
A mobile tour guide app for sustainable tourism

Filipe Eduardo da Silva Vida Larga

Master in Computer Science and Business Management

Supervisor:
Doctor Fernando Brito e Abreu, Associate Professor,
Iscte

Co-supervisor:
Doctor José Luís Cardoso da Silva, Assistant Professor,
Iscte

November, 2020

[This page has been intentionally left blank]

A mobile tour guide app for sustainable tourism

Filipe Eduardo da Silva Vida Larga

Master in Computer Science and Business Management

Supervisor:
Doctor Fernando Brito e Abreu, Associate Professor,
Iscte

Co-supervisor:
Doctor José Luís Cardoso da Silva, Assistant Professor,
Iscte

November, 2020

[This page has been intentionally left blank]

A mobile tour guide app for sustainable tourism

Copyright © 2020, Filipe Eduardo da Silva Vida Larga, School of Technology and Architecture,

University Institute of Lisbon.

The School of Technology and Architecture and the University Institute of Lisbon have the right,

perpetual and without geographical boundaries, to file and publish this dissertation through

printed copies reproduced on paper or on digital form, or by any other means known or that

may be invented, and to disseminate through scientific repositories and admit its copying and

distribution for non-commercial, educational or research purposes, as long as credit is given to

the author and editor.

[This page has been intentionally left blank]

Acknowledgements

I would like to thank Professor Fernando Brito e Abreu for inviting me to this research project

and for his guidance throughout the dissertation.

I would also like to thank my co-supervisor, Professor José Luís Silva, for his invaluable guid-

ance and feedback.

I express my gratitude to Professor João Caldeira for his contribution to the template that made

this document possible, and wish him good luck with his doctoral thesis.

I am particularly grateful for my colleagues in this research project, Duarte Almeida and Rúben

Beirão, who showed great cooperation and comradeship, and without whom I would not have

been able to complete this dissertation.

I would also like to express my gratitude to all my colleagues that accompanied me throughout

this five year journey, for all the help and all the wonderful moments we shared together.

I would like to thank my dear friend Michael, for his valuable support and advice, which helped

me improve the work done in this dissertation.

And finally, I am thankful for all the support and encouragement my family has provided me

during this period.

Lisboa, November 2020

Filipe Eduardo da Silva Vida Larga

vii

[This page has been intentionally left blank]

Abstract

Portugal has had a flourishing tourism sector for the past few years. In fact, Portugal’s tourism

boom has made the industry one of the biggest contributors to the national economy and the

largest employer. In the year 2019, Portugal had a total of 27 million tourists, surpassing once

again the record established in the previous year. However, tourism also brings a series of

unintended negative side effects, such as overcrowding. The Santa Maria Maior historic district

in Lisbon is being particularly affected by this problem.

The work undertaken in this dissertation is part of the Sustainable Tourism Crowding project,

that aims to mitigate the overcrowding phenomenon in this district, by fostering a balanced

distribution of visitors while promoting the visitation of sustainable points of interest. This

dissertation focuses on developing a mobile app prototype targeted at tourists, through which

these sustainable walking tour recommendations can be delivered.

To validate the functional requirements of the prototype, more specifically the trip creation

process, a series of unit tests, integration tests, and manual tests were developed. To evaluate

the usability of the prototype, a user-centered approach was adopted during the design stage,

in which two usability techniques were conducted with members of ISCTE’s research center

ISTAR and partners from the Junta de Freguesia de Santa Maria Maior, that guided and validated

the decisions made.

The achieved prototype contains mechanisms for measuring tourists’ adherence to the

recommended tours using the Dynamic Time Warping algorithm, which raises new research

opportunities on tourists’ behaviour.

Keywords: Tourism, Sustainability, Mobile Application, Mobile Tour Guide

ix

[This page has been intentionally left blank]

Resumo

O desenvolvimento próspero do setor turístico em Portugal nos últimos anos fez da indústria

um dos maiores contribuintes para a economia nacional e o maior empregador do país. No ano

de 2019, Portugal recebeu um total de 27 milhões de turistas, ultrapassando uma vez mais uma

vez o recorde estabelecido no ano anterior. No entanto, o turismo traz também uma série de

efeitos secundários negativos não intencionais, tais como overcrowding. A freguesia histórica de

Santa Maria Maior em Lisboa está a ser particularmente afetada por este problema.

O trabalho desenvolvido nesta dissertação faz parte do projeto de pesquisa Sustainable
Tourism Crowding, que visa mitigar o fenómeno de overcrowding nesta freguesia, promovendo

uma distribuição equilibrada dos visitantes e incentivando a visita de pontos de interesse

sustentáveis. Esta dissertação foca-se no desenvolvimento de uma aplicação móvel protótipo

destinada a turistas, através do qual recebem recomendações de visitas sustentáveis.

Para validar os requisitos funcionais do protótipo, mais especificamente o processo de

criação de visitas, foram desenvolvidos testes unitários, testes de integração, e testes manuais.

Para avaliar a usabilidade do protótipo, foi adotada uma abordagem centrada no utilizador

durante a fase de conceção, em que foram utilizadas duas técnicas de usabilidade em parceria

com o ISTAR (centro de investigação do ISCTE) e com a Junta de Freguesia de Santa Maria

Maior, cujos resultados guiaram e validaram as decisões tomadas.

O protótipo desenvolvido contém mecanismos para medir a aderência dos turistas às re-

comendações sugeridas através do algoritmo Dynamic Time Warping, proporcionando novas

oportunidades de pesquisa nesta área.

Palavras-chave: Turismo, Sustentabilidade, Aplicação Móvel, Guia Turístico Móvel

xi

[This page has been intentionally left blank]

Contents

List of Figures xvii

List of Tables xxi

Listings xxiii

Acronyms xxv

1 Introduction 1

1.1 Motivation and scope . 3

1.2 Research questions and goals . 5

1.3 Research steps . 5

1.4 Main contributions . 6

1.5 Dissertation outline . 7

2 State of the Art 9

2.1 Introduction . 11

2.2 Review protocol . 11

2.2.1 Research objectives . 11

2.2.2 Search strategy . 12

2.2.3 Selection criteria . 13

2.2.4 Results . 13

2.2.5 Validity threats . 13

2.3 Related work . 14

2.3.1 Secondary studies . 14

2.3.2 Taxonomy proposal . 15

2.3.3 Primary studies . 17

2.3.4 Summary . 42

3 Sustainable Tourism Crowding Project 45

3.1 Project overview . 47

3.2 Mobile APP . 48

3.2.1 APP - POINT communication . 49

3.2.2 APP - ROUTE communication . 50

3.2.3 APP - HEAT communication . 50

xiii

CONTENTS

4 Development Approach 53

4.1 Flutter SDK . 55

4.1.1 Decision . 55

4.1.2 Architectural overview . 58

4.1.3 Core concepts . 59

4.1.4 Developer experience . 65

4.2 Application architecture . 66

4.2.1 Mobile development challenges . 66

4.2.2 Presentation design patterns . 67

4.2.3 Flutter state management . 70

4.2.4 Complete architecture . 76

4.3 Functional testing . 77

4.3.1 Unit and integration testing . 78

4.3.2 Functional testing . 80

4.4 Bluetooth detection service . 83

4.4.1 Bluetooth in smartphones . 83

4.4.2 Design and implementation . 83

5 Application Design 87

5.1 Application description . 89

5.2 User centered design and UI validation . 90

5.2.1 Card sorting . 91

5.2.2 Tree testing . 92

5.2.3 First iteration results . 93

5.2.4 Second iteration results . 96

5.2.5 Validity threats . 98

5.2.6 UI prototype . 98

5.3 Design considerations . 104

5.3.1 Intermittent network . 104

5.3.2 Handling errors and alternative states 106

5.3.3 Adaptive UI components . 108

6 Conclusion 111

6.1 Conclusions . 113

6.2 Future work and limitations . 114

6.2.1 Further validation . 114

6.2.2 Prototype enhancements . 115

6.2.3 Research opportunities . 115

Bibliography 117

xiv

CONTENTS

Appendices 125

A API JSON schemas 125

A.1 Track submission JSON schema . 125

A.2 Point of interest JSON schema . 126

B Test Scenarios 127

B.1 Scenario #1 . 127

B.2 Scenario #2 . 130

B.3 Scenario #3 . 133

B.4 Scenario #4 . 135

B.5 Scenario #5 . 136

C Trip Creation Process 139

D Tree Test Results 143

D.1 First iteration results . 143

D.2 Second iteration results . 145

E Dynamic Time Warping 149

xv

[This page has been intentionally left blank]

List of Figures

1.1 Percentage of smartphone users that are comfortable researching, planning and

booking their entire trip using only mobile devices. [38] 4

2.1 Review protocol . 12

2.2 User interface [21] . 18

2.3 Map View display [26] . 20

2.4 List View display [26] . 20

2.5 User Interface [69] . 21

2.6 Application layout [51] . 23

2.7 User interface [73] . 24

2.8 System architecture [18] . 25

2.9 App interface [18] . 26

2.10 Architectural structure [41] . 29

2.11 System architecture [55] . 32

2.12 App interface [36] . 33

2.13 3D interface [61] . 34

2.14 System architecture diagram [61] . 35

2.15 System architecture diagram [90] . 36

2.16 iTravel system architecture [96] . 37

2.17 iTravel interface (home screen) [96] . 38

2.18 User interface [98] . 39

2.19 iMAP-CampUS user interface [5] . 41

2.20 iMAP-CampUS system architecture [5] . 41

3.1 Project overview diagram . 47

3.2 APP - Project communication use case diagram . 49

3.3 APP - POINT communication . 49

3.4 APP - ROUTE communication . 50

3.5 APP - HEAT communication . 51

4.1 Flutter architecture [30] . 58

4.2 Counter app and its corresponding widget tree [32] 60

4.3 Comparison screens . 61

4.4 Model-View-Controller pattern [85] . 68

4.5 Model-View-Presenter pattern [85] . 69

xvii

List of Figures

4.6 Model-View-ViewModel pattern [85] . 70

4.7 Types of state [32] . 71

4.8 Provider widget tree example . 72

4.9 Business Logic Component (BLoC) diagram [10] 74

4.10 Android data layer . 76

4.11 Clean architecture data layer . 76

4.12 Complete architecture . 77

4.13 Bluetooth detection service diagram . 85

5.1 Application use case diagram . 90

5.2 Dendrogram example for a clothing website card sort 92

5.3 Tree test task analysis example . 93

5.4 Dendrogram for the first card sort . 94

5.5 Tree of the first tree test . 95

5.6 Dendrogram of the final card sort . 97

5.7 Tree of the second tree test . 98

5.8 Application organized use case diagram . 99

5.9 City Map UI . 100

5.10 Trip Creation UI . 102

5.11 Trip Overview UI . 102

5.12 Trip History User Interface (UI) . 103

5.13 POIs caching mechanism . 106

5.14 Search caching mechanism . 106

5.15 Trip creation error . 107

5.16 Trip history empty state . 108

5.17 Recent searches empty state . 108

5.18 Shimmer loading effect . 108

5.19 Adaptive UI example. Android on the left and iOS on the right 110

6.1 Strava WhatsApp ride sharing . 116

B.1 Scenario #1 Trip Creation UI . 127

B.2 Scenario #1 Trip Overview UI . 128

B.3 Scenario #2 Trip Creation UI . 130

B.4 Scenario #2 Trip Overview UI . 131

B.5 Scenario #4 Trip Creation UI . 135

B.6 Scenario #4 Error Trip UI . 135

B.7 Scenario #5 Trip Creation UI . 136

B.8 Scenario #5 Trip Overview UI . 137

D.1 First iteration, task #1 results . 144

D.2 First iteration, task #2 results . 144

D.3 First iteration, task #3 results . 144

D.4 Second iteration, task #1 results . 146

xviii

List of Figures

D.5 Second iteration, task #2 results . 146

D.6 Second iteration, task #3 results . 146

D.7 Second iteration, task #4 results . 147

D.8 Second iteration, task #5 results . 147

D.9 Second iteration, task #6 results . 147

E.1 DTW simulated paths . 149

E.2 DTW simulated paths . 150

xix

[This page has been intentionally left blank]

List of Tables

2.1 Inclusion criteria. 13

2.2 Exclusion criteria. 13

2.3 Search string execution . 14

2.4 Secondary studies . 15

2.5 Cheverst et al. (2000) classification . 19

2.6 Dunlop et al. (2004) classification . 21

2.7 Pospischil et al. (2002) classification . 22

2.8 Kramer et al. (2007) classification . 23

2.9 Ricci et al. (2006) classification . 25

2.10 Cena et al. (2006) classification . 27

2.11 Cunningham et al. (2006) classification . 28

2.12 Höpken et al. (2010) classification . 29

2.13 Kenteris et al. (2009) classification . 31

2.14 Lim et al. (2007) classification . 32

2.15 Garcia et al. (2009) classification . 33

2.16 Noguera et al. (2012) classification . 35

2.17 Wijesuriya et al. (2013) classification . 37

2.18 Yang et al. (2013) classification . 38

2.19 Zhao et al. (2015) classification . 40

2.20 Alqahtani et al. (2017) classification . 41

2.21 Primary studies classification . 43

4.1 Advantages and drawbacks of different development approaches [67] 55

4.2 Test scenario #1 . 81

4.3 Test scenario #2 . 81

4.4 Test scenario #3 . 81

4.5 Test scenario #4 . 81

4.6 Test scenario #5 . 82

xxi

[This page has been intentionally left blank]

Listings

4.1 Android example . 63

4.2 Flutter example . 63

4.3 Future example . 64

4.4 Async / Await example . 64

4.5 Provider example . 73

4.6 BLoC example . 75

4.7 Bloc test example . 79

A.1 TrackSubmission example . 125

A.2 PointOfInterest example . 126

B.1 Scenario #1 Route Request JSON . 128

B.2 Scenario #1 Route Response JSON . 129

B.3 Scenario #2 Route Request JSON . 131

B.4 Scenario #2 Route Response JSON . 132

B.5 Scenario #3 Route Request JSON . 133

B.6 Scenario #3 Route Response JSON . 134

B.7 Scenario #4 JSON . 136

B.8 Scenario #5 Route Request JSON . 137

B.9 Scenario #5 Route Response JSON . 138

xxiii

[This page has been intentionally left blank]

Acronyms

API Application Program Interface.

AR Augmented Reality.

BLE Bluetooth Low Energy.

BLoC Business Logic Component.

DTW Dynamic Time Warping.

GIS Geographic Information System.

IA Information Architecture.

IDE Integrated development environment.

MTG Mobile Tour Guides.

MVC Model-View-Controller.

MVP Model-View-Presenter.

MVVM Model-View-ViewModel.

PDA Personal digital assistant.

POI Point of Interest.

PWA Progressive Web App.

RR Rapid Review.

RS Recommender System.

SDK Software Development Kit.

STC Sustainable Tourism Crowding.

UCD User-centered design.

UI User Interface.

xxv

[This page has been intentionally left blank]

C
h
a
p
t
e
r

11 1

Introduction

Contents
1.1 Motivation and scope . 3

1.2 Research questions and goals . 5

1.3 Research steps . 5

1.4 Main contributions . 6

1.5 Dissertation outline . 7

This chapter introduces the motivation and scope of this work, describes the main research

questions that it aims to answer, along side the goals and steps taken to achieve them, and the

contributions achieved. Finally, it explains how this dissertation is outlined.

1

[This page has been intentionally left blank]

Chapter 1

Introduction

1.1 Motivation and scope

Tourism plays a crucial role in the economic development of Portugal [28]. In the year 2017,

tourism contributed with 13,7% (or 26 844,7 million euros) to the total GPD of Portugal. As for

the number of tourists, in the year 2019 Portugal had a total of 27 million tourists, surpassing

the record established in the previous year (7,2% increase). These tourists stayed an average

of 2.6 nights in accommodation establishments (totaling 69.8 million overnight stays), which

converted into a revenue of 3.2 million euros.

Portugal is regarded as one of the best tourist destinations and has been respectively

awarded as so in multiple categories. The World Travel Awards organization has recognized

Portugal as the World’s Leading Destination three times in a row (2017 to 2019)1. The city of

Lisbon in particular has won several awards, such as being the Europe’s Leading City Destination
in 20182 and having the Europe’s Leading Cruise Port from 2016 to 20203.

However, tourism also brings a series of unintended negative side effects, such as over-

crowding. Overcrowding has many negative impacts [64], such as increasing the costs of living

and of real estate, causing a decline in the quality of life of the locals, increasing the noise

pollution of the city and more. Another aspect of overcrowding that affects the city of Lisbon is

the loss of authenticity and of cultural and natural heritage. What once were local stores and

small businesses, are now being replaced by “tourist traps” and large multinational franchises

(e.g. Starbucks and McDonalds).

The Sustainable Tourism Crowding (STC) research project, an initiative by ISCTE’s research

center ISTAR, is an ongoing project in the Santa Maria Maior district in Lisbon, to mitigate

overcrowding by fostering a balanced distribution of visitors, while promoting the visitation of

sustainable Point of Interest (POI)s. The work presented in this thesis is part of this research

project.

At the same time that tourism is growing to unsustainable levels, smartphones have been

gaining significance both in general and in the subject of tourism specifically. Computers have

been dethroned from the role of people’s primary device by smartphones [89]. As of late 2019,

mobile phones have 52% of the market share worldwide, while desktops decreased to 45%4. A

study by eMarketer5 shows that about 90% of the time spent on smartphones is using apps.

These applications enable consumers to access a variety of services and resources without

the need for a web browser and establish a new channel for purchases [86]. For businesses, apps

serve as a way to interact closer with mobile shopper from any location at any time, enhancing

the effectiveness of promotions and increasing customer loyalty [13].

1https://www.worldtravelawards.com/award-worlds-leading-destination-2019
2https://www.worldtravelawards.com/award-europes-leading-city-destination-2018
3https://www.worldtravelawards.com/award-europes-leading-cruise-port-2020
4https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide
5https://www.emarketer.com/content/us-time-spent-with-mobile-2019

3

https://www.worldtravelawards.com/award-worlds-leading-destination-2019
https://www.worldtravelawards.com/award-europes-leading-city-destination-2018

CHAPTER 1. INTRODUCTION

Smartphone’s versatile features, such as GPS and Bluetooth, have already allowed for the

development of some very interesting apps that help travelers in tourism-related contexts, such

as museum tours [14], hiking [3], and skiing [39]. As smartphone capabilities continue to

evolve, so does the tourism industry. New features such as Augmented Reality can offer unique

and interesting ways to provide services to tourists [50].

In 2017, Google and PhocusWright conducted a study that demonstrates the predominance

of smartphones in tourism [38]. Over 70% of U.S. travelers report that they always use their

smartphones when traveling, up from 41% in 2015, showing an increasing interest in these de-

vices for travelling. This includes researching attractions, restaurants and looking up directions.

Figure 1.1 illustrates the adoption of smartphones for the planning process in seven countries

around the world. Furthermore, this study highlights the importance of presenting information

that is personalized and easy to navigate, as having friction in mobile experiences can lead to

travelers trying different ones.

Figure 1.1: Percentage of smartphone users that are comfortable researching, planning and
booking their entire trip using only mobile devices. [38]

The ability to support the traveler in every stage of the trip, especially on the move and

within the destination, where other devices fall short, is also one of the reasons why smart-

phones have become so popular in tourism. [41]. This opportunity makes mobile apps the ideal

platform to target tourists directly and align their behaviour with the goals of the STC project,

hopefully changing the landscape of tourism in Lisbon.

The STC project started in 2019 and has already led to interesting case studies and proto-

types. The work of Silva et al. [78] contributed to the detection of crowding using multiple

radio techniques, while the work of Peixoto et al. [65] contributed with the classification of

POIs in terms of sustainability, and with research on generating sustainable walking tours. This

year, two new student members will continue to develop the project, one focusing on advanc-

ing the creation of sustainable walking tours, and the other focusing on developing the app

through which tourists can obtain them. This dissertation corresponds to the latter, describing

the work undertaken to design and develop an app prototype and integrating with the rest of

the remaining components of the STC project.

4

1.2. RESEARCH QUESTIONS AND GOALS

1.2 Research questions and goals

The main research question the present dissertation aims to answer is:

• Is it possible to create a mobile tour guide app that promotes sustainable behaviours in

tourists and potentially be used to reduce the overcrowding phenomenon in pressured

cities.

The research question can be broken down into the following research goals, which this disser-

tation aims to achieve:

• Design of a suitable information architecture and user interface for a mobile tour guide

that aligns with the requirements of the STC project;

• Development of a functional prototype cross-platform mobile app according to the re-

sulting design specification and integration with the remaining components of the STC

project;

• Plan the quality of service for a mobile tour guide in the scope of an intermittently avail-

able network.

1.3 Research steps

The steps to be taken for answering the first research goal are:

• Review other mobile tour guides by doing a systematic rapid review;

• Review the literature for the topic of usability in mobile applications and specifically

mobile tour guides;

• Develop a user-centered design process for the prototype where relevant user groups are

involved in the design stages;

• Use the results from said process to design a final version of the information architecture

and user interface, using a specialized design tool such as Figma.

The steps to be taken for answering the second research goal are:

• Research what cross-platform mobile software development kits are available and deter-

mine which one is more suited for the project;

• Determine the functional requirements for the APP component of the STC project, to-

gether with the advisers, and co-student of the trip generator element;

• Implement the user interface and the functional requirements into a prototype mobile

application;

• Integrate the developed prototype with the other components of the STC architecture.

5

CHAPTER 1. INTRODUCTION

• Develop a series of unit tests, integration tests, and manual tests in order to perform a

functional validation.

The steps to be taken for answering the third research question are:

• Determine which network dependant features are considered crucial and which ones can

be relinquished or downgraded without disrupting the activity flow of the user;

• Determine which of these features can be with modified the usage of local storage as an

alternative;

• Design and implement the model classes that will store the data pertaining to these

features;

• Investigate what are the different local storage options available for the chosen software

development kit;

• Design and implement the caching mechanisms using one of the local storage options

above.

1.4 Main contributions

This section presents a summary of the main results and contributions achieved with the devel-

opment of this dissertation:

Contribution 1 - Development of a functional prototype mobile application for creating trips

and guiding users through them, according to the needs and requirements of the STC project.

The source code is available on the STC repository on GitHub so that everyone can use it as a

starting point to develop and investigate their own research questions.

Contribution 2 - Integration of the developed prototype with the other components of the STC

architecture. This includes the design and documentation of multiple APIs (and respective

JSON schemas) using a specialized tool that easily allows for future improvements. This is also

open-source and included in the STC repository on GitHub. See section 3.2 for more details.

Contribution 3 - A literature review on the topic of mobile tour guides, with a taxonomy fo-

cused on the features and characteristics of the apps. See section 2.3.3 for more details.

Contribution 4 - A brief introduction and review of the Flutter software development kit which,

due to its novelty, has not seen much discussion in the scientific world. See section 4.1 for more

details.

6

1.5. DISSERTATION OUTLINE

1.5 Dissertation outline

This dissertation is organized in six chapters, which are briefly summarized as follows:

Chapter 1 - Introduction. This chapter provides context for work undertaken in this disserta-

tion, introduces the research questions and subsequent steps to answer them, as well as the

main contributions.

Chapter 2 - State of the Art. It gives an overview of the related work, using the systematic

literature review approach for the topic of mobile tour guides.

Chapter 3 - Sustainable Tourism Crowding Project. This chapter presents the STC technical

architecture, explains how the work undertaken in this dissertation fits into the main project

and how it interacts with the other systems.

Chapter 4 - Development Approach. In this chapter we cover the technical decisions taken

to develop the prototype. This includes the architecture of the application and the software

development kit used for development. Additionally, this chapter contains the tests carried out

for the functional validation of the prototype.

Chapter 5 - Application Design. This chapter presents the high level functionalities of the

prototype and the design decisions taken. Furthermore, it contains the process of validating

the user interface.

Chapter 6 - Conclusion. It concludes and summarizes the achievements of this dissertation. It

also opens the discussion for challenges and future work in this area.

7

[This page has been intentionally left blank]

C
h
a
p
t
e
r

22 2

State of the Art

Contents
2.1 Introduction . 11

2.2 Review protocol . 11

2.3 Related work . 14

This chapter describes the systematic rapid review undertaken for the topic of mobile tour

guides. It includes the review protocol and the discussion of the results.

9

[This page has been intentionally left blank]

Chapter 2

State of the Art

2.1 Introduction

In order to gain a better understanding of the scientific work done in the area of Mobile Tour

Guides (MTG), and to attain a clearer definition of the problem being researched, a systematic

Rapid Review (RR) was performed on this topic. A RR is a methodology for identifying, evalu-

ating and interpreting relevant published research relevant to a particular topic of interest. It

is a more streamlined version of a traditional systematic literature review with a smaller time

frame [48]. Using this technique, we can guarantee that our review is thorough and fair, since

otherwise it would be of little scientific value.

This RR follows guidelines proposed by [17] for systematic rapid reviews adapted to reflect

the specific problems of software engineering research and follows the proposed review proto-

col. Based on this reference, this RR is partition into three main phases planning, performing,

and reporting. The planning phase of a systematic RR implies the creation of a protocol to

define all the decisions and procedures demanded to conduct the RR. Overall, this systematic

RR had a duration of 5 weeks from January to February.

This systematic rapid review will focus on MTGs that were covered in primary studies. Be

aware that many MTG are “just” commercial applications, therefore not subject to research

scrutiny.

2.2 Review protocol

The purpose of the review protocol is to specify the plan which the review will follow to

identify, appraise and collect primary studies [17]. A pre-defined protocol is necessary to

reduce the possibility of researcher bias [49]. Taken from these previously mentioned references,

our review protocol contains research objectives that the review is intended to accomplish; a

strategy that will be used to search for primary studies, including search terms and databases

and a selection criteria for including or excluding studies from the systematic RR. Figure 2.1

summarizes the review protocol.

2.2.1 Research objectives

The objectives of this review are to:

• Undertake a systematic rapid review of research on the benefits and limitations of mobile

tour guides.

• Select a sub-set of studies to review in-depth.

• Identify any gaps in current research in order to suggest areas for further investigation.

11

CHAPTER 2. STATE OF THE ART

Research Questions

Search String

Define keywords

Build search string

Execute on the chosen
eletronic databases

Filter Studies

By document

By language

By keyword

By date

By topic

By repetition

By title By abstract

By full reading

Data AnalysisResults Snowballing from
Secondary Studies

Figure 2.1: Review protocol

2.2.2 Search strategy

In order to identify studies that directly relate to the systematic rapid review questions and

objectives defined above, the implemented search strategy consists of searching established

bibliographic databases in the area of software engineering with specific search strings, review-

ing secondary studies and going through the references quoted in these articles, also known as

snowballing [91].

Search Bibliographic Databases:

The following bibliographic databases have a vast collection of computer science related content

that is suitable for the topic of MTGs.

• Scopus (https://www.scopus.com)

• Web of Science (https://www.webofknowledge.com/)

• Research Gate https://www.researchgate.net/

Search String:

Although we adopted the term Mobile Tour Guide (MTG), it is not the only term used in the

literature. Therefore, we also included other terms in the search string:

("mobile application"OR "mobile tour guide"OR "mobile tourist guide"OR "personalised elec-

tronic tourist guide"OR "mobile recommender system"OR "mobile travel guide") AND ("travel"OR

"trip"OR "attraction"OR "visit"OR "point of interest")

12

(https://www.scopus.com)
(https://www.webofknowledge.com/)
https://www.researchgate.net/

2.2. REVIEW PROTOCOL

2.2.3 Selection criteria

The selection criteria is fairly simple (Tables 2.1 and 2.2). We include every study relevant to

mobile tour guides written in English that is peer-reviewed and published in a conference or

journal or book. Like previously mentioned, we exclude commercial publications on MTGs that

have little or no scientific value.

Table 2.1: Inclusion criteria.

Criterion Description

IC1 Written in English.
IC2 Published in conferences or jour-

nals or books.
IC3 Title relevance regarding mobile

tour guides.

Table 2.2: Exclusion criteria.

Criterion Description

EC1 Studies published before the year
2000.

EC2 Only researched-based articles are
considered.

EC3 Articles classified with irrelevant
topics, keywords or titles.

EC4 Articles with similarly relevant ti-
tles but irrelevant content.

2.2.4 Results

By following the protocol 14 primary studies have been found. Ten come from executing

the search string (Table 2.3) and another four have been added from snowballing from the

secondary studies. Note that, as part of the revision process for the final submission of this

dissertation, two additional studies were added so that the RR considers a few more recent

approaches to MTGs as well.

2.2.5 Validity threats

Just as described in [16], this RR is not without its validity threats. This RR includes a total of

16 primary studies, which is not representative of the number MTGs in the literature and might

call into question the reliability of the results. Some of the criteria included in the proposed

taxonomy is not objectively defined (i.e. the Personalization and Usability criteria) and they are

not always clearly described by the authors, which might have led to an incorrect classification

of the extracted data.

13

CHAPTER 2. STATE OF THE ART

Table 2.3: Search string execution

SCOPUS
Web of
Science

Research
Gate

Results from search string 1522 333 100
After removing by document type 1415 326 100
After removing by date 1271 309 100
After removing by topic 744 87 100
After removing by language 731 83 100
After removing by keyword 138 83 100
After removing duplicates 138 74 82
After removing by title 46 20 24
After removing by abstract 12 10 15
After removing by full reading 4 3 3

2.3 Related work

In this section we conduct a short review of some secondary studies conducted in the area

of MTGs, which will serve as guidance for our own proposed taxonomy. Then we review the

primary studies resulting from the review protocol and classify them according to the taxonomy.

Finally, we present a short discussion about the studies reviewed and how we will explore areas

not touched by these studies.

2.3.1 Secondary studies

Secondary studies review primary studies (individual publication or a study) related to some

research questions to integrate/synthesize evidence related to those questions [49], much like

our RR. These studies can not only help us to find good primary studies of the same topic

but also to understand how these primary studies can be evaluated and categorized. This is

particularly useful for the definition of our own taxonomy. In the subject area of mobile tour

guides there are a few secondary studies that our taxonomy benefited from (Table 2.4).

Kenteris et al. [45] is a paper that focuses on the evaluation of research and commercial

applications which are used by tourists (and not only) to get information, navigation, guidance

or just cultural information using a mobile device. It classifies these applications “using a
detailed set of evaluation criteria to extract design principles”. This includes parameters such as the

architecture/network infrastructure, input/output modalities and position/map technologies.

Karanasio et al. [43] is another secondary study used as reference. In this paper the au-

thors propose a frame of reference for the categorisation of mobile tourism applications (not

exclusively tour guides) and a framework for evaluating mobile tourism applications. This

framework includes parameters such as customization and the type of service delivered.

