.01

/0.05

0.1/0.01
/0.01/0.05

/0.01

0.01/0.01
/0.01/0.01

/0.3

0.01/0.1
/0.01/0.05

/0.01

0.05/0.05
/0.01/0.01

/0.1

gamma 0.1/1.7/1.3
/0.7/1.3

1/0.7/1/1/1
1/1/0.1/1

/2
0.5/1.5/0.3

/1/1.3
0.3/1/1/0.7

/2

early_stopping_roun

ds=50
30/20/30
/50/20

50/20/20
/30/30

50/30/20
/50/30

50/20/30
/70/50

20/20/30
/70/50

colsample_bytree 0.6/0.6/0.6
/0.3/0.3

0.8/0.3
/0.3/0.3

/0.3

0.3/0.3
/0.6/0.3

/0.8

0.6/0.6
/0.3/0.6

/0.3

1.0/1.0/1.0
/1.0/0.8

Malware detection methods for Android mobile applications

74

Appendix G

SVM hyper-parameter values of the second test of the fourth experiment for each feature

normalization technique

 Normalization
Hyper-
parameter

Without

Normalization
Z-score Min-Max

Quantiles

Information
Unit Norm

kernel rbf rbf rbf rbf rbf

gamma 0.01

0.179
/0.145
/0.179
/0.179
/0.179

0.179
/0.179
/0.212
/0.179
/0.179

0.111/0.111
/0.111/0.111

/0.077

0.246
/0.314
/0.314
/0.314
/0.314

C 1.3/0.99/0.6
/0.6/0.3

2.0/2.0
/1.8/2.0

/1.8

2.0/2.0/2.0
/2.0/1.9

2.0/2.0/2.0
/1.8/2.0

2.0

Malware detection methods for Android mobile applications

75

Appendix H

K-NN hyper-parameter values of the second test of the fourth experiment for each feature

normalization technique

 Normalization
Hyper-
parameter

Without

Normalization
Z-score Min-Max

Quantiles

Information
Unit Norm

weights distance distance distance distance distance

n_neighbors 12/11/7/7/10 8/6/7/7/8 9/10/8/7/9 12/7/6/6/11 9/8/7/7/11

algorithm

ball_tree
/kd_tree
/ball_tree
/ball_tree
/kd_tree

ball_tree ball_tree ball_tree ball_tree

