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Abstract.  We present two results of Game Theory, very important in 

Economics: minimax theorem and Nash equilibrium existence, together with 

their mathematical fundamentals. For minimax theorem, the mathematical 

structure considered is real Hilbert spaces. Moreover, the convex sets strict 

separation play here an important role. For Nash equilibrium existence, 

Kakutani’s theorem is the key result to consider. Then follows a presentation 

of some propositions that identify matches between those outcomes. 
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1 Introduction 

 

We will see how the convex sets strict separation result, allows obtaining a fundamental 

result in Game Theory: minimax theorem. The mathematical structure considered is real 

Hilbert spaces; see [7]. Then we do the same for Nash equilibrium existence result using 

mainly Kakutani’s theorem, see [7, 12 and 15].Finally, we present and briefly discuss 

some results, trying to find contact points between minimax theorem and Nash 

equilibrium existence result.   

2 Minimax Theorem 

 

Consider Games with two players and null sum: 

 

- Be Φ(𝒙, 𝒚) a two variables real function, 𝒙, 𝒚 ∈ 𝐻, being 𝐻 a real Hilbert space. 

 

- Be A and B two convex sets in H.  

 

- One of the players chooses strategies (points) in A in order to maximize Φ(𝒙, 𝒚)  

(or minimize −Φ(𝒙, 𝒚)): it is a maximizing player.  

 

- The other player chooses strategies (points) in B in order to minimize Φ(𝒙, 𝒚) (or 

maximize −Φ(𝒙, 𝒚)): it is the minimizing player. 



 

The function Φ(𝒙, 𝒚)  is the payoff function. The value Φ(𝒙0, 𝒚0)  represents, 

simultaneously, the maximizing player gain and the minimizing player loss in a move 

where they choose, respectively, the strategies 𝒙0 and 𝒚0. Therefore, the gain of one of 

the players is identical to the loss of the other. Therefore, the game is a null sum game. 

 

Under these conditions the game has value c if 

 

sup
𝒙∈𝐴

inf
𝒚∈𝐵

Φ(𝒙, 𝒚) = 𝑐 = inf
𝒚∈𝐵

sup
𝒙∈𝐴

Φ(𝒙, 𝒚).                                 (2.1) 

 

If, for any (𝒙0, 𝒚0), Φ(𝒙0, 𝒚0) = 𝑐, (𝒙0, 𝒚0) is a pair of optimal strategies. It is also a 

saddle point if it verifies in addition  

 

Φ(𝒙, 𝒚0) ≤ Φ(𝒙0, 𝒚0) ≤ Φ(𝒙0, 𝒚), 𝒙 ∈ 𝐴, 𝒚 ∈ 𝐵.                    (2.2) 

 

It is conceptually easy to generalize this situation to an n players null sum game, although 

algebraically fastidious.  

  

The fundamental result in this section is: 

 

Theorem 2.1 (minimax theorem) 

The sets A and B in H are both closed and convex, being A also bounded; Φ(𝒙, 𝒚) is a 

real function defined for x in A and y in B such that: 

 

- Φ(𝒙, (1 − 𝜃)𝒚1 + 𝜃𝒚2) ≤ (1 − 𝜃)Φ(𝒙, 𝒚1) + 𝜃Φ(𝒙, 𝒚2) for x in A and 𝒚1, 𝒚2  in 

B, 0 ≤ 𝜃 ≤ 1  (that is: Φ(𝒙, 𝒚) is convex in y for each x), 

 

- Φ((1 − 𝜃)𝒙1 + 𝜃𝒙2, 𝒚) ≥ (1 − 𝜃)Φ(𝒙𝟏, 𝒚) + 𝜃Φ(𝒙2, 𝒚) for y in B and 𝒙1, 𝒙2  in 

A, 0 ≤ 𝜃 ≤ 1  (that is: Φ(𝒙, 𝒚) is concave in x for each y), 

 

- Φ(𝒙, 𝒚) is continuous in x for each y. 

 

So (2.1) holds, that is the game has a value. 

Dem.: 

Beginning by the most trivial part of the demonstration:  

 

inf
𝒚∈𝐵

Φ(𝒙, 𝒚) ≤ Φ(𝒙, 𝒚) ≤ sup
𝒙∈𝐴

Φ(𝒙, 𝒚) 

and so 

sup
𝒙∈𝐴

inf
𝒚∈𝐵

Φ(𝒙, 𝒚) ≤ inf
𝒚∈𝐵

sup
𝒙∈𝐴

Φ(𝒙, 𝒚). 