Borràs et al. [11] review a number of MTGs (named as intelligent tourism recommender

systems) according to their interfaces and functionalities, but also according to the type of

recommendation techniques and artificial intelligence techniques used by these systems. Addi-

tionally, this article also provides some guidelines for the development of future MTGs.

Finally, Gavalas et al. [37] is an article that reviews mobile recommender systems in the

14

2.3. RELATED WORK

subject of tourism. In this article we find classification propositions for these systems accord-

ing to the services offered, based on the architectural style of the system, based on the degree

of user involvement and based on the criteria taken into account for deriving recommendations.

Table 2.4: Secondary studies

Authors Year Title

Kenteris et al. 2008 Evaluation of Mobile Tourist Guides

Karanasio et al. 2011 A Classification of Mobile Tourism Applications

Borràs et al. 2014 Intelligent tourism recommender systems: A survey

Gavalas et al. 2014 Mobile recommender systems in tourism

2.3.2 Taxonomy proposal

In order to better understand the characteristics and to compare the strengths and restrictions

of MTG apps, there is a need to define concrete criteria by which they will be classified. The

proposed taxonomy is based on all of the previously mentioned secondary studies, but takes a

perspective that is more concerned with the aspects and functionalities of the apps that bring

value to the end-user, disregarding some of the more technological and behind-the-scenes

aspects of the routing system. In the following subsections we describe each of the criteria

composing the proposed taxonomy.

2.3.2.1 Development approach

Today, the number of development options for mobile applications is high. Choosing a Software

Development Kit (SDK) is perhaps the biggest decision developers have to make that will highly

impact the development process. Different options have different advantages and drawbacks

so there is no definitive correct answer. Evaluating these primary studies according to their

development approach is important because it is a decision that will have to be made for our

own work, so we must understand what reasons and considerations underly the authors’ deci-

sions/choices.

We consider three categories for this criteria:

• Native Applications - Separate apps made with/for each operating system’s native SDK;

• Hybrid Applications - Apps that combine both native development and web technology;

• Web Applications - Mobile web apps or progressive web apps that run on the device’s

browser.

2.3.2.2 Availability

This criterion is concerned with the number of end-users (i.e. tourists) that have access to

the MTG during their travels, since targeting more device types enlarges the potential size of

15

CHAPTER 2. STATE OF THE ART

the target audience. Accordingly, these are the categories that describe the portion of mobile

devices supported, following an ordinal scale:

1. Limited Audience (Specific Device Type) - These apps were developed with a specific

target device in mind and are not distributed publicly (e.g. e-book reader app for the

Kindle device).

2. Moderate Audience (Single Device Type) - Only a subset of devices are targeted (e.g.

supporting only iOS or Android).

3. Mass Audience (Multiple Device Types) - These apps were intended for mass distribu-

tion and support numerous types of devices.

2.3.2.3 Personalization

Mobile tourism leverages many opportunities to provide highly accurate and effective tourist

recommendations that respect personal preferences and capture usage, personal and environ-

mental contextual parameters [37]. MTGs that provide more freedom and customization, ap-

peal not only to those who feel comfortable with guided tours, but also to users who enjoy a

more dynamic and unrestricted travel experience [51].

Inspired by the reviewed secondary studies [11, 37], personalization is defined by the extent

that the app customizes it’s experience according to users’ preferences and external factors. This

criterion is classified following an ordinal scale:

1. Basic Personalization - These MTGs allow for some user input, although in a very limited

manner. Personalization consists only of adapting to the user’s location, time constraints

and which POIs they want to visit.

2. Intermediate Personalization - The recommendation system takes the user’s preferences

and constraints into consideration in order to give a tailored experience. There are many

ways in which the user can interact with the recommendation system in order to get a

custom experience.

3. Advanced Personalization - Along with taking direct user interaction to mold the details

of the trip, these MTGs also collect information from other sources, such as weather

forecasts or monitoring user’s behaviour to readjust recommendations automatically.

2.3.2.4 Usability

Usability is a particularly interesting topic for MTGs, given their particular usage context. It is

important to evaluate the usability criterion on the primary studies to understand what special

considerations the authors had when developing their apps. The selected primary studies will

be categorized according to the level of concern for usability found in the papers. For this

criterion, we propose the following ordinal scale :

1. No Concern - There is a general lack of concern for the usability of the app. Few or even

no mentions on usability can be found in the study.

16

2.3. RELATED WORK

2. Average Concern - Some consideration for usability was addressed by the authors that

ensure the app provides a satisfactory experience when interacting with its features.

3. High Concern - The authors designed effective solutions to improve the user experience

resulting in a very intuitive and usable app.

2.3.2.5 Social features

The taxonomy proposed by Kennedy et al. [44], classifying the services provided by tourism

apps categorizes apps with social features as either social networks apps or communication

apps. This includes apps with a sharing, collaboration, communication or social component.

This taxonomy does not seem to be the most appropriate for our purposes, as MTGs can have

social features without being outright social networks or communication based apps.

Social features are classified into two categories by Zhao et al. [99], differentiating interac-

tions among contents from interactions among users. The following classification is adapted

from the one proposed by this author:

1. No Social Features - No social features are offered by these apps.

2. a) Interactions among contents - User-generated content (UGC), content personaliza-

tion, content rating and commenting, and content sharing are some of the features

provided by this type of apps.

b) Interactions among users - These apps contain features like follow/unfollow peo-

ple, online chat (peer-to-peer conversation among people), and invite contacts from

existing social networks.

3. Hybrid Interactions - These apps contain features from both types of interaction.

2.3.2.6 Evaluation method

This final criterion is concerned with how the authors evaluate and validate their apps. There

are multiple aspects that can be evaluated in a MTG, such as the routing and recommendation

algorithms. In our case, we are more concerned about evaluating the user experience and

usability of the app. Accordingly, these are the categories that describe the different methods:

1. Evaluation by experts - Refers to the evaluation of the app by consulting with experts in

the area (e.g. user-centered design).

2. Empirical evaluation - Refers to the testing of the app by real users (e.g. a field trial).

Usually followed by a usability survey.

2.3.3 Primary studies

2.3.3.1 Cheverst et al., “Developing a context-aware electronic tourist guide: Some issues

and experiences”, 2000

GUIDE was one of the first context-aware MTG prototypes to be developed. It was built for

the city of Lancaster in the year 2000, with the goal of “overcoming many of the limitations of the

17

CHAPTER 2. STATE OF THE ART

traditional information and navigation tools available to city visitors”. The system couples personal

mobile devices with wireless communications and context awareness to satisfy the information

and navigation needs of tourists.

The system tries to accommodate different types of tourists: the ones that prefer guided

tours and the others that prefer to explore on their own. GUIDE is flexible enough to work as an

intelligent tour guide or as a richly featured guidebook, enabling visitors to explore Lancaster

in their own way. Additionally, travellers never have to feel pressured to adhere to the plan, as

the system adjusts to unexpected attraction visit times or in-between breaks.

Another set of features this app includes is accommodation bookings and an electronic

messaging service with other visitors or the Lancaster’s Tourist Information Centre. The authors

noted that tourists make repeat visits to the Tourist Information Centre, often during the course

of a single day, to request some sort of help/information or to book accommodations.

The app was developed for a single device, namely, the Fujitsu TeamPad 7600 Personal

digital assistant (PDA). Unlike most of the reviewed MTGs, this one does not utilize GPS in

order to obtain positioning information. Instead, GUIDE devices receive location messages that

are transmitted from strategically positioned base stations. Admittedly, this approach results in

a lower resolution of positioning information. Wireless communication is also done differently

than most MTGs. A number of WaveLAN cells were deployed in the city, each one supported by

a GUIDE server. These cells disseminate data to the GUIDE devices using a broadcast approach.

The user interface (Fig. 2.2) is based on web browsers, as the authors believed that the

“growing acceptance of the web and the increasing familiarity of the browser metaphor” would make

the system easy to use and to learn. From this interface the user can: (1) retrieve information

about attractions, weather, news and general information about the city, (2) navigate using

a map, (3) create and follow a tour of the city, (4) communicate with other visitors or the

Tourist Information Centre and (5) book accommodations. Some of these features are network

dependent, making them unusable during periods of disconnection. This is represented in

the user interface by “greying-out” said actions and buttons (direct manipulation paradigm),

helping the user understand the state of the system and ultimately avoid seeming unpredictable

and unreliable.

Figure 2.2: User interface [21]

18

2.3. RELATED WORK

In order to determine the initial requirements of the app, the authors conducted “a series
of semi-structured, one-to-one interviews with members of staff at Lancaster’s Tourist Information
Centre”. Furthermore, they observed the information needs of tourists in the Tourist Informa-

tion Centre for several days. Later evaluations were made using two different approaches. The

first one used four experts in the area of user-centered design and computer supported learning

that tested the full range of the app, resulting in valuable feedback, some used to improve

GUIDE for the following evaluation. This next evaluation consisted of a field trial. Visitors

were asked to use the prototype freely instead of having to perform a predefined set of tasks.

Their interactions with the system were logged, they were encouraged to audio record their

thoughts and, in the end, a semi-structured interview was conducted in order to obtain the

visitor’s subjective opinion of the system.

The system is capable of adapting to the user’s context (e.g., visitor’s interests, current

location), environmental context (e.g., the time of day and the opening times of attractions)

and it supports dynamic information notifications (e.g., notifying the user that an interesting

attraction that was previously closed is now open).

Although GUIDE is network dependent, it tries its best to function offline by locally caching

parts of the information model. Unfortunately, during long periods of disconnection the cached

information can easily become outdated.

Table 2.5: Cheverst et al. (2000) classification

Development
Approach

Availability Personalization Usability Social Features Evaluation

Web
Limited Audience

(Specific Device Type)
Intermediate

Personalization
Average
Concern

Interactions
Among Users

Empirical
Evaluation

2.3.3.2 Dunlop et al., “Design and development of Taeneb City Guide: From Paper Maps

and Guidebooks to Electronic Guides”, 2004

This MTG is called the Taeneb City Guide and was developed by researchers from the University

of Strathclyde, UK. It proposes to improve on the available literature by focusing on these three

main features: (1) query-able dynamic map interface, (2) dynamic information content and (3)

community review systems and users’ forum. Granted, these features can be found in many of

the more recent MTGs reviewed, but perhaps not so much in the year 2004.

The article does not provide much detail about the system architecture that complements

the MTG, focusing rather on the three main features previously mentioned.

The user interface for the Taeneb City Guide was designed with two main types of views: a

“Map View Display” (Fig. 2.3) and a “List View Display” (Fig. 2.4). These two views represent

maps and guidebooks, the two types of publications most often used by tourists. “Using maps
with guidebooks solves the problem of where attractions are and what attractions are in a given
location”.

The map view is very interactive, supporting features such as zooming and panning, point-

ing and tapping on symbols of attractions for more information and filtering of the attraction

19

CHAPTER 2. STATE OF THE ART

Figure 2.3: Map View display [26] Figure 2.4: List View display [26]

categories. While the authors claim that “maps were specially drawn for easy reading and use by a
tourist while walking”, it appears that the fact that it is not using Google Map’s SDK (perhaps not

available at the time), but instead this custom solution (Fig. 2.3), really harms the readability

and usability of the interface, specially on small devices.

The list view contains a list of attractions, much like an index at the end of a typical

guidebook, with the advantage of providing different sorting criteria to the user. The authors

believe that “simply switching between the displays allows making a quick connection between where
attractions are, brief descriptions and reviews”.

Tourist attractions can be very volatile. In order to provide current and up to date informa-

tion to tourists “Taeneb City Guide uses a central database server to store its content including the
data about all the attractions and associated events”. This central database can easily be updated

via a web-based interface. Mobile devices synchronise their data directly using Wi-Fi, GSM and

GPRS mobile phone networks or through a PC via a Hot Synch process.

Alternatively, for users that prefer to arrange their trips in advance and then synchronise

the information into their mobile devices, a web site was created (www.citygogo.com, no longer

available) with the same functionalities as the MTG.

Although the development approach of this app is unknown, it seems that only PDAs with

the mobile operating system PalmOS were capable of using the it.

One of the main features of this MTG is a review system where tourists can review attrac-

tions privately or publicly. They could rate attractions out of a scale and make an additional

text review. These reviews were filtered so that travelers only find reviews of other tourists with

similar demographic profiles.

An initial usability trial was conducted in the city of Glasgow for two days. Twenty partici-

pants were recruited from an international conference happening at the same time. They used

the application mostly for searching for restaurants and found the review system to be very

useful.

20

2.3. RELATED WORK

Table 2.6: Dunlop et al. (2004) classification

Development
Approach

Availability Personalization Usability Social Features Evaluation

Unknown
Moderate Audience
(Single Device Type)

Basic
Personalization

Average
Concern

Interactions
Among Users

Empirical
Evaluation

Figure 2.5: User Interface [69]

2.3.3.3 G. Pospischi et al., “Designing LoL@, a Mobile Tourist Guide for UMTS”, 2002; G.

Pospischi et al., “LOL@, A MOBILE TOURIST GUIDE FOR UMTS”, 2002

LoL@ is a research prototype of a MTG designed for tourists visiting the city center of Vienna.

It provides predefined tours and point of interest information. It is meant to be an “interactive
version of the classic printed guidebook”. It was designed with these three usage scenarios in mind:

(1) a tourist walks through the city, (2) a tourist plans his/her sightseeing tour in the hotel room

and (3) a user accesses tour information and personal tour data from a desktop PC.

The system architecture is very complex and composed of many different technologies. The

most relevant ones are the Java applets that power the app and the Java servlets that power the

server. The app is implemented on top of a web-browser. Multimedia, speech recognition, voice

transmission and route calculation all use third party solutions. For location-based functionality

the system utilizes GPS, but expected to support other sources (e.g. cell ID and radio signal

propagation) to complement it in the future.

The user interface used a browser metaphor where users interact by clicking on icons,

hypertext links, and buttons, by selecting from menus, and through spoken commands. A set

of predefined voice commands can be used as shortcuts to perform specific actions.

Using something different than the widely accepted map SDKs (e.g. Google Maps, Mapbox)

can be a risky way to compromise the usability of an app. However, since none of this options

were available at the time, a custom solution was implemented (Fig. 2.5). Two variants of the

city of Vienna map were available: an “overview map” and a “detail map”. In the overview

map, POIs are grouped into clusters to avoid clutter. In the detail map, individual POI and

street names are shown. Important POIs have unique symbols and more common POIs have

category symbols (e.g. museum). Included, as well, is the user’s location and a distinction

between already visited and remaining parts of the tour.

The tour diary allows users to upload information (including pictures) about their trip. All

visited POIs are automatically included. This data is stored remotely on a server, making it

accessible from other devices and locations.

The authors showed great care when designing the user interface. Things like the color

21

CHAPTER 2. STATE OF THE ART

scheme were considered to accommodate for color blind people and the elderly. The only

negative remark in usability is the constant need of network connectivity.

Provisions were made to evaluate usability issues and technical aspects of the system were

made: students attending a user interface design and usability course would conduct a usability

study in the summer of 2002.

Table 2.7: Pospischil et al. (2002) classification

Development
Approach

Availability Personalization Usability Social Features Evaluation

Web
Moderate Audience
(Single Device Type)

Basic
Personalization

High
Concern

No Social Features N/A

2.3.3.4 Kramer et al., “Behavioural Impacts of Mobile Tour Guides”, 2007; Kramer et al.,

“Development and evaluation of a context-driven, mobile tourist guide”, 2008

The Dynamic Tour Guide (DTG) [52] has been extensively reviewed by many authors and is one

of the most discussed research prototypes in the field of MTGs. It was one of the first MTGs

that calculated tours in real time by considering available context information like personal

interests and location based services.

The authors found an identical problem of overcrowding in the city of Goerlitz, Germany.

Popular attractions were becoming overcrowded and others had rarely any visitors. They sus-

pect that tourists ended up following the most popular paths simply due to lack of information,

and not because it was their preference. The objective of the DTG is to have a mobile guide that

understands the individual interests and timeframe, knows the local situation and suggests a

personal tour to each tourist.

The Dynamic Tour Guide (DTG) is a mobile application which, in its “Planner mode”,

is able to create personalised tours based on tourists’ generic preferences and context based

constraints such as tour duration, starting time and location. The DTG also offers an “Explorer

mode” that computes no tour plan but provides context based information whenever requested.

Tourists can follow their own position on a map and see a list of available attractions in their

close vicinity. Either manually selecting or staying at a certain sight will trigger context-driven

interpretation. Points of interest have to be manually added by a content provider. These POIs

contains address, interest coverage, descriptive text modules, various pictures, audio files and

general information.

Screenshots from the article show that although it may not have the most modern-looking

user interface, it is certainly functional. The authors have shown concern for usability issues

when designing the interface, mentioning small screen real-estate and issues when elicit the

preferences of a tourist regarding the selection of attractions for a tour. Menus, navigation and

layout are well thought out (Figure 2.6).

In August 2006 a field trial was conducted in Görlitz, Germany to examine the behaviour

of tourists resulting from the use of the mobile Recommender System (RS) DTG. The main ob-

jective was to study the differences of the Planner and Explorer modes in terms of their impact

22

2.3. RELATED WORK

Figure 2.6: Application layout [51]

on tourist behaviours. They used a limited amount of specific mobile devices during this study,

some operating on explorer and others on planner mode. The software was equipped with an

instrumentation mechanism in the background to monitor the usage patterns. The authors

identify some limitations in this methodology, namely that the data obtained from monitoring

users gave no insight regarding their intentions or reasons, or whether their behaviour was

influenced by external causes.

Table 2.8: Kramer et al. (2007) classification

Development
Approach

Availability Personalization Usability Social Features Evaluation

Unknown
Moderate Audience
(Single Device Type)

Intermediate
Personalization

Average
Concern

Interactions
Among Contents

Empirical
Evaluation

2.3.3.5 Ricci et al., “A conversational recommender system for on-the-move travellers”,

2006

MobyRek was a MTG prototype developed specifically for the on-tour stage of travelling, aiming

that, at this stage of travel, tourists would use the system “to search for desired travel products, or
to complement their pre-travel plan”.

For the pre-travel and post-travel stages, there is a second system named NutKing. It is a

web recommender system that “helps users in selecting one or more destinations to visit and then
adding additional products related to the selected destinations (accommodations, activities, events)”.

Even though NutKing had already been successfully validated, it is not suitable for tourists on

the move, where the time span and cognitive effort needs to be minimized.

MobyRek and NutKing were built to work together. MobyRek makes use of NutKing’s pre-

travel plan to extract a set of preferences from the product choices made by users. This means

that it works under the constraint that the complementary products recommended should

conform to those that have already been selected in the pre-travel stage. The way the system

23

CHAPTER 2. STATE OF THE ART

tunes these recommendations is quite different from other MTGs. In an attempt to minimize

user effort, it involves the user in a dialogue metaphor by allowing them to criticize each option

(e.g. too expensive). The system automatically updates the user’s preferences model with either

mandatory restrictions or optional preference (e.g. preference for paying with credit card).

This article focuses on how the system makes recommendations (which is considered out

of the scope of this rapid review), instead of expanding on the details of the overall system

architecture or the app itself. The user interface is composed of four screens (Fig. 2.7): (1) a

screen consisting of a list of recommendations, (2) a screen with the attributes of the POI, (3) a

screen with the description and customers’ opinions of the POI and (4) a “travel notes” screen

consisting of all the saved points of interest.

Figure 2.7: User interface [73]

The user interface does not seem to provide a map that tourists can use to guide themselves,

which is an important aspect of MTGs, resulting in a bad user experience. However, the authors

did mention efforts (e.g. reducing cognitive efforts, designing for smaller screens) to improve

the usability of the app.

The evaluation process involved six test users. The participants were first trained by being

introduced to the user interface and the system functionality. Then, the users tested the system

by using it in a real life scenario. Finally, the test users were asked to complete a usability survey.

24

2.3. RELATED WORK

Table 2.9: Ricci et al. (2006) classification

Development
Approach

Availability Personalization Usability Social Features Evaluation

Unknown Unknown
Intermediate

Personalization
Average
Concern

No Social Features
Empirical
Evaluation

2.3.3.6 Cena et al., “Integrating Heterogeneous Adaptation Techniques to Build a Flexible

and Usable Mobile Tourist Guide”, 2006

Developed by the university of Turin, UbiquiTO was a MTG prototype that adapts to the user,

the device and the context of interaction. While this prototype focuses on travelling workers,

the authors envision a system that will serve any type of tourist. In this very thorough article,

the authors detail their system architecture and the strategies adopted to make the system

adaptive.

The system architecture (Fig. 2.8) of this prototype is fairly complex. The core of the

system are the two personalization agents: the Recommender and the Presentation Adapter.

Additionally, there are three support modules: the Interaction Manager, the UI Generator and

the Watcher. Finally, there are three knowledge bases (KB) and two databases (DB) that support

the other components. All of these components are located on the server side, in order to

“support flexibility and device independence”, meaning that the system can function regardless of

what device the user is using it from.

Figure 2.8: System architecture [18]

25

CHAPTER 2. STATE OF THE ART

From the two personalization agents, the Recommender tailors the suggested items (points

of interest) to the users preferences and to the context (location). The Presentation Adapter
molds the presentation (e.g., interface layout) according to user preferences, the context and

the device’s characteristics.

Between the support modules, the Interaction Manager is responsible for creating XML

objects that correspond to the (personalized) content of the interface page. The UI Generator
serves to apply styling (XSL stylesheets) to the XML objects into the final (X)HTML pages that

produce the UI, according to the device and context features. The Watcher tracks information

from the user either implicitly, by observing user’s interaction with the system (e.g., GPS, page

views), and explicitly (e.g., from the initial registration form). Additionally, there is an optional

forth module - the UbiTracer - that is a client side location agent, which can be downloaded on

GPS-enabled devices, that sends the user’s location to the Watcher agent. On devices without

GPS, users alternatively provide their current location by selecting it on a map.

Two separate versions of the user interface were developed, one for desktop and another

for smartphones/PDAs. The mobile version (Fig. 2.9) has been simplified in order to account

for the smaller screen real estate. These adaptive interfaces are created using Java Servlet

technology that generates HTML pages dynamically.

Figure 2.9: App interface [18]

Due to the initial design decision to make a system for every type of tourist, the authors

managed to create a system that truly adapts to the end user and his choice of device. The system

uses explicit information (e.g., demographic data, categories of interest, visit constraints) and

implicit information (e.g., propensity to spend) to create the best possible recommendations.

The user interface not only adapts to the device’s characteristics, but also to context con-

ditions (e.g., bigger font size when the user is on the move or according to the time of day),

leading to improved usability.

The authors conducted multiple tests to different parts of the system. The usability of the

user interface was evaluated in a set of heuristics evaluations performed by three usability/do-

main experts.

26

2.3. RELATED WORK

Table 2.10: Cena et al. (2006) classification

Development
Approach

Availability Personalization Usability Social Features Evaluation

Web
Mass Audience

(Multiple Device Type)
Advanced

Personalization
High

Concern
No Social Features

Evaluation
by Experts

2.3.3.7 Cunningham et al., “A Context-Aware e-Tourism Application Enabling

Collaboration and Knowledge Exchange among Tourists”, 2006

Kamer eTourism Application is a MTG prototype that is part of the Italian project Kamer
(Knowledge Management in Ambient Intelligence: technologies enabling the innovative development
of Emilia Romagna) that focuses on Ambient Intelligence (AmI) and context-awareness support-

ing knowledge exchange and collaboration among individuals in mobility.

The authors see “tourist communities as groups of tourists with common interests, where com-
munication should be enabled and knowledge should be formalised and exchanged for the benefit
of all members”. They applied this philosophy into the app, treating tourists as a “source of
valuable information, which can be useful for other tourists and for tourist service providers as well”
by designing two social driven features: (1) an instant messaging service where tourists can

communicate between them and (2) a service provider reputation manager that lets tourists

rate and see other people’s ratings of services.

This app was designed to run on a specific PDA via a Web browser. Besides the aforemen-

tioned services it also provides users with location-based content delivery, which means that

users will proactively receive notifications with descriptions and multimedia content related

to the nearby POIs. The app does a very good job of being context aware, adapting to “user
preferences, current activity, closeness to points of interest and physical proximity to other tourists, es-
pecially those with similar preferences and itineraries”. This means that, for instance, if it’s around

noon, the system will notify the tourist of nearby places to eat.

The system architecture is divided into three layers. The Context Consumer layer (in this

case, the app) receives processed context data to dynamically serve the user. The Context
Management Middleware receives raw context data from multiple providers, processes it into

higher-level context data and delivers it to the consumers. Finally, the Context Provider layer

which is composed of individual distributed sensors that gather context data (e.g., temperature,

light).

The Context Management Middleware serves as a separation of the app logic and the task of

context management, improving reusability and extensibility of context management modules,

and simplifying the design and development of the app itself. This layer is comprised of said

Context Management modules, which are J2EE programs dealing with “context data acquisition
from context providers, data representation, reasoning and delivery to context-aware applications,
managing queries from applications or notifying them when context has changed”.

This prototype specializes in capitalizing the social aspect of tourism to enrich the contents

of the app, while also allowing users to interact with each other to improve their experiences.

27

CHAPTER 2. STATE OF THE ART

The authors have shared some of their issues and concerns about usability. They choose

a specific PDA due to it’s higher screen resolution. They allow users to configure some of the

information flow to their preference and they made some design decisions that better fit the

mobile experience.

By the time of publication, evaluation tests had not yet been conducted, but there were two

planned stages. The first stage was meant to test the usability of the app in group sessions of

Italian students in the centre of Piacenza. The second staged would involve older people from

different backgrounds, with varying technological skills.

Table 2.11: Cunningham et al. (2006) classification

Development
Approach

Availability Personalization Usability Social Features Evaluation

Web
Limited Audience

(Specific Device Type)
Advanced

Personalization
Average
Concern

Hybrid Interactions N/A

2.3.3.8 Hopken et al., “Context-based Adaptation of Mobile Applications in Tourism”,

2010

This article presents a framework for mobile applications in tourism that enables flexible im-

plementations of adaptive, context-aware tourism applications. The authors believe that user

acceptance of apps strongly depends on the application adaptation to concrete usage context.

The proposed framework focuses on user interface adaptation, content adaptation (recom-

mendation), and interaction modality adaptation. It intends to increase information quality,

the efficiency of the human–computer interaction, and the overall usability.

The framework has been instantiated and evaluated in the form of two app prototypes for

two different application scenarios, a city guide for the city of Innsbruck (Innsbruck.mobile) and

a skiing guide for the ski resort DolomitiSuperski (DolomitiSuperski.mobi).

Both the Innsbruck.mobile and the DolomitiSuperski.mobi apps were created according to the

authors’ proposed framework. They follow the architectural structured represented by Figure

2.10.

The User Model Service constitutes a central user modeling component that manages users’

profiles and their interaction histories. The data for the user model is derived from explicit user

input, as well as user interactions within the search and browse, recommendation, or PUSH

service. In the Innsbruck.mobile version the user also interacts directly with the app in order to

input his time restrictions and personal tastes.

There is a strict separation of the application content and its concrete representation and

application behavior (based on XML and XSLT). The content and general structure of the

application is provided in a neutral format, independent of the concrete user interface, and the

presentation and behavior of the application is dynamically generated based on transformation

instructions. This enables a comprehensive and flexible adaptation of an application’s user

interface. Due to this mechanism, the apps are compatible with a multitude of platforms and

devices from smartphones to PC’s.

28

2.3. RELATED WORK

Figure 2.10: Architectural structure [41]

DolomitiSuperski.mobi was implemented during the winter season 2007/08 and 2008/09.

During the winter season 2008/09 a total number of 20,240 unique visits were registered. The

authors monitored the usage patterns of their users. Additionally a laboratory-based evaluation

took place in April, 2008 were they assessed the service quality of the app.

Innsbruck.mobile was evaluated in June, 2008 during the European Football Championship

EURO2008™. It was the official mobile guide of the host city Innsbruck. Much like DolomitiSu-
perski.mobi, usage patterns were also monitored.

Table 2.12: Höpken et al. (2010) classification

Development
Approach

Availability Personalization Usability Social Features Evaluation

Web
Mass Audience

(Multiple Device Type)
Intermediate

Personalization
Average
Concern

No Social Features
Empirical
Evaluation

29

CHAPTER 2. STATE OF THE ART

2.3.3.9 Kenteris et al., “An innovative mobile electronic tourist guide application”, 2009

This paper presents the design and implementation issues of a MTG research prototype. Namely,

it enables the creation of portable tourist applications with rich content that matches user

preferences. The prototype implemented by the authors is called myMytileneCity and it was

made for tourists planning to visit the city of Mytilene (Lesvos Island, Greece). The main design

and implementation objectives were the following:

• The system should allow the generation of tourist guide applications over the Internet,

which can later be executed on non-networked mobile terminals;

• The personalized tourist applications should execute on any mobile device (mobile phone,

smart phone, PDA, palmtop, etc.) independently of their hardware platform or operating

system;

• The applications should enable the dynamic delivery of tourist content with minimal user

intervention, given that the user has expressed interest on the correspond- ing content

type.

The app design was heavily influenced by these previously mentioned objectives. It in-

cludes a database-enabled tourist web site wherein, on a first stage, users choose the content

that interests them (lodging, sightseeing, entertainment, etc). They may download these person-

alized applications (optimized for their specific device’s model) either directly to their mobile

device, or first to a PC and then to a mobile terminal (through infrared or Bluetooth). Constant

internet access is not required, as the applications execute in standalone mode and may be

updated when the user returns online. New tourism content can be added (or updated) by ad-

ministrators, and it will be pushed to the mobile device. This prototype is particularly careful

with only updating content that the user is interested, in order to avoid network costs.

In order to execute on any mobile device, the app was developed using the Java 2 Micro

Edition1. J2ME configurations define the minimum features of a Java Virtual Machine and a

minimum set of libraries for a “horizontal” family of devices. Profiles are implemented on the

top of configurations (a configuration is the base for one or more profiles). Typically, a profile

includes libraries specialized in the unique characteristics of a particular class of devices. Java

applications (like myMytileneCity) developed for the only pair of configuration/profile available

for mobile phones at the time, were called MIDlets. MIDlets were ideal for MTGs that wanted

platform independence and the power of the Java language.

The user can interact with the web site in order to input his interests into the system and

get a more personalized experience. However, once the application is created and downloaded,

user profile is locked and the system will no longer adapt to any changes in user preferences.

The web site offers advanced search facilities for tourist content that match specific criteria and

allow users (through a specialized forum) to share their opinions and experiences with respect

to destinations they have already visited, make recommendations to other users, etc. Post-visit

reports and voting for best-to-see attractions features are also available.

1https://objectcomputing.com/resources/publications/sett/august-2002-the-next-generation-of-java-2-micro-
edition

30

2.3. RELATED WORK

Although the application design looks outdated (it is an old app, after all), usability was

taken into consideration according to mobile device’s specific properties: small screens, limited

input and mobility.

Usability tests have been performed both in experimental environment and with field stud-

ies. During experimental studies, participants have been asked to accomplish specific tasks

using the mobile application. For the field studies the participants’ personal mobile phones

have been utilized as test tools (after downloading and installing the myMytileneCity guide ap-

plication on them). During usability tests, the evaluators recorded several quantitative usability

attributes measurements for each individual participant (i.e. effectiveness, efficiency and learn-

ability). Additionally, qualitative usability attributes have been evaluated through interviewing

the participants (i.e user satisfaction, simplicity, comprehensibility, perceived usefulness and

system adaptability).

Table 2.13: Kenteris et al. (2009) classification

Development
Approach

Availability Personalization Usability Social Features Evaluation

Hybrid
Moderate Audience
(Single Device Type)

Basic
Personalization

High
Concern

No Social Features
Empirical
Evaluation

2.3.3.10 Lim et al., “Feel the difference: A guide with attitude!”, 2007; Lim et al.,

“Narrative construction in a mobile tour guide”, 2007

The Affective Guide presents a different take on what a MTG should provide. Instead of a

traditional guide that displays facts and descriptions of attractions, this MTG emulates a real

guide’s behaviour by presenting stories based on the user’s interests. It has its own ideological

perspectives and is capable of expressing its viewpoint about events, through improvisational

storytelling.

A prototype was built and used in the Heriot-Watt Edinburgh campus. The “Los Alamos”

site of the Manhattan Project was chosen as the narrative domain. “The Manhattan Project was
chosen because it contained many characters with different personalities and ideologies that can be
used as Affective Guides”. While this MTG may not be very similar to the other ones reviewed,

which makes comparing it unreasonable, it is included due to it being a interesting take on the

MTG paradigm.

This MTG was built for PDAs that support text-to-speech and GPS. All of the processing

and information storage is done remotely on a server and accessed on demand through wireless

communication.

The first interaction with the system starts with the guide introducing himself and engag-

ing in a conversation with the user, which the authors call an “ice-breaking session”, where

the guide extracts information about the user’s name and interests. From there the system

chooses the POIs and the quickest route to them. Upon arriving at a POI, the system starts the

storytelling process. During this interaction, the user is able to express the level of interest in

31

CHAPTER 2. STATE OF THE ART

Figure 2.11: System architecture [55]

the guide’s stories, as well as the level of agreement with the guide’s argument, all through a

rating bar metaphor. The system takes this input and reacts by adjusting the emotional state

and the extensiveness of the stories.

The authors tested different versions of the Affective Guide: an emotional variant (with an

animated character), a non-emotional variant, and a random emotions variant. These versions

were tested with real users, that interacted with the system and were then asked to answer

two sets of questionnaires, one about their subjective opinion on the system and another with

questions based on the stories the participants listened to during the tour. The authors wanted

to measure the effectiveness of the system.

The development approach was not mentioned in the articles. Also it seems that there are

no social features in this MTG. Unfortunately, no descriptions or figures of the user interface

were given.

Table 2.14: Lim et al. (2007) classification

Development
Approach

Availability Personalization Usability Social Features Evaluation

Unknown
Moderate Audience
(Single Device Type)

Intermediate
Personalization

Unknown No Social Features
Empirical
Evaluation

2.3.3.11 Garcia et al., “Intelligent Routing System for a Personalised Electronic Tourist

Guide”, 2009

The main focus of this paper is actually not a MTG, but rather an intelligent routing system

that includes public transportation, adapts to real-life circumstances, such as rush-hours and

updates in real-time when necessary. Nonetheless, a functional prototype MTG that takes

advantage of said routing capabilities has also been developed and described here.

It was created for tourists in the city of San Sebastian, Spain. A city “best visited by com-
bining public transportation with short walks”, making it ideal for this intelligent routing system.

Inspired by the Explorer Mode of the DTG [51, 52], this system also allows users to free browse

the city by accessing information about attractions and public transportation. Users can create

32

2.3. RELATED WORK

their “tourist profile” with restrictions, attractions to be visited, and the location of their ac-

commodation. This was admittedly kept simple, as it was not the main focus of the authors. As

previously mentioned, tourists create routes that will be updated when new events are detected,

after confirmation by the tourist. All of this is complemented by a map-based interface (Fig.

2.12) that helps with the visualization and exploration of the route and attractions.

Figure 2.12: App interface [36]

The system architecture is composed of three main elements: the client, the agents and the

server. The client is a web application that runs on browsers and is developed using Google
Web Toolkit that transforms native Java code into HTML and JavaScript, while also guaranteeing

compatibility with new browser versions. Google Gears is also used to access the location data

of the client. Agents monitor changes in relevant context areas, such as weather or traffic, and

report them to the system. Each agent is responsible for monitoring one specific element. The

server consists of an Apache web server and a Mysql database manager. It receives information

from the client and the agents to provide personalised tourist routes in real time. Information

about attractions is stored in said database and relies on local tourist organizations to keep it

updated, “which is a crucial factor to create high quality routes”.

With the main focus of this paper being the system’s routing algorithm and not the MTG

itself, mentions of usability are hard to find. Nonetheless, from descriptions of the system,

one can assume that the app is very dependent on internet connection to communicate with

the server. One positive aspect is the fact that the app is built to be very aware of the context

surrounding travelling, supported by the agents, resulting in real-time updates of the route.

While a real test of the prototype for tourists in the city of San Sebastian was planned for

the summer, at the time of writing the authors had only carried out laboratory tests validating

the routing algorithm.

Table 2.15: Garcia et al. (2009) classification

Development
Approach

Availability Personalization Usability Social Features Evaluation

Web
Mass Audience

(Multiple Device Types)
Advanced

Personalization
Bad Usability No Social Features N/A

33

CHAPTER 2. STATE OF THE ART

2.3.3.12 Noguera et al., “A mobile 3D-GIS hybrid Recommender System for tourism”, 2012

In this comprehensive article the authors present their design and implementation of a MTG

prototype for restaurants in the province of Jaén in southern Spain, as an extension of a previ-

ously built RS named REJA.

The proposed app wants to overcome the challenges of MTGs by upgrading REJA in the

following aspects: (1) moving from a computer web platform to mobile, so that “users may use
the system wherever they like”; (2) becoming aware of the location of the user to provide better

recommendations; (3) using a 3D-interface with innovative features like 3D geovisualization to

improve the usability of the app.

The 3D Geographic Information System (GIS) interface gives the user an immersive experi-

ence, using the device’s GPS and compass to mimic the user’s perspective into a virtual overview

of the city with an accurate landscape (Fig. 2.13). The map is also interactive so that users can

control the view to locate points of interest using the touchscreen. The main objectives of this

design decision are to make the app easy to use and driver-friendly, and also to “provide a
spatial and intuitive representation of the user’s surroundings together with the location of the rec-
ommended items”. Unfortunately, retaining good performance requires a trade-off in the form

of depending on internet access. Only a small subset of the map is stored in memory, and the

rest is downloaded from a specific GIS server when necessary, as the tourist moves across the

environment.

Figure 2.13: 3D interface [61]

The app architecture is fairly clean (Fig. 2.14). The app communicates exclusively with

the GIS server with requests for recommendations or map data on demand. The GIS server is

responsible for storing the entire terrain data set and delivering chunks of it to the app, as well

as recommendations retrieved from the recommender server. The recommender server simply

provides real time recommendations of restaurants according to the user’s location, and some

optional basic settings.

The app was written as a plain C++ native program, so it supports a broad range of devices:

iOS (iPhone, iPad), Symbian OS, Windows Mobile, Win32 and GNU/Linux.

The level of personalization is fairly limited on some aspects and advanced on others.

Initially, users have to create a profile over the web, where they specify their preferences, which

the RS use to improve the recommendation quality. Additionally, the RS will keep fine tuning

the recommendations based on the ratings the user gives. However, the only known setting the

user can change dynamically over the app is the distance he is willing to travel to the POI.

34

2.3. RELATED WORK

Figure 2.14: System architecture diagram [61]

To evaluate the system, the authors conducted user studies with the main goal of answering

two questions: “Are 3D maps a good way to provide location-aware recommendations on mobile
devices?” and “Does location-awareness increase the quality and usefulness of the system?”. Conse-

quently, they also built 2 variants of the prototype. One with a 2D Google Maps alternative and

another without location aware recommendations.

The first user study evaluated the usability of the app by comparing the 3D interface with

the 2D variant. Users were asked to complete a set of tasks and then fill out a questionnaire

involving typical usability questions. For the second study, users were asked to complete the

same tasks with both variants of the recommender system and then fill out a questionnaire

about the quality of the recommendations. The validity of the 3D map was confirmed as users

state that both map variants were easy to use, clear to understand and have a good practical

use. Overall, this article presents one of the most matured MTG prototypes.

Table 2.16: Noguera et al. (2012) classification

Development
Approach

Availability Personalization Usability Social Features Evaluation

Native
Mass Audience

(Multiple Device Types)
Intermediate

Personalization
Good Usability

Interactions
Among Contents

Empirical
Evaluation

2.3.3.13 Wijesuriya et al., “Interactive Mobile Based Tour Guide”, 2013

This MTG was developed for the Royal Botanical Gardens in Peradeniya, Sri Lanka, by the

Sri Lanka Institute of Information Technology (SLIIT). Much like Portugal, Sri Lanka has a

thriving tourism sector that is a leading driver of growth in the economy. The authors remark

35

CHAPTER 2. STATE OF THE ART

that the local tourism industry has a low adoption for new technologies, and that can serve as

an obstacle for tourists.

To improve this issue, the authors created an app to: “help the tourists to travel on their own
and take full advantage of the visit without missing the main attractions”, thereby replacing the

traditional tour guide booklet.

The app is supported by a web server that stores tour guide information and delivers it

when needed. The app uses the user’s location and selections to obtain relevant tour guide

information from the web server (Fig. 2.15). This architecture has a single point of update that

makes it easy to serve up to date information to the user, while also keeping the app size low.

Figure 2.15: System architecture diagram [90]

The app itself is available for Android devices only, and it has two main features: Map View
and Camera View.

Map View makes use of Google Maps’ API to suggest paths given a start and end location,

to provide information about points of interest with audio descriptions (stored as text in the

web server and converted to audio in real time), and to offer virtual tours of different locations

capable of navigating through processed images that give a realistic three dimensional view of

the location.

Camera View showcases an interesting application of Augmented Reality (AR) in assisting

the traveler at the tourist sight. It utilizes both the device’s GPS and built-in compass to detect

when a user is near a POI and guides them with on-screen arrows indicating the correct way.

The main focus of this project was exploring location based augmented reality to enhance

the tour guide system of Sri Lanka. Accordingly, a native Android application was built as an

experiment. Unfortunately, other important aspects like social features, personalization and

usability were not given much care. Additionally, no evaluation methods were used to validate

the MTG.

36

2.3. RELATED WORK

Table 2.17: Wijesuriya et al. (2013) classification

Development
Approach

Availability Personalization Usability Social Features Evaluation

Native
Moderate Audience

(Single Device Types)
Basic

Personalization
Bad Usability No Social Features N/A

2.3.3.14 Yang et al., “iTravel: A recommender system in mobile peer-to-peer environment”,

2013

iTravel is a recommender system and MTG prototype that relies on mobile peer-to-peer tech-

nology and other tourists’ ratings to recommend attractions. Mobile applications that interact

with a remote server can be a struggle for tourists on the move, due to intermittent internet

connection and high roaming charges. The proposed MTG intends to: “provide mobile users
effortless and inexpensive means for exchanging ratings about attractions and makings effective at-
traction recommendation.”. The result is a completely decentralized system that requires no

main servers for the app to communicate with

Additionally, the authors want to “exploit other tourists’ ratings on their visited attractions for
recommending attractions to a mobile user”, as tourists share common interests and usually rely

on each other for help and suggestions. This system was expected to improve as the user is on

the move, trading information with other tourists making the recommendations more accurate.

The app was implemented using Java 2 Micro Edition and its architecture (Fig. 2.16) con-

sists of 5 main components: (1) the interface, (2) the Location Manager, (3) the Communication
Manager, (4) the Rating Data Manager and (5) the Recommendation Manager.

Figure 2.16: iTravel system architecture [96]

The interface (Fig 2.17) shows users where they are on the map, where nearby tourists are

(green markers) and recommended attractions (blue markers). Additionally, users can also see

a text description of the attractions and rate them on a scale from one to ten.

The Location Manager is simply responsible for detecting the position of users. The Commu-
nication Manager handles the information exchange between users. The most notable peer-to-

peer communication technologies widely available in mobile devices are Bluetooth and Wi-Fi.

37

CHAPTER 2. STATE OF THE ART

Figure 2.17: iTravel interface (home screen) [96]

Both technologies allow for short-range wireless broadband communication. The authors com-

pared both options and decided on Bluetooth due to less power consumption, accepting the

downside of a lower throughput and lesser range.

The Rating Data Manager contains a rating database that stores the user’s personal ratings

but also the ratings of other users. It determines the sets of ratings to send and receive when

exchanging information with another iTravel system. The article contains a lot of detail about

different data exchange approaches that were purposefully omitted in this review, as they

are not considered relevant. Finally, the recommendation manager recommends unvisited

attractions to the user, based on the rating lists stored in the rating database.

The proposed system provides an interesting solution to the “intermittent connectivity”

problem. It focuses on the social aspect of tourism to improve the recommendation accuracy.

User personalization was not the focus of this MTG so the only way users can directly adapt the

recommendation system is by rating attractions.

The performance of the system was evaluated with simulations and the usability of the app

was evaluated using empirical user studies. The prototype was deployed in Lukang, Central

Taiwan, which has a notable historical site and cultural scene. 95 volunteers travelled to Lukang

and used the iTravel system to explore the city. The participants were asked to fill a survey

form regarding the usability at the end. Their rating, browsing and visiting behaviours were

also logged.

Table 2.18: Yang et al. (2013) classification

Development
Approach

Availability Personalization Usability Social Features Evaluation

Hybrid
Moderate Audience

(Single Device Types)
Basic

Personalization
Good Usability No Social Features

Empirical
Evaluation

38

2.3. RELATED WORK

2.3.3.15 Zhao et al., “A Mobile Service Platform for Xinjiang Tourism”, 2015

In this article the authors constructed a mobile service platform for Xinjiang tourism. According

to the authors, Xinjiang has a rich cultural heritage with the right conditions to be a tourism

triumph, but it is still behind when compared with other domestic historical and cultural cities.

The proposed MTG intends to elevate the tourism services of Xinjiang to the standards of

international and domestic tourism, by meeting the requirements of mobility, timeliness and

interactivity of the travel information for different tourists.

Below (Fig. 2.18) are presented some of the screens of the application prototype. The

app’s main screen shows a map of the city with the users location, which is obtained through

GPS. Instead of using the more traditional map provider Google Maps, which has a reputation

for having poor fidelity in China, the prototype uses Baidu map information, to “improve the
accuracy of the data, so that the provided map information is more reliable and available”.

Through this map interface, the users can search nearby hotels, attractions and get the

corresponding routes either by foot or car. By selecting a point of interest, the user navigates

to a screen showing the complete details of said POI. Additionally, if the user is logged in, he

will also have the option to make a reservation and to comment or review the POI. According

to the authors, during tours the application will play relevant media (video and audio) and,

depending on the POI, the app can also dynamically display the relevant artifacts in 3D, and

the historical and cultural allusions, so that visitors can see them from different angles without

interference with each other in the process.

Figure 2.18: User interface [98]

The system’s architecture that supports application is not clearly presented in the article.

Nonetheless, the authors mention a “User System” and an “Attractions System”. The “User System”
allows users to create a profile, insert and manage their personal information, which can then

be used in order to find other tourists, friend them, and chat with them through the app. The

“Attractions System” contains an point of interest database of the city, with their location and

details, which is then shown to the user on the app. Additionally, through this system, the user

39

CHAPTER 2. STATE OF THE ART

can make reservations to these points of interest, when suited, and also comment and review

them. The communication between the client and the server is done by using the JSON data

format.

The application was developed for Android devices only, using the native Android SDK

and the Eclipse development environment. The authors make no mention of usability and they

mention that the app is very network dependent. Finally, no evaluation tests were conducted.

Table 2.19: Zhao et al. (2015) classification

Development
Approach

Availability Personalization Usability Social Features Evaluation

Native
Moderate Audience
(Single Device Type)

Basic
Personalization

No
Concern

Hybrid Interactions N/A

2.3.3.16 Alqahtani et al., “iMAP-CampUS: Developing an Intelligent Mobile Augmented

Reality Program on Campus as a Ubiquitous System”, 2017

This article defers from others included in this RR in the sense that it is not made for the

tourism environment of a specific city, but instead for the Macquarie University based in Sydney,

Australia. In this article, the authors share the details of their app, iMAP-campUS, developed

to help students navigate through the university, which has a particularly long and complex

layout.

This application adopted an innovative approach of integrating augmented reality tech-

nology aspects into the app. Using this technology it is possible to help students navigate by

“locating places of interest close to them by moving the camera of the device in all probable directions
to overlay information of places around them”.

The application’s graphical user interface (Fig. 2.19) is divided into multiple screens that

have distinct functionalities. The Reality View is the main view of the application, and the one

that makes use of the augmented reality technology. In here, the application uses the device’s

camera to capture the users surroundings and superimposes icons that identify the nearby

buildings. Similarly, the app also has a Map View screen which uses a more traditional 2D map

interface, using the Google Maps API, in which the POIs are also shown. By selecting any of

these POIs, the app display more information about it as well as directions on how to get to it

using the smartphones’ maps application. Additionally, depending on the POI, the app allows

the user to make a call, play audio and video, and open the POI’s web page.

The system architecture of the iMAP-CampUS (Fig. 2.20) was built using the Layar platform,

an SDK for building augmented reality applications, and is made up of five components: (1)

the client app that runs on the mobile device of the user, through which GPS coordinates of the

current location are gathered; (2) the Layar server, which is the core component of the system

and functions as the intermediary between the remaining components; (3) the Layar publishing

website, used for administrative and management purposes; (4) the content sources that stores

the content to be viewed in the app, this includes a database with the POI details; (5) and the

service providers, responsible for providing these contents when requested.

40

2.3. RELATED WORK

Figure 2.19: iMAP-CampUS user interface [5]

Figure 2.20: iMAP-CampUS system architecture [5]

The iMAP-CampUS has been developed for both iOS and Android platforms and run on

smartphones and tablets with different screen sizes. The app also has a “share” feature through

which users can share the app with friends through various channels such as Facebook, WhatsApp
and Twitter. Finally, the authors mention plans to evaluate the acceptance of the app in the

future.

Table 2.20: Alqahtani et al. (2017) classification

Development
Approach

Availability Personalization Usability Social Features Evaluation

Hybrid
Mass Audience

(Multiple Device Types)
Basic

Personalization
Good Usability

Interactions
among contents

N/A

41

CHAPTER 2. STATE OF THE ART

2.3.4 Summary

The landscape of MTGs employed in tourism is extremely diverse in terms of their architectural,

technological and functional aspects. They have evolved from the earliest tour guides like

GUIDE [21] to more automated and personalized apps that adapt to the user’s needs with real-

time data. All of them try to enhance the travel experience, making use of mobile phones’

particular set of characteristics to answer travelers’ expectations of instant access to relevant

and personalized information anywhere, anytime. A summary of the classifications can be

found in Table 2.21.

Most of the apps developed in these studies are noticeably older and have become outdated

when it comes to the graphical interfaces and user experience offered. Successful commercial

implementations of MTGs such as Google Maps or TripAdvisor have raised the bar on what to

expect from this type of app. Additionally, the devices of the time were more limited and

had smaller screen sizes which also increased the difficulty of building a user interface. Our

prototype will attempt to provide a refreshed user interface and experience that can compete

with these commercial apps for the role of the traveler’s primary MTG.

In the same vain, the age of these studies means that the development approach used in

most cases has become outdated and sub-optimal. In our work we intend to investigate and

detail the process of developing an app using a modern SDK. Another direct consequence of

the older development approaches is that the availability of the app is in most cases inferior

that what is achievable today by the same “cost”. Since mobile devices have become much more

“standardized” (i.e. Android or iOS devices), it is easier to target a larger audience without any

extra effort. In our work, we make it a priority to have mass availability.

One noticeable pattern in most studies is that they make use of the Internet (or other

alternatives) with the expectation that the network infrastructures will evolve to the point where

tourists having easy access to Internet connection won’t be a problem. While it is certainly true

that Internet is much more readily available for a tourist now that it was before, we believe that

increasing the quality of service with the trade-off of more internet dependency is not the path

to take for MTGs. Therefore, we will explore how to diminish MTGs dependency on Internet

connection.

Another issue found in these studies is that while most claim to have done some sort of

validation of the usability of the apps, either with field studies, user surveys, or conducting

reviews with experts, only a few documented in what ways did this feedback affect the design

process. In our work, we intend to take a user-centered design approach in which we employ

exploratory techniques, in collaboration with potential users, in order to guide the design

process.

Finally, we found very interesting uses of social features, such as having user generated

content like ratings and comments, to improve the overall quality of the recommendations. One

path that was not fully explored is how to use social features, such as sharing trips to friends,

can increase user engagement and bring new users to the app.

42

2.3. RELATED WORK

Ta
bl

e
2.

21
:P

ri
m

ar
y

st
u

d
ie

s
cl

as
si

fi
ca

ti
on

A
u

th
or

s
D

ev
el

op
m

en
t

A
p

p
ro

ac
h

A
va

il
ab

il
it

y
Pe

rs
on

al
iz

at
io

n
U

sa
b

il
it

y
So

ci
al

Fe
at

u
re

s
E

va
lu

at
io

n

C
h

ev
er

st
et

al
.(

20
00

)
W

eb
L

im
it

ed
A

u
d

ie
nc

e
(S

p
ec

ifi
c

D
ev

ic
e

Ty
p

e)
In

te
rm

ed
ia

te
Pe

rs
on

al
iz

at
io

n
A

ve
ra

ge
C

on
ce

rn
In

te
ra

ct
io

ns
A

m
on

g
U

se
rs

E
m

p
ir

ic
al

E
va

lu
at

io
n

D
u

n
lo

p
et

al
.(

20
04

)
U

nk
no

w
n

M
od

er
at

e
A

u
d

ie
nc

e
(S

in
gl

e
D

ev
ic

e
Ty

p
e)

B
as

ic
Pe

rs
on

al
iz

at
io

n
A

ve
ra

ge
C

on
ce

rn
In

te
ra

ct
io

ns
A

m
on

g
U

se
rs

E
m

p
ir

ic
al

E
va

lu
at

io
n

R
ic

ci
et

al
.(

20
06

)
U

nk
no

w
n

U
nk

no
w

n
In

te
rm

ed
ia

te
Pe

rs
on

al
iz

at
io

n
A

ve
ra

ge
C

on
ce

rn
N

o
So

ci
al

Fe
at

u
re

s
E

m
p

ir
ic

al
E

va
lu

at
io

n

C
en

a
et

al
.(

20
06

)
W

eb
M

as
s

A
u

d
ie

nc
e

(M
u

lt
ip

le
D

ev
ic

e
Ty

p
e)

A
d

va
nc

ed
Pe

rs
on

al
iz

at
io

n
H

ig
h

C
on

ce
rn

N
o

So
ci

al
Fe

at
u

re
s

E
va

lu
at

io
n

by
E

xp
er

ts

C
u

n
n

in
gh

am
et

al
.(

20
06

)
W

eb
L

im
it

ed
A

u
d

ie
nc

e
(S

p
ec

ifi
c

D
ev

ic
e

Ty
p

e)
A

d
va

nc
ed

Pe
rs

on
al

iz
at

io
n

A
ve

ra
ge

C
on

ce
rn

H
yb

ri
d

In
te

ra
ct

io
ns

N
/A

Po
sp

is
ch

il
et

al
.(

20
07

)
W

eb
M

od
er

at
e

A
u

d
ie

nc
e

(S
in

gl
e

D
ev

ic
e

Ty
p

e)
B

as
ic

Pe
rs

on
al

iz
at

io
n

H
ig

h
C

on
ce

rn
N

o
So

ci
al

Fe
at

u
re

s
N

/A

K
ra

m
er

et
al

.(
20

07
)

U
nk

no
w

n
M

od
er

at
e

A
u

d
ie

nc
e

(S
in

gl
e

D
ev

ic
e

Ty
p

e)
In

te
rm

ed
ia

te
Pe

rs
on

al
iz

at
io

n
A

ve
ra

ge
C

on
ce

rn
In

te
ra

ct
io

ns
A

m
on

g
C

on
te

nt
s

E
m

p
ir

ic
al

E
va

lu
at

io
n

L
im

et
al

.(
20

07
)

U
nk

no
w

n
M

od
er

at
e

A
u

d
ie

nc
e

(S
in

gl
e

D
ev

ic
e

Ty
p

e)
In

te
rm

ed
ia

te
Pe

rs
on

al
iz

at
io

n
U

nk
no

w
n

N
o

So
ci

al
Fe

at
u

re
s

E
m

p
ir

ic
al

E
va

lu
at

io
n

K
en

te
ri

s
et

al
.(

20
09

)
H

yb
ri

d
M

od
er

at
e

A
u

d
ie

nc
e

(S
in

gl
e

D
ev

ic
e

Ty
p

e)
B

as
ic

Pe
rs

on
al

iz
at

io
n

H
ig

h
C

on
ce

rn
N

o
So

ci
al

Fe
at

u
re

s
E

m
p

ir
ic

al
E

va
lu

at
io

n

G
ar

ci
a

et
al

.(
20

09
)

W
eb

M
as

s
A

u
d

ie
nc

e
(M

u
lt

ip
le

D
ev

ic
e

Ty
p

e)
A

d
va

nc
ed

Pe
rs

on
al

iz
at

io
n

N
o

C
on

ce
rn

N
o

So
ci

al
Fe

at
u

re
s

N
/A

H
öp

k
en

et
al

.(
20

10
)

W
eb

M
as

s
A

u
d

ie
nc

e
(M

u
lt

ip
le

D
ev

ic
e

Ty
p

e)
In

te
rm

ed
ia

te
Pe

rs
on

al
iz

at
io

n
A

ve
ra

ge
C

on
ce

rn
N

o
So

ci
al

Fe
at

u
re

s
E

m
p

ir
ic

al
E

va
lu

at
io

n

N
og

u
er

a
et

al
.(

20
12

)
N

at
iv

e
M

as
s

A
u

d
ie

nc
e

(M
u

lt
ip

le
D

ev
ic

e
Ty

p
e)

In
te

rm
ed

ia
te

Pe
rs

on
al

iz
at

io
n

H
ig

h
C

on
ce

rn
In

te
ra

ct
io

ns
A

m
on

g
C

on
te

nt
s

E
m

p
ir

ic
al

E
va

lu
at

io
n

W
ij

es
u

ri
ya

et
al

.(
20

13
)

N
at

iv
e

M
od

er
at

e
A

u
d

ie
nc

e
(S

in
gl

e
D

ev
ic

e
Ty

p
e)

B
as

ic
Pe

rs
on

al
iz

at
io

n
N

o
C

on
ce

rn
N

o
So

ci
al

Fe
at

u
re

s
N

/A

Ya
n

g
et

al
.(

20
13

)
H

yb
ri

d
M

od
er

at
e

A
u

d
ie

nc
e

(S
in

gl
e

D
ev

ic
e

Ty
p

e)
B

as
ic

Pe
rs

on
al

iz
at

io
n

H
ig

h
C

on
ce

rn
N

o
So

ci
al

Fe
at

u
re

s
E

m
p

ir
ic

al
E

va
lu

at
io

n

Z
h

ao
et

al
.(

20
15

)
N

at
iv

e
M

od
er

at
e

A
u

d
ie

nc
e

(S
in

gl
e

D
ev

ic
e

Ty
p

e)
B

as
ic

Pe
rs

on
al

iz
at

io
n

N
o

C
on

ce
rn

H
yb

ri
d

In
te

ra
ct

io
ns

N
/A

A
lq

ah
ta

n
ie

t
al

.(
20

17
)

H
yb

ri
d

M
as

s
A

u
d

ie
nc

e
(M

u
lt

ip
le

D
ev

ic
e

Ty
p

es
)

B
as

ic
Pe

rs
on

al
iz

at
io

n
G

oo
d

U
sa

bi
li

ty
In

te
ra

ct
io

ns
am

on
g

co
nt

en
ts

N
/A

43

[This page has been intentionally left blank]

C
h
a
p
t
e
r

33 3

Sustainable Tourism Crowding Project

Contents
3.1 Project overview . 47

3.2 Mobile APP . 48

This chapter is dedicated to the STC research project, which this dissertation is part of. In the

first section, an overview of the project is given, including its mission and goals, and insight into

its technical components. Section 3.2 explains how the work undertaken in this dissertation

fits into the main project and how it interacts with the other components.

45

[This page has been intentionally left blank]

Chapter 3

Sustainable Tourism Crowding Project

3.1 Project overview

The STC research project, introduced in chapter 1.1, aims to locally mitigate tourism overcrowd-

ing and promote tourism sustainability by distributing tourists over less crowded and more

sustainable POIs. To accomplish this goal, the STC project developed a strategy that consists of

three key initiatives:

1. Detecting and predicting crowding and their movement;

2. Generating walking trip recommendations that avoid places with a higher concentration

of population and promote the visitation of more sustainable POIs;

3. Providing these trips to tourists through a mobile app that guarantees user engagement

and retention.

The main efforts of this project target the Santa Maria Maior district, the historical center

of Lisbon, which has already been the subject of initial case studies and prototypes [65, 78],

due to the large number of visitors it welcomes every year. Nonetheless, the ultimate goal of

this project is to prove that a system can be built to help mitigate the unintended side effects of

tourism in any specific location.

This project makes use of a distributed microservices architecture, represented using AjiL,

a graphical modeling language for microservice architectures [82] in Figure 3.1, that consists

of the following components:

Figure 3.1: Project overview diagram

47

CHAPTER 3. SUSTAINABLE TOURISM CROWDING PROJECT

• APP - The interface between the tourist and the system. It is a mobile app that listens

to tourists’ preferences and constraints and provides them with trip recommendations

generated by the system. Also functions as a monitoring tool that feeds useful information

(e.g. user’s location) back to the system;

• SNIFF – Edge computing device that detects the number of mobile devices active in its

vicinity, considered to be a good surrogate for the number of people there, and feeds this

information into the system [78]. The device is able to detect nearby mobile devices by

listening to the trace elements of the usage of Wi-Fi, Bluetooth, and mobile network;

• ROUTE – Microservice that provides walking tour recommendations for APP instances.

Uses POI and crowding information from the system to generate sustainable recommen-

dations according to the tourist’s preferences and constraints.

• POINT – A map-based web interface meant for local territory administrators (e.g. Santa
Maria Maior parish council workers) to easily insert, remove and edit POIs into the system.