 

Then, as Φ(𝒙, 𝒚) is concave and continuous in 𝒙 ∈ 𝐴, 𝐴 convex, closed and bounded, it 

follows that sup
𝒙∈𝐴

Φ(𝒙, 𝒚) < ∞.  

 

Be 𝑐 = inf
𝒚∈𝐵

sup
𝒙∈𝐴

Φ(𝒙, 𝒚). Suppose now that there is 𝒙0 ∈ 𝐴 such that Φ(𝒙0, 𝒚) ≥ 𝑐, for 

any y in B. In this case, inf
𝒚∈𝐵

Φ(𝒙0, 𝒚) ≥ 𝑐 or sup
𝒙∈𝐴

inf
𝒚∈𝐵

Φ(𝒙, 𝒚) ≥ 𝑐 as it is appropriate.  

 

Then the existence of such a 𝒙0 will be demonstrated. 



 

For any y in B, be 𝐴𝒚 = {𝒙 ∈ 𝐴: Φ(𝒙, 𝒚) ≥ 𝑐}. The set 𝐴𝒚  is closed, bounded, and 

convex. Suppose that, for a finite set  (𝒚1, 𝒚2, … , 𝒚𝑛), ⋂ 𝐴𝒚𝑖
= ∅𝑛

𝑖=1 . Consider the 

transformation from A to 𝐸𝑛 defined by  

 

𝑓(𝒙) = (Φ(𝒙, 𝒚1) − 𝑐, Φ(𝒙, 𝒚2) − 𝑐, … , Φ(𝒙, 𝒚𝑛) − 𝑐). 
 

Call G the 𝑓(𝐴)  convex hull closure. Be P the 𝐸𝑛  closed positive cone. Now we 

show 𝑃⋂𝐺 = ∅: indeed, being Φ(𝒙, 𝒚) concave in x, for any 𝒙𝑘 in A, 𝑘 = 1, 2, … , 𝑛, 0 ≤
𝜃𝑘 ≤ 1, ∑ 𝜃𝑘 = 1,𝑛

𝑘=1  

 

∑ 𝜃𝑘(Φ(𝒙𝑘, 𝒚) − 𝑐) ≤ Φ (∑ 𝜃𝑘𝒙𝑘 , 𝒚

𝑛

𝑘=1

) − 𝑐

𝑛

𝑘=1

 

 

therefore, the convex extension of 𝑓(𝐴) does not intersect P. 

Consider now a sequence 𝒙𝑛 of points in A, such that 𝑓(𝒙𝑛) converges to 𝒗, 𝒗 ∈ 𝐸𝑛. As 

A is closed, bounded and convex, it is possible to define a subsequence, designated 𝒙𝑚 

such that 𝒙𝑚 converges weakly for an element of A (call it 𝒙0). In addition, for any 𝒚𝑖 as 

Φ(𝒙, 𝒚𝑖) is concave in x,  

 

𝑙𝑖𝑚̅̅̅̅̅Φ(𝒙𝑚 , 𝒚𝑖) ≤ Φ(𝒙0, 𝒚𝑖), or 𝑓(𝒙0) ≥ 𝑙𝑖𝑚̅̅̅̅̅𝑓(𝒙𝑚 = 𝒗). 
 

So 𝑃⋂𝐺 = ∅. Then, G and P may be strictly separated, and it is possible to find a vector 

in 𝐸𝑛 with coordinates 𝑎𝑘, such that 

 

sup
𝒙∈𝐴

∑ 𝑎𝑖(Φ(𝒙, 𝒚𝑖) − 𝑐) < ∑ 𝑎𝑖𝒆𝑖 ,

𝑛

𝑖=1

𝑛

𝑖=1

 

 

with the whole 𝑎𝑖 greater or equal than zero. 

 

Obviously, the 𝑎𝑖 cannot be simultaneously null. So, calculating the ratio over  ∑ 𝑎𝑖
𝑛
𝑖=1  

and having in mind the convexity of Φ(𝒙, 𝒚) in y  

sup
𝒙∈𝐴

Φ(𝒙, �̅�) − 𝑐 < 0, where �̅� =
∑ 𝑎𝑘𝑦𝑘

𝑛
𝑘=1

∑ 𝑎𝑘
𝑛
𝑘=1

. 