The system relies on territory administrators’ local knowledge to input sustainability data

to the POIs [65];

• LEARN – Microservice responsible for producing crowding forecasts by studying histor-

ical crowding data and extracting patterns from it. It includes a web interface for the

visualization of said projections over different periods of time;

• HEAT – Consists of a cartogram database of the current population’s location and it’s

respective representation via a heatmap. It listens for updates from other sources to

update its data, at regular points in time;

Most of these microservices are still in development and being iterated upon, so their

requirements can be expected to change over time. Additionally, most of them communicate

or depend on others as reported by the dependencies in Figure 3.1. Some details have been

purposefully omitted (with the exception of the APP, explained in the next section), as they

would add complexity to this overview and are considered out of scope for this dissertation.

3.2 Mobile APP

This distributed architecture means that there is a good separation of concerns, which also helps

the process of breaking down the work effort into individual tasks. Each team member of the

STC, comprised mostly of master’s thesis students, is assigned responsibility for a component.

This dissertation is responsible for the Mobile APP component and its integration with the

system.

In order for the APP to work properly, it relies on other microservices. Likewise, other

microservices depend on the APP to function. The following use case diagram (Fig. 3.2)

summarizes the scenarios where the app communicates with other microservices in the STC

project.

48

3.2. MOBILE APP

Figure 3.2: APP - Project communication use case diagram

Since the APP runs on the end user’s mobile phone, it is outside of the system’s internal net-

work. This means that all required communications have to be made through REST Application

Program Interface (API)s exposed by the internal microservices.

The process of designing the APIs was a collaborative effort that made extensive use of

Stoplight1. Stoplight is an online tool for designing APIs following the OpenAPI2 format: a

standard, language-agnostic interface. It offers an intuitive user interface, called Stoplight Studio,

where we define operations and the respective JSON schema for the messages. Furthermore,

Stoplight also provides server mocking, documentation generation, and support for version

control (i.e. git), which also improved the development process.

3.2.1 APP - POINT communication

It is important for APP instances to have an updated list of the city’s POIs. This information is

used in multiple ways, such as displaying them through the mobile app on a map-based inter-

face. The only way to ensure that the APP has the newest version of this list is to periodically

ask for updates (i.e. at startup). This process consists of sending a GET request to the POINT

microservice, more precisely, to the /points path (Fig. 3.3).

APP Instance POINT	Microservice

REST
API

POINT
GET	/points

[PointsResponse]

Figure 3.3: APP - POINT communication

1https://stoplight.io/
2https://www.openapis.org/

49

CHAPTER 3. SUSTAINABLE TOURISM CROWDING PROJECT

The response message body consists of a PointsResponse that simply contains an array with

multiple PointOfInterest objects. An example representation of the PointOfInterest JSON object

can be found in Appendix A.

3.2.2 APP - ROUTE communication

APP instances will often need to provide users with personalized trip recommendations. These

trips are not generated by the APP, but instead by the dedicated ROUTE microservice, which

has access to all the crucial information in order to generate the best trips for the user, on

demand.

APP instances gather all the necessary information on the user side, such as their prefer-

ences (e.g. POI categories to visit) and constraints (e.g. budget) and sends these to the ROUTE

microservice. ROUTE uses these constraints, along with external factors, to generate a selection

of trips, and sends them back to the APP instance.

In technical terms, this translates into the APP instance sending a POST method to the

/routes path (Fig. 3.4). Typically, this would be done over a GET method. GET methods are

used to retrieve a resource, while POST methods are used to create, update or delete resources

[59]. However, due to the need to pass a high number of parameters, GET becomes a less

appealing option over the simpler solution of sending these parameters in the body of a POST

method. This solution can be seen in similar use cases, such as the Graphhopper API3, where a

POST method is used to get routes.

APP Instance ROUTE	Microservice

REST
API

ROUTEPOST	/routes
[RouteRequest]

[RouteResponse]

Figure 3.4: APP - ROUTE communication

Appendix B contains a series of scenarios used to test APP - ROUTE communication, each

one demonstrating the JSON representations of both the RouteRequest JSON object and the

RouteRequest JSON object.

3.2.3 APP - HEAT communication

Unlike the previous cases, this line of communication is used exclusively to feed information

back to the system. The HEAT microservice requires constant periodic updates to prevent

its heatmap data from becoming outdated, and therefore ineffective. Aside from the SNIFF

microservice, which exists for the sole purpose of feeding this data to HEAT, the APP can also

serve as a provider of crowding data. The scale of the provision depends on the number of APP

instances.

3https://docs.graphhopper.com/#operation/postRoute

50

https://docs.graphhopper.com/#operation/postRoute

3.2. MOBILE APP

APP instances run on mobile phones equipped with GPS and Bluetooth capabilities. These

capabilities allow an APP instance to keep track of the user’s location and scan nearby devices

to get an estimation of nearby people. As tourists travel the city, running APP instances will be

able to obtain data from disperse locations that are not targeted by SNIFF devices.

This data is periodically sent to the HEAT microservice in the form of a POST method to

the /tracking path (Fig. 3.5).

APP Instance HEAT	Microservice

REST
API

HEAT
POST	/tracking

[TrackSubmission]

Figure 3.5: APP - HEAT communication

The message body consists of a TrackSubmission that simply contains a location, a timestamp

and a device count. An example of its JSON representation can also be found in Appendix A.

51

[This page has been intentionally left blank]

C
h
a
p
t
e
r

44 4

Development Approach

Contents
4.1 Flutter SDK . 55

4.2 Application architecture . 66

4.3 Functional testing . 77

4.4 Bluetooth detection service . 83

This chapter covers the development decisions made to develop the prototype. We discuss

the SDK used (Sec 4.1), the application architecture chosen (Sec. 4.2) and finally how we

implemented the Bluetooth detection service (Sec. 4.4).

53

[This page has been intentionally left blank]

Chapter 4

Development Approach

4.1 Flutter SDK

Our prototype mobile application was developed using Flutter1, a fairly new SDK by Google

for creating cross-platform applications. It is based on the Dart programming language, also

built by Google. In the next section (Sec. 4.1.1), we present the criteria used to determine which

SDK to use for the development of our app. Afterwards, we give a high-level overview of the

architecture of Flutter (Sec. 4.1.2) and explain some fundamental concepts that define the way

we develop applications using it (Sec. 4.1.3). Lastly, we go over the experience of using such

SDK and the tools that Flutter provides to help the developers work fast and easily (Sec. 4.1.4).

4.1.1 Decision

Traditionally, developers were forced to build their mobile apps for each operating system

using their respective SDKs [62]. Android’s SDK is based on Java [12] (Kotlin is also supported

nowadays), while iOS’s SDK is based on Objective-C [4] (Swift is also supported nowadays).

Today, the number of development options is much larger. Besides the previously men-

tioned (1) native approach, there is the opportunity to use (2) mobile web apps that run on the

device’s browser and don’t need to be downloaded [8], (3) Progressive Web App (PWA)s that

take advantage of modern browser capabilities to improve on the features of traditional web

apps, and can be installed just like a normal app [8], and finally, (4) hybrid apps that combine

both native development and web technology [67].

All four development approaches have advantages and drawbacks (Table. 4.1) [8, 19, 24,

62, 67, 76, 80, 94]. Additionally, each of these categories has its own set of tools and SDK’s that

work differently and impact the software development process [24] [42].

Table 4.1: Advantages and drawbacks of different development approaches [67]

Features Native App Hybrid App Web App PWA

Development
Language

Native Only
Native and Web or Web

Only
Web Only Web Only

Device Access Full Full Partial
Partial

(Better than Web App)

Speed Very Fast Native Speed Fast Fast

Development Cost Expensive Reasonable Reasonable Reasonable

App Store Yes Yes No Both

In order to better understand which approach is more suitable for our application, we need

to define a set of requirements. Requirements are descriptions of how the system should behave,

or of a system property or attribute [81]. More specifically, we need to define requirements that

1https://flutter.dev/

55

https://flutter.dev/

CHAPTER 4. DEVELOPMENT APPROACH

act as constraints on the development process of the app so that we can rule out development

approaches and reach a conclusion.

Ultimately, we decided to use the Flutter SDK, which fits into the hybrid development cate-

gory. Listed below are the requirements used to evaluate different options and an explanation

on how Flutter qualifies in each one:

4.1.1.1 Cross-Platform support

Data from multiple sources2,3 show that Android and iOS combined have approximately 99%

of the mobile operating system market share worldwide in 2019. Targeting both platforms

ensures that almost all tourists have easy access to the app from their smartphones.

To do so, we can build two native applications for Android and iOS, or opt for a mobile

SDK that supports cross-platform applications. The first option can easily become a waste

of development time and effort, and imply an increased maintenance cost [94]. Due to time

constraints, we can immediately rule out this alternative. Flutter belongs to the second category,

which according to their website4: “Flutter is for developers that want a faster way to build beautiful
apps, or a way to reach more users with a single investment”. By using Flutter we can speed up the

development process and reduce the cost and complexity of app production across platforms.

This is because we only need a single codebase (both for the app logic and for building the UI)

that can compile and run natively on both operating systems.

4.1.1.2 Distribution

Typically, apps are distributed in online marketplaces that handle all the complexity of dis-

tribution for developers and businesses, making them easily available to everyone. The most

common marketplaces are Google Play and Apple App Store, the official app stores for Android
and iOS respectively [42]. For iPhone users, Apple App Store is the only legitimate way to get

apps. For Android users, apps can also be downloaded from other marketplaces like, Amazon
Appstore or Aptoid.

We definitely want to deploy our app into the main marketplaces of each platform. Flutter’s

documentation provides detailed guides5,6 with step-by-step instructions on how to release an

app into these stores.

4.1.1.3 Offline map support

Later, in section 5.3.1, we discuss the importance of using offline tiles for our map, instead

of the regular approach of using the internet to fetch the latest tiles on demand from a tile

provider (e.g. Google Maps, Mapbox).

Most mobile SDKs have some sort of map support that is mostly a wrapper for a Google

Maps native view. This means that there is no support for offline mode. This is also the

2https://gs.statcounter.com/os-market-share/mobile/worldwide
3https://deviceatlas.com/blog/android-v-ios-market-share
4https://flutter.dev/docs/resources/faq
5https://flutter.dev/docs/deployment/android
6https://flutter.dev/docs/deployment/ios

56

https://flutter.dev/docs/deployment/android
https://flutter.dev/docs/deployment/ios

4.1. FLUTTER SDK

case with official map package in Flutter. However, there is also a community made package,

flutter_map7, that supports drawing markers and polylines, the normal map controlls such as

panning and zooming, and finally using png images (transformed from map tiles) under the

format of /z/x/y.png where x, y and z are the coordinates of the image to display. This way,

it is possible to use map data from any source, such as OpenStreetMap data in our case, and

convert it into the map images to include in the application, and have access to them offline.

This alternative solution has proven to be suitable for our project.

4.1.1.4 Hardware access

The application is designed to take advantage of the device’s many hardware features, such

as GPS and Bluetooth sensors, or the disk for local storage. This means that we need to use a

development approach that supports easy access to the underlying hardware of the device. A

Web app lacks that support [94], which rejected its choice for building this app.

Flutter uses a flexible system that allows you to call platform-specific APIs whether avail-

able in Kotlin or Java code on Android, or in Swift or Objective-C code on iOS (explained in

section 4.1.2). Using this technique, we can write native code that communicates with the

operating system’s APIs or better yet, make use of already existing Flutter packages (produced

either by the Flutter team or by the community) that abstract and simplify this task.

4.1.1.5 PWA vs Hybrid development

From the previous requirements both native and traditional web approaches to mobile develop-

ment have been excluded. The final decision is to chose between PWAs or a hybrid development

approach. PWAs are a new generation of web applications that load just like regular websites

but take advantage of features supported by modern browsers, including service workers and

web app manifests [9]. Through these features, PWAs can make use of devices APIs (e.g. Blue-

tooth, GPS, storage) and they can work completely offline (and also be installed via APP stores).

However, support for these features is still improving gradually. Apple’s Safari browser

is the slowest browser to adopt these new technologies, so the iOS platform is yet to fully

realise and leverage the potential of the technological advancement. For instances, as of 2020

Safari does not yet properly support push notifications. For the usage context of our app,

which foresees background location tracking for long periods of time, this approach is not ideal.

Ultimately, it was decided to adopt a hybrid development approach in which both iOS and

Android are supported as traditional apps, from a single codebase.

4.1.1.6 Hybrid development SDK

The hybrid-app approach is the right one for our project, where we benefit from full device

access with a lower development cost than native. In this category, the most appealing options

are the React Native8 SDK and the Flutter SDK. Both are strong candidates that are perfectly

able to meet our requirements and more, while still providing a good developer experience.

The final decision was made simply according to the previous experience with the Flutter SDK,

7https://github.com/fleaflet/flutter_map
8https://reactnative.dev/

57

https://github.com/fleaflet/flutter_map
https://reactnative.dev/

CHAPTER 4. DEVELOPMENT APPROACH

in hopes of speeding up the development process by avoiding any unnecessary learning curves

that come with every new SDK.

4.1.2 Architectural overview

Flutter is designed as an extensible, layered system (Fig. 4.1). It exists as a series of independent

libraries that each depend on the underlying layer. No layer has privileged access to the layer

below, and every part of the framework level is designed to be optional and replaceable [30].

Figure 4.1: Flutter architecture [30]

To the underlying operating system, Flutter applications are packaged in the same way as

any other native application. Flutter apps are compiled directly to machine code, whether Intel

x64 or ARM instructions, or to JavaScript if targeting the web. Using the embedder, Flutter
code can be integrated into an existing application as a module, or the code may be the entire

content of the application.

At its core, the Flutter engine, which is mostly written in C++, supports the primitives

required to support all Flutter applications. The engine is responsible for rasterizing composite

scenes whenever a new frame needs to be painted. It provides the low-level implementation

of Flutter’s core API, including graphics (through Skia, a C++ graphics engine), text layout,

file and network I/O, accessibility support, plugin architecture, and a Dart (the programming

language of Flutter) runtime and compile toolchain.

The engine is exposed to the Flutter framework through dart:ui, which wraps the underlying

C++ code in Dart classes. This library exposes the lowest-level primitives, such as classes for

driving input, graphics, and text rendering subsystems. Most of the time developers interact

only with Flutter framework, which provides all the high level APIs needed to build the UI.

This layer is relatively small and can be added upon with packages that function like plugins,

58

4.1. FLUTTER SDK

such as platform plugins (e.g. camera, webview), platform-agnostic features (e.g. animations,

http) and more.

4.1.3 Core concepts

In order to learn how to make apps with Flutter, we must first understand a few core concepts

that define the development process. The Flutter documentation does a great job of introducing

new developers to the language, covering a variety of topics from networking to international-

ization. In this section, we will only cover the most essential topics relevant to the project.

4.1.3.1 Widgets

Widgets are the basic building blocks of a Flutter UI. In fact, almost everything in Flutter
is a widget. A widget is an immutable object that describes a specific part of a UI. They

are composable, meaning that you can combine existing widgets to make more sophisticated

widgets. A widget’s main job is to implement a build function, which describes the widget in

terms of other, lower-level widgets [31].

The current version (1.209) of Flutter contains 395 out of the box widgets. These widgets

can be divide into three main categories: basic widgets, layout widgets, and customization

widgets [31]. Basic widgets are the fundamental pieces of the UI. The best examples of this

category are the Text and Image widgets. Much like a raw HTML page (with no styling), these

widgets allow for creating a functional app, albeit one that lacks the qualities that make an

app desirable. Layout widgets are used to determine how other widgets are organized. The

most commonly used layout widgets are the Column, Row and Stack widgets, which are used to

create the majority of layouts, by arranging children (other widgets) vertically, horizontally, or

overlapping each other. Finally, customization widgets are used for styling and personalizing

other widgets, like adding a padding around them (with the Padding widget).

All UI screens of a Flutter app are composed by a combination of these three widget cat-

egories. Basic widgets represent the content to be displayed, the layout widgets determine

how to arrange them and the customization widgets change their appearance. If somehow a

combination of these three is not enough to create the desired UI element, there is also the

CustomPaint widget that provides a canvas on which the developer can paint using a low-level

painter to draw shapes.

4.1.3.2 Widget tree

Since everything in Flutter is a widget, and widgets are combined to create more complex

widgets/screens, this means that there has to be some sort of structure to organize them. Flutter
uses a widget tree structure, where widgets become “parents” and “children” to other widgets.

Take, for instances, the TextButton widget, which displays a borderless button that can be

pressed. This widget takes another widget as its child, usually a Text widget, that consists of

the text inside the button. Widgets can also take multiple children, like the Row and Column,

that display multiple widgets in their respective axis.

9https://medium.com/flutter/announcing-flutter-1-20-2aaf68c89c75

59

https://medium.com/flutter/announcing-flutter-1-20-2aaf68c89c75

CHAPTER 4. DEVELOPMENT APPROACH

This idea of creating more complex widgets or full screens (which are themselves widgets)

by combining multiple simpler widgets is called Composition, and ultimately forms the widget

tree hierarchy. Using the example counter app that comes with every new Flutter project, we

can see how a screen translates into a widget tree (Fig. 4.2).

Figure 4.2: Counter app and its corresponding widget tree [32]

This tree based approach to building UIs does have some disadvantages. For starters, the

nesting of widgets can hurt the code legibility and increase the file size. But perhaps the more

important issue is with performance. In certain situations, when a parent widget needs to

rebuild itself it will also cause a rebuild on all descendent widgets. If this parent widget is

high on the tree hierarchy it will force a tremendous amount of rebuilds on descendent widgets,

which can cause an on performance.

4.1.3.3 Declarative UI

Most UI frameworks use an imperative style of UI programming, where UI entities are manually

constructed, and then later mutated using methods and setters. This means that if the state of

the app changes, it is necessary to obtain the instances of the views and manually update them

to reflect the current state. This is the style used in traditional Android and iOS programming.

Flutter uses a declarative style of UI programming. That means that instead of manipulating

views every time the state changes, we simply change the state and that triggers a redraw of the

parts of the UI that need to reflect the new state. Widgets are immutable [32], which means

that they cannot be mutated, only rebuilt.

One benefit of this approach is that there is only one code path for any state of the UI. “We
describe what the UI should look like for any given state, once—and that is it” [32]. There is also

no separation of code and layout. In Android, it is common to construct the layout using a

60

4.1. FLUTTER SDK

XML layout file and then set up UI behaviour with Java code, while in Flutter both are done by

widgets, using only Dart code, so there is no change in programming context.

For the sake of comparison, let us imagine a simple screen with a text label displaying

“Click the button” and a button that, when clicked, changes said label to display “Button clicked!”

(Fig. 4.3). This text represents the state of the application. It has an initial value and after user

input this value changes and the UI needs to reflect this change.

Figure 4.3: Comparison screens

In a traditional Android application, there are a couple of common operations developers

may wish to perform on a view: set properties, set focus, set up listeners and set the visibility

[6]. For this example, we want to set up a listener for catching the button click and then set the

property of the text to the new value “Button clicked!”. To do this, we would first have to obtain

the instances of the views from the XML layout file. The code in Listing 4.1 demonstrates how

this is typically done in Android.

In Flutter, there is no separation from code and layout, so we do not need to worry about

binding code to views and retrieving instances of views from the XML layout file using IDs. To

achieve the behaviour in the example, we define a stateful widget (extends the State class) that

holds the string of text, and builds the text widget with the string message. When the string

message is changed from the button click event, we force the screen to rebuild and the UI will

reflect the changes made. Stateful widgets are widgets that hold some form of state and can

trigger a rebuild on themselves when this state changes, constructing a new widget subtree.

The code in Listing 4.2 demonstrates how this is achieved in Flutter.

This new UI programming paradigm is also being adopted by both Android and iOS native

SDKs. In 2019, Apple released SwitfUI10, a declarative programming framework for construct-

ing user interfaces on iOS and other Apple platforms. As of 2020, the Android team is working

on its own version of declarative UI called Compose11, a “modern toolkit for building native UI”.

In the world of web apps, frameworks like Vue and React also adopted the declarative way of

writing UI.

10https://developer.apple.com/xcode/swiftui/
11https://developer.android.com/jetpack/compose

61

https://developer.apple.com/xcode/swiftui/
https://developer.android.com/jetpack/compose

CHAPTER 4. DEVELOPMENT APPROACH

4.1.3.4 Asynchronous programming

Dart is a single-threaded language [22], which might not seem ideal considering Flutter ap-

plications need to operate with asynchronous and reactive code. Dart code runs in an isolate,

which is a space with its own private chunk of memory and single thread running an event

loop. If there is a need to perform a very time consuming computation, it is possible to create a

separate isolate to complete the computation, leaving the main isolate free to render the UI in

the meantime. The new isolate gets its own event loop and its own memory, which the original

isolate, even though it is the parent of this new one, is not allowed to access.

In most cases, computations are not heavy enough that we need to move them to another iso-
late, so other ways of achieving asynchronous coding are preferred, specifically futures, streams
and async/await, all built as APIs to manage the event loop. The event loop, in which the single

thread runs on, simply takes the oldest event (e.g. button pressed) in the event queue, processes

it, goes back for the next one, processes it, and so on. All of the high-level APIs and language

features that Dart has for asynchronous programming are built on and around this simple loop.

One of the most basic APIs that Dart has for asynchronous programming is “futures”,

similar to the promise API found in Javascript. A future represents the result of an asynchronous

operation, and can have three states: uncompleted, completed with a value or completed with

an error. Take for example an http request (Lst. 4.3). Instead of blocking the thread awaiting

for the network result, the get method immediately returns a Future and the thread moves on to

the next piece of code. To register a callback for when the network request is completed we use

the then method. This method takes a function as a parameter that is called when the future

completes successfully and another function as an optional parameter for when the future

completes with an error. There is a dedicated widget FutureBuilder to work with futures, wich

takes a future and a builder method, and it automatically rebuilds its children when the future

completes. In the builder method we can access the state and value of the future and build our

widget accordingly.

“Streams” work similarly to futures, but they can deliver zero or more values and errors

over time. To subscribe to a stream we use the listen method where again we must provide

a function that is called every time a value is emitted by the steam, and an optional onError
function to catch and process any errors. There is also a dedicated widget to work with streams.

It is called StreamBuilder and it takes a stream and a builder method. When a new value is

emitted by the stream it automatically rebuilds the child widget. In the builder method we can

access the state of the stream (e.g. completed, waiting) and build our child accordingly. This

way we truly achieve a reactive way of building widgets.

Finally, there is the async/await API. This API is simply an alternate syntax for using futures

and streams that can help writing cleaner, more readable code. Imagine a scenario where we

want to load an id value from disk, then fetch some network data according to that id and

finally store that data into a class (Lst. 4.4). Using the future method, the code becomes hard to

62

4.1. FLUTTER SDK

Listing 4.1: Android example
1 //XML Layout omitted for brevity.

2

3 //Obtain the instance of the textview from the XML layout file

4 TextView textview = (TextView) findViewById(R.id.textview);

5 //Obtain the instance of the button from the XML layout file

6 Button button = (Button) findViewById(R.id.button);

7

8 //Create the listener function that will be given to the button

9 public onClickListener listener = new View.OnclickListener{

10 onclick(View v){

11 // Set the text property of the textview to display the new message

12 textview.setText("Button�clicked!");
13 }

14 }

15

16 button.setOnClickListener(listener); //Add the listener to the button

Listing 4.2: Flutter example
1 class _ExampleScreenState extends State<ExampleScreen> {

2 String _message = 'Click�the�button'; //The initial state of the UI

3

4 @override

5 Widget build(BuildContext context) {

6 //Describes the part of the user interface represented by this widget.

7 return Scaffold(

8 body: Column(

9 children: [

10 Text(_message), //Text widget that displays the message

11 MaterialButton(

12 onPressed:

13 _updateMessage, //Method called when the button is clicked

14 child: Text('BUTTON'),

15)

16],

17),

18);

19 }

20

21 //Method to update the message

22 void _updateMessage() {

23 //Calling [setState] notifies the framework that the internal state

24 //of this object has changed in a way that might impact the

25 //user interface in this subtree, which causes the framework to

26 //schedule a [build] for this [State] object.

27 setState(() => _message = 'Button�clicked!');
28 }

29 }

63

CHAPTER 4. DEVELOPMENT APPROACH

Listing 4.3: Future example
1 void _onSuccess(http.Response response) {

2 print('Success!�$response');
3 }

4

5 void _onError() {

6 print('Error!');

7 }

8

9 void _networkRequest(String url) {

10 //Make the method call which returns a Future

11 Future<http.Response> networkFuture = http.get(url);

12 //Register the callback to when the future is completed

13 //Provide a success and an error function

14 networkFuture.then(_onSuccess, onError: _onError);

15 }

read because of all the chaining of methods. The point of async/await is to make asynchronous

code look like normal code. First we add the async keyword before the function body, then we

place the await keyword in front of each future the function needs to wait for. Note that while it

might seem that the thread is locked awaiting for the results of the two methods, this is not the

case. The event loop will continue to process other events until the futures from these methods

complete. The underlying behavior of the event loop is completely identical in both cases.

Listing 4.4: Async / Await example
1 class DataHolder {

2 final Placeholder data;

3 DataHolder(this.data);

4 }

5

6 Future<int> _loadFromDisk() {

7 //Simulate a 1 second operation and return the value 1

8 Future.delayed(const Duration(seconds: 1)).then((value) => 1);

9 }

10

11 Future<Placeholder> _fetchNetworkData(int id) {

12 //Simulate a 1 second operation and return fake data

13 Future.delayed(const Duration(seconds: 1)).then((value) => Placeholder());

14 }

15

16 Future<DataHolder> createDataWithFuture() { //Using the Future API

17 return _loadFromDisk().then((id) {

18 return _fetchNetworkData(id);

19 }).then((data) {

20 return DataHolder(data);

21 });

22 }

23

24 Future<DataHolder> createDataWithAsync() async { //Using the Async/Await API

25 final id = await _loadFromDisk();

26 final data = await _fetchNetworkData(id);

27 return DataHolder(data);

28 }

64

4.1. FLUTTER SDK

These methods of asynchronous programming were very utilized throughout this project.

Whenever there might be an event that will block the thread, specially ones that depend on

hardware (e.g. GPS) or on network (e.g. communication with other microservices), we rely on

futures and async / await to guarantee that the performance of the app is not affected. Further-

more, streams are heavily utilized in our state management approach, mentioned further below

in section 4.2.3.

4.1.4 Developer experience

Flutter promises a fast and painless development experience. In this subsection we will go

over the features and tools that contribute to it do be like that and also report on our personal

experience.

Perhaps the most advertised feature in Flutter is the Hot Reload feature. Every time code

changes are saved in a supported Integrated development environment (IDE), they are quickly

reflected in the app. This is particularly useful when working on UI changes in a screen that is

very “far” from the entry point of the app. Normally, to see the visual modifications introduced

by new code, it is necessary to wait for the app to compile, load, and then navigate to the

modified screen every single time. Hot Reload makes it easy to experiment with different UIs,

new features and bug fixes by keeping the app running, maintaining its state, and updating

only the changes introduced by new code.

When working on native app development, developers are forced to use either the Android
Studio IDE ot the iOS Xcode IDE. Since IDE choice comes down to personal preference, the

more IDEs an SDK supports the better. Flutter supports Android Studio, IntelliJ, Visual Studio

Code and Emacs through extensions/plugins for Flutter that offer a lot of benefits to the devel-

opers, namely: code completion, formatting and highlighting; refactoring assists; quick code

snippets and finally the DevTools, a suite of performance and debugging tools. It includes a

widget inspector for visualizing and exploring widget trees to understand existing layouts and

diagnosing layout issues. This inspector also allows for changing the actual the UI in a more

“drag and drop” manner, and visualizing these changes live just like hot reload. Additionally,

DevTools provide performance profilers for cpu, memory and network.

Flutter’s documentation12 is very extensive and welcoming of new developers. Its team

has written specific articles for developers that come from other platforms, such as native

mobile and web. Furthermore, there are available tutorials, codelabs (guided, hands-on coding

practice) and cookbooks that demonstrate how to solve common problems. Moreover, the

Flutter team created an open-source gallery13 of sample Flutter apps and also a Youtube channel

that discusses a lot of topics in video format (they even have a “show” with one-hour long

episodes of the Flutter team live coding apps). Finally, by being open-source, developers can

look into how certain widgets are built and apply these same coding practices into their own

code. The community is also very supportive. A lot of help and discussion can be found on

websites like Stack Overflow, Medium, Reddit, and Youtube. Due to the community, Flutter has a

large package ecosystem that most likely will cover any use case a developer might have. If not,

12https://flutter.dev/docs
13https://gallery.flutter.dev/#/

65

https://flutter.dev/docs
https://gallery.flutter.dev/#/

CHAPTER 4. DEVELOPMENT APPROACH

these packages are also open-source and very often the maintainers are welcoming of new issues

and pull requests, so while adjusting these packages for personal purposes, one can afterwards

apply these improvements to the package itself. Our prototype makes use of a large number of

packages, from networking to UI related, and even contributed to one with a pull request14.

Being a fairly new SDK, Flutter sees a lot of updates over short periods of time. These

updates often bring new or updated widgets, performance optimizations or development tool

improvements. While this is a good sign that the SDK is under active and healthy development,

it also has its downsides. Sometimes these updates are “breaking changes” and force develop-

ers to update their existing codebase, and this is also the case with packages. This situation

happened frequently during the development of our prototype, which caused some minor de-

lays. Nonetheless, the Flutter teams tries to minimize these breaking changes and when it does

happen, they provide migration guides and documentation on how to migrate an older app

into the new version.

4.2 Application architecture

There is no definitive way to design and build an app. Defining the app architecture is perhaps

the biggest decision a developer has to make, as it will highly influence the complexity and

maintainability of the codebase [84]. In this section we discuss the challenges involved in

building a mobile application (Sec. 4.2.1), we review some of the most established design

patterns used for applications (Sec. 4.2.2) and adapt them to the world of Flutter applications

(Sec. 4.2.3). Finally we present an overview of the complete architecture of our prototype (Sec.

4.2.4).

4.2.1 Mobile development challenges

Besides sharing many of the challenges of traditional software development, such as traditional

desktop and web applications, mobile app development has a unique set of issues that need to

be addressed. In order to design an architecture, we must first understand what these issues

are and how they are currently being solved.

While traditional applications often have clear and unique workflows, in the mobile world

users often interact with multiple apps for different periods of time [20], resulting in apps that

need to adapt to different kinds of user-driven workflows and tasks. In our particular case, it

is not expected that tourists will have the app turned on for the whole duration of a trip, but

instead will open and close it many times. Another extra consideration to keep in mind with

mobile apps is the limitation of the devices. In some cases, the underlying operating systems can

terminate idle or background apps if it decides it requires additional computational resources

[54].

Another important concern comes from the usage context of mobile apps, particularly the

environmental context [27]. Mobile apps need to be prepared for unexpected circumstances so

that they can tolerate, or at least inform users, of external conditions that make it impossible

for the app to function. An MTG such as ours needs to gracefully handle lapses in GPS and

14https://github.com/RaviKavaiya/sliding_panel/pull/20

66

https://github.com/RaviKavaiya/sliding_panel/pull/20

4.2. APPLICATION ARCHITECTURE

internet connection for undetermined periods of time while maintaining the parts that don’t

depend on these external factors completely functional, resulting in a more reliable and robust

experience.

Mobile apps are also constantly evolving. Every week, 29% of the top one thousand mobile

apps are updated on Google Play Store. If we change the time period to every month the number

increases to 65% and if we look at the number of updates yearly, 91% of these apps get updated

at least once [1]. These large numbers demonstrate how important maintainability is in mobile

development. The ISO/IEC 25010 standard defines maintainability as follows: “Maintainability
is the degree of effectiveness and efficiency with which a product or system can be modified by the
intended maintainers”. In other words, we want our software to be easy to understand, enhance,

or correct [29]. In [29, 34, 58] we find a number of common mistakes that make software harder

to maintain. Generally, these mistakes come from large and complex classes, badly managed

dependencies, and increased coupling in the system, all of which can be prevented by known

software practices like separation of concerns and code reusability.

For our project, it is certain that there will be a need to revisit the codebase many times, as

new features get requested and issues get discovered. Furthermore, as new members join the

project to collaborate, we want to make the integration process as effortless as possible. A good

way to diminish the entry barrier of our project is to adhere to the conventions and guidelines

of the technology stack. Google provides guidelines for the Dart programming language under

the name Effective Dart15, which covers code style, documentation, usage and design. Flutter’s

extensive set of resources and examples also serve as a reference to create consistent and familiar

code.

4.2.2 Presentation design patterns

It is essential to design an architecture that addresses all the challenges and complexities of

mobile app development. Such decisions are known to be important for the understand-ability

and maintainability of the code [35, 84]. Furthermore, making a wrong decision may lead to

increased complexity and maintenance overhead [85].

A good app architecture should decompose its components into at least three main layers

[33]: (1) the presentation layer, responsible for displaying information to the user and for

interpreting commands from the user into actions; (2) the domain layer, also known as business

logic or simply the application’s state, which represents the work that the application needs to

do; (3) the data layer, responsible for communicating with other systems that carry out tasks on

behalf of the application, usually databases or external APIs [33].

Perhaps the most important and complex part of an app architecture is the integration of

the presentation layer with the domain layer. Fundamentally they are about different concerns.

When planning or developing a visual element we think about the mechanisms of UI and how to

layout a good user interface. When working with a model we think about the application logic.

With this separation, we can build different presentations that rely on the same model, making

it easy to change the visual aspect of an application without having to modify the application

logic as well [97].

15https://dart.dev/guides/language/effective-dart

67

https://dart.dev/guides/language/effective-dart

CHAPTER 4. DEVELOPMENT APPROACH

In the eighties, the first design pattern that attempted to solve this problem, called Model-

View-Controller (MVC) was created by Trygve Reenskaug for the Smalltalk platform [53]. It

is the pioneering pattern for synchronizing user interfaces with domain data citeSyromiat-

nikov2014. Over time, a few similar patterns emerged and became well established variants of

the MVC, namely the Model-View-Presenter (MVP) and the Model-View-ViewModel (MVVM).

4.2.2.1 MVC Pattern

As expected, the MVC pattern is divided into three main components (Fig. 4.4): the view, the

controller, and the model. The fundamental idea is the separation of the representation of the

application domain (the model) from the display of the application’s state (the view) and the

user interaction processing (the controller) [85]. A view represents the display of the model in

the UI, like an HTML page. A model is an object that represents some information about the

domain. It is a non-visual object and contains all the data and behavior other than that used for

the UI. A controller takes user input and manipulates the model and causes the view to update

appropriately. The UI is therefore a combination of the view and the controller [33]. While the

model is not aware of the other components, the view and controller maintain direct links to

the Model in order to observe, read, and modify it [85]. Therefore, the only dependency comes

from the presentation layer depending on the model and not the other way around.

MVC provides no explicit means to deal with the presentation of state that is not part of

the model but that makes a user interface more convenient for usage [85]. For example, in an

information dialog, the text could change color between red or green according to the success

status of the action. Since the text color data is purely a user interface property it is not part of

the model. This architectural pattern becomes less beneficial for modern development frame-

works, like Flutter, where user interface widgets have some state of their own to properly render

themselves and also come with basic input handling so that they don’t require controllers.

Figure 4.4: Model-View-Controller pattern [85]

4.2.2.2 MVP Pattern

The MVP pattern originated in the early nineties at Taligent [70]. Much like the MVC, there are

also three main components, but instead of a controller there is a presenter (Fig. 4.4). Likewise,

68

4.2. APPLICATION ARCHITECTURE

the view is the user interface (now with the added controller’s responsibilities) and the model

is the component that preserves data, state, and business logic. It exposes a group of service

interfaces to the presenter and hides the internal details. The presenter sits in between the

view and the model. It oversees the view, handles user events, and modifies the view via direct

calls. This means that the view exposes a contract through which the Presenter accesses the

portion of the view that is dependent on the rest of the system [85, 97]. It is worth noting that

the MVP architecture has many variants within itself that give different responsibilities to each

component, changing the structure presented in Figure 4.4.

Figure 4.5: Model-View-Presenter pattern [85]

4.2.2.3 MVVM Pattern

The MVVM design pattern was presented in 2005 by John Gossman, one of the Windows

Presentation Foundation and Silverlight Architects at Microsoft [79]. Microsoft designed these

frameworks so that it is easy to build applications using the MVVM pattern, so it quickly

became the lingua franca of the developers working with the frameworks [79]. In 2018, the

Android team released Jetpack 16, a collection of Android libraries that incorporate best practices,

eliminate boilerplate code, and provide backwards compatibility in your Android apps. With

this announcement, the Android team started officially advocating for the MVVM pattern and

supporting it with its own ViewModel library.

In MVVM, the View-Controller pair (as in MVC) is not considered as two distinct com-

ponents, but merged in a single View component, so some presentation logic and basic user

input handling are directly in user interface widgets. The domain model maintains domain

state, much like in the other patterns. The viewmodel sits between the view and model and it

is responsible for handling view state. It has access to the domain model, so it could work with

domain data and invoke business logic [85].

Jetpack defines the ViewModel17 as follows: “A ViewModel object provides the data for a
specific UI component, such as a fragment or activity, and contains data-handling business logic to
communicate with the model. For example, the ViewModel can call other components to load the
data, and it can forward user requests to modify the data. The ViewModel doesn’t know about UI
components, so it isn’t affected by configuration changes, such as recreating an activity when rotating
the device.”

16https://developer.android.com/jetpack
17https://developer.android.com/topic/libraries/architecture/viewmodel

69

https://developer.android.com/jetpack
https://developer.android.com/topic/libraries/architecture/viewmodel

CHAPTER 4. DEVELOPMENT APPROACH

The model is unaware of the viewmodel and the viewmodel is unaware of the view. This

approach allows for the creation of several different views for the same data, and observer

synchronization makes these views work simultaneously [85].

Figure 4.6: Model-View-ViewModel pattern [85]

All of these approaches have unique advantages and disadvantages, making it hard to reach

a conclusion on which to adopt. Each pattern has a different purpose, so their value greatly

depends on the context of the application. Furthermore, there is little to no empirical evidence

that demonstrates which is better [57]. A good procedure is to also understand what solutions

are being adopted for the specific technology stack in use.

4.2.3 Flutter state management

Within the Flutter community, the design pattern discussion is better known as state manage-

ment, and it is one of the most discussed topics between developers, as it completely shapes the

way the app is structured. In a similar fashion, there is also the need to separate the presenta-

tion layer from the domain layer. This presentation layer has ephemeral state and the domain

layer has the application state.

In Flutter, the first type of state corresponds to “state you can neatly contain in a single widget”
[32]. Take for example the index of the currently selected tab in a BottomNavigationBar. No

other part of the application needs to access this kind of state, so there is no need for complex

state management solutions. Flutter’s out of the box solution of stateful widgets discussed in

4.1.3.3 is ideal for this situation.

The second type of state is the state that “you want to share across many parts of your app
and that you want to keep between user sessions” [32]. This could be the authentication state of

the user or the shopping cart in an e-commerce app. It’s easy to think of a situation where the

shopping cart data is relevant in multiple parts of the app. In the product list screen, we may

want to omit products that are already added to the cart. In the product details screen, we want

to allow users to add the product to the cart, and may also want to highlight the fact that said

product is already in the cart. Lastly, we also want to show this information in the shopping

cart screen just before checkout, where users might want to remove products from the cart.

The fact that this data needs to be accessed, modified, and synchronized from a lot of different

classes and widgets increases the complexity of the application.

It is possible to manage this state with only stateful widgets, with techniques such as “lifting

state up”, where a stateful widget higher in the tree holds this state and passes it down to all

the parts that need it. However, in large or medium-sized applications this can get out of hand

70

4.2. APPLICATION ARCHITECTURE

quickly and become very hard to maintain, therefore it is recommended to not overuse this

technique [32].

As a general rule, state that belongs only to a widget is ephemeral state and should be

handled with a stateful widget. State that is shared between multiple widgets is app state that

requires a more advanced state management technique (Fig. 4.7).

There are a growing number of community-made state management solutions that use a

variety of different methods (e.g. streams, observers) to solve this issue, some even mimicking

the design patterns mentioned above like MVC18. Perhaps the most relevant and established

solutions are the Provider and the BLoC solutions.

Both solutions are open source community-driven projects19,20 and highly appreciated by

the community. They come in the form of packages that are added to a Flutter project like any

other library. They work very similarly to the viewmodel in the MVVM pattern, sitting between

the presentation and domain layers.

Figure 4.7: Types of state [32]

4.2.3.1 Provider

Provider is perhaps the simplest of the two because it involves less boilerplate code, making

it a lower barrier of entry to new developers. For this reason, as well as the popularity of the

package, Google started officially endorsing it as the go-to solution for state management.

With Provider, we start by creating a model class representing the application state that we

want to share and synchronize between multiple widgets. Then, we provide this model to the

widgets that need it. Since everything in Flutter is a widget, we use a widget (the ChangeNo-

tifierProvider widget) to provide the model and we also use a widget (the Consumer widget)

to consume said provider. Since we want to provide the same model to all the parts of the app

that need it, we must insert it in the widget tree at a level that is higher and common to all

the widgets that will consume it (Fig. 4.8). Consumers are widgets responsible for observing

18https://github.com/brianegan/flutter_architecture_samples/tree/master/mvc
19https://github.com/rrousselGit/provider
20https://github.com/felangel/bloc/tree/master/packages/flutter_bloc

71

https://github.com/brianegan/flutter_architecture_samples/tree/master/mvc
https://github.com/rrousselGit/provider
https://github.com/felangel/bloc/tree/master/packages/flutter_bloc

CHAPTER 4. DEVELOPMENT APPROACH

the model and rebuilding the widgets beneath them. Anytime the model from the provider

changes, the consumers will be notified and the widget beneath will be rebuilt with synchro-

nized data. Widgets under the consumer have direct access to the model and can modify it via

direct method calls.

Figure 4.8: Provider widget tree example

Following the shopping cart example, the subsequent pseudo-code (Listing 4.5) demon-

strates what the Provider implementation would look like. The shopping cart model contains

a list of products and some utility methods. The ChangeNotifierProvider provides this model

to anyone below it in the widget tree. The two consumers listen to changes in the model and

update the Product Details and Shopping Cart screens. In the Product Details screen it is shown

how to add a product to the shopping cart. In the Shopping Cart screen it is shown how to

obtain the list of products to display.

72

4.2. APPLICATION ARCHITECTURE

1 class ShoppingCartModel with ChangeNotifier {

2 final List<Product> _products = [];

3

4 List<Product> get products => List.from(_products);

5

6 void addProduct(Product product) {

7 _products.add(product); //Could add some business logic here

8 notifyListeners(); //Notify the UI so it reflects the changes made

9 }

10

11 void removeProduct(Product product) {

12 _products.remove(product);

13 notifyListeners();

14 }

15

16 bool contains(Product product) {

17 return _products.contains(product);

18 }

19

20 bool isEmpty() {

21 return _products.isEmpty;

22 }

23 }

24

25 //Provider

26 ChangeNotifierProvider <ShoppingCartModel >(

27 create: (context) => ShoppingCartModel(),

28 child: ... //the rest of the widget tree

29);

30

31 //Product Details

32 Consumer<ShoppingCartModel >(

33 builder: (model) {

34 ... //Rest of the Product Details UI...

35 RaisedButton(//Button to add product to cart

36 child: Text('Add to cart'),

37 onPressed: () => model.addProduct(product),

38);

39 },

40);

41

42 //Shopping Cart

43 Consumer<ShoppingCartModel >(

44 builder: (model) {

45 //Obtaining the list of products to display

46 final productList = model.getProducts();

47 ... //Rest of the Shopping Cart UI...

48 },

49);

Listing 4.5: Provider example

73

CHAPTER 4. DEVELOPMENT APPROACH

4.2.3.2 Business Logic Component

The BLoC plays the same role as the Provider package, sitting between the widgets and the data

layer. However, it differs from Provider in a few key aspects. Instead of having a unique model

class that represents all variants of state, it has multiple state classes (e.g. loading state, error

state, complete state), each of them representing one distinct variation. This means that instead

of calling direct methods of the model, whenever the widgets want to change the state of the

app, they do it by sending events (e.g. AddProduct, LoadProducts). Events are “the input to a
Bloc. They are commonly added in response to user interactions such as button presses or lifecycle
events like page loads” [10]. Finally, there is the actual bloc class, responsible for processing the

events and outputting states. This is where the actual business logic and the communication

with the data layer happens (Fig. 4.9).

Figure 4.9: BLoC diagram [10]

Instead of relying on observer mechanisms, the BLoC uses streams to introduce these new

states to the widgets. For the developer, this does not differ a lot from the Provider alternative

as the BLoC package does a good job of abstracting the underlying mechanisms. It looks very

similar to the solution from Figure 4.8, where a BlocProvider widget is used to provide the bloc

to the widget tree, and then BlocBuilders (the equivalent of Consumers) update the widgets

below them when the state changes.

Following the shopping cart example, the subsequent pseudo-code (Lst. 4.6) demonstrates

what the BLoC implementation would look like. The shopping cart can have two different

states: empty and loaded. There are also two different events that can happen to the shopping

cart: adding a product or removing a product. The ShoppingCartBloc holds the actual list of

products and modifies it after receiving events. Afterwards, it outputs the new state to the

widgets. The BlocProvider and BlocBuilder widgets were purposefully omitted as they work

very similarly to the Provider solution.

As demonstrated, this option does have a bigger amount of boilerplate code before it be-

comes functional. Nonetheless, this was the state management option chosen for our project.

Having clear and distinct state classes makes adapting the UI to the states easier and becomes

more comprehensible. It also forces us to properly plan ahead what states can the app be in,

lowering the chance of unpredictable app states during runtime, increasing the robustness of

the overall app.

74

4.2. APPLICATION ARCHITECTURE

1 @immutable

2 abstract class ShoppingCartState {

3 const ShoppingCartState();

4 }

5

6 class ShoppingCartEmpty extends ShoppingCartState {

7 const ShoppingCartEmpty();

8 }

9

10 class ShoppingCartLoaded extends ShoppingCartState {

11 final List<Product> products;

12 const ShoppingCartLoaded(this.products);

13

14 bool contains(Product product) {

15 return products.contains(product);

16 }

17 }

18

19 @immutable

20 abstract class ShoppingCartEvent {

21 const ShoppingCartEvent();

22 }

23

24 class AddProduct extends ShoppingCartEvent {

25 final Product product;

26 const AddProduct(this.product);

27 }

28

29 class RemoveProduct extends ShoppingCartEvent {

30 final Product product;

31 const RemoveProduct(this.product);

32 }

33

34 class ShoppingCartBloc extends Bloc<ShoppingCartEvent , ShoppingCartState > {

35 final List<Product> _products = [];

36 ShoppingCartBloc() : super(const ShoppingCartEmpty()); //Initial state

37

38 @override

39 Stream<ShoppingCartState > mapEventToState(//Map the incoming events to states

40 ShoppingCartEvent event,

41) async* {

42 if (event is AddProduct)

43 yield* _addProduct(event.product);

44 else if (event is RemoveProduct) yield* _removeProduct(event.product);

45 }

46

47 Stream<ShoppingCartState > _addProduct(Product product) async* {

48 _products.add(product); //We could add more business logic here, such as duplicate

validation...

49 yield ShoppingCartLoaded(List.from(_products));

50 }

51

52 Stream<ShoppingCartState > _removeProduct(Product product) async* {

53 _products.remove(product);

54 if (_products.isEmpty)

55 yield ShoppingCartEmpty();

56 else

57 yield ShoppingCartLoaded(List.from(_products));

58 }

59 }

Listing 4.6: BLoC example

75

CHAPTER 4. DEVELOPMENT APPROACH

4.2.4 Complete architecture

Deciding on a state management solution does not give us a complete app structure, we still

need to determine how the data source layer will be organized and how to integrate it with the

BLoC. Afterall, the app needs to handle data coming from multiple sources to show to the user.

A good example of a complete flow of information would be the creation of a trip. Preferences

and constraints come from user input from the presentation layer, if needed, some business

logic happens in the BLoC and then goes to the data layer to be sent to the ROUTE microservice.

Afterwards, the data layer receives the trip from the microservice, sends it to the BLoC layer

that subsequently sends it to the presentation layer to show the user.

In Jetpack, the Android team also has an app architecture guide where they recommend

dividing the data source layer into repositories and data providers (Fig. 4.10). Within the

Flutter community, a prominent architecture guide called Clean Architecture [72] also uses this

repository pattern (Fig. 4.11).

Figure 4.10: Android data layer Figure 4.11: Clean architecture data layer

This is the approach we are also taking. In a real life app, the same type of data can come

from different sources. We might want to fetch data from the internet (e.g. REST API) but if that

is not available, we need to fetch cached data from a local source (e.g. local database). Having a

central repository for multiple data providers allows for handling of any necessary logic such

as this. Furthermore, the data from providers can come in many formats, so the repository can

standardize this data and send it to the BLoC.

Since most of the data sources are external, they are more likely to change over time without

our control, which translates into providers being very prone to implementation changes. Any

change made to the way a data provider is implemented becomes invisible to the BLoC, since it

has an additional repository layer abstracting such details.

This solution implies a lot of dependencies. The BLoCs needs to have instances of the

repositories, and the repositories needs to have instances of their data providers. To deal

with this issue, both the Jetpack and Clean Architecture guides recommend using a dependency

injection design pattern [71]. Dependency injection is a pattern where an object receives other

objects (dependencies) that it depends on. The code that passes the service to the client can

be many kinds of things and is called the injector. The "injection"refers to the passing of a

76

4.3. FUNCTIONAL TESTING

dependency (a service) into the object (a client) that would use it. In our case, we will use the

Flutter package get_it21 to act as a service locator that provides the instances of data providers

to the repositories that need it and provides the repositories to the BLoCs that need it.

To conclude, the architecture chosen for our application (Fig. 4.12) has four main com-

ponents: (1) the UI composed of widgets; (2) the BLoCs responsible for listening to UI events

and outputting UI states; (3) the repositories responsible for managing and providing data to

the BLoCs; (4) the data providers that fetch (and store) data from local or external sources.

The BLoC and repository components have some overlap between the domain layer and their

respective presentation and data layers. The dependency flow and call flow are from top to

bottom. Each component depends and calls methods from only the component directly below

it, becoming completely immune to changes from components on other levels. At the bottom

level, the data providers have no dependencies and are oblivious to what is going on in the rest

of the app.

Figure 4.12: Complete architecture

4.3 Functional testing

Software testing is a process, or a series of processes, designed to make sure computer code does

what it was designed to do and, conversely, that it does not do anything unintended. “Software
should be predictable and consistent, presenting no surprises to users.” [60]

Testing techniques can vary depending on the the objectives and target metrics, which in

turn will result in different levels of specificity (i.e. unit, integration or system) [68]. In our case,

the main objective is to perform a functional validation of the app using functional testing, also

known as correctness or conformance testing, where test cases are designed to check that the

functional specifications of the app are correctly implemented. In order to do so, we developed

a series of unit tests and integration tests.

A unit test consists in testing a single function, method, or class. The goal of a unit test
is to verify the correctness of a unit of logic under a variety of conditions22. For this reason,

external dependencies of the unit under test are generally mocked out. An integration test
consists in testing a large part or functionality of an app. The goal of a integration test is to

21https://pub.dev/packages/get_it
22https://flutter.dev/docs/testing#unit-tests

77

https://pub.dev/packages/get_it
https://flutter.dev/docs/testing#unit-tests

CHAPTER 4. DEVELOPMENT APPROACH

test how individual pieces work together as a whole23. Integration tests verify the interactions

among software components that can not be tested by unit tests. In both cases, the general idea

is to call parts of code with certain input values and assert that the resulting values are what we

expect.

Testing is only valuable if the test cases are adequate and extensive. At the same time,

the app is big enough that covering all the code and possible scenarios, states and data flows

is simply inconceivable. Therefore we have to be selective about what to test. Since the trip

creation process is one of the most crucial and code-heavy parts of our app, we decided to focus

our tests towards this process and the business logic behind it. Overall, the following unit and

integration tests have a code coverage of 40% or 330 lines out of 817 total. The implementation

of these tests is available in the github repository.

4.3.1 Unit and integration testing

Another great advantage of using a state management solution such as BLoC is that it makes

testing much easier. In fact, easier testing is a benefit of most state management solutions.

Specifically with BLoC, we know what state our application is in at any point in time, which

means we can easily test every case to make sure our app is responding appropriately24.

By separating the domain layer from the presentation layer, we do not have to depend on

the latter to test out the former. This means that we do not resort to subpar and gimmicky

techniques, such as having to manually detect the UI components (e.g. buttons) and virtually

perform the necessary actions (e.g. tapping or swiping) to emulate a real user, in order to test

the business logic of the app. Instead, the business logic is invulnerable to UI changes, so we

only need to write the appropriate business logic tests once, regardless of any UI changes that

might happen in the future.

The same developers that created the flutter_bloc package also created the bloc_test25 pack-

age, made specifically for the testing of BLoCs, so this is the solution we adopted for testing

our app. Similar to other unit testing frameworks, like jUnit for Java, this package provides a

simple mechanism, called blocTest, to test blocs against specific test cases. This mechanisms

has a few key parameters that we use to carry our test cases: build is a function used for BLoC

initialization and preparation and must return the BLoC under test; act is a callback function

used to add events to the bloc; expect (also known as assert in other frameworks) must contain

the states which the bloc is expected to emit after the act is executed; verify is another callback

function for additional verification/assertions. Below (Lst. 4.7) is a simple test case for a counter

BLoC.

Note that the following test cases have also been extensively tested out manually, over a

real device (OnePlus 7 Pro, Android 10), to make sure that there are no bugs that come from

the UI or from using the device’s GPS adapter, both not covered in these tests.

23https://flutter.dev/docs/testing#integration-tests
24https://bloclibrary.dev/#/whybloc
25https://pub.dev/packages/bloc_test

78

https://flutter.dev/docs/testing#integration-tests
https://bloclibrary.dev/#/whybloc
https://pub.dev/packages/bloc_test

4.3. FUNCTIONAL TESTING

1 blocTest(

2 'emits [1] when CounterEvent.increment is added', //Description of the test case

3 build: () => CounterBloc(), //Initialize bloc (state is 0)

4 act: (bloc) => bloc.add(CounterEvent.increment), //Add increment event to bloc

5 expect: [1], //Assert that bloc state is 1

6);

Listing 4.7: Bloc test example

Unit tests carried out to test the business logic from the individual steps that comprise the trip

creation process:

• Initial state is StartingTrip;

• Test the process of adding an origin location;

• Test the process of adding destination location;

• Test advancing from the Start Trip panel to the Interests panel;

• Test going back to the Start Trip panel from the Interests panel;

• Test adding POIs to the list of interests;

• Test the calculation of the total price of the POIs;

• Test the calculation of the total visit time of the POIs;

• Test the calculation of the average sustainability of the POIs;

• Test advancing from the Interests panel to the Restrictions panel;

• Test going back to the Interests panel from the Restrictions panel;

• Test changing budget restriction;

• Test changing visitation time restriction;

• Test changing effort restriction;

Integration tests carried out that combine and test the previous test cases as a group. The

tests simulate the business logic that would occur when a user creates a trip. The resulting

JSON structure (see Sec. 3.2.2) is evaluated against the expected result that would be sent to

the ROUTE microservice.

• Test the scenario where a user creates a trip from different origin and destination locations,

with two POIs added as interests, with a high effort level, 100 euros as budget and 2 hours

as visitation time;

• Test the scenario where a user creates a round-trip from a specific location, with no POIs

added as interests, with a medium effort level, 50 euros as budget and 1 hour as visitation

time;

• Test the scenario where a user creates a trip from different origin and destination locations,

with one POI added as interests, but without changing the default restrictions;

Finally, there are the unit tests carried out to test the communication with the ROUTE mi-

croservice. Testing with the live ROUTE microservice would cause a few issues, such as slowing

down test execution and increasing the difficulty of testing for all outcomes (because it would

require configuring the microservice to produce the needed outputs), but most importantly, it

79

CHAPTER 4. DEVELOPMENT APPROACH

would make it so that the results of these tests also depend on the ROUTE microservice rather

than depending entirely on the app’s code. Instead, we use the Mockito26 package to create a

mock version of the ROUTE microservice and have full control over its output, so we can easily

test varying scenarios. The idea of these tests is to assert that the app is correctly handling the

different scenarios that can happen when communicating with the ROUTE microservice.

• Test the scenario where the communication is successful and ROUTE returns a valid trip;

• Test the scenario where the communication is successful but ROUTE cannot return a valid

trip (due to the preferences and constraints of the user);

• Test the scenario where the communication is unsuccessful (e.g. no internet connection);

4.3.2 Functional testing

Besides developing these automatic test cases with the purpose of programmatically testing

the business logic that occurs during the process of creating a trip, we have also developed a

methodical process for testing the integration between the app and the ROUTE microservice.

The idea is to create a set of scenarios that cover both the main use case and edge use cases

of the app and ROUTE microservice, therefore simulating a real user. These scenarios were

handcrafted along side the student in charge of the ROUTE microservice, so both components

of the STC architecture are being tested. The next step is to run each scenario individually as if

they are being executed by a real user. For the app, this means manually creating a trip with

the right constraints and preferences, sending them to the ROUTE microservice and receiving

back the trip, and displaying said trip to the user.

Since the ROUTE microservice does not currently have a live API, the communication

between these two components was simulated by exchanging JSON strings “by hand” and

inputting them into the code where the communication would otherwise happen. Note that on

the side of the app, which plays a much easier role in the communication (consisting simply of

http requests), this communication was indeed tested with the previously mentioned unit tests.

Overall we created a total of 5 scenarios that we believe test all the important use cases of

both the APP and the ROUTE microservice. Below we present these scenarios and explain what

they are meant to test. In the Appendix B we include screenshots from the APP executing each

scenario and the respective JSON messages exchanged between them.

The first scenario is fairly simple (Tab. 4.2). The user has just arrived at the city by train

and wants to go on a trip that ends at the hostel he will be staying at. During this trip he only

wants to visit churches and monuments. The second scenario (Tab. 4.3) emulates a user that has

just finished dining at a restaurant and wants to go on a short, free trip that ends at the hostel

he is staying at. This way, we are testing a trip that spans over two days that has no budget.

The third scenario (Tab. 4.4) is meant to simulate a trip that starts and ends at his hostel,

during the rain (relevant to ROUTE), where he wants to specifically visit the Museu Nacional do
Desporto and a few local stores to buy some souvenirs for his family. This way we are testing a

round-trip during bad weather, with a low number of selected POIs. The fourth scenario (Tab.

4.5) is actually design to fail. The user wants to start a trip at 6:30 PM and visit the Igreja de

26https://pub.dev/packages/mockito

80

https://pub.dev/packages/mockito

4.3. FUNCTIONAL TESTING

Table 4.2: Test scenario #1

Parameters Description

Origin
Train Station
(R. 1º de Dezembro)

Destination
Hostel
(R. dos Douradores)

Departure Date 2:30 PM

Selected POIs None

Selected Categories
Churches,
Monuments

Budget 50 €

Visitation Time 5 hours

Effort Medium

Table 4.3: Test scenario #2

Parameters Description

Origin
Largo Picadeiro
(Restaurant)

Destination
Hostel
(R. dos Douradores)

Departure Date 10:00 PM

Selected POIs None

Selected Categories
Viewpoints,
Squares

Budget 0 €

Visitation Time 3 hours

Effort Easy

Santo António and Miradouro do Recolhimento. While both POIs are open at that time, meaning

the app allows the user to select them, it is impossible for the user to visit both of them before

they close. With this scenario we test a failure case due to bad constraints, and setting the origin

as the current location of the user.

Table 4.4: Test scenario #3

Parameters Description

Origin
Hostel
(R. dos Douradores)

Destination
Hostel
(R. dos Douradores)

Departure Date 10:00 AM

Selected POIs
Museu Nacional
do Desporto

Selected Categories
Local Stores,
Museums

Budget 50 €

Visitation Time 6 hours

Effort Medium

Table 4.5: Test scenario #4

Parameters Description

Origin
Current location
(R. Garret)

Destination
Appointment Local
(R. Vítor Cordon)

Departure Date 6:30 PM

Selected POIs

Igreja de Santo
António,
Miradouro do
Recolhimento

Selected Categories None

Budget 10 €

Visitation Time 1:30 hours

Effort Hard

81

CHAPTER 4. DEVELOPMENT APPROACH

Finally, the fifth scenario (Tab. 4.6) is meant to simulate a gastronomic trip where the user

goes from restaurant to restaurant trying out the Portuguese cuisine. This test case is more

useful for the ROUTE microservice, which is being tested against a large set of POIs and a tight

set of constraints.

Table 4.6: Test scenario #5

Parameters Description

Origin Campo das Cebolas

Destination
Hostel
(R. dos Douradores)

Departure Date 12:00 PM

Selected POIs

Nicola Café,
Casa Portuguesa do
Pastel de Bacalhau,
Martinho da Arcada,
As Bifanas do Afonso,
A Brasileira

Selected Categories All

Budget 70 €

Visitation Time 5 hours

Effort Medium

82

4.4. BLUETOOTH DETECTION SERVICE

4.4 Bluetooth detection service

As mentioned in section 3.2.3, the app is also responsible for providing crowding updates to

the HEAT microservice. It does that by detecting nearby Bluetooth devices and combining the

results with a location and timestamp reference. This functionality comes in the form of a

service that runs within the app, making use of the device’s Bluetooth capabilities.