 

Moreover, evidently, either  �̅� ∈ 𝐵  or  inf
𝒚∈𝐵

sup
𝒙∈𝐴

Φ(𝒙, 𝒚) < 𝑐 . This contradicts the 

definition of c. So,    

           

                                                           ⋂ 𝐴𝒚𝑖

𝑛
𝑖=1 ≠ ∅. 

Indeed,  

 

                                                            ⋂ 𝐴𝒚𝒚∈𝐵 ≠ ∅, 

 

as we will demonstrate in the sequence using that result and proceeding by absurd. Note 

that 𝐴𝒚 is a closed and convex set and so it is also weakly closed. Moreover, as it is a 



bounded set, it is compact in the weak topology1, such as A. Calling 𝐺𝒚 the complement 

of 𝐴𝒚 it results that 𝐺𝒚 is an open set in the weak topology. So, if ⋂ 𝐴𝒚𝒚∈𝐵  is empty: 

                                                            ⋂ 𝐺𝒚𝒚∈𝐵 ⊃ 𝐻 ⊃ 𝐴.   

 

However, being A compact, a finite number of  𝐺𝒚𝑖
is enough to cover A: 

 

                                                               ⋃ 𝐺𝒚𝑖
⊃ 𝐴𝑛

𝑖=1 . 

 

That is: ⋂ 𝐴𝑖
𝑛 
𝑖=1  is in the complement of A and so it must be  

⋂ 𝐴𝒚𝑖

𝑛
𝑖=1 = ∅, leading to a contradiction. 

Suppose then that 𝒙0 ∈ ⋂ 𝐴𝒚𝒚∈𝐵 . So, actually 𝒙0 satisfies Φ(𝒙0, 𝒚) ≥ 𝑐, as requested.∎ 

 

Then it follows a Corollary of Theorem 2.1, obtained strengthening its hypothesis. 

 

Corollary 2.1 

Suppose that the functional Φ(𝒙, 𝒚)  defined in Theorem 2.1 is continuous in both 

variables, separately, and that B is a bounded set. Therefore, there is an optimal pair of 

strategies, with the property of being a saddle point. 

Dem.: 

It was already seen that exists 𝒙0 such that 

  

Φ(𝒙0, 𝒚) ≥ 𝑐                                                (2.3) 

  

for each y. As Φ(𝒙0, 𝒚) is continuous in y and B is a bounded set 

 

inf
𝒚∈𝐵

Φ(𝒙0, 𝒚) = Φ(𝒙0, 𝒚0) ≥ 𝑐                     (2.4) 

 

for any 𝒚0 in B2. But inf
𝒚∈𝐵

Φ(𝒙0, 𝒚) ≤ sup
𝒙∈𝐴

inf
𝒚∈𝐵

Φ(𝒙, 𝒚) = 𝑐 and, so 

 

Φ(𝒙0, 𝒚0) = 𝑐.                                                  (2.5) 

 

The saddle point property follows immediately from (2.3), (2.4) and (2.5). ∎ 

   

3 Nash Equilibrium Existence 

 

The formulation and resolution of a game is very important in Game Theory. There are 

several game solutions concepts. However, some of these concepts are restrict to a certain 

kind of games. John Nash see [20], defined the most important solution concept. We will 

see that Nash equilibrium exists for a large class of games. 

  

Call 𝐸𝑛 the finite set of available strategies for a player. E denotes the Cartesian product 

of these sets. A typical element of this set is 𝒆 = (𝑒1, 𝑒2, … , 𝑒𝑁 ), called a pure strategy 

profile, where each 𝑒𝑛 is a pure strategy for player n. 

 

 
1 See, for instance, [13]. 
2 A continuous convex functional in a Hilbert space has minimum in any bounded closed convex set.   

 



Definition 3.1 

A mixed strategy of a player n is a lottery over the pure strategies of player n. 

 

Obs.: 

- Denote 𝜎𝑛 a player n particular mixed strategy, and Σ𝑛 the player n set of all its 

mixed strategies. 