4.4.1 Bluetooth in smartphones

In 2010, a new type of Bluetooth technology called Bluetooth Low Energy (BLE) was announced

[23]. This technology, also called Bluetooth Smart or Bluetooth 4.0 (now Bluetooth 5), has been

adopted by smartphone manufacturers at different rates. This also caused fragmentation in

the Bluetooth frameworks provided by mobile operating systems. In fact, iOS native Bluetooth

APIs do not properly support classic Bluetooth. Core Bluetooth27 is the primary Bluetooth

framework offered by iOS and it is solely for BLE devices. External Accessory28 is another

iOS framework for classic devices, but only for specific MFi compliant devices, i.e., devices

specifically designed to interface with an iOS application. To deal with this fragmentation, the

service makes use of two Flutter packages, flutter_blue and flutter_bluetooth_serial, that abstract

the interaction with the operating systems’ native Bluetooth APIs. This way, we can make use

of both Bluetooth technologies, classic and BLE, in a uniform and simple manner.

4.4.2 Design and implementation

The service is designed to be as independent as possible so that it does not rely on or interfere

with the natural flow of the app. In fact, since it requires no user input, we decided to make this

service completely invisible to the user. Its only dependencies are the necessary data providers

(i.e. GPS and Bluetooth) and the app lifecycle itself. As a user navigates through, out of, and

back to the app, it transitions through different states in its lifecycle. The service needs to

observe these states (i.e., inactive, paused, suspending and resumed) so that it can stop and

resume appropriately.

It is also built with failure in mind. When thinking about the usage context of the app

it is likely that all requirements that make the service work are not always met. Internet

connection is not always present, GPS and Bluetooth functionalities are not always on and their

permissions may not be granted. To counteract these issues, the service uses a timer-based

approach, such that in case of failure, it will not crash or stop, but simply try again after a fixed

time amount. Additionally, if no internet connection is available the results are stored locally

and sent on the attempt, and if any permissions are missing the app will display a prompt

asking for permissions.

This timer-based approach was also adopted for a different reason. Bluetooth scanning has

a significant impact on the device’s battery, especially on devices that are not BLE [23]. Since

trips can last a couple of hours, we have to be particularly mindful of the device batteries. It

is not viable to be constantly scanning for devices, so a fixed duration of fifteen minutes was

27https://developer.apple.com/documentation/corebluetooth
28https://developer.apple.com/documentation/externalaccessory

83

https://developer.apple.com/documentation/corebluetooth
https://developer.apple.com/documentation/externalaccessory

CHAPTER 4. DEVELOPMENT APPROACH

decided for the timer, as it replicates the time between updates from the SNIFF microservice to

the HEAT microservice.

The service workflow, represented by an UML activity diagram in Figure 4.13, can be de-

scribed as follows. When the service starts (by app startup or a resumed lifecycle event) it

checks the timestamp of the last scan. If the time passed since the last timestamp is equal

or bigger to fifteen minutes, it immediately starts a new scan. Otherwise, it awaits the time

difference before starting. Once the scan is finished, the service checks if there are any ad-

ditional results pending, and sends those as well to the HEAT microservice. If no internet

connection is available, the service stores the results locally. Finally, the service schedules a new

scan in fifteen minutes. If during this process an error occurred due to previously mentioned

circumstances, the service will simply skip to the scheduling part.

84

4.4. BLUETOOTH DETECTION SERVICE

Figure 4.13: Bluetooth detection service diagram

85

[This page has been intentionally left blank]

C
h
a
p
t
e
r

55 5

Application Design

Contents
5.1 Application description . 89

5.2 User centered design and UI validation . 90

5.3 Design considerations . 104

In section 5.1 we describe the main features of the app prototype, along side a usage scenario

that shows the way we envision how tourists, our main target audience, will use the app. Section

5.2 goes over the design process, the different iterations of the UI and its validation. Addition-

ally, we present the final UI mockups with detailed explanations for each of screen/feature.

Finally, in section 5.3 we discuss further design considerations taken for the app prototype.

87

[This page has been intentionally left blank]

Chapter 5

Application Design

5.1 Application description

To better describe the functional requirements and to demonstrate the main use cases of the

app, we have created a scenario that shows the way we envision how tourists, our main target

audience, would use the app, while justifying the reasons behind some of the main features in

the app.

Dinis, the tourist, is staying in a hotel at the Santa Maria Maior perish for a week. While

riding a Tuk Tuk, a popular tourist activity in Lisbon, he encounters an advertisement with a

QR code, which is part of a promotional campaign for our app. Dinis becomes intrigued and

decides to scan this QR code which redirects him to the app’s app store page on his device’s

default app marketplace. From there, he decides to download the app.

After his ride, Dinis decides to launch the app so that he can explore the the Santa Maria
Maior perish. The app uses Dinis’ current location to center him on a map of the city, which

also contains a list of markers representing the city’s POIs. Dinis can pan and drag the map

freely to explore the city as he pleases, and he look up more information on any POI or discover

the name of any street. Furthermore, Dinis can manually search for locations (e.g. the hotel he

is staying) by typing an address, which the app will Geocode and then display its location on

the map.

The following day Dinis decides that he wants to spend his afternoon visiting the city. To

do so, he has approximately 5 hours and 100 euros available. Through the mobile application,

Dinis plans a trip to depart immediately from his current location and conclude at his hotel

room. He has heard of an interesting exhibition taking place at the Museu Nacional do Desporto,

so he explicitly tells the application that he wants to visit this point of interest. Additionally,

he specifies which categories of POIs he is interested in: museums, churches and monuments.

Optionally, Dinis can change the effort level of his trip and the system will adjust the physical

effort of the route accordingly. The system will use these constraints and preferences to create

a trip that maximizes sustainability and reduces crowding by recommending the right POIs.

This trip is shown to Dinis both in the map and in the form of a timeline, which he can use to

confirm or reject it. After the trip starts Dinis can consult the app for guidance and information

about the route and POIs he is visiting. If Dinis ever ends up far away from the planned route,

the app will provide him the option of recalculating a new route, now starting from his current

position.

After a few days using the app, Dinis decides he wants to check his activity. The app keeps

track of a few statistics (i.e. POIs visited, distance travelled and average sustainability of his

trips) and a list of all the completed trips and planned future trips. While looking at his past

trips, Dinis finds a particularly interesting one that he wants to share with his friends. Knowing

that one of his friends is also visiting Lisbon the next month, he uses the sharing functionality

as a form of introduction and recommendation of the app to his friend, so that he can also use

it in his stay in Lisbon.

89

CHAPTER 5. APPLICATION DESIGN

In addition to this scenario, we include a use case diagram (Fig. 5.1) with the purpose of

highlighting and summarizing the main functionalities of our app and showing how the user

interacts with them.

Figure 5.1: Application use case diagram

5.2 User centered design and UI validation

User-centered design (UCD) is a broad term to describe design processes in which end-users

influence how a design takes shape. It is both a broad philosophy and variety of concrete

methods and techniques [2]. UCD provides a top-down approach for creating websites and

apps according to the users’ needs, by placing the user at the center of the design. The role of

the designer is to facilitate the task for the user and to make sure that the user is able to make

use of the product as intended and with a minimum effort to learn how to use it. It not only

focuses on understanding the users but also requires an understanding of the tasks that users

will perform with the system and of the environment (organizational, social, and physical) in

which they will use the system.

There are many different ways to involve the user in the design [2]. Each technique has a

stage of the design cycle in which it is most appropriate. For example, background interviews

and questionnaires, for the purpose of collecting data related to the needs and expectations

of users, is more appropriate at the beginning of the design process. In our case, we carried

90

5.2. USER CENTERED DESIGN AND UI VALIDATION

out two techniques, one named Card Sorting and another named Tree testing, during the early

stages of the design process. The focus of these techniques is on developing and subsequently

evaluating the Information Architecture (IA) of our app.

Information architecture is the art/science of structural designing a labeled hierarchy for

the information in an information system [74], just like our app. Establishing an IA is an

integral part of the design process, since it forms a skeleton of the product. Visual elements, func-
tionality, interaction, and navigation are built according to the information architecture principles1.

Consequently, we decided that it is best to employ a user-centered process for the design of the

IA of our app.

To create and carry out these usability techniques we used Optimal Workshop2. It is an

online platform that offers solutions within the area of user research, UX design and information

architecture. This tool contains support for creating, sharing and completing both the card

sorting and tree testing techniques. Additionally, it also includes a powerful data analysis tool

specialized for each technique.

Altogether, we conducted two instances of these techniques. The first one, supposed to tar-

get a smaller audience, was conducted with colleagues and members of the Software Systems

Engineering group at ISCTE. The second one was planned to be conducted in collaboration

with APECATE, an association of tourist related businesses and partner of the STC project,

due to their experience and expertise in the subject of tourism. APECATE has a large number

of members, so we expected to get a high number of participants. Unfortunately, due to the

Covid-19 situation, APECATE was unavailable to collaborate, so we resorted to another partner

of the STC project, the Junta de Freguesia de Santa Maria Maior, which also has some knowledge

in the subject of tourism. The idea is to develop an iterative process where we use the feedback

from the previous variation to create a new and improved version, in order to obtain better

results.

5.2.1 Card sorting

Card sorting is a widely known and accepted technique that UI/UX designers, and more specif-

ically information architects, employ throughout the information design phase. “It is a great,
reliable, inexpensive method for finding patterns in how users would expect to find content or func-
tionality.” [83].

It is a user-centered design method that actively involves the target user groups by asking

them to sort a series of cards, each labeled with a piece of content or functionality, into groups

that make sense to them. It takes in real user input, not the gut feeling or strong opinions of a

designer. There are a few variants of this technique, like the open card sort, where participants

are asked not only to sort cards into groups but to also name them appropriately.

The goal of this technique is to “gain insight into users’ mental models, illuminating the way
that they often tacitly group, sort and label tasks and content within their own heads” [83]. Card

sorting is, therefore, a generative and formative technique, and not a evaluation technique to

1https://www.optimalworkshop.com/solutions/information-architecture/
2https://www.optimalworkshop.com/

91

https://www.optimalworkshop.com/solutions/information-architecture/
https://www.optimalworkshop.com/

CHAPTER 5. APPLICATION DESIGN

determine what is wrong with an already designed website or app. It is best used as an input

to designing or re-designing a website/app or a part of it. Accordingly, we used this technique

during the early stages of designing the information architecture of our app.

The Optimal Workshop’s card sorting platform includes an analytics tool that allows us to

better interpret the results from the participants. From the several different analysis segments

provided by this tool, perhaps the most important ones are the simpler cards and categories
segments and the more complex dendograms segment.

Using the cards analysis we can observe how each card is categorized and identify where

the participants agree, where they have different ideas and potentially if there were card labels

that they did not understand. The categories analysis shows how the participants created and

named categories in order to understand the different language that the participants used and

whether these categories contain similar cards.

The dendrograms analysis (Fig. 5.2) is useful for understanding which card groupings have

the strongest agreement. Cards are listed down the left-hand side of the dendrogram, while the

axis along the top measures the level of agreement across participants. Clusters closer to the

left indicate that more participants agreed with this grouping.

Figure 5.2: Dendrogram example for a clothing website card sort

5.2.2 Tree testing

Tree testing is another UI/UX technique pioneered by the same expert that created card sorts,

Donna Spencer. It is usually coupled with card sorting techniques to further gain an under-

standing of how to design an appropriate information architecture for the target users. More

specifically, it is useful for “understanding where people are currently getting lost and how they
expect to look for key information on your website” [93].

Tree testing has two main elements: the tree, and the tasks. The tree is a text-only version of

the website/app structure. The tasks consist of finding certain items of information, which are

the “child nodes” below category items (“parent nodes”), inside that tree. Participants are asked

to complete these tasks by navigating through the tree and nominating the information they

think is correct. It is another user-centered design method that actively involves the target user

92

5.2. USER CENTERED DESIGN AND UI VALIDATION

groups, which allows designers to get real, objective evaluation of the information architecture

they designs.

The goal of this technique is to “find out if the labels and structure of your information on your
website, intranet, or product is easy to understand” [93]. It is a validative technique that produces

valuable insights for the validation of the IA of an app or website. It is also very flexible, since

it can be used on websites or apps with structures ranging from small to large and it can be

executed as one large test or split into multiple smaller tests.

The Optimal Workshop’s tree testing platform also includes an analytics tool specialized

for this type of technique. Using this tool look at each task one by one (Fig. 5.3) and understand

how many people got it right, the paths people took before they selected an answer, and how

long it took people to complete the task. It attributes an overall score to each task, from a scale

of 1 to 10, using the Success, Directness and Time taken measurements.

Figure 5.3: Tree test task analysis example

5.2.3 First iteration results

The card sorting technique had a total of 10 participants, members of the Software Systems

Engineering group at ISCTE. The majority of these participants are in the 45-54 year range

(82%), have professional experience in the IT area (91%) and a masters degree (64%). The

technique took an average of 10 minutes to complete.

In this technique, we asked participants to group a total of 16 cards, and then label said

groups. The cards, listed below and translated from Portuguese into English, contain pieces of

content and functionality mentioned in section 5.1:

• Origin and destination points;

• Date and time of departure;

• Difficulty and route effort (e.g. calories);

• Budget;

93

CHAPTER 5. APPLICATION DESIGN

• Categories of interest (e.g. churches, parks, etc.);

• Timeline of the POIs to visit;

• Interactive city map;

• Current Location;

• List of city’s POIs;

• Share previous trips;

• Statistics of completed trips;

• Point of interest name and address;

• Attraction image;

• Place details (e.g. visit time, entry price, sustainability rating);

• Location Search;

• Reuse shared trips;

Almost all the participants (90%) decided to group the cards into four categories. Looking

at the dendrogram (Fig. 5.4) it is possible to discover which cards the participants most often

grouped together. At 80% agreement level, four category clusters take shape. Note that the

analysis tool offers two different dendrograms, one that depicts only absolutely factual relation-

ships (recommended for 30 answers and higher), and another that makes assumptions about

larger clusters (recommended for fewer participants). The one we used to interpret our results

is the latter.

Figure 5.4: Dendrogram for the first card sort

The first group has been labelled with names such as Trip History, History and Sharing, and

Share. For the second group, common labels are Point of Interest and Attraction Detail. In the

third group the most common labels are some variation of Map. The final group has been

labelled with names such as Create Trip and Itinerary.

Direct feedback from the participants made us realize that perhaps the context and goal of

this technique was not clear enough to the participants. This is something that was improved

on the next iteration.

The tree testing technique also had a total of 10 participants from the Software Systems

Engineering group. In this technique, we asked participants to solve 3 tasks, by navigating

through an information tree (Fig. 5.5), which is based on the results from the card sort.

94

5.2. USER CENTERED DESIGN AND UI VALIDATION

Figure 5.5: Tree of the first tree test

The tasks, listed below and translated from Portuguese into English, were written as hypo-

thetical scenarios and cautiously worded as to not include he same language that was used in

the tree, to prevent the participants from matching the phrases rather than actually deciding if

the information is correct [93]:

• Suppose you only have 50€ to travel. Where would you add this limitation?

• Imagine you want to start a trip departing from the nearest POI from your location.

Demonstrate how you would do this.

• Imagine you recently finished a trip and want to share it with your friends on social

network. Go to the spot where you will find this functionality.

The results from this test are fairly positive. The first task has an overall score of 9 (out of

10). The second task is rated at a 7. The third and final task has a rating of 8. In the Appendix D

we present a more detailed version of these results, that includes the exact number of direct and

indirect successes, the number of direct and indirect failures, as well as the directness metric of

each task and the time taken to solve them. Regarding this particular tree test, no feedback was

received from the participants.

95

CHAPTER 5. APPLICATION DESIGN

5.2.4 Second iteration results

The second version of the card sorting test shared with the Junta de Freguesia de Santa Maria
Maior resulted in 11 participants. The majority of these participants claim to have a bachelors

degree (64%) and previous professional experience in the IT area (73%), with ages fairly evenly

distributed over the 18-24 year range to the 55-64 year range. The technique took an average

of around 5 minutes to complete.

Due to the previous feedback from the first iteration of the card sort, the introductory

message was improved to include a brief summary of the STC project and to better explain the

goal of a card sort. Furthermore, a few card were altered to better reflect the content of the app

and to make sure the participants understand the concepts behind them clearly. This card sort

had a total of 17 cards, listed below:

• Attraction details (e.g. visit time, price);

• Budget Restrictions;

• Completed trips statistics (e.g. attractions visited, total distance);

• Current location;

• Images of the tourist spot;

• Interactive city map;

• List of planned, current and completed trips;

• Location of city’s points of interest;

• Location search;

• Origin and Destination Selection;

• Point of interest name and address;

• Reuse shared trips from friends;

• Select Departure Time;

• Share completed trips;

• Travel interests (e.g. churches, parks);

• Trip difficulty and effort (e.g. slope, calories);

• Trip timeline;

Every participant decided to group the cards into three categories. Looking at the den-

drogram (Fig. 5.6) it is possible to discover which cards the participants most often grouped

together. At 73% agreement level, three category clusters take shape. Again, we used the Best
Merge method that makes assumptions about larger clusters based on individual pair relation-

ships.

The first group, represented in green, is similar to the first group of the previous iteration,

also labelled with variations of either History and Sharing. The second group, represented in

red, is also equivalent to the last group of the first iteration, and is also labelled with variations

of Trip Creation. Finally, the third group, highlighted in blue, contains the cards from both the

Point of Interest and Map group, that were present in the first iteration. In this version, this

group is labelled with variations of City Map.

96

5.2. USER CENTERED DESIGN AND UI VALIDATION

Figure 5.6: Dendrogram of the final card sort

The second iteration of the tree testing technique also had a total of 11 participants from

the Junta de Freguesia de Santa Maria Maior, sharing the same demographic characteristics as

shown for the card sort technique.

In this iteration, the information tree has been simplified (Fig. 5.7). The old tree had a lot

of similar child nodes that were not interesting to test (e.g. the distinction between an Effort
constraint and a Budget constraint), which were removed in this iteration. Additionally, the

number of tasks was increased to 6, in order to increase the path coverage of the tree, so that

each important node is at least targeted once. The tasks used in this tree test are the following:

• Imagine you recently finished a trip and want to share it with your friends on social

network. Go to the spot where you will find this functionality,

• Suppose you want to check your planned trip for tomorrow. Navigate to the place you

would expect to find this information.

• You are a tourist that wants to go on a trip that ends at the place you are currently

accommodated. Where would you add this restriction?

• Imagine you want to start a new trip that visits only churches. Where would you add this

limitation.

• Suppose you want to check the price and visitation time of the Museu do Fado POI. Navi-

gate to the place you would expect to find this information.

• Imagine that you want to check the total number of attractions you have visited using

the app during your stay in Lisbon. Navigate to the place you would expect to find this

information.

Once again, the results from the tree test are positive, validating the information architec-

ture prototype. Overall, the tasks have an average score of 8 out of 10. In fact, every task has a

score of 8, with the exception of task #4, which has a score of 7 out of 10. In the Appendix D we

present a more detailed version of these results, that includes the exact number of direct and

indirect successes, the number of direct and indirect failures, as well as the directness metric of

each task and the time taken to solve them.

97

CHAPTER 5. APPLICATION DESIGN

Figure 5.7: Tree of the second tree test

5.2.5 Validity threats

The techniques employed are subject to a number of external validity threats [92], which con-

dition the ability to generalize results to the overall tourist population. While the subject

population (i.e. the participants) have some experience in the subject of tourism, they are not

representative of the population we want to generalize to (i.e. tourists). Additionally, both

iterations had a small population size of 10 participants and 11 participants respectively, which

again makes it so that the results may not reflect the population correctly. Finally, the results

also suffer from a construct validity threat [92], since the techniques use a conceptual repre-

sentations of the UI that is different than what end users will see (i.e. cards in the card sorting

technique and an information tree in the tree testing technique), therefore making it harder

to generalize these results to the actual developed UI prototype. Asking participants to per-

form the sames tasks from the tree testing technique on the actual user interface, specially in a

touristic setting, might have led to different tasks scores.

5.2.6 UI prototype

In both iterations of the card sort, participants grouped cards into a History/Sharing group. As

the name suggests, this group contains the functionalities and content pertaining the travel

activity of the user, such as displaying travel statistics and the list of past and planned trips, and

the sharing of said trips. These elements were grouped in the UI and labelled as Trip History.

Another group that is found in both iterations of the card sort is the Trip Creation group,

as labelled by participants. In this group, the functionalities and content of the trip creation

process can be found, such as selecting the origin and destination, as well as the content of

guiding the user through the trip, such as displaying the trip timeline.

Finally, there are the cards pertaining to the exploration of the city, such as location search,

display the city’s POIs as markers on the map, and consulting information about POIs. In the

first iteration of the card sort, there is a specific group for the POI related cards, while in the

second iteration this cards are grouped with the rest. For the development of the prototype UI,

98

5.2. USER CENTERED DESIGN AND UI VALIDATION

it was considered that these cards are closely related and should be grouped together (e.g. the

location search functionality can be used to search for a POI, to obtain more information about

it). The previously presented use case diagram (Fig. 5.1) can now be organized in these three

categories, as presented in Figure 5.8.

Figure 5.8: Application organized use case diagram

To develop the UI prototype we used Figma3. Figma is a collaborative interface design tool

that allows for the creation of designs and even interactive mobile prototypes. Through Figma,

it was possible to quickly iterate between various versions of the UI, before beginning the

development stage. Below, we explain in more detail how each of these groups were designed

and include the respective UI mockups.

5.2.6.1 City Map

The City Map (Fig. 5.9) is heavily inspired by the Explorer Mode found in the Dynamic Tour
Guide [51]. In this mode, which is the default and initial state of the app, the application takes

a step back from being a typical “tour guide” in the sense that it does not provide any type of

recommendations. Instead, its purpose is to simple function as an enhanced digital map, by

displaying the user’s current location along with the location of the city’s POIs, on a map. The

3https://www.figma.com/

99

https://www.figma.com/

CHAPTER 5. APPLICATION DESIGN

map is fully interactive, supporting all the modern gestures one would expect, such as zooming,

dragging and panning.

Additionally, this mode also provides Location Search functionality, in which users can

manually type a street address and the app will show the corresponding location on the map

(i.e. Geocoding), or they can select any location on the map (including POIs) and the app will

show the respective street address to the user (i.e. Reverse-Geocoding). This is particularly

useful if the user wants to search for a specific location, such as the hotel he is staying in or a

POI he is interested in.

Search functionality is known to be a usability challenge [88]. Particularly on mobile apps,

requiring the user to type on the virtual keyboards is not ideal. It is a time-consuming task that

demands a lot of effort from the user, and the small “keys” often lead to typos and errors. To

help alleviate this burden, in addition to a simple textfield where the user can type addresses,

we also provide a few extra elements: a set of shortcut actions (Current Location and Choose on
Map) and a list of recent searches. The app saves the most recent searches made by the user so

that he does not have to type these addresses again. This is especially helpful if the address is a

very long string or if the user is repeatedly searching for a specific location (e.g. his hotel).

Figure 5.9: City Map UI

With the City Map we hope to also appeal to the tourists that prefer to explore a city on

their own over being told what to visit. Furthermore, other well-known commercial mapping

apps such as Google Maps also provide this type of functionality, which makes it important to

100

5.2. USER CENTERED DESIGN AND UI VALIDATION

include in our app, so that our users don’t have the need to alternate between a mapping app

and our MTG to fulfill their travelling needs. We took the decision of making this the initial

and default mode of the app because we do not expect that users will commit to using the app

to create and follow a trip right after they download and try it for the first time. When there is

no trip being created or followed, we use the City Map to fill the gap until the user decides to

do so.

5.2.6.2 Trip Creation

Trip Creation contains the core functionalities of the app. The main goal of the STC project is

to improve the sustainability of tourism and reduce crowding in Lisbon. We achieve that by

guiding tourists through dynamically generated routes and POIs that suit the city’s interest the

best. This is the philosophy that the app was designed around.

Trip Creation can be summarized into two main use cases. The first being the process

of creating a trip and the second one being the process of guiding the user through the trip.

In order for the ROUTE microservice to generate a trip, we must first gather the necessary

information from the user, that is, the preferences and constraints of the tourist.

A common best-practice when designing user interfaces is to decompose large tasks into

smaller action steps [77]. This way, the user has a more accurate perception of the progress

he has made so far and how much is left to do. Additionally, by splitting up the task into a

sequence of chunks, each of which can be dealt with in a discrete “mental space” by the user,

the task becomes effectively simpler [87]. The trip creation process is a prime candidate for

applying this practice, so we decided to divide it into three smaller steps (Fig. 5.10). In the

initial stage, the user inputs the departure date and the origin (defaults to the user’s current

location) and destination locations. Since the process of choosing a location is similar to the

Location Search feature from City Map, we present the user with the same UI components he

is already familiar with. The next step is to gather the interest of the users. We present a

list of possible POIs and categories from which he can select. The final step is to collect the

constraints of the user, i.e. the budget, available time and effort level. Concretely, this process

is more complex than what is described in this summary, therefore, we also provide a more

detailed use case description in Appendix C that includes some alternative cases.

The process of guiding the user through the trip takes a very different approach. Instead of

demanding the user for inputs and attention, this time, the application plays a more supportive

and passive role. The route of the trip, the location of the POIs and the user’s current location

are all displayed on the map. Furthermore, if the user wants more information he can expand

the bottom panel, to visualize a more detailed trip overview (Fig. 5.11). This trip overview is

presented in the style of a timeline, listing all of the POIs to visit in order and with a timestamp

of the expected arrival time. If the user deviates from the intended route, the app will present

the user with an option to recalculate a new route starting from his current location, so that he

does not feel lost in the city.

101

CHAPTER 5. APPLICATION DESIGN

Figure 5.10: Trip Creation UI

Figure 5.11: Trip Overview UI

5.2.6.3 Trip History

The Trip History feature is purposefully separated from the rest of the functionalities of the app.

Since Trip Creation and City map both take advantage of a map-based interface, it makes sense

102

5.2. USER CENTERED DESIGN AND UI VALIDATION

that their respective UIs are similar and that the transition from one to the other is seamless. Trip
History on the other hand does not benefit from a map-based interface, so it is more beneficial

to move this feature to another screen entirely. Users can navigate to this screen (and return to

the previous) using the Bottom Navigation Bar situated at the bottom of the app. Both Material

Design and Human Interface Guidelines recommend the usage of Bottom Navigation Bars (called

Tab Bars by the latter) for navigation between up to five top level destinations.

In this screen (Fig. 5.12), we present the user with two main UI elements. One is a top

header containing statistics about his travels, more precisely, the amount of POIs visited, the

distance he has travelled and the average sustainability score of his trips. It is a small instance

of gamification that might give the tourist a sense of progress and make him want to come back

to the app and “do better” (e.g. increase the sustainability score). The other UI element is a list

of all the planned or completed trips the user has made, which he can toggle between. From

this list, users can see a preview of the trips that contains the date, level of sustainability and

the origin and destination locations, so that they become easily recognizable. If the user wants

to see the full details of a specific trip, he can tap on such trip to transition to another screen

that contains such information. This screen is very similar to the Trip Overview screen that the

user should already be familiar with. It displays the route and POIs location on the map and

the trip information in the style of a timeline.

Figure 5.12: Trip History UI

Additionally, from this screen, tourists should be able to share their trips with their family

and friends. The idea behind this feature is that the STC project, and therefore our app as well, is

very dependant on having a large enough user base. The more users we have the better crowding

information the system can gather, which in turn will result in better trip recommendations in

103

CHAPTER 5. APPLICATION DESIGN

the app. We hope that this feature can function as a sort of self-advertisement tool, in which

tourists will share their trips on social media or other mediums, associated with the branding

of our app. Unfortunately, due to time constraints, we were not able to develop this feature. In

the Future Work section we dive into how an implementation of this feature could be done.

5.3 Design considerations

The ISO 9241-11 standard defines usability as the “extent to which a system, product or service
can be used by specified users to achieve specific goals with effectiveness, efficiency and satisfaction in
a specified context of use”. Any interactive system should consider usability as a major critical

success factor [15].

Most studies on MTGs, usability and other mobile related areas [40, 42, 46, 47, 56, 95]

claim that some variation of: (1) small screen sizes and different resolutions, (2) intermittent

connectivity, (3) context of use, (4) input methods and (5) limited processing capabilities are

the main usability concerns to address when developing these systems.

We believe that small screen sizes and limited processing capabilities are now less of a

problem than they were at the time the authors wrote such articles. Mobile devices are on a

trend to become larger each year and converging to a small set of aspect ratios. Similarly, mobile

devices’ specifications (i.e. hardware) have become very powerful, resulting in very capable

phones. Granted, not everyone has a modern smartphone, specially considering that the prices

have also gone up. Nonetheless, for our app, we assume that tourists, our target audience, have

a smartphone from the last 5 years, which means that it has GPS and Bluetooth functionalities

and should be able to run the app without problems.

On the other hand, we believe that the usage context of an MTG, together with the reality of

intermittent connectivity, have a tremendous impact in the usability of our app. In this section,

we present our solution to minimize these problems, along with other design concerns we took

to improve the user experience and usability of our app.

5.3.1 Intermittent network

Due to the nature of tourism and travel, it is expected that our users will interact with the app

whilst on the move. In fact, this is one of the major purposes of our app: to guide the user on

a trip through the city’s most sustainable attractions. In this travelling context, it is inevitable

that our users lose Internet connectivity for variable periods of time. Either due to entering

Internet dead zones, by moving between free Wi-Fi hotspots from local shops and cafés, or

simply to prevent expensive roaming charges, Internet connection will become unavailable at

some point during the apps intended usage context.

A study by [25] shows us that developers should not assume the tourist is “always con-

nected” and that tourists themselves have a desire for disconnection. It is easy to imagine a

scenario where a tourist decides to go offline while starting his trip in Lisbon, so that he does

not get disturbed by incoming email notifications. Furthermore, a study on the impact of tech-

nology dead zones [63] observed that tourists’ dependence on mobile connectivity results in

several “tensions” when they travel to destinations where Internet connectivity is unavailable.

104

5.3. DESIGN CONSIDERATIONS

Abandoning the user while he is on the move, after entrusting us with the task of guiding them

through the city would cause an extremely bad experience. It is essential that our app can

survive these dead zones and keep providing support to the user at every stage of the travelling

process.

Be that as it may, some loss of functionality is inevitable. Without Internet connection

we cannot communicate with the other microservices or use crucial location services such as

geocoding. This means that some compromises have to be made. Creating a trip is simply not

possible without Internet connection, while keeping track of the user’s position and displaying

it on the map can and should be done, since it requires only GPS and not an Internet connection.

In order to reduce the amount of compromises to a minimum, we made some design decisions

that make the app less dependent on Internet connection and more functional overall.

One of the first big decisions we made that shaped the prototype is to support offline maps.

While most map APIs obtain their map tiles by streaming them on demand over the Internet,

there is a second option of including the tiles as PNG assets within the app. This way, there

is no need for any type of download, stream or communication with a tile provider over the

Internet. There are no loading times and the full area of the map (in our case, Lisbon) is

instantly available.

There are some downsides to this approach as well. Working with offline tiles means that

they don’t automatically reflect the latest map data available (e.g. new roads or buildings) and

require a manual update every time something changes (i.e. manually extracting tiles from a

tile provider and updating the app through the marketplace). Since tiles do not change very

often (the latest Lisbon tiles from OpenMapTiles4 are from 2017), this problem is somewhat

irrelevant. Another more important issue is the cost this approach has on the app size. The

map tiles used for our prototype include most of the city of Lisbon and around and have a file

size of 265MB, but this size shrinks when building the app to a release version (the total app

size on a real device is only 171MB). However, when comparing to other apps such as Google
Maps, that has a total size of 210MB, this downside does not look that problematic. Perhaps

when applying this prototype to a larger city, this solution will become noticeably less scalable

and show its real disadvantage.

Related to the offline map is the issue of using and displaying POI information. While

previously (Sec. 3.2.1) we mentioned that the app retrieves the list of the city’s POIs from the

POINT microservice, therefore requiring Internet connection, this is not necessarily always the

case. Just like with map tiles, the app comes preloaded with a list of the city’s POIs so that it

can display them on the map even when offline. However, since POIs are more likely to change

than map tiles, a different approach has to be taken when it comes to updating them.

In fact, every time the app starts, it attempts to retrieve the latest POI data from the

POINT microservice. If it is unsuccessful, it uses the latest available data stored locally. If it is

successful, it stores the data locally so that it can be used the next time in case of lack of Internet

connection (Fig 5.13). This way, users can have access to the city’s latest POI information when

an Internet connection is available and have a local (note that this does not mean it is outdated)

as a fallback. For the user, this process is completely invisible and he does not even realise

4https://openmaptiles.com/downloads/tileset/osm/europe/portugal/lisbon/

105

https://openmaptiles.com/downloads/tileset/osm/europe/portugal/lisbon/

CHAPTER 5. APPLICATION DESIGN

which version he is using.

Figure 5.13: POIs caching mechanism

Location search is another functionality that is particularly affected by the lack of Internet.

Without an Internet connection it is impossible to perform the necessary geocoding (and reverse

geocoding) to locate and show the places the user is searching for. To circumvent this, we cache

the successful results from searches done with Internet connection into a local database and

present these results to the user on a Recent Searches list (Fig. 5.14). While we inevitably lose a

significant part of the functionality one would expect from location search, using this technique

we can guarantee a minimal functional version, increasing our support to the user and lowering

our dependence on Internet connectivity.

Figure 5.14: Search caching mechanism

5.3.2 Handling errors and alternative states

We have previously discussed how the usage context of our app makes it inevitable for the user

to encounter errors at some point while using the app. When any of these circumstances occur,

what we must do is inform the user properly about the situation and provide useful information

to solve what went wrong. We do this by presenting the user with an error message.

The phrasing and contents of error messages can significantly affect user performance

and satisfaction [77]. On top of that, “improving the error messages is one of the easiest and most
effective ways to improve an existing interface.” In our app we created a design system for our error

messages that consists of an illustration (from unDraw5, an open-source illustration library),

a text explanation and if appropriate a call-to-action button. We apply this configuration

consistently on our error messages, following a few established guidelines [66, 77], such as

being specific and humane, using proportional language, and providing a solution if possible.

5https://undraw.co/

106

https://undraw.co/

5.3. DESIGN CONSIDERATIONS

One example of such error messages occurs when the user tries to create a trip but has

no Internet connection (Fig. 5.15). In this scenario, we must inform the user that this task is

impossible without an Internet connection, advise him to connect to the Internet and provide

him with two options: cancel the trip creation process or try again.

Figure 5.15: Trip creation error

Errors are not the only alternative state of a UI component that we need to account for. A

common mistake designers make is to overlook empty states [75]. Empty states happen when

a user navigates to a certain UI component for information, but there is no data or content to

show them (e.g. an empty friends list). If the component depends on user-generated content, it

is likely that at some point the UI element will have no meaningful data to present to the user

(e.g. no friends added yet).

This state can be treated similarly to an error state. When suitable, it is recommended to

incorporate an image or illustration to grab the user’s attention, and emphasizing the call-to-

action to encourage them to take the next step [75]. In our app, we encounter this empty state

in a few of our UI components, specifically on lists. When using the location search feature

for the first time, there are obviously no previous searches to display on the recent search list.

Instead of an empty list, we present a message, similar to an error message, that instructs the

user that his recent searches will be saved and shown “here” the next time the user uses this

feature (Fig. 5.16). Likewise, if the user navigates to the trip history screen before planning or

completing any trip there will be nothing to show them. In this scenario, we alert the user that

there are no planned or completed trips and provide a call to action for the user to plan one

(Fig. 5.17).

Finally, UI components can also be in an intermediate state of loading, before displaying

the respective content, empty state or error message. This loading state can be aggravating to

users. According to 2018 research by Google6, 53% of mobile users leave a site that takes longer

than three seconds to load. In the context of our app, where users can be expected to have slow

Internet such as a shared Wi-Fi hotspots, loading times can become painstakingly slow if the

content being shown depends on a communication with other microservices (e.g. receiving a

trip from the ROUTE microservice). It would be a bad user experience if the UI froze while
6https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/

mobile-page-speed-new-industry-benchmarks/

107

https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/mobile-page-speed-new-industry-benchmarks/
https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/mobile-page-speed-new-industry-benchmarks/

CHAPTER 5. APPLICATION DESIGN

Figure 5.16: Trip history empty state Figure 5.17: Recent searches empty state

waiting for the loading to finish, without giving any explanation to the user. To avoid this, UI

components that are loading should explicitly show this to the user. One option is to use the

shimmer loading effect, which is a technique we used throughout our app. One example of this

effect is when the user navigates to the search panel and the recent searches list is still loading

(Fig. 5.18).

Figure 5.18: Shimmer loading effect

5.3.3 Adaptive UI components

Adaptive User Interfaces might mean different things to different people, depending on the con-

text. In the world of web apps, an adaptive UI implies the creation of multiple, distinct versions

of a web page (with distinct HTML structures) to better fit a user’s device. This approach in-

volves a designer creating 6 to 7 layouts that can be quite different from one another in terms

of elements, spacing, and flow 7. In the world of mobile apps, where devices aren’t too different

but the operating systems are, adaptive UI means building distinct UIs according to the device’s

operating system.

7https://www2.architech.ca/responsive-adaptive-web-design-for-ux-ui

108

https://www2.architech.ca/responsive-adaptive-web-design-for-ux-ui

5.3. DESIGN CONSIDERATIONS

Android apps usually follow the Material Design guidelines recommended by Google. Ma-

terial Design8 is a design language intended to be applied universally across all platforms and

devices, based on a foundation of best practices and is informed by user experience research

and cognitive science. More specifically, it provides guidance on core aspects of a UI like layout,

color, typography and more. Apple’s design language counterpart is called Human Interface

Guidelines9, made to help designers and developers “create more compelling, intuitive, and beau-
tiful experiences and design better apps.” It provides the same purpose as Material Design but is

intended for Apple’s devices: iOS, macOS, watchOS and tvOS.

When confronted with the task of building for these two operating systems, designers face

the challenge of choosing between creating a universal design system, separate designs for

each platform, or somewhere in between. In the Material Design documents Google includes

a section10 about when the differences in platform convention can affect the user’s ability

to understand the UI or complete certain tasks, so it becomes necessary to adapt it to the

device’s platform. Usually, these scenarios occur in UI components that require a higher level

of interaction and effort from the user material, such as input/control components or action

dialogues.

For our app, we decided to go with a single design system that works on both platforms, to

save both on design and development time and effort, while also achieving a consistent branding

across all devices. With that said, we took advice from Material’s adaptation guidelines and

included some adaptive UI components when appropriate to give users native look and feel

on iOS and Android. Below (Fig. 5.19) is an example of two adaptive UI components (i.e. an

modal action sheet and a slider) in our app that change their aspect according to the device’s

operating system.

8https://material.io/design
9https://developer.apple.com/design/human-interface-guidelines/

10https://material.io/design/platform-guidance/cross-platform-adaptation.html#when-to-adapt

109

https://material.io/design
https://developer.apple.com/design/human-interface-guidelines/
https://material.io/design/platform-guidance/cross-platform-adaptation.html#when-to-adapt

CHAPTER 5. APPLICATION DESIGN

Figure 5.19: Adaptive UI example. Android on the left and iOS on the right

110

C
h
a
p
t
e
r

66 6

Conclusion

Contents
6.1 Conclusions . 113

6.2 Future work and limitations . 114

This chapter concludes and summarizes the achievements of this dissertation. It also opens the

discussion for challenges and future work in the area of MTGs

111

[This page has been intentionally left blank]

Chapter 6

Conclusion

6.1 Conclusions

This dissertation was developed as part of the STC project that intends to mitigate the problem

of tourism overcrowding that is currently affecting the Santa Maria Maior district in Lisbon, by

creating a mobile app designed for tourists (an MTG) that provides walking trip recommenda-

tions that avoid crowded areas and target sustainable POIs.

The first research goal of this dissertation pertains to the definition of the IA and UI. In

order to do so, we adopted a user-centered approach to the design process, in which potential

end-users influence the design, by including them through a series of usability techniques,

namely a Card Sort technique and a Tree Test technique. An initial iteration of these techniques

was done with members of the Software Systems Engineering group at ISCTE, and then a second

iteration was done in collaboration with the Junta de Freguesia de Santa Maria Maior partners.

The card sorting techniques were used as a generative technique to define a prototype IA, which

was subsequently validated by the positive results of the tree testing technique (see Section 5.2).

Mobile devices, together with the expected usage context of the app, bring a particular set of

usability concerns that must also be addressed in the design stage of the prototype. These

design considerations are discussed in Section 5.3.

The second research goal of this dissertation is directed towards the development of the

MTG prototype and its integration with the rest of the remaining components of the STC project.

The prototype contains the main features that are essential to an MTG, presented in Section 5.2,

and to the STC project, such as the Bluetooth Detection Service discussed in Section 4.4. The

prototype was developed using the Flutter SDK, which enabled us to target both Android and

iOS easily with a single code base due to its cross-platform capabilities, greatly reducing the

development time and effort. The functional aspects of the app prototype were validated with

a series of unit tests, integration tests and manual tests, discussed in Chapter 4.3.

The third research question of this dissertation pertains to minimising the negative effects

of losing Internet connectivity, by defining a minimum level of quality of service for when

the app is disconnected from the Internet, that still guarantees a good user experience. This

is particularly challenging not only due to the usage context of the app, but also because the

app relies on communication with other components of the STC microservice architecture. In

order to achieve this goal we created caching mechanisms that reduce the app’s dependency on

Internet (Sec. 5.3.1). Model classes were created to hold the relevant data (e.g. POI, location

search), and stored in persistent databases. While it is not possible to completely incorporate a

full-featured offline MTG into an app, it is certainly possible to attenuate the negative effects of

losing Internet connection and still provide a satisfactory experience to the user.

With the work undertaken in this dissertation, we hope to have contributed with a signif-

icant advancement for the STC project, by developing the APP component and integrating it

with the remaining components, and contributed to the MTG literature, by creating an MTG

that diverges from the ones reviewed in the RR in the aspects discussed in Section 2.3.4.

113

CHAPTER 6. CONCLUSION

6.2 Future work and limitations

Many different advancements, tests, and research questions have been left for the future due to

lack of time. In this section, we present a few of those, that we consider most relevant, and a

proposal of how they could be achieved.

6.2.1 Further validation

The work undertaken in this dissertation has been validated using two different techniques, a

functional validation was employed to validate the functional requirements of the app, using a

series of unit tests, integration tests and manual tests, and the usability of the app was validated

with two usability techniques involving potential users. However, both validation techniques

have limitations.

The unit test and integration tests developed for the functional validation only target the

trip creation process as of right now, so it is necessary to expand them to include other func-

tional requirements of the app and increase the code coverage/path coverage. Additionally, the

communication with the ROUTE microservice has been tested manually, but once the ROUTE

and the remaining microservices are live and properly deployed, this communication should

also be tested with unit tests and integration tests.

The validation of the app’s usability is another area that can be improved upon. Besides

increasing the number of participants so that the results have a better statistical validity, it

would also be interesting to conduct these techniques with actual tourists, to see if the results

would differ. Additionally, there are other techniques that can be done to further evaluate the

usability, such as the First-click Testing, which helps us understand where on an interface people

would click first to complete a task. Finally, to obtain a more thorough evaluation the usability

of the app, it is also necessary to conduct a user study with potential users. The limitations of

the employed techniques are also discussed in Section 5.2.5

Finally, once the components of the STC project are more mature, it is important to deploy

the app into a real-life scenario with actual tourists, in order to evaluate if the app is successful

with its recommendations, by measuring the user’s adherence to the trips. In fact, a mechanism

to measure users’ adherence to the trip recommendations is already developed in the app,

using the Dynamic Time Warping (DTW) algorithm [7]. To validate that this mechanism works

correctly at identifying deviations from the intended route, a test case was developed with a

simpler, linear trip recommendation and four hypothetical travel paths (A to D), where route

A is the closest to the original recommendation and route D is the furthest one. The simulated

paths and the subsequent results of applying the DTW algorithm are presented in Appendix E,

which validate that this mechanism is indeed appropriate at measuring user’s adherence to the

recommendations.

The RR undertaken for the State of the Art chapter is also subject to validity threats that are

discussed in Section 2.2.5.

114

6.2. FUTURE WORK AND LIMITATIONS

6.2.2 Prototype enhancements

The prototype can be improved in a number of ways, from small quality-of-life improvements

to bigger features. One of the ways the app prototype can be improved on is in the process of

guiding the user through the trip. Right now, trip information is static, which means that it

does not get updated throughout the trip. However, by analysing the rate at which the user

is moving, and by comparing the time he spends at POIs with the expected visitation time, it

is possible to create a new prediction of the arrival times for the next POIs. Furthermore, if

the crowding data changes significantly, to the point where the current route now crosses a

crowded path, it should either automatically readjust or prompt the user to do so. One step

further would be giving the user ability to reconfigure his trip while in the middle of it, by

adding/removing POIs or readjusting their visitation order.

Another aspect of the app prototype that can be further improved is the profiling of the user.

Right now, the prototype’s only initiative towards user profiles is storing user’s completed and

planned trips and displaying them to the user, along side some statistics. With this information

alone, we could be doing more. For instances, we could send the history of previously visited

POIs to the ROUTE microservice so it would filter these out. There is also the opportunity to

explore more advanced types of profiling, such as making sentiment analysis based on the way

the user is travelling, the time spent on POIs, and more.

6.2.3 Research opportunities

One important research question that we would like to have explored is: How to reuse and share
trip experiences in social networks for the purpose of increasing user attraction? A good example of

trip sharing can be found in the commercial application Strava1. Strava is a mobile app made

for runners and cyclists that tracks their runs or rides using GPS. It allows users to record

and analyse statistics, explore and compete with others, and share and connect with friends

and family. Strava’s social features are very developed, to the point of being a “social network
for athletes”. The most relevant social feature Strava has is the sharing of rides. Ride sharing

generates a link to a page in Strava’s website containing detailed information about the ride,

including the route, distance, time, calories, and more, that can be sent to anyone. From there,

Strava tries to “convince” users into downloading the app and trying it for themselves. This link

also includes an image preview that can be displayed by most social apps, such as WhatsApp

(Fig. 6.1).

We believe that this is a great way to increase user attraction and get more people to in-

stall our app, and get them to reuse these sustainable trips, which in turn will increase the

effectiveness of the STC project.

Another innovative idea that we would like to explore, that is also capturing attention on

other MTG and mapping apps, is related to the current Covid-19 pandemic situation. Now,

more than ever, crowding has become an extremely important problem. While the goals of

the STC project and the app already try to prevent crowding in an automatic manner, now

that the end users are more aware of the risks and negative effects of it, it can be a good time

1https://www.strava.com/mobile

115

https://www.strava.com/mobile

CHAPTER 6. CONCLUSION

Figure 6.1: Strava WhatsApp ride sharing

to also count on them to further diminish this negative issue. The idea we want to explore is

to add and display real time crowding data on the app using some sort of map appropriate

format, such as polygons or curves (e.g. topographic maps). Users will be able to read this

information and make their itinerary decision based on crowding. Knowing which streets are

more or less crowded can perhaps increase the safety and tranquility of tourists (or even the

local population) when on a trip.

116

Bibliography

[1] 42matters. Google Play Store ASO with App Update Frequency Statistics 2020. Aug. 2020.

[2] C. Abras, D. Maloney-Krichmar, J. Preece, and Others. “User-centered design.” In: Bain-
bridge, William. Encyclopedia of Human-Computer Interaction. Thousand Oaks: Sage Publi-
cations 37.4 (2004), pp. 445–456.

[3] D. Ahlers, S. Boll, and D. Wichmann. Virtual signposts for location-based story-telling.

Tech. rep. OFFIS, 2008.

[4] A. Allan. Learning iOS Programming, Third Edition. 2013. isbn: 9781449359348.

[5] H. Alqahtani and M. Kavakli. “IMAP-CampUS: Developing an Intelligent Mobile Aug-

mented Reality Program on Campus as a Ubiquitous System.” In: Proceedings of the 9th
International Conference on Computer and Automation Engineering. ICCAE ’17. Sydney,

Australia: Association for Computing Machinery, 2017, 1–5. isbn: 9781450348096. doi:

10.1145/3057039.3057062.

[6] Android Team. View | Android Developers. 2020.

[7] D. J. Berndt and J. Clifford. “Using dynamic time warping to find patterns in time series.”

In: KDD workshop. Vol. 10. 16. Seattle, WA, USA: 1994, pp. 359–370.

[8] A. Biørn-Hansen, T. A. Majchrzak, and T.-M. Grønli. “Progressive Web Apps: The Possi-

ble Web-native Unifier for Mobile Development.” In: International Conference on Web
Information Systems and Technologies. 2017. isbn: 9789897582462. doi: 10 . 5220 /

0006353703440351.

[9] A. Biørn-Hansen, T. A. Majchrzak, and T.-M. Grønli. “Progressive web apps: The pos-

sible web-native unifier for mobile development.” In: International Conference on Web
Information Systems and Technologies. Vol. 2. SCITEPRESS. 2017, pp. 344–351.

[10] Bloc Team. Bloc State Management. 2020.

[11] J. Borràs, A. Moreno, and A. Valls. “Intelligent tourism recommender systems: A survey.”

In: Expert Systems with Applications 41.16 (2014), pp. 7370 –7389. issn: 0957-4174. doi:

https://doi.org/10.1016/j.eswa.2014.06.007.

[12] E. Burnette. Hello, Android: Introducing Google’s Mobile Development Platform. Vol. 1163.

1-2. 2010, pp. 145–56. isbn: 9781934356562.

[13] D. Cameron, C. Gregory, and D. Battaglia. “Nielsen personalizes the mobile shopping

app: If you build the technology, they will come.” In: Journal of Advertising Research 52.3

(2012). issn: 00218499. doi: 10.2501/JAR-52-3-333-338.

117

https://doi.org/10.1145/3057039.3057062
https://doi.org/10.5220/0006353703440351
https://doi.org/10.5220/0006353703440351
https://doi.org/https://doi.org/10.1016/j.eswa.2014.06.007
https://doi.org/10.2501/JAR-52-3-333-338

BIBLIOGRAPHY

[14] J.-C. Cano, P. Manzoni, and C.-K. Toh. “UbiqMuseum: A Bluetooth and Java Based

Context-Aware System for Ubiquitous Computing.” In: Wireless Personal Communications
38.2 (July 2006), pp. 187–202. issn: 0929-6212. doi: 10.1007/s11277-005-9001-x.

[15] R. Capilla, L. Carvajal, and H. Lin. “Addressing Usability Requirements in Mobile Soft-

ware Development.” In: Relating System Quality and Software Architecture. Elsevier Inc.,

July 2014, pp. 303–324. isbn: 9780124171688. doi: 10.1016/B978-0-12-417009-

4.00012-0.

[16] B. Cartaxo, G. Pinto, and S. Soares. “The Role of Rapid Reviews in Supporting

Decision-Making in Software Engineering Practice.” In: Proceedings of the 22nd Inter-
national Conference on Evaluation and Assessment in Software Engineering 2018. EASE’18.

Christchurch, New Zealand: Association for Computing Machinery, 2018, 24–34. isbn:

9781450364034. doi: 10.1145/3210459.3210462.

[17] B. Cartaxo, G. Pinto, and S. Soares. “Rapid Reviews in Software Engineering.” In: Contem-
porary Empirical Methods in Software Engineering. Ed. by M. Felderer and G. H. Travassos.

Cham: Springer International Publishing, 2020, pp. 357–384. isbn: 978-3-030-32489-6.

doi: 10.1007/978-3-030-32489-6_13.

[18] F. Cena, L. Console, C. Gena, A. Goy, G. Levi, S. Modeo, and I. Torre. “Integrating

Heterogeneous Adaptation Techniques to Build a Flexible and Usable Mobile Tourist

Guide.” In: AI Communications 19.December 2006 (2006), pp. 369–384.

[19] A. Charl and B. LeRoux. “Mobile Application Development: Web vs. Native: Web apps

are cheaper to develop and deploy than native apps, but can they match the native user

experience?” In: Queue 9.4 (Apr. 2011), pp. 20–28. issn: 15427749. doi: 10.1145/

1966989.1968203.

[20] Q. Chen, M. Zhang, and X. Zhao. “Analysing customer behaviour in mobile app usage.”

In: Industrial Management and Data Systems 117.2 (2017), pp. 425–438. issn: 02635577.

doi: 10.1108/IMDS-04-2016-0141.

[21] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and C. Efstratiou. “Developing a context-

aware electronic tourist guide: Some issues and experiences.” In: Conference on Human
Factors in Computing Systems - Proceedings. New York, New York, USA: ACM Press, 2000,

pp. 17–24. isbn: 1581132166. doi: 10.1145/332040.332047.

[22] Dart Team. Dart documentation | Dart. 2020.

[23] J. Decuir. Introducing bluetooth smart: Part 1: A look at both classic and new technologies.
Jan. 2014. doi: 10.1109/MCE.2013.2284932.

[24] L. Delia, N. Galdamez, P. Thomas, L. Corbalan, and P. Pesado. “Multi-platform mobile

application development analysis.” In: Proceedings - International Conference on Research
Challenges in Information Science. Vol. 2015-June. June. IEEE Computer Society, June

2015, pp. 181–186. doi: 10.1109/RCIS.2015.7128878.

[25] J. E. Dickinson, J. F. Hibbert, and V. Filimonau. “Mobile technology and the tourist

experience: (Dis)connection at the campsite.” In: Tourism Management 57 (Dec. 2016),

pp. 193–201. issn: 02615177. doi: 10.1016/j.tourman.2016.06.005.

118

https://doi.org/10.1007/s11277-005-9001-x
https://doi.org/10.1016/B978-0-12-417009-4.00012-0
https://doi.org/10.1016/B978-0-12-417009-4.00012-0
https://doi.org/10.1145/3210459.3210462
https://doi.org/10.1007/978-3-030-32489-6_13
https://doi.org/10.1145/1966989.1968203
https://doi.org/10.1145/1966989.1968203
https://doi.org/10.1108/IMDS-04-2016-0141
https://doi.org/10.1145/332040.332047
https://doi.org/10.1109/MCE.2013.2284932
https://doi.org/10.1109/RCIS.2015.7128878
https://doi.org/10.1016/j.tourman.2016.06.005

BIBLIOGRAPHY

[26] M. D. Dunlop, P. Ptasinski, A. Morrison, S. McCallum, C. Risbey, and F. Stewart. “Design

and development of Taeneb City Guide: From Paper Maps and Guidebooks to Electronic

Guides.” In: Information and Communication Technologies in Tourism 2004. Springer

Vienna, 2004, pp. 58–64. doi: 10.1007/978-3-7091-0594-8_6.

[27] C. Emmanouilidis, R. A. Koutsiamanis, and A. Tasidou. “Mobile guides: Taxonomy of

architectures, context awareness, technologies and applications.” In: Journal of Network
and Computer Applications 36.1 (2013), pp. 103–125. issn: 10848045. doi: 10.1016/j.

jnca.2012.04.007.

[28] I. N. de Estatística. Statistical Yearbook Portugal 2019. Tech. rep. Instituto Nacional de

Estatística, 2019.

[29] N. Fenton and J. Bieman. Software metrics: a rigorous and practical approach. CRC press,

2014. isbn: 9781439838228.

[30] Flutter Team. Flutter architectural overview. 2020.

[31] Flutter Team. Introduction to widgets - Flutter. 2020.

[32] Flutter Team. State management - Flutter. 2020.

[33] M. Fowler. Patterns of enterprise application architecture. Addison-Wesley Longman Pub-

lishing Co., Inc., 2002. isbn: 9780321127426.

[34] M. Fowler. Refactoring: improving the design of existing code. Addison-Wesley Professional,

2018. isbn: 9780134757599.

[35] E. Gamma. Design patterns: elements of reusable object-oriented software. Pearson Education

India, 1995. isbn: 9780201633610.

[36] A. Garcia, M. T. Linaza, O. Arbelaitz, and P. Vansteenwegen. “Intelligent Routing System

for a Personalised Electronic Tourist Guide.” In: Information and Communication Technolo-
gies in Tourism 2009. Springer Vienna, 2009, pp. 185–197. doi: 10.1007/978-3-211-

93971-0_16.

[37] D. Gavalas, C. Konstantopoulos, K. Mastakas, and G. Pantziou. “Mobile recommender

systems in tourism.” In: Journal of Network and Computer Applications 39.1 (2014),

pp. 319–333. issn: 10848045. doi: 10.1016/j.jnca.2013.04.006.

[38] Google and PhocusWright. How smartphone usage is shaping travel decisions - Think with
Google. Feb. 2018.

[39] E. Haid, G. Kiechle, N. Göll, and M. Soutschek. “Evaluation of a Web-based and Mobile

Ski Touring Application for GPS-enabled Smartphones.” In: Information and Commu-
nication Technologies in Tourism 2008. Springer Vienna, Feb. 2008, pp. 313–323. doi:

10.1007/978-3-211-77280-5_28.

[40] R. Harrison, D. Flood, and D. Duce. “Usability of mobile applications: literature review

and rationale for a new usability model.” In: Journal of Interaction Science (2013). doi:

10.1186/2194-0827-1-1.

119

https://doi.org/10.1007/978-3-7091-0594-8_6
https://doi.org/10.1016/j.jnca.2012.04.007
https://doi.org/10.1016/j.jnca.2012.04.007
https://doi.org/10.1007/978-3-211-93971-0_16
https://doi.org/10.1007/978-3-211-93971-0_16
https://doi.org/10.1016/j.jnca.2013.04.006
https://doi.org/10.1007/978-3-211-77280-5_28
https://doi.org/10.1186/2194-0827-1-1

BIBLIOGRAPHY

[41] W. Hopken, M. Fuchs, M. Zanker, and T. Beer. “Context-Based Adaptation of Mobile

Applications in Tourism.” In: Information Technology & Tourism 12 (2010), pp. 175–195.

doi: 10.3727/109830510X12887971002783.

[42] R. Jabangwe, H. Edison, and A. N. Duc. “Software engineering process models for mobile

app development: A systematic literature review.” In: Journal of Systems and Software
145.May (2018), pp. 98–111. issn: 01641212. doi: 10.1016/j.jss.2018.08.028.

[43] S. Karanasios, S. Burgess, and C. Sellitto. “A classification of mobile tourism applica-

tions.” In: Global Hospitality and Tourism Management Technologies. IGI Global, 2011,

pp. 165–177. isbn: 9781613500415. doi: 10.4018/978-1-61350-041-5.ch011.

[44] H. Kennedy-Eden and U. Gretzel. “A taxonomy of mobile applications in tourism.” In:

University of Wollongong (2012).

[45] M. Kenteris, D. Gavalas, and D. Economou. “Evaluation of mobile tourist guides.” In:

Communications in Computer and Information Science. Vol. 19. Springer Verlag, 2008,

pp. 603–610. isbn: 9783540877820. doi: 10.1007/978-3-540-87783-7_77.

[46] M. Kenteris, D. Gavalas, and D. Economou. “An innovative mobile electronic tourist

guide application.” In: Personal and Ubiquitous Computing 13.2 (2009), pp. 103–118. issn:

16174909. doi: 10.1007/s00779-007-0191-y.

[47] M. Kenteris, D. Gavalas, and D. Economou. Electronic mobile guides: A survey. Jan. 2011.

doi: 10.1007/s00779-010-0295-7.

[48] S Khangura, K Konnyu, R Cushman, et al. “Evidence summaries: a rapid review method.”

In: Syst Rev 1 (2012), pp. 20146–24053. doi: 10.1186/2046-4053-1-10.

[49] B. Kitchenham. “Procedures for Performing Systematic Reviews.” In: Keele, UK, Keele
University (2004).

[50] C. D. Kounavis, A. E. Kasimati, and E. D. Zamani. “Enhancing the Tourism Experience

through Mobile Augmented Reality: Challenges and Prospects.” In: International Journal
of Engineering Business Management 4 (Jan. 2012), p. 10. issn: 1847-9790. doi: 10.5772/

51644.

[51] R. Kramer, M. Modsching, K. ten Hagen, and U. Gretzel. “Behavioural Impacts of Mobile

Tour Guides.” In: Information and Communication Technologies in Tourism 2007. Springer

Vienna, 2007, pp. 109–118. doi: 10.1007/978-3-211-69566-1_11.

[52] R. Kramer, M. Modsching, and K. ten Hagen. “Development and evaluation of a

context-driven, mobile tourist guide.” In: International Journal of Pervasive Computing
and Communications 3.4 (Apr. 2008), pp. 378–399. issn: 17427371. doi: 10.1108/

17427370710863121.

[53] G. E. Krasner and S. T. Pope. “A Cookbook for Using the Model-View Controller User

Interface Paradigm in Smalltalk-80.” In: Journal of Object-oriented Programming - JOOP
1.3 (1988), pp. 26–49. issn: 0896-8438. doi: dl.acm.org/doi/10.5555/50757.50759.