 

- Thus 𝝈𝑛 = (𝜎𝑛(𝑒𝑛
1), 𝜎𝑛(𝑒𝑛

2), … , 𝜎𝑛(𝑒𝑛
𝑘𝑛))  where 𝑘𝑛  is the number of pure 

strategies of player n and 𝜎𝑛(𝑒𝑛
𝑖 ) ≥ 0, 𝑖 = 1, 2, … , 𝑘𝑛 and ∑ 𝜎𝑛(𝑒𝑛

𝑖 ) = 1.
𝑘𝑛
𝑖=1  

 

- The cartesian product Σ = Σ1 × Σ2 × … × Σ𝑁  is the set of all mixed strategy 

profiles. 

 

- Therefore, the mixed strategy set for each player is the probability distribution set 

over its pure strategy set. ∎ 

 

Definition 3.2 

A n-dimensional simplex defined by the  𝑛 + 1  points 𝒙0, 𝒙1, … , 𝒙𝑛  in ℝ𝑝, 𝑝 ≥ 𝑛, is 

denoted 〈𝒙0, 𝒙1, … , 𝒙𝑛〉 and is defined by the set 

{ℝ𝑝: 𝒙 = ∑ 𝜃𝑗𝒙𝑗, ∑ 𝜃𝑗 = 1, 𝜃𝑗 ≥ 0

𝑛

𝑗=0

𝑛

𝑗=0

}. 

Obs.: 

- The simplex is non-degenerate if the n vectors 𝒙1 − 𝒙0, … , 𝒙𝑛 − 𝒙0 are linearly 

independent. 

 

- If 𝒙 = ∑ 𝜃𝑗𝒙𝑗,𝑛
𝑗=0  the numbers 𝜃0, 𝜃1,…, 𝜃𝑛 are called the barycenter coordinates 

of x. 

 

- The barycentre of the simplex 〈𝒙0, 𝒙1, … , 𝒙𝑛〉  is the point having the whole 

coordinates equal to (𝑛 + 1)−1. ∎ 

 

Definition 3.3 

Call 𝑢𝑛(𝜎) the expected payoff function of player n associated to the mixed strategy 

profile 𝜎 = (𝜎1, 𝜎2, … , 𝜎𝑁). ∎ 

 

Definition 3.4 

A Nash equilibrium of a game is a profile of mixed strategies 𝜎 = (𝜎1, 𝜎2, … , 𝜎𝑁) such 

that for each 𝑛 = 1, 2, … , 𝑁 for each 𝑒𝑛 and 𝑒𝑛
′  in 𝐸𝑛, if 𝜎𝑛(𝑒𝑛) > 0 then 

 

𝑢𝑛(𝜎1, 𝜎2, … , 𝜎𝑛−1, 𝑒𝑛 , 𝜎𝑛+1, … , 𝜎𝑁) ≥ 𝑢𝑛(𝜎1, 𝜎2, … , 𝜎𝑛−1, 𝑒𝑛
′  , 𝜎𝑛+1, … , 𝜎𝑁). 

 

Obs.: 

- Therefore, an equilibrium is a profile of mixed strategies such that a player knows 

what strategies the other players will go to choose, and no player has incentive to 

deviate from the equilibrium since that it cannot improve its payoff through a 

unilateral change of its strategy. 

 

- A Nash equilibrium induces a necessary condition of strategic stability. ∎ 



 

For the remaining, it is necessary the following result: 

 

Theorem 3.1 (Kakutani’s theorem) 

Let 𝑀 ⊂ ℝ𝑛 be a compact convex set. Be 𝐹: 𝑀 → 𝑀 an upper hemi-continuous convex 

valued correspondence. Then the correspondence F has a fixed point. ∎ 

 

Theorem 3.2 (Nash) 

The mixed extension of every finite game has, at least, one strategic equilibrium. 

 

Dem.: 

Consider the set-valued mapping that maps each strategy profile, x, to all strategy profiles 

in which each player’s component strategy is a best response to x. That is, maximizes the 

player’s payoff given that the others are adopting their components of x. If a strategy 

profile is contained in the set to which it we mapped it (is a fixed point) then it is an 

equilibrium. This is so because we defined a strategic equilibrium, in effect, as a profile 

that is a best response itself. 

 

Thus, the proof of existence of equilibrium amounts to a demonstration that the best 

response correspondence has a fixed point. The fixed – point theorem of Kakutani asserts 

the existence of a fixed point for every correspondence from a convex and compact subset 

of Euclidean Space into itself. This happens if two conditions hold: 1) The image of every 

set must be convex; 2) The graph of the correspondence (the set of pairs (x, y) where y is 

the image of x) must be closed. Now, in the mixed extension of a finite game, the 

strategies set of each player consists of all vectors (with as many components as there are 

pure strategies) of non-negative numbers that sum 1; that is, it is a simplex. Thus, the set 

of all strategy profiles is a product of simplexes. In particular, it is a convex and compact 

subset of Euclidean Space. Given a particular choice of strategies by the other players, a 

player’s best responses consist of all (mixed) strategies that put positive weight on those 

pure strategies that highest expected payoff among all the pure strategies. Thus, the set of 

best responses is a sub simplex. In particular, it is convex.  

 

Finally, note that the conditions that needed a given strategy to be a best response to a 

given profile are all weak polynomial inequalities, so the graph of the best response 

correspondence is closed. 

  

Thus, all the conditions of Kakutani’s theorem hold, and this completes the proof of 

Theorem 3.2.∎ 

 

Let us see two Nash equilibrium examples: 

 

Cournot's oligopoly model assumes that rival companies produce a homogeneous 

product,see [17]. And each tries to maximize profits by choosing how much to produce. 

All companies choose production simultaneously. Cournot's basic assumption is that each 

company chooses its quantity, considering the quantity of its rivals. The resulting 

equilibrium is a Nash  equilibrium in quantities the Cournot (Nash) equilibrium. 

 

Prisoners' dilemma is a very famous example of a two-person strategic interaction game, 

see [19]. The logic of the game is the following: both players in the game were charged 

with a crime, and were placed in separate rooms so that they could not communicate; each 



player is asked, independently, whether will confess the crime or remain silent; as each 

of the two players has two possible options (strategies), there are four possible outcomes 

for the game. They are: 

 

1) If both players confess, each of them will be sent to prison, but for less years 

than if either player was betrayed by the other. 

 

2) If one player confesses and the other remains silent, will be severely punished 

while the player who confessed is released. 

 

3) If both players remain silent, each will receive a less severe punishment 

                than if they both confess. 

 

The prisoner's dilemma, therefore, has a unique Nash equilibrium: both players choose to 

confess. 

 

 

4 Minimax Theorem versus Nash Equilibrium 

 

Begin to refer that in [25] it is established that Sion’s minimax theorem, see [26], is 

equivalent to the existence of Nash equilibrium in a symmetric multi-person zero - sum 

game. If a zero-sum game is asymetric, players maximin strategies and minimax 

strategies do not correspond to Nash equilibrium strategies. However, if it is symmetric, 

the maximin strategy and the minimax strategy constitute a Nash equilibrium. 

 

In [11], Hattori, Satoh, and Tanaka consider a symmetric multi-players zero-sum game 

with two strategic variables. There are n players,𝑛 ≥ 3. Each player is denoted by i. Two 

strategic variables are 𝑡𝑖 and 𝑠𝑖, 𝑖 ∈ {1, . . . , 𝑛}. They are related by invertible functions. 

Using the Sion’s Minimax Theorem, see again Sion [26], they show that Nash equilibria 

in the following states are equivalent: 1) All players choose 𝑡𝑖 , 𝑖 ∈ {1, . . . , 𝑛}, as their 

strategic variables, 2) Some players choose 𝑡𝑖′𝑠 and the other players choose 𝑠𝑖′𝑠, and 3) 

 All players choose 𝑠𝑖, 𝑖 ∈ {1, . . . , 𝑛}. 

 

In short, Hattori, Satoh, and Tanaka have shown that in a symmetric multi-player zero-

sum game with two strategic variables, the choice of strategic variables is irrelevant to 

the Nash equilibrium. Indeed, in an asymmetric situation Nash equilibrium depends on 

the choice of strategic variables by players other than two-player case, see [24].  

 

5 Conclusions 

 

Minimax theorem see [21], and Nash equilibrium, see [20], were two main achievements 

that give raise to a great spread of the Game Theory applications namely in the Economic 

domain. The minimax theorem is more important in domains like Operations Research 

than in Economics. The opposite happens with Nash equilibrium. In particular in the 

famous Cournot-Nash Model, among others. 
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