120

https://doi.org/10.3727/109830510X12887971002783
https://doi.org/10.1016/j.jss.2018.08.028
https://doi.org/10.4018/978-1-61350-041-5.ch011
https://doi.org/10.1007/978-3-540-87783-7_77
https://doi.org/10.1007/s00779-007-0191-y
https://doi.org/10.1007/s00779-010-0295-7
https://doi.org/10.1186/2046-4053-1-10
https://doi.org/10.5772/51644
https://doi.org/10.5772/51644
https://doi.org/10.1007/978-3-211-69566-1_11
https://doi.org/10.1108/17427370710863121
https://doi.org/10.1108/17427370710863121
https://doi.org/dl.acm.org/doi/10.5555/50757.50759

BIBLIOGRAPHY

[54] N. Lebeck, A. Krishnamurthy, H. M. Levy, and I. Zhang. “End the Senseless Killing:

Improving Memory Management for Mobile Operating Systems.” In: 2020 {USENIX}
Annual Technical Conference ({USENIX} {ATC} 20). {USENIX} Association, 2020, pp. 873–

887. isbn: 978-1-939133-14-4.

[55] M. Y. Lim and R. Aylett. “Feel the difference: A guide with attitude!” In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). Vol. 4722 LNCS. Springer, Berlin, Heidelberg, 2007, pp. 317–330.

isbn: 9783540749967. doi: 10.1007/978-3-540-74997-4_29.

[56] Q. Liu, H. Ma, E. Chen, and H. Xiong. A survey of context-aware mobile recommendations.
2013. doi: 10.1142/S0219622013500077.

[57] T. Lou and Others. “A comparison of android native app architecture–mvc, mvp and

mvvm.” In: Eindhoven University of Technology (2016).

[58] U. A. Mannan, D. Dig, I. Ahmed, C. Jensen, R. Abdullah, and M Almurshed. “Understand-

ing Code Smells in Android Applications.” In: 2016 IEEE/ACM International Conference
on Mobile Software Engineering and Systems (MOBILESoft). 2016. isbn: 9781450341783.

doi: 10.1145/12345.67890.

[59] M. Masse. REST API Design Rulebook: Designing Consistent RESTful Web Service Interfaces.
"O’Reilly Media, Inc.", 2011. isbn: 9781449319908.

[60] G. J. Myers, T. Badgett, T. M. Thomas, and C. Sandler. The art of software testing. Vol. 2.

Wiley Online Library, 2004. doi: 10.1002/stvr.322.

[61] J. M. Noguera, M. J. Barranco, R. J. Segura, and L. Martínez. “A mobile 3D-GIS hybrid

recommender system for tourism.” In: Information Sciences 215 (Dec. 2012), pp. 37–52.

issn: 00200255. doi: 10.1016/j.ins.2012.05.010.

[62] M. Palmieri, I. Singh, and A. Cicchetti. “Comparison of cross-platform mobile devel-

opment tools.” In: 2012 16th International Conference on Intelligence in Next Generation
Networks, ICIN 2012. IEEE, Oct. 2012, pp. 179–186. isbn: 9781467315265. doi: 10.

1109/ICIN.2012.6376023.

[63] P. Pearce and U. Gretzel. “Tourism in technology dead zones: documenting experien-

tial dimensions.” In: Faculty of Business - Papers (Archive) (Jan. 2012). doi: 10.1080/

15980634.2012.11434656.

[64] P. Peeters, S. Gössling, J. Klijs, C. Milano, M. Novelli, C. Dijkmans, E. Eijgelaar, S. Hart-

man, J. Heslinga, R. Isaac, O. Mitas, S. Moretti, J. Nawijn, B. Papp, and A. Postma. “Re-

search for TRAN Committee - Overtourism: impact and possible policy responses.” In:

European Parliament, Directorate General for Internal Policies, Policy (2018).

[65] A. R. H. Peixoto. “A graph-based approach for sustainable walking tour recommenda-

tions: the case of Lisbon overcrowding.” Master’s thesis. Iscte – Instituto Universitário

de Lisboa, 2019. doi: http://hdl.handle.net/10071/20234.

[66] P. Perea and P. Giner. UX Design for Mobile. Packt Publishing Ltd, 2017. isbn:

9781787283428.

121

https://doi.org/10.1007/978-3-540-74997-4_29
https://doi.org/10.1142/S0219622013500077
https://doi.org/10.1145/12345.67890
https://doi.org/10.1002/stvr.322
https://doi.org/10.1016/j.ins.2012.05.010
https://doi.org/10.1109/ICIN.2012.6376023
https://doi.org/10.1109/ICIN.2012.6376023
https://doi.org/10.1080/15980634.2012.11434656
https://doi.org/10.1080/15980634.2012.11434656
https://doi.org/http://hdl.handle.net/10071/20234

BIBLIOGRAPHY

[67] M. T. Phyo. “Choosing a Mobile Application Development Approach.” In: ASEAN Journal
of Management and Innovation (2014), p. 69. doi: 10.14456/AJMI.2014.4.

[68] R. E. F. Pierre Bourque. Guide to the Software Engineering Body of Knowledge (SWEBOK(r)):
Version 3.0. 3rd. IEEE Computer Society Press, 2014. isbn: 0769551661,9780769551661.

[69] G. Pospischil, M. Umlauft, and E. Michlmayr. “Designing LoL@, a Mobile Tourist Guide

for UMTS.” In: Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 2411. 2002, pp. 140–154.

doi: 10.1007/3-540-45756-9_12.

[70] M. Potel. “MVP: Model-View-Presenter The Taligent Programming Model for C++ and

Java.” In: Taligent (1996).

[71] D. R. Prasanna. “Dependency injection.” In: Manning Publications (2009).

[72] Reso Coder. Flutter Clean Architecture Course. 2020.

[73] F. Ricci and Q. N. Nguyen. “MobyRek: A conversational recommender system for on-

the-move travellers.” In: Destination Recommendation Systems: Behavioural Foundations
and Applications. CABI Publishing, July 2006, pp. 281–294. isbn: 0851990231. doi:

10.1079/9780851990231.0281.

[74] L. Rosenfeld and P. Morville. Information architecture for the world wide web. "O’Reilly

Media, Inc.", 2002.

[75] Schoger Steve and Wathan Adam. Refactoring UI. 1st. Vol. 1. 2018.

[76] N. Serrano, J. Hernantes, and G. Gallardo. “Mobile web apps.” In: IEEE Software 30.5

(July 2013), pp. 22–27. issn: 07407459. doi: 10.1109/MS.2013.111.

[77] B. Shneiderman, C. Plaisant, M. Cohen, S. Jacobs, N. Elmqvist, and N. Diakopoulos.

Designing the user interface: strategies for effective human-computer interaction. Pearson,

2016.

[78] R. D. da Silva. “A tourism overcrowding sensor using multiple radio techniques de-

tection.” Master’s thesis. Iscte – Instituto Universitário de Lisboa, 2019. doi: http:

//hdl.handle.net/10071/20212.

[79] J. Smith. “Patterns-wpf apps with the model-view-viewmodel design pattern.” In: MSDN
magazine 72 (2009).

[80] P. Smutný. “Mobile development tools and cross-platform solutions.” In: Proceedings of
the 2012 13th International Carpathian Control Conference, ICCC 2012. IEEE, May 2012,

pp. 653–656. isbn: 9781457718687. doi: 10.1109/CarpathianCC.2012.6228727.

[81] I. Sommerville and P. Sawyer. Requirements engineering: a good practice guide. John Wiley

& Sons, Inc., 1997.

[82] J. Sorgalla. “AjiL: A Graphical Modeling Language for the Development of Microservice

Architectures.” In: Extended Abstracts of the Microservices 2017 Conference. 2017.

[83] D. Spencer and T. Warfel. “Card sorting: a definitive guide.” In: Boxes and arrows 2 (2004),

pp. 1–23.

122

https://doi.org/10.14456/AJMI.2014.4
https://doi.org/10.1007/3-540-45756-9_12
https://doi.org/10.1079/9780851990231.0281
https://doi.org/10.1109/MS.2013.111
https://doi.org/http://hdl.handle.net/10071/20212
https://doi.org/http://hdl.handle.net/10071/20212
https://doi.org/10.1109/CarpathianCC.2012.6228727

BIBLIOGRAPHY

[84] P. N. Sukaviriya, J. D. Foley, and T. W. Griffith. “A Second Generation User Interface

Design Environment: The Model and the Runtime Architecture.” In: Proceedings of the
INTERACT’93 and CHI’93 Conference on Human Factors in Computing Systems. Georgia

Institute of Technology, 1993.

[85] A. Syromiatnikov and D. Weyns. “A journey through the land of model-view-design

patterns.” In: Proceedings - Working IEEE/IFIP Conference on Software Architecture 2014,
WICSA 2014. IEEE Computer Society, 2014, pp. 21–30. isbn: 9781479934126. doi:

10.1109/WICSA.2014.13.

[86] G. W. H. Tan, V. H. Lee, B. Lin, and K. B. Ooi. “Mobile applications in tourism: The

future of the tourism industry?” In: Industrial Management and Data Systems. Vol. 117. 3.

Emerald Group Publishing Ltd., 2017, pp. 560–581. doi: 10.1108/IMDS-12-2015-0490.

[87] J. Tidwell. Designing interfaces: Patterns for effective interaction design. "O’Reilly Media,

Inc.", 2010. isbn: 9781449379704.

[88] V. Uren, Y. Lei, V. Lopez, H. Liu, E. Motta, and M. Giordanino. “The usability of semantic

search tools: a review.” In: The Knowledge Engineering Review 22.4 (2007), pp. 361–377.

[89] R. Want. When cell phones become computers. Apr. 2009. doi: 10.1109/MPRV.2009.40.

[90] M Wijesuriya, S Mendis, B. Bandara, K Mahawattage, N. Walgampaya, and D. de Silva.

(INTERACTIVE MOBILE BASED TOUR GUIDE. 2013.

[91] C. Wohlin. “Guidelines for snowballing in systematic literature studies and a replication

in software engineering.” In: Proceedings of the 18th international conference on evaluation
and assessment in software engineering. 2014, pp. 1–10.

[92] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén. Experimenta-
tion in software engineering. Springer Science & Business Media, 2012.

[93] O. Workshop. Tree testing 101 – Optimal Workshop. 2020.

[94] S. Xanthopoulos and S. Xinogalos. “A comparative analysis of cross-platform develop-

ment approaches for mobile applications.” In: ACM International Conference Proceeding
Series. New York, New York, USA: ACM Press, 2013, pp. 213–220. isbn: 9781450318518.

doi: 10.1145/2490257.2490292.

[95] R. Yáñez Gómez, D. Cascado Caballero, and J.-L. Sevillano. “Heuristic Evaluation on

Mobile Interfaces: A New Checklist.” In: The Scientific World Journal 2014 (2014). Ed. by

M. S. Obaidat, p. 434326. issn: 2356-6140. doi: 10.1155/2014/434326.

[96] W. S. Yang and S. Y. Hwang. “ITravel: A recommender system in mobile peer-to-peer

environment.” In: Journal of Systems and Software 86.1 (2013), pp. 12–20. issn: 01641212.

doi: 10.1016/j.jss.2012.06.041.

[97] Y. Zhang and Y. Luo. “An architecture and implement model for Model-View-Presenter

pattern.” In: 2010 3rd international conference on computer science and information technol-
ogy. Vol. 8. IEEE. 2010, pp. 532–536.

[98] H. Zhao, H. Peng, and C. Sun. “A Mobile Service Platform for Xinjiang Tourism.” In: 2015
Seventh International Conference on Measuring Technology and Mechatronics Automation.

2015, pp. 26–30. doi: 10.1109/ICMTMA.2015.15.

123

https://doi.org/10.1109/WICSA.2014.13
https://doi.org/10.1108/IMDS-12-2015-0490
https://doi.org/10.1109/MPRV.2009.40
https://doi.org/10.1145/2490257.2490292
https://doi.org/10.1155/2014/434326
https://doi.org/10.1016/j.jss.2012.06.041
https://doi.org/10.1109/ICMTMA.2015.15

BIBLIOGRAPHY

[99] Z. Zhao and C. Balagué. “Designing branded mobile apps: Fundamentals and recom-

mendations.” In: Business Horizons 58.3 (May 2015), pp. 305–315. issn: 00076813. doi:

10.1016/j.bushor.2015.01.004.

124

https://doi.org/10.1016/j.bushor.2015.01.004

A
p
p
e
n
d
i
x

AA A

API JSON schemas

In this annex we present the JSON schema designed so that the APP instances can communicate

with the multiple microservices of the STC architecture, developed using Stoplight in collabora-

tion with the remaining members of the STC project. Each JSON schema is presented with an

example for demonstration purposes.

A.1 Track submission JSON schema

The following listing (Lst. A.1) is an example of a track submission JSON representation, where

10 devices were found on July 21, at 17:38:07 in the Igreja de Santa Maria Maior POI.

1 {

2 "count": 10,

3 "timestamp": 1595353087,

4 "location": {

5 "latitude": 38.7097222,

6 "longitude": -9.13305555,

7 "altitude": 3.20932

8 }

9 }

Listing A.1: TrackSubmission example

125

APPENDIX A. API JSON SCHEMAS

A.2 Point of interest JSON schema

The following listing (Lst. A.2) is an example of a PointOfInterest JSON representation, namely

the Martinho da Arcada restaurant.

1 {

2 "name":"Martinho da Arcada",

3 "pointID":36,

4 "visitTime":60,

5 "openHour":7,

6 "closeHour":17,

7 "price":35,

8 "coordinates":{

9 "latitude":38.708675,

10 "longitude":-9.135841

11 },

12 "sustainability":50,

13 "categoryID":4

14 }

Listing A.2: PointOfInterest example

126

A
p
p
e
n
d
i
x

BB B

Test Scenarios

In this annex we present the results of testing the different scenarios. This includes screenshots

of the app during the multiple stages of executing each scenario and the JSON messages that

are exchanged between the app and the ROUTE microservice.

B.1 Scenario #1

Below are the results from scenario #1, described in Section 4.3.2 and Table 4.2.

Figure B.1: Scenario #1 Trip Creation UI

127

APPENDIX B. TEST SCENARIOS

Figure B.2: Scenario #1 Trip Overview UI

1 //Sent to ROUTE

2 "origin":{

3 "latitude":38.7144118,

4 "longitude":-9.1408772

5 },

6 "destination":{

7 "latitude":38.7115605,

8 "longitude":-9.1367243

9 },

10 "departureDate":1602772200000,

11 "visitationTime":300,

12 "budget":50,

13 "effortLevel":2,

14 "selectedPoints":[],

15 "selectedCategories":[2,7]

Listing B.1: Scenario #1 Route Request JSON

128

B.1. SCENARIO #1

1 //Received from ROUTE

2 "origin":{

3 "latitude":38.7144118,

4 "longitude":-9.1408772

5 },

6 "destination":{

7 "latitude":38.7115605,

8 "longitude":-9.1367243

9 },

10 "time":{

11 "startTime":1602772200000,

12 "endTime":1602786480000

13 },

14 "durationTime":14305687,

15 "distance":4869.105330647069,

16 "price":13,

17 "calories":229,

18 "sustainability":84,

19 "line":[

20 {

21 "latitude":38.71449467646691,

22 "longitude":-9.14075525419612

23 },

24 ..., //Omitted for brevity

25 {

26 "latitude":38.7115624504062,

27 "longitude":-9.136716261610735

28 }

29],

30 "pois":[

31 {

32 "timestamp":1602772367000,

33 "poi": {

34 "name":"Igreja de Sao Domingos",

35 ..., //Omitted for brevity

36 }

37 },

38 {

39 "timestamp":1602775033000,

40 "poi": {

41 "name":"Castelo de Sao Jorge",

42 ..., //Omitted for brevity

43 }

44 },

45 {

46 "timestamp":1602779775000,

47 "poi": {

48 "name":"Igreja de Santo Antonio de Lisboa",

49 ..., //Omitted for brevity

50 }

51 }

52 ... //Omitted for brevity

53]

Listing B.2: Scenario #1 Route Response JSON

129

APPENDIX B. TEST SCENARIOS

B.2 Scenario #2

Below are the results from scenario #2, described in Section 4.3.2 and Table 4.3.

Figure B.3: Scenario #2 Trip Creation UI

130

B.2. SCENARIO #2

Figure B.4: Scenario #2 Trip Overview UI

1 //Sent to ROUTE

2 "origin":{

3 "latitude":38.7093008,

4 "longitude":-9.141986

5 },

6 "destination":{

7 "latitude":38.7115605,

8 "longitude":-9.1367243

9 },

10 "departureDate":1602802800000,

11 "visitationTime":180,

12 "budget":0,

13 "effortLevel":2,

14 "selectedPoints":[],

15 "selectedCategories":[3,8]

Listing B.3: Scenario #2 Route Request JSON

131

APPENDIX B. TEST SCENARIOS

1 //Received from ROUTE

2 "origin":{

3 "latitude":38.7093008,

4 "longitude":-9.141986

5 },

6 "destination":{

7 "latitude":38.7115605,

8 "longitude":-9.1367243

9 },

10 "time":{

11 "startTime":1602802800000,

12 "endTime":1602809871000

13 },

14 "durationTime":7096643,

15 "distance":3606.5402985991464,

16 "price":0,

17 "calories":170,

18 "sustainability":80,

19 "line":[

20 {

21 "latitude":38.709302325206714,

22 "longitude":-9.141963953758477

23 },

24 ..., // Omitted for brevity

25 {

26 "latitude":38.7115624504062,

27 "longitude":-9.136716261610735

28 }

29],

30 "pois":[

31 {

32 "timestamp":1602803309000,

33 "poi": {

34 "name":"Praça do Rossio",

35 ..., // Omitted for brevity

36 }

37 },

38 {

39 "timestamp":1602804699000,

40 "poi": {

41 "name":"Arco da Rua Augusta",

42 ..., // Omitted for brevity

43 }

44 },

45 {

46 "timestamp":1602805621000,

47 "poi": {

48 "name":"Praça do Comércio",

49 ..., // Omitted for brevity

50 }

51 }

52 ... // Omitted for brevity

53]

Listing B.4: Scenario #2 Route Response JSON

132

B.3. SCENARIO #3

B.3 Scenario #3

Below are the results from scenario #3, described in Section 4.3.2 and Table 4.4.

1 //Sent to ROUTE

2

3 "origin":{

4 "latitude":38.7115605,

5 "longitude":-9.1367243

6 },

7 "destination":{

8 "latitude":38.7115605,

9 "longitude":-9.1367243

10 },

11 "departureDate":1602756000000,

12 "visitationTime":180,

13 "budget":50,

14 "effortLevel":2,

15 "selectedPoints":[32],

16 "selectedCategories":[1,6],

Listing B.5: Scenario #3 Route Request JSON

133

APPENDIX B. TEST SCENARIOS

1 //Received from ROUTE

2 "origin":{

3 "latitude":38.7115605,

4 "longitude":-9.1367243

5 },

6 "destination":{

7 "latitude":38.7115605,

8 "longitude":-9.1367243

9 },

10 "time":{

11 "startTime":1602756000000,

12 "endTime":1602767565000

13 },

14 "durationTime":11577370,

15 "distance":2329.7214642941553,

16 "price":23,

17 "calories":117,

18 "sustainability":85,

19 "line":[

20 {

21 "latitude":38.7115624504062,

22 "longitude":-9.136716261610735

23 },

24 ..., // Omitted for brevity

25 {

26 "latitude":38.7115624504062,

27 "longitude":-9.136716261610735

28 }

29],

30 "pois":[

31 {

32 "timestamp":1602756273000,

33 "poi": {

34 "name":"Manteigaria Silva",

35 ..., // Omitted for brevity

36 }

37 },

38 {

39 "timestamp":1602758185000,

40 "poi": {

41 "name":"Museu Nacional do Desporto",

42 ..., // Omitted for brevity

43 }

44 },

45 {

46 "timestamp":1602763107000,

47 "poi": {

48 "name":"Museu Nacional de Arte Contemporânea do Chiado",

49 ..., // Omitted for brevity

50 }

51 }

52]

Listing B.6: Scenario #3 Route Response JSON

134

B.4. SCENARIO #4

B.4 Scenario #4

Below are the results from scenario #4, described in Section 4.3.2 and Table 4.5. Note that this

is meant to test a situation where it is impossible to create a trip due to the selected preferences

and constraints, so the ROUTE microservice does not reply with a trip.

Figure B.5: Scenario #4 Trip Creation UI

Figure B.6: Scenario #4 Error Trip UI

135

APPENDIX B. TEST SCENARIOS

1 //Sent to ROUTE

2

3 "origin":{

4 "latitude":38.710793100000004,

5 "longitude":-9.140844399999999

6 },

7 "destination":{

8 "latitude":38.7079863,

9 "longitude":-9.141485

10 },

11 "departureDate":1602786600000,

12 "visitationTime":90,

13 "budget":10,

14 "effortLevel":3,

15 "selectedPoints":[19,38],

16 "selectedCategories":[1,2,3,4,5,6,7,8]

17

18 //Received from ROUTE

19

20 "codeJustiffication": "There is any possible recommendation regarding the chosen POIs,

their schedule and the user available time"

Listing B.7: Scenario #4 JSON

B.5 Scenario #5

Below are the results from scenario #5, described in Section 4.3.2 and Table 4.6.

Figure B.7: Scenario #5 Trip Creation UI

136

B.5. SCENARIO #5

Figure B.8: Scenario #5 Trip Overview UI

1 //Sent to ROUTE

2

3 "origin":{

4 "latitude":38.7087856,

5 "longitude":-9.1309565

6 },

7 "destination":{

8 "latitude":38.7115605,

9 "longitude":-9.1367243

10 },

11 "departureDate":1602763200000,

12 "visitationTime":300,

13 "budget":70,

14 "effortLevel":2,

15 "selectedPoints":[22,38,34,36,33],

16 "selectedCategories":[1,2,3,4,5,6,7,8]

Listing B.8: Scenario #5 Route Request JSON

137

APPENDIX B. TEST SCENARIOS

1 "origin":{

2 "latitude":38.7087856,

3 "longitude":-9.1309565

4 },

5 "destination":{

6 "latitude":38.7115605,

7 "longitude":-9.1367243

8 },

9 "time":{

10 "startTime":1602763200000,

11 "endTime":1602776720000

12 },

13 "durationTime":13533855,

14 "distance":2547.0722801598895,

15 "price":66,

16 "calories":125,

17 "sustainability":68,

18 "line":[

19 {

20 "latitude":38.70860329900734,

21 "longitude":-9.130819564102051

22 },

23 ..., //Omitted for brevity

24 {

25 "latitude":38.7115624504062,

26 "longitude":-9.136716261610735

27 }

28],

29 "pois":[

30 {

31 "timestamp":1602763570000,

32 "poi": {

33 "name":"Martinho da Arcada",

34 ..., //Omitted for brevity

35 }

36 },

37 {

38 "timestamp":1602767394000,

39 "poi": {

40 "name":"Casa Portuguesa do Pastel de Bacalhau",

41 ..., //Omitted for brevity

42 }

43 },

44 {

45 "timestamp":1602770103000,

46 "poi": {

47 "name":"Nicola Café",

48 ..., //Omitted for brevity

49 }

50 }

51 ... //Omitted for brevity

52]

Listing B.9: Scenario #5 Route Response JSON

138

A
p
p
e
n
d
i
x

CC C

Trip Creation Process

This appendix contains a detailed use case descriptions of the trip creation process, as discussed

in Section 5.2.6.2.

SET PREFERENCES AND CONSTRAINTS

PRECONDITIONS:

• -

POSTCONDITIONS:

• User has filled the preferences and constraints;

MAIN SCENARIO:

1. APP presents a form with origin and destination and departure time;

2. User fills the form and the APP uses the departure time to filter out POIs according to

their schedule;

3. APP presents the list of filtered POIs and categories which the user then selects to visit in

his trip;

4. APP defines the minimum values for the budget and arrival time constraints according to

the selection the user made;

5. APP requests the user for the final constraints: budget, arrival time, effort and if he the

weather to be checked;

6. [REQUEST ROUTE RECOMMENDATION];

139

APPENDIX C. TRIP CREATION PROCESS

REQUEST ROUTE RECOMMENDATION

PRECONDITIONS:

• User has internet connection;

• User has filled the preferences and constraints;

POSTCONDITIONS:

• A route recommendation is presented to the user;

MAIN SCENARIO:

1. User asks the route recommendation;

2. APP sends the information to the ROUTE service;

3. {User has no internet connection}[No Internet connection];

4. [PROVIDE ROUTE RECOMMENDATION];

5. APP shows the route to the user on a map-based interface; which the user can accept or

decline;

6. User accepts or declines the trip recommendation;

ALTERNATIVE SCENARIO [No Internet connection]

i. APP displays an error message informing that it requires Internet connection;

ii. Suggests the user to try again when Internet connection is available;

iii. Goes to step 1;

140

PROVIDE ROUTE RECOMMENDATION

PRECONDITIONS:

• ROUTE receives a route request;

POSTCONDITIONS:

• A route is created and sent to the mobile app;

MAIN SCENARIO:

1. {The user selected the maximum number of POIs possible} Go to step 11;

2. {The user requests that the weather need to be checked}[Wants weather to be checked];

3. ROUTE filters out POIs according to the user’s categories of interest;

4. ROUTE checks the available time and budget;

5. {No more time available left after visiting mandatory POIs} Do not add new POIs to the route

and goes to step 9;

6. {Budget is totally spent on visiting the mandatory POIs} [Maximum budget is reached];

7. Route filters out POIs that are not open during the available time period;

8. {No POIs left to suggest} Do not add new POIs to the route and goes to step 9;

9. Order POIs by sustainability level;

10. Add as many POIs to the trip as the constraints allow, from the top of the list;

11. ROUTE service creates a route that complies the requirements and sends it to APP;

12. Sends route to the mobile app;

ALTERNATIVE SCENARIO [Wants weather to be checked]

i. ROUTE checks the probability of raining during the available duration for the trip;

ii. {Rain probability > 50%} ROUTE filters out POIs not suitable to visit when it is raining;

ALTERNATIVE SCENARIO [Maximum budget is reached]

i. Filter out non-free POIs;

ii. {number of suitable POIs = 0} Goes to step 9;

iii. {number of suitable POIs > 0} Goes to step 11;

141

[This page has been intentionally left blank]

A
p
p
e
n
d
i
x

DD D

Tree Test Results

In this appendix we present the results of the tree testing techniques. These results include the

overall rating of each task, as well as more detailed information such as: number of direct or

indirect success and number of direct or indirect failure, the directness of the participants and

the time taken to complete each task.

D.1 First iteration results

The first iteration of the tree test had a total of 3 tasks:

• Suppose you only have 50€ to travel. Where would you add this limitation?

• Imagine you want to start a trip departing from the nearest POI from your location.

Demonstrate how you would do this.

• Imagine you recently finished a trip and want to share it with your friends on social

network. Go to the spot where you will find this functionality.

The results of these tasks are presented below, in the same order they were introduced:

143

APPENDIX D. TREE TEST RESULTS

Figure D.1: First iteration, task #1 results

Figure D.2: First iteration, task #2 results

Figure D.3: First iteration, task #3 results

144

D.2. SECOND ITERATION RESULTS

D.2 Second iteration results

The second iteration of the tree test had a total of 6 tasks:

• Imagine you recently finished a trip and want to share it with your friends on social

network. Go to the spot where you will find this functionality,

• Suppose you want to check your planned trip for tomorrow. Navigate to the place you

would expect to find this information.

• You are a tourist that wants to go on a trip that ends at the place you are currently

accommodated. Where would you add this restriction?

• Imagine you want to start a new trip that visits only churches. Where would you add this

limitation.

• Suppose you want to check the price and visitation time of the Museu do Fado POI. Navi-

gate to the place you would expect to find this information.

• Imagine that you want to check the total number of attractions you have visited using

the app during your stay in Lisbon. Navigate to the place you would expect to find this

information.

The results of these tasks are presented below, in the same order they were introduced:

145

APPENDIX D. TREE TEST RESULTS

Figure D.4: Second iteration, task #1 results

Figure D.5: Second iteration, task #2 results

Figure D.6: Second iteration, task #3 results

146

D.2. SECOND ITERATION RESULTS

Figure D.7: Second iteration, task #4 results

Figure D.8: Second iteration, task #5 results

Figure D.9: Second iteration, task #6 results

147

[This page has been intentionally left blank]

A
p
p
e
n
d
i
x

EE E

Dynamic Time Warping

In this Appendix the results of the DTW algorithm validation mentioned in Section 6.2.1 are

presented. The simulated routes are presented below in Figure E.1, which contains screenshots

of the app, where the original recommendation route is represented by the continuous line in

blue, and the tourist’s path represented by the dotted line in red.

Figure E.1: DTW simulated paths

149

APPENDIX E. DYNAMIC TIME WARPING

Route A is the closest to the original recommendation and route D is the furthest one.

These travel paths were simulated using an Android emulator by sequentially changing the

location of the virtual device to create a route. It is expected that the outcome of applying the

DTW algorithm to these paths would result in a low score for route A and gradually increasing

scores for the subsequent routes, with a high DTW score in route D. The real results of the

DTW algorithm measured in the app, presented in Figure E.2, are aligned with the expected

outcome, therefore validating that the app is indeed capable of measuring users’ adherence to

the trip recommendations.

Figure E.2: DTW simulated paths

150

A
m

ob
il

e
to

u
r

gu
id

e
ap

p
fo

r
su

st
ai

n
ab

le
to

u
ri

sm
Fi

li
p

e
L

ar
ga

	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Motivation and scope
	Research questions and goals
	Research steps
	Main contributions
	Dissertation outline

	State of the Art
	Introduction
	Review protocol
	Research objectives
	Search strategy
	Selection criteria
	Results
	Validity threats

	Related work
	Secondary studies
	Taxonomy proposal
	Primary studies
	Summary

	Sustainable Tourism Crowding Project
	Project overview
	Mobile APP
	APP - POINT communication
	APP - ROUTE communication
	APP - HEAT communication

	Development Approach
	Flutter SDK
	Decision
	Architectural overview
	Core concepts
	Developer experience

	Application architecture
	Mobile development challenges
	Presentation design patterns
	Flutter state management
	Complete architecture

	Functional testing
	Unit and integration testing
	Functional testing

	Bluetooth detection service
	Bluetooth in smartphones
	Design and implementation

	Application Design
	Application description
	User centered design and UI validation
	Card sorting
	Tree testing
	First iteration results
	Second iteration results
	Validity threats
	UI prototype

	Design considerations
	Intermittent network
	Handling errors and alternative states
	Adaptive UI components

	Conclusion
	Conclusions
	Future work and limitations
	Further validation
	Prototype enhancements
	Research opportunities

	Bibliography
	Appendices
	API JSON schemas
	Track submission JSON schema
	Point of interest JSON schema

	Test Scenarios
	Scenario #1
	Scenario #2
	Scenario #3
	Scenario #4
	Scenario #5

	Trip Creation Process
	Tree Test Results
	First iteration results
	Second iteration results

	Dynamic Time Warping

